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A Program: Stage ABC for Branching Problem

[/Vé’//t(’ M/ﬁ y Lecture 2. Discrete Decom_po_sability and
Admissible Restriction

Stage A. Abstract Featl\Jée of Res&;tion

® spectrum:(discrete or cOntinuous?/ support?
* multiplicities: infinite,(finite, bounded, or one, ... ?

Stage B. Branching Laws
® (irreducible) decomposition of representations

Stage C. Construction of SBOs/HOs

SBO - -- Symmetry Breaking Operator
HO --- Holographic Operator

® decomposition of vectors

Ref. T. Kobayashi, “A program for branching problems in rep theory...”, Progress in Mathematics, 312, (2015).
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Notation

-

Throughout this talk, G: real reductive Lie gp
EX.

G O K: max compact subgp GL(n,R) D O(n)

|} more general

(G O H: reductive symmetric pair | GL(n,R) D O(p,n — p)

|} more general

G O G’ real reductive subgp GL(n1 + ny + n3, R)

D GL(??,l, R)XGL(??,Q, R)XGL(??B, R)

o |

Branching Problems for Zuckerman'’s Derived Functor Modules — p.6/69



Multiplicities
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Notation GL(v ) > O(r)

|} more general

G O H: reductive symmetric pair | GL(n,R) D O(p,n —p)

Branching Problems for Zuckerman’s Derived Functor Modules — p.8/69
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Multiplicities

G/K Gl K
G/H Gl H
multiplicities
8 [*(G/K) 0orl (Cartan 29, Gelfand ’50)
e GlK finite (Harish-Chandra’s admissibility thm)

< L2((G1 X Gl)/Gl)
0orl (Harish-Chandra)

|
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Multiplicities

G/K Gl K
G/H Gl H
multiplicities
8 [*(G/K) 0orl (Cartan 29, Gelfand ’50)
e GlK finite (Harish-Chandra’s admissibility thm)

9o L2((G1 X Gl)/Gl)
Oorl (Harish-Chandra)

® L*(G/H) uniformly bounded

G0 R) > 00
NOtathn |l more general J

G O H: reductive symmetric pair | GL(n,R) > O(p,n—p)



Multiplicities

G/K Gl K
G/H G J.H
multiplicities
® L*(G/K) 0or1 (Cartan ’29, Gelfand ’50)
®» GlK finite (Harish-Chandra’s admissibility thm)
® L*(G/H) uniformly bounded
» G| H canbe oo but... B

Ve

(usually) bad feature (unexpectedly) nice feature

Notation | G > H: reductive symmetric pair |




Definition of “Multiplicity” in the branching

Various inequivalent definition of multiplicities can be considered
for the branching of the restriction G | G’

e Dimension of Homg (Il|g/, ) (Symmetry Breaking Operators), or
e Dimension of Homg (7, I1|g) (Holographic Operators).

— in the category of (g, K)-modules,
— in the category of unitary representations,
— in the category of smooth representations,



Various definitions of “multiplicities” for the restriction

G > G’ reductive Lie groups

He@, ne@

dim Hom(gr’Kr)(ﬂ'K/, HKI(g’,K’)) (holographic Op)

Al
dim Homg/ (7, ) (holographic op)
[
dim Homg (I|g/, 7) (symmetry breaking op)
Al

dim Homg (IT% |/, 7°) (symmetry breaking op)
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G > G’ reductive Lie groups
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Non-unitary representation and smooth representations
G: Lie group
V. complete, locally convex top. space (e.g., Banach space)

(m, V): continuous representation of G, that is,

GxXV Y, (g, u) — n(g)u is continuous

u is a smooth vector & G - V, g — n(g)u is of C*-class

~» V% :={smooth vectors} c V.
dense

Definition (7%, V=) is called the smooth representation of G.
We note that V* is endowed with Fréchet topology.




Example G =SU(1,1) (= SL(2,R))

V=L’ (1<p<oo)

Forg™! = (Z Z) e SU(1, 1), a principal series representation r, is

defined by
a

z+b)
cz+d”

(@) )@ = lez + dI* f(

LP(SY = LV (SY ifp#p,
(LP(S1))™ does not dependon 1 < p < o.

