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Plan of Lectures

e Talk 1: (February 17, 2025) S
Tempered homogeneous spaces G X

—Dynamical approach : L? estimate of vol(gS N S)

o Talk 2: {February1+9:2625F (February 20, 2025)
Classification theory of “tempered space” G/H
—Combinatorics of convex polyhedra

e Talk 3: (February 21, 2025)

Explore yet another relation of tempered homogeneous spaces
with other disciplines .

1. Topology: Deforming Lie algebras

2. Geometry: Geometric quantization



Temperedness criterion (generalization)

Lecture 1
Method

“~ v Dynamical approach

(Theorem A) Case 1
semisimple linear

(TheoremB’) Case 2 G D H Global geometry + Case 1
semisimple  reductive

Today

(TheoremK)  Case 4 G> H “Limit algebras”
- any any



Reminder from Lecture 1

a: max split abelian subspace of a Lie algebra

py s defined for a linear action b~V by

) max 3 leigenvalues of Y )|
" yvenopy(Y) | vemo) 3 leigenvalues of Y ¥ V|’




Levi decomposition

Let G be a real algebraic group.

e Levi decomposition

g= gs @ u (Levi decomposition)
semisimple solvable
G D> Gy (semisimple part)

e For a unitary representation x of a Lie group G, we shall discuss
temperedness of 7 as a representation of the semisimple part Gy .

cf. For solvable Lie groups, all unitary reps are tempered.



Temperedness criterion in the general case

I Setting G D> H real algebraic Lie groups.

We allow G and H to be non-reductive.

Take a maximal semisimple subgroup G; of G,

Gs c G"YL*(G/H)

*Y. Benoist-T. Kobayashi, Tempered homogeneous spaces IV, J. Inst. Math. Jussieu, 28 pages, 2022.



Temperedness criterion in the general case

I Setting G D> H real algebraic Lie groups.

We allow G and H to be non-reductive.

Take a maximal semisimple subgroup G; of G,

Gs c G"YL*(G/H)

I Question Whenis G5 “ L?(G/H) tempered? I

*Y. Benoist-T. Kobayashi, Tempered homogeneous spaces IV, J. Inst. Math. Jussieu, 28 pages, 2022.



Temperedness criterion in the general case

I Setting G D> H real algebraic Lie groups.

Take maximal semisimple subgroups H; and G of H and G,
respectively, such that H; c Gs . Consider

G, cG"YL*G/H)

We define an H;-module by V := g/bh + g/g;.

Theorem K* L2(G/H)is Gs-tempered < py < 1. I

& Pg <2 pgm ON Dy

*Y. Benoist-T. Kobayashi, Tempered homogeneous spaces IV, J. Inst. Math. Jussieu, 28 pages, 2022.



Temperedness criterion in the general case

I Setting G > H real algebraic Lie groups.

We allow G and H to be non-reductive.
Take maximal semisimple subgroups H; and G of H and G,
respectively, such that Hy; c Gs . Consider

Gs c G"YL*G/H)
We set V := g/b + g/gs - - - Hs-module.

Theorem K* L2(G/H)is G -tempered < py < l. I

When G is semisimple, i.e., G = G5, Theorem K implies:

Theorem B’ (Lecture 1, G semisimple case)
L*(G/H) is G-tempered & py, < py/, ON b.

* Y. Benoist-T. Kobayashi, Tempered homogeneous spaces 1V, J. Inst. Math. Jussieu, 28 pages, 2022.



Temperedness criterion (generalization)

Lecture 1
Method

¥ v Dynamical approach

(Theorem A) Case 1
semisimple linear

(TheoremB’) Case 2 G D H Global geometry + Case 1
semisimple  reductive

2%
(Theorem D) Case3 G D H Domination of G-space9

semisimple any

Todax

(TheoremK)  Case 4 G> H “Limit algebras”
- any any

* Y. Benoist-T. Kobayashi, Tempered reductive homogeneous spaces I, Chicago Univ. Press (2022).



