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Main goal for today — Classification theory

Quite surprisingly, it turns out that a complete description of
tempered reductive homogeneous spaces G/H is realistic.

Theorem G* One can give a complete description of

pairs G D H of real reductive algebraic groups
for which L*(G/H) is tempered.

Why ? How ?
T reductive homogeneous spaces

real spherical spaces

spherical spaces
(and their real forms)

symmetric spaces

%
Benoist-Kobayashi, Tempered homogeneous spaces lll, J. Lie Theory 31 (2022), 833-869.



Reminder: Tempered spaces and tempered subgroups

GOH Lie groups
e Induction H1 G --- L*(G/H) << L*(G).

Definition We say G/H is a tempered homogeneous space
if L>(G/H) is a tempered rep of G.

e Restriction G | H --- 7|y << L*(H)

Definition We say H is a G-tempered subgroup
if 7| is a tempered rep of H for any 7 € G \ {1}.

cf. Margulis used “G-tempered subgroup” in a different sense.



Plan of Lectures
e Talk 1: (February 17, 2025)
Tempered homogeneous spaces

—Dynamical approach

o Talk 2: {February19:-2625) (February 20, 2025)
Classification theory of tempered G/H
— Combinatorics of convex polyhedra

Definition™ (Lecture 1)
Py )
= max
pv Yea\{0} PV (¥)

e Talk 3: (February 21, 2025)



Reminder py € R,

Let ) be a Lie algebra, and «a its max split abelian subalgebra.

For a finite-dimensional rep 7: H — Endg(V), we introduced:

Definition® (Lecture 1: piecewise linear function py )

pv :a— Ry, Y L¥eigenvaluesof Y V.

Definition™ (Lecture 1)

= max Py ™ = x Lleigenvalues of ¥ ™
i Yea\{0) PV (Y)  yea\(0) X leigenvalues of ¥ V|’

* Y. Benoist-T. Kobayashi, Tempered reductive homogeneous spaces, J. Eur. Math. Soc. 17 (2015), 3015-3036.

** Y. Benoist-T. Kobayashi, Tempered homogeneous spaces ll, J. Lie Theory 31 (2022), 833-869.



Reminder: Main results in Lecture 1

Let H be a semisimple Lie group.
Consider H — S Lr(V) and H c G (reductive).

Theorems A and B* (Lecture 1) ( L*(G/H) )
py <2 &  H"I*(V)is tempered.
Dgp <1 <~ G/H is atempered homogeneous space.

s

& easier (local estimate) @

= more difficult  (global estimate) @

* Y. Benoist—T. Kobayashi, Tempered reductive homogeneous spaces, J. Eur. Math. Soc. 17 (2015), 3015-3036.



Reminder from Lecture 1

py (combinatorics) <= Analytic Rep Theory

Theorems A and B* (Lecture 1) ( L*(G/H) )
pv <2 &  H VILXV)is tempered.
Doy <1 <~ G/H is atempered homogeneous space.

Theorem E*™ (G | H) Let G := SL(n,R) and H a reductive subgp.
Let H” ¥V := R” be the natural rep.

Then one has the equivalence:

(1) pyv <1 < His aMargulis G-tempered subgroup**.

(2) pv <2 < His atempered subgroup.

* Y. Benoist-T. Kobayashi, Tempered reductive homogeneous spaces, J. Eur. Math. Soc. 17 (2015), 3015-3036.
** K-, (to appear).

*** Q. Margulis, Bull. Soc. Math. France 125 (1997), 447-456.




Main theme of Lecture 2

Basic Problem Classify all non-tempered homogeneous spaces. I

H

Combinatorics
Understand the number py associatedto v: H — GLgr(V).



Combinatorics for py

Very special cases of combinatorics for py have already
interactions with

e Kazhdan’s estimate (SL(3,R) | SL(2,R) x R?),

Tempered subgroup a la Margulis,

Minimal K-type theory of Vogan,
(G, H) symemtric pair, H split

Plancherel formula for G/H,
(G, H) semisimple symemtric pair

Vanishing condition of gen. Borel-Weil-Bott theorem,
Zuckerman’s module A,(4) with singular parameter A,

and more.