(It is isomorphic to C*(S1).)

What does this mean?



Irr(G) in the admissible smooth category

G: real reductive Lie group
V: Banach space
(m, V): Irreducible, K-admissible, continuous representation of G

¢

I Fact (7%, V=) does not depend on the original topology on V. I

Definition Irr(G) := {(7*, V=)}/ ~.

(Irreducible objects in the Casselman—Wallach category)



Multiplicity of the restriction I1|; including non-unitary case

G : real reductive Lie group

Irr(G): irreducible, smooth, admissible reps

G SImG), e IO%.

unitary dual

G > G’ :real reductive groups

Definition (multiplicity) For IT € Irr(G) and « € Irr(G”), we set
Homg (Il|g, ) := {symmetry breaking operators}

[Mlg : 7] := dimc Homg (Il|g/, ) € N U {0}




Various definitions of “multiplicities” for the restriction

G > G’ reductive Lie groups

He@, neG

dim Homy gy (mx, Ikl .x7))  (holographic op)

Al
dim Homg (7, I|g) (holographic op)
[
dim Homg/ (Il , ) (symmetry breaking op)
Al

dim Homg: (IT% |G/, ™) (symmetry breaking op)



Spherical vs real spherical
Gec complex reductive > Xc complex manifold (connected)

Definition X is spherical if a Borel subgroup B of G¢
has an open orbit in X¢.

G real reductive “¥X C® manifold (connected)

Definition (TK-'89) We say X is real spherical if
a minimal parabolic P of G has an open orbit in X.

— in search of a broader framework for global analysis
on homogeneous spaces than the usual (e.g. group
manifolds, reductive symmetric spaces)




Example of spherical spaces
Gc | complex reductive ™ X complex manifold (connected)

Definition Xc is ' spherical if a Borel subgroup B of G¢

has an open orbit X¢.

1. When G is a simple compact Lie group, Xc is G¢-spherical

if X = G/H is a symmetric space. There are also a few number of
non-symmetric, reductive, spherical spaces such as
SO2n+1,C)/GL(n,C), Goc/SL(3,C), ... (classified by Kramer®).

2. (Triple space) When G¢ is a complex simple Lie group,
(Gec X Ge X Ge)/ diag G is spherical if and only if gc = sl(2, C) **.

* M. Kramer, Arch Math (1976).



Example of real spherical spaces
G real reductive " X manifold (connected)

Definition (TK—-89) We say X is real spherical if

a minimal parabolic P of G has an open orbit X.

1. When G is compact, a minimal parabolic subgroup is the whole

group G, hence any homogeneous space X = G/H is real

spherical.

2. (Triple space)* For a non-compact simple Lie group G,
(GxGxG)/diagG

is real spherical if and only if g ~ so(n, 1).

cf. Kazhdan’s property (T) fails if g =~ so(n, 1) or su(n, 1).

* T. Kobayashi, Introduction to Real Spherical Space, Proc. Number Theory, (1995), pp. 22—41.



G’

Reductive homogeneous space G/H

real reductive groups

reductive subgroup
reductive homogeneous spaces

real spherical spaces

spherical spaces
(and their real forms)

symmetric spaces



Spherical vs real spherical
Gc complex reductive D Hc complex subgroup

Definition G¢/Hc is spherical if a Borel subgroup B of G¢
has an open orbit in Ge/He.

G real reductive D H subgroup

Definition (TK-'89) We say G/H is real spherical if
a minimal parabolic P of G has an open orbit in G/H.

G/H symmetric space 2 Gc/Hc spherical Z2 G/H real spherical




Spherical vs real spherical
Gc complex reductive D Hc complex subgroup

Definition G¢/Hc is spherical if a Borel subgroup B of G¢
has an open orbit in Ge/He.

< #(B\G¢/Hc) < oo (Brion, Vinberg) (~1986)

G real reductive D H subgroup

Definition (TK-'89) We say G/H is real spherical if
a minimal parabolic P of G has an open orbit in G/H.