Plan of Lecture 3
0. Temperedness criterion (generalization)

Explore yet another relation of tempered homogeneous spaces
with other disciplines .

1. Topology: Deforming Lie algebras

2. Geometry: Geometric quantization



Deforming Lie algebras (1) — Example
Consider two equi-dimensional subalgebras of g = sl(n, R):

0 *
f=s0(n), n:{[ ]}

reductive 0 0
nilpotent

Observation “ sequence gj € SL(n,R) such that lim Ad(g;) T = n
]—)00

Remark 7 sequence g; € S L(n,R) such that lim Ad(g;))n = f. I
Jo®




Deforming Lie algebras (1) — Example
Consider two equi-dimensional subalgebras of g = sl(n, R):

0 *
f=s0(n), n:{[ ]}

reductive 0 0
nilpotent

Observation “ sequence gj € SL(n,R) such that lim Ad(g;) T = n
]—)00

J
Proof. (n=2) Take g; = (2 . Then

0
0 27/

0 -1 0 =2%\j-ex_(0 -1
Aol(g,-)f_Aol(gj)R(1 0)—R(2_2j 0 )—>R(0 0)—n.

Remark 7 sequence g; € S L(n,R) such that lim Ad(g;))n = f. I
Jo®




Deformation of space forms S", R",and H"

Isometry Curvature
SOm+1)" 8" k>0
l
SOm) <R R" =0

T

SO(m, 1) H" k<0



Deformation of space forms S", R",and H"

K=SOmn+1)"> s* t=so(n+1)
! L “limit algebra” in g
MN = SO(n) < R" " R” m+n= so(n) =R
T L “limit algebra”in g
H=S0mn1)" H" h=s0(n,1)

View point from transformation groups

G =S50+ 1,1) contains K, MN, and H.




Deformation of space forms S", R",and H"

K=SOmn+1)"> s* t=so(n+1)
l L “limit algebra” in g
MN = SO(n) < R" " R” m+n= so(n) =R
T L “limit algebra”in g
H=S0n1)" H" b = so(n, 1)

View point from transformation groups

G =S50+ 1,1) contains K, MN, and H.
Quotient

G/K =H"' . >G/MN <-- G/H = deS"*!

deform deform




Limit algebras (2) — Formulation
By forgetting the Lie algebra structure of g, one considers

Ad dim g
G Gr(g) := U Grp(g), (Grassmann variety).
m=0

b: a subalgebra of g, with dimension m.

~> Ty may be regarded as a point of Gr,,(g).

Gr(g) D Ad(G)h, which may or may not be closed. I

submanifold

Gr(g) D Ad(G)h 2 b,  (limit algebra)

Definition ( limit algebra ) b, (C g) is a limit algebra of hin g
if ¥ sequence g; € G such that lim Ad(g;)h = be in Gr(g).
]—)00



Limit algebras (3) — Properties

g Db subalgebra ~» Gr(g) D Ad(G)h 2 b, (limit algebra)

Remark Limit algebra is not unique.

Basic properties
0) b itself is a limit algebra of .




Limit algebras (3) — Properties

g Db subalgebra ~» Gr(g) D Ad(G)h 2 b, (limit algebra)

Remark Limit algebra is not unique.

Basic properties
0) b itself is a limit algebra of .
1) Any limit algebra b, is an equi-dimensional Lie algebra.

abelian abelian
2) Ifhis 4 nilpotent then any limit algebra b, is also { nilpotent
solvable solvable .

“Semisimple” ) may collapse to “ solvable ” b, but not vice versa.



Limit algebras (4) — Example

gD b subalgebra ~» Gr(g) D Ad(G)) > b (limit algebra)

Remark b, is determined not only by | itself
but by how ) is embedded in g .