Want to understand py : h — R pand py € R,

Let ) be a Lie algebra, and «a its max split abelian subalgebra.

For a finite-dimensional rep 7:  — Endg(V), we introduced:

Definition® (Lecture 1: piecewise linear function py )

pv :a— Ry, Y L¥eigenvalues of Y V.

Definition™ (Lecture 1)

. Py (Y) _ Y leigenvalues of Y " p|
pyv = max = . ~yl
Yea\[0}) PV (V) Yea\{0}2|e|genvalues of Y" VV|

* Y. Benoist-T. Kobayashi, Tempered reductive homogeneous spaces, J. Eur. Math. Soc. 17 (2015), 3015-3036.

**Y. Benoist-T. Kobayashi, Tempered homogeneous spaces lI, J. Lie Theory 31 (2022), 833-869.



Basic properties of [py

e For an exact sequence 0 - W — V — V/W — 0 of h-modules,
one has

pv = pw t+ pvyiw .

e (contragredient rep) ov = oy

Example (b is a subalgebra of g)
For0 —» h — g — g/h — 0 as h-modules, one sees

Papy 1 & Py < pgpy = 2py < py

& G VL*G/H)is tempered rep)

Theorem B

Definition™ (Lecture 1)
Py (Y)
= max
Yea\{0} Py (V)

Pv




Elementary example: computation of [py

Definition* (Lecture 1: piecewise linear function py )

pvi:a—Rs, Y 1Y eigenvalues of Y YV .

b :=sl(p,R) — Endr(V)
a:={X = diag(xi,...,xp) : Zx,- =0}

Example 1) V =R?
{Eigenvalues of X YR} ={x;:1<i< p}

L2
pv = §_Zl|xi|
i=

Example 2) V =1 (adjoint representation)
{Eigenvalues of ad(X)} = {x; —x; : 1 <i # j < p}
Py = X |xi—x

1<i<j<p




Example G = SL(3,R) > H=SL2,R)

a= {diag(xl,xz,O) 1 x1+ x =0}
ad

(H) Py = |x1 = x2| = 2|x1]

Example 1 (G/H is a tempered space. )
ad

Proof b > a/b  [pan = |x1| + |x2| = 2] S Pgy =1

heorem B

.
L*(G/H)istempered & p,, <1 Yes!

Example 2 (H is a tempered subgroup of G)
Proof bV =R> py =i(xil+ah=Ixl -~ pv =2

— Th E
7|y is tempered Y7 € G \ {1} = pv <2 Yes!




(G.H) = (SL(p + ¢, R),SL(p,R))

b = sl(p,R)
U
0 = {x = diag(x1,....xp) x| + -+ + xp = O}, p

= > l-x| P

1<i<j<p

q

)4
Py (x) =g ), Ixi
i=1

L*(G/H) is tempered  (i.e., G/H is a tempered space)

— <
Theorem B Py Pafd
p P
— Z lx; — xj| < qz x| whenever Zx,- =0.
1<i<j<p i=1 i=1

For which (p, g) does this happen?



Combinatorial problem p,, <1

Question Find a necessary and sufficient condition on (p, ¢)
such that
p
2 i —xl < gXIxl ()
1<i<j<p i=1
forall (xi,...,x,) € RP with x; +---+x, = 0.

This is an inequality for piecewise linear functions.
--- Enough to check finitely many inequalities at the edges of
convex polyhedral cones.

Answer p<g+1

Necessity Let x = (1,0,...,0,—1) (witness vector).

Then (%) &= 2+2(p-2)<2qg < p-1<q.



Main theme of Lecture 2

Basic Problem Classify all non-tempered homogeneous spaces. I

H

Combinatorics
Understand the number py associatedto v: H — GLgr(V).