— #(P\G/H) < c (Kimelfeld, Matsuki, Bien) (~1990s)

G/H symmetric space 2 Gc/Hc spherical Z2 G/H real spherical




Finite multiplicity criterion for restriction G | G’
G D G’: algebraic real reductive Lie groups

Theorem 1* (i) and (ii) are equivalent.
(i) (Finite multiplicity property)

dim Homg/ (nt|g/, T) < o0
for any x € Irr(G) and 7 € Irr(G”).

(i) (G xG")/diag(G’) is real spherical.

* T. Kobayashi-T. Oshima, “Finite multiplicity theorems for inductionand restriction”, Adv. Math., (2013), 921-943;

T. Kobayashi, Sintani functions, real spherical manifolds, ..., Perspective Math., (2014).



Finite multiplicity criterion for restriction G | G’
G D G’: algebraic real reductive Lie groups

Theorem 1* (i) and (ii) are equivalent.
(i) (Finite multiplicity property)
dim Homg/ (nt|g/, T) < o0
for any x € Irr(G) and 7 € Irr(G”).

(i) (G xG")/diag(G’) is real spherical.

(i) < Fopen P’ . -orbit on G/Pin



Classification Theory

Theorem 2 (Classification)* Let (G, G”) be a reductive symmetric pair.
Then, (ii) & (iii).
(i) (G xG")/diag(G’) is real spherical.
(ii) (g,q’) is a direct sum of the following pairs
(A) (Easy case)
(B) (Strong Gelfand pairs and real forms)
(C) (Split rank one case)
(D) (Other cases)

~—_— — ~— ~~—

* T. Kobayashi, Introduction to Real Spherical Space, (1995); T. Kobayashi-T. Matsuki, Transf. Group, (2014).



Classification Theory

Theorem 2 (Classification)* Let (G, G”) be a reductive symmetric pair.
Then, (ii) & (iii).
(i) (G xG")/diag(G’) is real spherical.
(ii) (g,q’) is a direct sum of the following pairs
(A) (Easy case)
(B) (Strong Gelfand pairs and real forms)
(C) (Split rank one case)
(D) (Other cases)

Trivial case) g = ¢’ «—Bruhat decomposition

(A1) (
) (Abelian case) g =R
) (
) (

(
(

Compact case) G is compact
Riemannian symmetric pair) G’ = K «—lwasawa decomposition

—_

1
A-2
A-3
A-4

* T. Kobayashi, Introduction to Real Spherical Space, (1995); T. Kobayashi-T. Matsuki, Transf. Group, (2014).



Classification Theory

Theorem 2 (Classification)* Let (G, G”) be a reductive symmetric pair.
Then, (ii) & (iii).
(i) (G xG")/diag(G’) is real spherical.
(ii) (g,q’) is a direct sum of the following pairs
(A) (Easy case)
(B) (Strong Gelfand pairs and real forms)
(C) (Split rank one case)
(D) (Other cases)

(sl(n + 1,C), gl(n,C)) (n = 2).
(o(n+1,C),0(n,C)) (n=2).

(su(p+ L,g),u(p,q)) (p+q=1).
(o(p+1,9),0(p,q)) (p+q=2).

)
)
-3) (sl(n + 1,R), gl(n,R)) (n>1).
)
)

* T. Kobayashi, Introduction to Real Spherical Space, (1995); T. Kobayashi-T. Matsuki, Transf. Group, (2014).




Classification Theory

Theorem (Classification)* Let (G, G") be a reductive symmetric pair.
Then, (ii) & (iii).
(i) (G xG")/diag(G’) is real spherical.
(ii) (g,q’) is a direct sum of the following pairs
(A) (Easy case)
(Strong Gelfand pairs and real forms)
(Split rank one case)
(Other cases)

~— — ~— ~—

(B
(C
(D

(C) rankg G’ =1
(neither necessary nor sufficient; but fairly large families)



Classification Theory

Theorem (Classification)* Let (G, G") be a reductive symmetric pair.
Then, (ii) & (iii).
(i) (G xG")/diag(G’) is real spherical.
(ii) (g,q’) is a direct sum of the following pairs
(A) (Easy case)
(Strong Gelfand pairs and real forms)
(Split rank one case)
(Other cases)

~— — ~— ~—

(B
(C
(D

—1) (o(n, 1) + o(n, 1), diag o(n, 1))  (n > 2).
—2) (o(p +¢q,1),0(p) + 0(q, 1)) (p+q=2).
=3) (su(p +q,1),s(u(p) +u(g, 1)) (p+g=1).
—4) (sp(p +q,1),5p(p) +sp(q, 1)) (p+q=1).
—5) (fa=20), 0(8, 1)).