Exercise Fix p, and considerh = sl, — g =sl,,,
Is it possible to “deform” b = sl, to a solvable subalgebra in g ?
Namely, does Ad(G)Y contain solvable b, ?

p q p q




Deforming Lie algebras to solvable ones

Example § = sl, — g =sl,4,
P 4

q<p p does not have a solvable limit.

g=p+1 7* has a solvable limit.
q

Definition (solvable limit algebra) I c g Lie algebras

We say b has a solvable limit in g if

d¢; € G such that lim Ad(g))b is a solvable Lie algebra.
J—o0 —




Variety of all Lie algebras £ and its subset S
Formulation: Consider the variety of all subalgebras in g.

dim g

Gr(g) = ]_[ Gry(9) .-+ algebraic variety
N=0

L :={subalgebras of g} --- algebraic variety

U

S :={he £:AdG)h > b, solvable }

U

{solvable subalgs} -+ algebraic variety

I Question What does S look like in £ ?




Variety of all Lie algebras £ and its subset S
g: Lie algebra.

L :={subalgebras of g}
U

S :={he L£:AdG)h > b solvable }

I Question What does S look like in £ ?

p q p q

P=q p<q-1



Topology of S = {h : Ad(G)h > b, solvable}

Suppose g is an algebraic Lie algebra /C.

Open Problem L Is' S openin L?

Recall

L := {subalgebras of g}
U
S :={he L:AdG) > . solvable }

*Y. Benoist-T. Kobayashi, Tempered homogeneous spaces IV, J. Inst. Math. Jussieu, 28 pages, 2022.



Topology of S = {h : Ad(G)h > b, solvable}
Suppose g is an algebraic Lie algebra /C.

Open Problem L Is' S openin L?

Theorem M*

(1) S isclosedin L.
(2) 'S isopenandclosedin L if gis semisimple.

Recall

L := {subalgebras of g}
u

S :={he L£:AdG)h > b solvable }

Our proof for Theorem M uses unitary representation theory.

* Y. Benoist-T. Kobayashi, Tempered homogeneous spaces 1V, J. Inst. Math. Jussieu, 28 pages, 2022.



S and temperedness of L*(G/H)
G : complex algebraic Lie group,
H : algebraic subgroup.

We recall
L := {subalgebras of g}
U
S :=(he L£:AdG) > Yo | solvable }
Theorem N*

Po, <2pgmonhy & he S.

Sincep , <2p o/b is a closed condition, S is closedin L,
showing Theorem M (1).

Recall

I Theorem K* L*(G/H) is Gs-tempered < p, < 2py/p 0N by. |




Sketch of Proof of Theorem M (easier part)
We explain an easier part of the implication in Theorem N.

Pos S 2pgponhy = he S.
Take b, € Ad(G)h such that Ad(G))., is closed. We show

Pa, < 2pq/n ON by = b is solvable.

e Can assume b = h,. T
e Want to show }) is solvable if Ad(G)) is closed.
e Can find a parabolic g of g such that §) is an ideal of g

$ some elementary computation

Pu, < 2pgm ON b implies b, = 0.
Hence, §) is solvable.



Plan of Lecture 3
0. Temperedness criterion (generalization)

Explore yet another relation of tempered homogeneous spaces
with other disciplines .

1. Topology: Deforming Lie algebras

2. Geometry: Geometric quantization



Geometric quantization and temperedness

Ad: G — GLgr(g) adjoint representation.
Ad*: G - GLr(g") coadjoint representation.
Coadjoint orbit O, := Ad*(G)A for A € g".

Lemma (Kostant—Kirillov—Souriau)
Every coadjoint orbit O, carries a natural symplectic structure.