Plan of Lecture 2

. Reminder from Lecture 1:
— Criterion for L?(X) to be almost L” representation

. Example. Computation of py
Example. SL(p + g + r)/S L(p) X S L(q) X S L(r)

. Classification theory of reductive tempered homogeneous
spaces



G/H = GL(n,R)/GL(n1,R) X --- X GL(n,,R)
n+n+--+n.=n

np ny nj n,
LNy Ty AN

n

N

n;

nj3

L/

n,




G/H = GL(n,R)/GL(n;,R) X --- X GL(n,,R)
n+ny+--+n.=n

n n n n,
M 2\/ 3 o
/
n
\
np
7
nj
N
n,
\
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Combinatorics of temperedness criterion — Example

When is the unitary rep L>(G/H) tempered (< almost L?)?
Consider an example with 2 parameters:

G/H=SL(p+q,R)/SL(p,R) x SL(g,R).




Combinatorics of temperedness criterion — Example

Find a condition on (p, ¢) such that GF\VLZ(G/H) is tempered P
P

G/H=SL(p+q,R)/SL(p,R) xSL(g,R) .

Our temperedness criterion p, < p,/, amounts to the following:

2, |mi-pl 3 |y-wls 3 -l

1<i<j<p 1<i<j<q }<t_<p
<j<q

forall (X, , %, yi,--,¥g ) ERPTwith 3} % =0, y; =0.



Combinatorics of temperedness criterion — Example

S -l 3 J -l ¥ -l
I<i<j<p I<i<j<q 1<i<p

1<j<q

forall(xl,---,xp,y1,---,yq)€Rp+quch xi =0, yj =0.

P

Evaluations at very special edges:
(%1, 5% s YooY ) = (1,0,...,0,-1;0,...,0) yields p— g < 1,

(X1, %, Y10, ) =(0,...,0; 1,0,...,0,—1)yie|ds -1<p-gq

Hencel|p — g| < 1 is a necessary condition. However, we still need
to check finite but “huge number” of edges.




Combinatorics of temperedness criterion — Example

Find a condition on (p, ¢) such that GF\VLZ(G/H) is tempered
P

G/H = SL(p + ¢,R)/SL(p,R) X SL(¢,R) . »

Our temperedness criterion p, < p,/, amounts to the following:

2, |mi-pl 3 |y-wls 3 -l

I<i<j<p 1<i<j<q i<t_<p
<j<q

fora”(xl,...’xp, yl,---,yq)eR”*qwich xi =0, y;j =0.
= |p-ql <1

We have two interpretations.
— (1) Gr =SU(p,q) is quasi-split «~~ (G, H) symmetric pair .

= (2) 2max(p,q) < p+q+ 1L




(G, H) = (GL(p + ¢, R), GL(p, R) X GL(g. R))

P

q

In this very particular case (i.e., H is split & (G, H) is symmetric
pair), the function

Py — 2Py
appeared in a different context, namely,

Harish-Chandra’s parameter — Blattener parameter

for discrete series representations, and the combinatorial

techniques have been developed by many experts including
Parthasarathy, Vogan, among others.



Combinatorics of temperedness criterion — Example

When is L*(G/H) is tempered (< almost L2)?
Consider a non-symmetric space with three parameters:

G/H=SL(p+q+rR)/SL(p,R)xSL(g,R)xSL(rR).




G/H=SL(p+qg+rR)/SL(p,R)xSL(g,R) XS L(r,R).

G: real reductive groups
H: reductive subgroup

reductive homogeneous spaces

real spherical spaces

spherical spaces
(and their real forms)

symmetric spaces




Combinatorics of temperedness criterion — Example

G/H=SL(p+q+rR)/SL(p,R)xSL(g,R)xSL(rR).

Our temperedness criterion py < py/, amounts to the following:

5 -l 3 pi-nle 3 -

1<i<j<p 1<i<j<q 1<i<j<r
< 3 fsi-l 3 oy -+ 3 sl
1<i<p 1<j<q L<ksr
1<j<q 1<k<r I<i<p

forall (X1,---,Xp . Y1, .Yq » &% ) ERPYWith Y, % =0,Y y; =0, % & =0.

V4




Combinatorics of temperedness criterion — Example

G/H=SL(p+q+rR)/SL(p,R)xSL(g,R)xSL(rR).

Our temperedness criterion py < py/, amounts to the following:

5 -l 3 pi-nle 3 -

1<i<j<p 1<i<j<q 1<i<j<r
< 3 fsi-l 3 oy -+ 3 sl
1<i<p 1<j<q L<ksr
1<j<q 1<k<r I<i<p

forall(xl,--- »Xp 5 V1,5 Yq s zl,---,z,-)ERp'"qHWich Xi :O,Z Yj :0,2 Zk =0.