—6) (0(2n,2),u(n, 1)).

* TK Intradiinrtinon in Raal Snharical Craarae (1Q0QEY TKT Materiki Trancf Cratin (2044 Dunkin \/ali imo




Classification Theory

Theorem (Classification)* Let (G, G’) be a reductive symmetric pair.
Then, (ii) & (iii).
(i) (G xG")/diag(G’) is real spherical.
(ii) (g,q’) is a direct sum of the following pairs
(A) (Easy case)
(B) (Strong Gelfand pairs and real forms)
(C) (Split rank one case)
(D) (Other cases)

— ~— ~— ~~—

(D-1) (su*(2n +2),su(2) + su*(2n) + R) (n = 1).
(D-2) (0*(2n +2),0(2) + 0*(2n)) (n=1).
(D=3) (sp(p + 1,9), sp(p, q) + sp(1)).
(D—4) (36(—26)7 50(9, 1) + R).

* TK, Introduction to Real Spherical Space, (1995); TK-T. Matsuki, Transf. Group, (2014), Dynkin Volume.



Classification of finite-multiplicity restriction

Corollary 1 Let (G,G”) be a reductive symmetrlc pair. Then, (i) & (iii).
() dim Homg/ (7t|gr, T) < oo forany m € Gadm andany 7 € G adm-

ii) (g,q") is a direct sum of the following pairs

(A) (Easy case) (B) (strong Gelfand pairs and real forms)

(A-1) g=¢ (B-1) (sl(n + 1,C), gl(n,C)) (n>2).
(A-2) g=R (B-2) (o(n+1,C),0(n,C)) (n=2).
(A-3) G is compact (B-3) (sl(n + I,R),gl(n,R)) (n>1).
(A-4) G' =K (B-4) (su(p+ L@, u(p.q) (p+q=1).

(B=5) (o(p+1,9),0(p,q) (p+q=2).
(C) (Split rank one case) (D) (Other cases)

(C-1) (o(n, 1) + o(n, 1),diag o(n, 1)) (n > 2). (D-1) (su*(2n +2), su(2) + su*(2n) + R)
(C-2) (o(p+4g, 1), 0(p) + (g, ) (p+9 = 2). (mz1).

(C-3) (su(p+q,1),s(u(p)+u(g, 1)) (p+g > 1). (D-2) (0"(2n+2),0(2) + 0*(2n)) (n > 1).
(C—4) (sp(p+q.D).sp(p) +sp(q. 1) (p+g = 1). (D=3 5+ 1,9),5p(p,g) + 5p(1).
(C-5) (fa-20, 0(8, 1)). (D-4) (e6(-26),50(9, 1) + R).

(C=6) (0(2m,2),u(n, 1)).




Restriction G | G’ with uniformly bounded multiplicity property

Theorem 3 (Uniformly bounded multiplicity criterion)
For a pair G © G’ of real reductive groups, (i) (i) (also (ii)" or (ii)”).

(i) (Rep) sup sup [ : 7] < oo.
Ilelrr(G) nelr(G7)

(i) (Geometry ) (Gc X G(,)/ diag(Gy.) is spherical.
(i) (Ring) The ring U(ac)c is commutative.
(i)” (Ring) The ring U(gc)°c is a polynomial ring.

e The equivalence (i) & (i) is proved in (TK—T. Oshima)®.

e A stronger estimate for (i) = (i), namely, multiplicity-free
theorem holds for most of (not all of) the cases (Sun—-Zhu)**.

e Classification for (ii): (ac, g.) is (sl(n, C), gl(n — 1, C)),

(so(n, C), sn(n — 1, C)), or up to direct product, abelian factors, or
automorphisms (Kostant, Kramer).