“Geometric quantization”:

450, = AdG)A ~> 1, €C

symplectic mfd unitary rep

Expect
g*/ Ad*(G) = G



Geometric quantization and temperedness

9 —
“Geometric quantization™ ¢* 2 0, = Ad"(G)A ~ m G

symplectic mfd unitary rep
Ad*(G)y*/ Ad*(G) = Supp(LX(G/H)) bt ={leg*: Ay = 0}
n n
g*/Ad*(G) = G
V] V]
Gog/ AD*(G) = Gremp Oreg :=(1 € g" : Ad"(G) - A is of maximal dimension}
We may ask:
Question*

Suppose G is a real reductive Lie group,

and H a connected closed subgroup. Is (i) & (ii)?
(i) G L*(G/H) is tempered.

(i) greg N h* is dense in bht.




From orbit philosophy by Kirillov—Kostant
We assume now G is a complex reductive Lie group.

g o gfeg = {1 € g : Ad"(G)A is of maximal dimension},
g*obht ={1eg": =0}

Orbit philosophy by Kirillov—Kostant

Ad*(G)h*/ Ad*(G) = Supp(L*(G/H))
N N
g*/ Ad*(G) = G
U U
g;‘cg/ Ad* (G) = Gtcmp

Remark h* N g, # 0 & b N g, S bt I




Geometric quantization and temperedness

9 —
“Geometric quantization™ ¢* 2 0, = Ad"(G)A ~ m G

symplectic mfd unitary rep
Ad*(G)h*/ Ad*(G) = Supp(L*(G/H)) 1. ® L -
K - bt i={le g : Al = 0}
¢*/Ad*(G) = G
u u
Greg/ Ad(G) = Giemp gfcg :={1 € g* : Ad*(G) - 1 is of maximal dimension}
Theorem O*

Suppose G is a complex reductive Lie group,

and H a connected closed subgroup. Then (i) < (ii).
(i) G L*(G/H) is tempered.

(ii) gree N B # 0.

* Y. Benoist-T. Kobayashi, Tempered homogeneous spaces 1V, J. Inst. Math. Jussieu, 28 pages, 2022.



Further interactions for “tempered spaces”

Theorem P Let g be a complex reductive Lie algebra.
The following 4 conditions on a Lie subalgebra §) are equivalent.

(i) (Analysis ) L*(G/H) is tempered .
(ii) (combinatorics) 2pp £ py.

(iii) (Geometric quantization) — h* N gy, # 0in g*.

(iv) ( Topology ) h has a solvable limitin g .

Application Representation theory = Topology

Corollary Q ( Topology ) The property “having solvable limit” is an
open and closed condition for subalgebras in a complex reductive
Lie algebra g, namely, 'S is open and closed in L.

* Y. Benoist-T. Kobayashi, Tempered homogeneous spaces 1V, J. Inst. Math. Jussieu, 28 pages, 2022.



Sketch of Proof for Theorem P: Tempered homogeneous spaces

Thm P Let g be a complex reductive Lie algebra.

The following 4 conditions on a Lie subalgebra §) are equivalent.
(i) (unitary rep) Lz(G/H) is tempered .

(i) (combinatorics) 2oy < pq-

(iii) (orbit method) b N gee # Oin g*.

(iv) (limitalgebra) b has a solvable limitin g.

L*(G/H)
Analysis (i)
Lecture 1
dynarﬁﬁ:glrzystem / \ geom quantization
Classification «— Algebra (ii) = Geometry (iii)
Lecture 2 ) = e
pb - pg \ / sﬁn;eclic m(id)

Topology (iv)
lim Ad(g ;)b



Reductive homogeneous space G/H

real reductive groups
reductive subgroup

T Q

reductive homogeneous spaces

real spherical spaces

spherical spaces
(and their real forms)

symmetric spaces

We extend the case where G and H are not necessarily reductive.



Basic Questions
in Group-Theoretic Analysis on Manifolds

GYX  w GTVIAX), -
Geometry Function Space

Basic Question (Lectures 1-3)

e What is the spectrum of L*(X)?

e Are matrix coefficients almost L??

e Can we decompose L*(X) by irreducible tempered reps?

Use ideas of dynamical system, combinatorics, unitary reps,
limit algebras, and more.



Thank you very much!
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