= 2max(p,q,r) <p+qg+r+1.

- combinatorics on convex polyhedral cones



Example: H :=SL(p,R) X SL(g,R) X SL(r,R)

Poa

Consider two homomorphisms:

H— SL(p+q+rR) =G, (1)

@
N

H — SL(pg+qr+rp,R) =G
(2) is defined via H "V := Hom(R?, R”) & Hom(R’, R”) & Hom(R", RY).

\ . 72 ~ ey .
Consider 3 unitary reps H " "L°(V), G | H/ and G " VL(G [/ H):

Example One has an equivalence (i) & (ii) & (iii) & (iv):

(i) H "YL2(V)is atempered repof H .

(i) For any irred unitary rep = (# 1) of G = SL(pg + qr + rp,R) ,
the restriction | ,, via (2) is a tempered representation of H .

(iii) [*(G/H)isa temperedrepof G=SL(p+q+r,R).

(iv)" 2max(p,q,r) < p+qg+r+1.

(i) and (iii) - - - Theorem B; (ii) - - - Theorem E (to appear).

%
Y. Benoist-T. Kobayashi, Tempered homogeneous spaces I, J. Lie Theory (2021) for the combinatorics (iii) & (iv).



G/H = GL(n,R)/GL(n1,R) X --- X GL(n,,R)
n+ny+---+n.=n

G: real reductive groups
H: reductive subgroup

reductive homogeneous spaces

real spherical spaces

spherical spaces
(and their real forms)

symmetric spaces




X = G/H = GL(n,R)/GL(n,,R) X - - - X GL(n,,R)

Find the optimal constant ¢(G; X) such that vol(gS N ) is almost
LY(G), for any compact set § C X.

n n, n3 siss n,

n

n;

n

n,

*Y. Benoist-Y. Inoue—T. Kobayashi, J. Algebra (2023).



X = G/H = GL(n,R)/GL(n,,R) X - - - X GL(n,,R)

Find the optimal constant ¢(G; X) such that vol(gS N ) is almost
LY(G), for any compact set § C X.

Theorem ('23)* Let m := max(ny,...,n,). Then
«am%::l
no_omomy e,
n
n
n

n,

*Y. Benoist-Y. Inoue—T. Kobayashi, J. Algebra (2023).



X = G/H = GL(n,R)/GL(n,,R) X - - - X GL(n,,R)

Find the optimal constant ¢(G; X) such that vol(gS N ) is almost
LY(G), for any compact set § C X.

Theorem (°23)* Let m := max(ni,...,n,). Then
. n—1
q9(G; X) =
n—m

2 )y 1xq — xpl
I py  i=1 abeli-th block)

|+ &b Py 2 xa = xl
Py 1<a<b<n

Idea: Where is the maximum of [f’—‘/’b attained?
g,

~» Candidate: 2" edges of convex polyhedral cone.

> edges of convex polyhedral cone.
tricl

* Y. Benoist-Y. Inoue—T. Kobayashi, J. Algebra (2023).



Non-tempered reductive homogeneous space
What is the best p for which L*(G/H) is almost LP?

G/H = GL(n,R)/GL(n;,R) X - - - X GL(n,, R)
n+n+--+tn=n

ny ny, n3 ce n,

ni

n

n3

n,




almost L? criterion (recall from Lecture 1)

Let G be a semisimple Lie group, H a reductive subgroup, and
X =G/H.

Theorem B (Lecture 1) The optimal constant ¢(G; X) such that
vol(gS N §) is almost L? for any compact subset S in X
is given by

q(G;X) =1+ pyp -

Concerning the regular rep G L*(X) for p even,

L*(X)isalmost L < 1+ pyy <p = py < (p— Dpyp.

L[*(X)is tempered < pyp <1 & py < Py

The temperedness criterion holds also for a non-reductive
subgroup H.



Almost L representation

Example G/H = GL(n,R)/GL(n;,R) X --- X GL(n,,R)
The smallest even integer p for which L*(G/H) is almost L?
amounts to p = 2[52 )] with m = max(n,--- ,n,).