*
T. Kobayashi-T. Oshima, “Finite multiplicity theorems for induction and restriction”, Adv. Math., (2013), 921-943.

ok
Sun—Zhu, “Multiplicity one theorems: the Archimedian case”, Ann. of Math., (2012), 23—44.



Good Control of Restriction G | G’

Theorem B (Uniformly bounded multiplicity criterion)
For a pair G > G’ of real reductive groups, (i) (ii) (also (ii)” or (ii)"’).

(i) (Rep) sup  sup [Mgr : 7] < co.
Melr(G) nelr(G’)

(i) ( Geometry ) (Gc x Gp.)/ diag(Gy,) is spherical.
(i (Ring) The ring U(gc)Cc is commutative.

(iy” (Ring ) The ring U(gC)G"C is a polynomial ring.

Geometry Representation
Gc X G/ diag(G(.) o i
k" o~
U(ac)%

Algebra



Tri-linear invariant forms
G : asimple Lie group

Corollary 3 (Finite multiplicity) Equivalent on g :
(1)  For any triple of irred reps |, mp, and w3 € Irr(G)
dim Homg(m; ® mp @ m3,C) < o0
(1) For any triple of irred reps n1, 72, and 3 € Irr(G)
dim Homg (71 ® 1, 13) < 00
(2) g=o(n1) (n=2)




Tri-linear invariant forms
G : asimple Lie group

Corollary 3 (Finite multiplicity) Equivalent on g :
(1)  For any triple of irred reps |, mp, and w3 € Irr(G)
dim Homg(m; ® mp @ m3,C) < o0
(1) For any triple of irred reps n1, 72, and 3 € Irr(G)
dim Homg (71 ® 1, 13) < 00
(2) g=o(n1) (n=2)

Cf. For g = su(n, 1) (n > 2), sp(n, 1), f4-20)
dim Homg(m; ® mp ® w3, C) = o0
for some 7y, 7 and 3.




Tri-linear invariant forms
G : asimple Lie group

Corollary 3 (Finite multiplicity) Equivalenton g :
(1)  For any triple of irred reps ny, 7>, and mr3 € Irr(G)
dim Homg (7 ® m, @ m3,C) < 00
(1) For any triple of irred reps n1, 72, and 3 € Irr(G)
dim Homg () ® 1, 13) < 00
(2) g=on1) (n>2)

Corollary 4 (Uniformly bounded multiplicity)

sup dim Homg(m ® my @ m3, C) < o0
71, mp, m3elr(G)

— g=~o0(2,1)oro(3,1)




Tri-linear invariant forms
G : asimple Lie group

Corollary 3 (Finite multiplicity) Equivalenton g :
(1)  For any triple of irred reps ny, 7>, and mr3 € Irr(G)
dim Homg (7 ® m, @ m3,C) < 00
(1) For any triple of irred reps n1, 72, and 3 € Irr(G)
dim Homg () ® 1, 13) < 00
(2) g=on1) (n>2)

Corollary 4 (Uniformly bounded multiplicity)

sup dim Homg(m ® my @ m3, C) < o0
71, mp, m3elr(G)

— g=0(2,1)oro3,1)

® Pukanszky, Williams, Repka (Decomposition of 7; ® m, for
SL(2,R)) Note: sl(2,R) ~ (2, 1)
® Bernstein—Rezhikov integral (Clerc—K-Qrsted—Pevzner 2011)
Homg(m ® my ® 13, C) for G = O(n, 1)




Symmetry breaking operators
A nice framework of branching G | G’ in the noncompact case:

e Discrete decomposability of the restriction 7|/
e Finiteness/boundedness of dim Homg: (7|, T)

$ expect a simple and detailed study

Analysis of Branching Problems




Multiplicities

G/K Gl K
G/H G J.H
multiplicities
® L*(G/K) 0or1 (Cartan ’29, Gelfand ’50)
®» GlK finite (Harish-Chandra’s admissibility thm)
® L*(G/H) uniformly bounded
» G| H canbe oo but... B

Ve

(usually) bad feature (unexpectedly) nice feature

NOtation I G O H: reductive symmetric pair I




Bounded multiplicity theorem for I1 with small GK dim.
Let G be a 1-connected real non-compact semisimple Lie group.