2(n m

I 7 9 1 1 12 13 1 15 1 17 1. 19
n
3
.

p=2
p>4 ny npnz N
p=6
p=8 ny
p>10

p=>12 ny
p=14 n3
p =16

p=18

p =20 . .
ny |

n

- EEEEEOOOOO

*Y. Benoist—Y. Inoue—T. Kobayashi, J. Algebra (2023).



[\

w

»

Plan of Lecture 2

. Reminder from Lecture 1:
— Criterion for L?(X) to be almost L” representation

. Example. Computation of py
. Example. SL(p + g+ r)/SL(p) X S L(q) X S L(r)

Classification of reductive tempered homogeneous spaces



Classification theory — theorem

Quite surprisingly, it turns out that a complete description
of non-tempered reductive homogeneous spaces G/H is realistic.

Theorem G* One can give a complete description of
pairs G D H of real reductive algebraic groups

for which L?(G/H) is not tempered.

Example Forn; +--- + n, < n, we consider
G/H := GL(n,R)/GL(n;,R) x --- X GL(n,,R).

L*(G/H) is non-tempered < max n; > 3(n + ).
l

%
Benoist-Kobayashi, Tempered homogeneous spaces lll, J. Lie Theory 31 (2022), 833-869.



Classification theory — theorem

Quite surprisingly, it turns out that a complete description
of non-tempered reductive homogeneous spaces G/H is realistic.

Theorem G* One can give a complete description of
pairs G D H of real reductive algebraic groups

for which L?(G/H) is not tempered.

Example For p; +---+ p, < pandgq; +---+ g, < g, we consider

G/H :=S0(p,q)/(SO(p1,q1) X SO(p2,q2) X - -+ X S O(pr» qr))-

L*(G/H) is non-tempered <= ma)%(p,- +q) > %(p +qg+2).
Digi¥

*
Benoist-Kobayashi, Tempered homogeneous spaces lll, J. Lie Theory 31 (2022), 833-869.



Classification theory of non-tempered G/H — Strategy

I Setting: G > H both real reductive.

Step 1. Reduction

1.A. G reductive = G simple (perfect)
1.B. (G,H)real = (G¢, He) (useful)

Step 2. Classify non-temgered Gc/Hce when Ge is complex simple.

2.A. Combinatorics for py for simple H™V (irreducible)

2.B. Combinatorics for py for reductive H V(reducible)

Step 3. Understand non-temEered G¢/Hc for complex simple G¢.

Step 4. Determine which real forms of G¢/H¢ are non-tempered.



Classifying non-tempered G/H — Step 1. Reduction

I Setting: G > H both real reductive.

Step 1.A. G reductive = G simple

ForHcG=G; x---xGy,,weset H; .= HNG;.

easy
. Sl .
L*(G/H) is tempered — L*(G;/H,) is tempered i
difficult
Criterionﬂ(Lecture 1) HCriterion (Lecture 1)
20y < py = 2py <py i

Example If b g = {0} Vi, then L2(G/H) is tempered. |




Classification theory of non-tempered G/H — Strategy

I Setting: G > H both real reductive.

Step 1. Reduction

1.A. G reductive = G simple (perfect)
1.B. (G,H)real = (G¢, He) (useful)



Classifying non-tempered G/H — Step 1. Reduction

I Setting: G > H both real reductive.

Step 1.A. G reductive = G simple

Step 1.B. (G, H) real = (G¢, He)
L*(Gc/Hc) is tempered = L*(G/H) is tempered.

Criterionﬂ HCriterion

2pI)J: < Pyc = 2pI) < Pg.



Classification theory of non-tempered G/H — Strategy

Step 1.

Step [2.

Step 3.
Step 4.

I Setting: G > H both real reductive.

Reduction

1.A. G reductive = G simple (perfect)
1.B. (G,H)real = (G¢, He) (useful)

Classify non-temEered Gc/He when Ge is comEIex simEIe.

2.A. Combinatorics for py for simple H” >V (irreducible)

2.B. Combinatorics for py for reductive H”™ V(reducible)



Classification — feature : “ huge factors ” in Hc

Point L*>(G¢/Hc) is non-tempered only if He has a “ huge factor ”.

Theorem H (“*huge factor”) * Let G¢ be a simple Lie group,
and H¢ a reductive subgroup. If L*(Gc/Hg) is non-tempered, then
Hc is “ huge ” in the following sense. m__n—m
(Type A) If gc = sl(n, C), then hc contains
e sl(m,C) withm> 1(n+1)or
e sp(m,C) with n=2m. n—m

m

(Type E7) If gc = ¢7, then he contains b or ¢g .

(Type Eg) If gc = ¢, then be contains ¢5 .

%
Benoist-Kobayashi, Tempered homogeneous spaces lll, J. Lie Theory 31 (2022), 833-869.



Tool

Let g be a complex simple Lie algebra.
Want to find a subalgebra h s.t. pyp < 1 (temperedness criterion).

For a representation 7: ) — Endgr(V), we defined
_ PI)(Y)
py =maxp gy (20).

Preparation in a more general setting:
e Analyze when py > 1 for a representation (r, V).

- Finite inequalities on generators of covex polyhedral cones.

(“exponential time” = “polynomial time”)

Case 1 b simple, (1, V) irreducible.

Case2 h" YV, @ V,.
Case3 h=h &b “V=V,0V,, -



Example of py with py > 1

H™YV (linear) ~ py € Ryy.

Example Consider H = SL(4,R)"™ V irreducible
(1) v=ct = py =6.

(2) V=S*CH =pv=3.

(B) V=AXCH = py=3.

(4) V=A3CH =py=6.

If Vor V*is notin (1)—(4), then py < 1.

3k
Benoist—Kobayashi, Tempered homogeneous spaces llI, J. Lie Theory 31 (2022), 833-869.



Classification theory of non-tempered G/H — Strategy

Step 1.

Step 2.

Step 3.
Step 4.

I Setting: G > H both real reductive.

Reduction

1.A. G reductive = G simple (perfect)
1.B. (G,H)real = (G¢, He) (useful)

Classify non-temEered Gc/Hc when G is complex simple.

2.A. Combinatorics for py for simple H” >V (irreducible)

2.B. Combinatorics for py for reductive H” ™ V(reducible)

Understand non-temgered Gc/Hc for complex simple Ge.

Determine which real forms of Go/H are non-tempered.



Classification theory: generic stabilizers of H"™g/h

For a representation v: H — GL(V), we set (V)ap, € (V)am by

(V)ap :={x € V : the stabilizer H, is abelian},
(M)am :={x € V : the stabilizer H, is amenable}.

Classification theory includes:

Theorem I" G > H be pairs of real reductive algebraic groups.
One has the implication (i) = (ii) = (iii).

(i) (a/D)ab is dense in g/b.

(i) L*(G/H) is a tempered unitary representation of G.

(iii) (a/D)am is dense in g/b.

Corollary J L*(Gc/Hc) is tempered iff (gc/bc)ab is dense in be. I

*
Benoist-Kobayashi, Tempered homogeneous spaces lll, J. Lie Theory 31 (2022), 833-869.



Classification theory: side remarks

Theorem G* One can give a complete description of pairs G > H of
real reductive algebraic groups for which L>(G/H) is not tempered.

e Special cases are already non-trivial

reductive homogeneous
spaces

(real) reductive
symmetric spaces

complex reductive
symmetric spaces

*
Benoist-Kobayashi, Tempered homogeneous spaces lll, J. Lie Theory 31 (2022), 833-869.



Classification theory: side remarks

Theorem G* One can give a complete description of pairs G > H of
real reductive algebraic groups for which L>(G/H) is not tempered.

e Special cases are already non-trivial

reductive homogeneous
spaces

(real) reductive
mmetric spaces

complex reductive
symmetric spaces

L*(G/H)is not tempered .

%
Benoist-Kobayashi, Tempered homogeneous spaces lll, J. Lie Theory 31 (2022), 833-869.