Theorem 5 (K—, 23)* There exist C = C(G) > 0 and an

infinite-dim’l irreducible rep I1 of G such that

sup [l : 7] <C
nelr(H)

for all reductive symmetric pairs G > H .

* T. Kobayashi, Bounded multiplicity branching for symmetry pairs, J. Lie Theory, (2023) pp. 305-328.



Bounded multiplicity theorem for I1 with small GK dim.

Theorem 6 (K—, 2022)* Suppose that g¢ is simple.

If the associated variety of I € Irr(G) is the minimal nilpotent orbit
in g%, then 'C > 0 such that

sup [Hllg:#x]<C
nelr(H)

for all reductive symmetric pairs (G, H).

* T. Kobayashi, Multiplicity in restricting minimal representations, PROMS, (2022).



Bounded multiplicity theorem for I1 with small GK dim

Theorem 6 (K-, 2022)* Suppose that g¢ is simple.

If the associated variety of I1 € Irr(G) is the minimal nilpotent orbit
in g%, then 7C > 0 such that

sup [y : 7] <C
nelrr(H)

for all reductive symmetric pairs (G, H).

Example™ (K@ 2003; Lecture 2 of Bent Qrsted, this morning)

(G,G") = (Conformal group, “Isometry group”) for X = Srtx a1,
IT = Ker(A), A is the Yamabe operator on X (p + g even).
~»  The restriction for O(p,q) | O(p’,q") X O(p”,q"") has

I a uniform bounded multiplicity. I

* T. Kobayashi, Multiplicity in restricting minimal representations, PROMS, (2022).

** T. Kobayashi—B. Q@rsted, Analysis on minimal Reps, I, II, lll, Adv. Math. (2003).



Symmetry breaking operators

A nice framework of branching G | G’ in the noncompact case:

Stage A

Stage B .

Stage C .

e Discrete decomposability of the restriction 7|/
e Finiteness/boundedness of dim Homg: (7|, T)

$ expect a simple and detailed study

Analysis of Branching Problems

A Program: Stage ABC for Branching Problem

Stage A. Abstract Feature of Restriction
¢ spectrum: discrete or continuous?/ support?
¢ multiplicities: infinite, finite, bounded, or one, ... ?

Stage B. Branching Laws
® (irreducible) decomposition of representations

Stage C. Construction of SBOs/HOs
SBO --- Symmetry Breaking Operator
HO --- Holographic Operator
* decomposition of vectors



Construction and classification of SBOs for G | G’

Assumption Suppose the pair G D G’ satisfies
dim Homg (7lg/, 7) < oo (Y7 € Irr(G), Y1 € Irr(G))).




Construction and classification of SBOs for G | G’

Assumption Suppose the pair G D G’ satisfies
dim Homg (nlg/, 7) < 0o (Y € Irr(G), Y7 € Irre(G”)).

General Problem*

Construct and classify SBOs between principal series reps,
T: Ind$(V) — Ind$ (W)

for finite dimensional V € Irr(P) and W € Irr(P’)

e Special case --- when T is a local operator
= This is an important and challenging case **.

* T. Kobayashi-B. Speh, (Memoirs of AMS 2015, Lect. Notes in Math., 2018),

** Rankin, Cohen, Juhl (conformal geometry 2009), K-Kubo—Pevzner (2016), ....



Construction and classification of SBOs for G | G’

Assumption Suppose the pair G D G’ satisfies
dim Homg (7lg/, 7) < oo (Y7 € Irr(G), Y1 € Irr(G))).

General Problem*

Construct and classify SBOs between principal series reps,
T: Ind$(V) — Ind$ (W)

for finite dimensional V € Irr(P) and W € Irr(P’)
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T is a differential SBO iff Supp K7 is a singleton.
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We say T is regular SBO if Supp K7 contains inner points in G/P.

Strategy: Induction by the closure relation of P’\G/P.

I Point #(P’\G/P) < oo from finite-multiplicity assumption I




Thank you very much!



Branching in Representation Theory