Combinatorics for py

Very special cases of combinatorics for py have already
interactions with

e Kazhdan’s estimate (SL(3,R) | SL(2,R) x R?),

Tempered subgroup a la Margulis,

Minimal K-type theory of Vogan,
(G, H) symemtric pair, H split

Plancherel formula for G/H,
(G, H) semisimple symemtric pair

Vanishing condition of gen. Borel-Weil-Bott theorem,
Zuckerman’s module A,(4) with singular parameter A,

and more.



B. Classification theory: side remarks 1

e nomogeneous

,,,,,,,,,,,,,,

L*(G/H) is niot tempered o
(a) Let Gc/Hc be a complex reductive symmetric space.

Take a real form G of G¢ such that Gg N Hc is @ maximal
compact subgroup of Gg.

Example G¢/Hc = GL(p + q,C)/GL(p,C) X GL(q,C)
~ Gr = U(p, 9).




B. Classification theory: side remarks 1

LX(G/H) is not tempered

(a) Let Ge/He be a complex reductive symmetric space.
Take a real form Gg of G¢ such that Gg N H¢ is a maximal compact
subgroup of Gg. Corollary J in this special case implies that

L*(Gc/Hc) is Gc-tempered < Gy is quasi-split. I

Vogan’s minimal K-type theory tells us that
20y <p, & gg is quasi-split.

Since L*(Gc/Hc) is G-tempered < 2py < p, (Lecture 1), this
gives an alternative proof of Corollary J in this special case.



IXG/H)is nottempered

(a) Let Ge/Hc be a complex reductive symmetric space.

Take a real form Gy of G¢ such that Gg N He is a maximal compact

subgroup of Gr. Corollary J in this special case implies that

L*(Gc/He) is Ge-tempered & Gy is quasi-split. I

Vogan'’s theory on minimal K-types gives an alternative proof:

2pz¢. < pg-. — Gr is quasi-split
Vogan
O
& .
Lecture 1HDynamics Co,c‘%\efof/bs Hdeflnltlon
/8
Yy

LZ(GC/KC) is tempered (Pc)ap is dense in pe.



Classification theory: side remarks 2
e Special cases are already non-trivial.
(b) Let G/H be a reductive symmetric space.
The Plancherel theorem* for G/H:

LX(G/H) ~ @ fB Z Indf @ ® C)dv.

(1) C(/)

-relative discrete series for L;/(L; N H).

e Delicate issues arise from 7% with “singular” A,

L*(G/H) is tempered

ﬂTheorem |

(a/H)am is dense in g/h

Plancherel

Quantization

® CY is a tempered rep
ofL forall1,a.e. v

obvious

(’) ®CY is a tempered rep
oij,V/l>>0 a.e. v

*
T. Oshima (1980s); Delorme, Ann. Math. 1998; van den Ban—Schlichtkrull, Invent. Math. 2005.

EE
Y. Benoist-T. Kobayashi, Tempered homogeneous spaces llI, J. Lie Theory (2021).




Classification theory: side remarks 2
e Special cases are already non-trivial.

reductive homogeneous
aces

(real) reductive
symmetric spaces,

comple eucive L*(G/H) is not tempered S s
(b) Let G/H be a (real) reductive symmetric space.

Our classification in this special setting (b) singles out a small
number of reductive symmetric spaces such that a “large part” of
the spectra in LZ(G/H) (e.g., induced from discrete series of Flensted-Jensen type)
are tempered but L*(G/H) itself is not tempered.

Eg. Forpi2l,q1 21, p1+q=p2+q2+1,
Sp(p1 + p2, 1 + q2)/(Sp(p1, q1) X Sp(p2, ¢2)) is NOT tempered,
although “most of” the spectra are tempered.




Discrete series for Sp(4, 1)/Sp(1) x Sp(3, 1)

¢ * Harish-Chandra’s
discrete series
(“good range”)

[ ] [ ] [ ]
vanish
Harish-Chandra’s
[ ] [ ] [ ) [ ) . . . .
< limit of discrete series

C . . . non-tempered (survive)




Plan of Lectures

e Talk 1: Tempered homogeneous spaces
—Dynamical approach

e Talk 2: Classification theory of tempered G/H
— Combinatorics of convex polyhedra

e Talk 3: Tempered homogeneous spaces
—Interaction with topology and geometry



Thank you for your attention!



