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Basic Questions
in Group-Theoretic Analysis on Manifolds

GX o~ GO, LX),
Geometry Functions

e Plan
1. s representation theory useful to the global analysis on X?

2. What can we say about the “spectrum” on L*(X)?



IHP Minicourses: More details on two “young” areas
The forthcoming two mini-courses, designed for students and
non-experts, will address two “young” research themes related to
these questions, to be held in January and February at IHP, Paris.

1. Branching Problems and Symmetry Breaking
IHP Mini-Courses by B. Qrsted, M. Pevzner, B. Speh, and TK
January 13-17, Paris,

2. “Tempered Spaces”
— “Geometry” for Tempered Representations

IHP Mini-Courses by TK
February 17-21, Paris.



Regular Representation 1

G X (manifold) ~» G C®(X), L*(X), - --
Geometry Functions

Gy C¥(X)
One deduces a rep of G on C®(X) by f(x) — f(g~'x).

Ax
G Y L*(X) : the canonical unitary representation of G.

L*(X) := L*(X, vx) if 'G-invariant Radon measure vy.

More generally, define L?(X) by using the half-density bundle
of X or by a multiplier rep built on the cocycle c(g, x), where
g.«vx = c(g, x)vx (Radon—-Nykodim derivative).




Regular Representation 2

Ax

G X (manifold) ~ G”YL*(X) (Hilbert space)

G = {irreducible unitary representations}  (unitary dual).

Mautner: Any unitary rep IT of G is disintegrated into irreducibles:

I~ f% mgrdu(r)  (direct integral)

m: G - NU{oo}, 7w m, (multiplicity).



Simple Lie groups, Reductive Lie groups

Viewpoints from “Analysis and Synthesis”

— The “ smallest units ” of (unitary) representations are
irreducible (unitary) representations.

— The * smallest units ” of Lie groups are
one-dimensional abelian groups and simple Lie groups.
e Simple Lie groups :
A Lie group G of dimension N (> 1) is a simple Lie group
e.9. SL(LR), SL(n,C), SO(p,q) (p +q # 2,4),

e Reductive Lie group | = | abelian x simple Lie groups
ocal

e.g. GL(n,R), GL(n,C), SO(p, q) (p.q: any), - --



Basic Questions
in Group-Theoretic Analysis on Manifolds

e General questions on regular representations

1. Does the group sufficiently control the space of functions?

2. What can we say about the “spectrum” on L*(X)?



Global analysis via representation theory

GYX  w GTYC¥X), LAX),- -
Geometry Functions

Basic Question 1

Is representation theory useful to the global analysis on X?




Connection of the two viewpoints

X : (pseudo-)Riemannian manifold

Spectral analysis of Ax: L*(X) = [ Hdr(d).
“generalize” § %ifm, =1

Representation Theory:  L*(X) ~ E\) mardu(n).

Group action: G X

Example
om+1) ¥ s,
om,1) ¥ H (hyperbolic space),

O(p,q) "~ Spaceform (pseudo-Riemannian).




Multiplicities in regular representations

GYX  w GTYC¥X), LAX),- -
Geometry Functions

Basic Question 1

Is representation theory useful to the global analysis on X?

Hint for rigorous formulation. In group representations:

—strong point: Can distinguish inequivalent irreducible reps
even they are infinite-dimensional.
—weak point: Multiplicity .
(cannot distinguish a multiple of the same irreducible reps)




Multiplicities in regular representations

G™YX w~ G"YC®(X) (regular rep)
Geometry Functions

Basic Question 1
Does the group G “ control well ” the function space C*(X)?

Formulation Consider the multiplicity , i.e.,

the dimension of Homg(r, C*(X)) for & € Irr(G).

infinite, finite, bounded, Oor1

control better



Spherical manifold

Gc: a complex reductive Lie group.

Definition Borel subgroup B of G¢

= maximal connected solvable subgp of G¢
e

% % %

e.g. B:{[O * ok
0 0 =

} € GL3,C) = G¢

Gc complex reductive ™ Xc complex manifold (connected)

Definition Xc is spherical if a Borel subgroup B of G¢
has an open orbit in X¢.

Example Grassmannian varieties, flag varieties, symmetric spaces,
are typical examples of spherical spaces.




Multiplicities in regular representations

G™YX w GYC¥(X) (regular rep)
Geometry Functions

Basic Question 1
Does the group G “control well” the function space C*(X)?

Formulation Find a geometric estimate of the multiplicity

dim¢ Homg(r, C*(X)) for nr € Irr(G).

infinite, finite, bounded , Oor1

control better



When does the group “control” well the function space?
For a pair of reductive Lie groups G > H, consider X = G/H.

Theorem A* The following 4 conditions are equivalent:
i) (Global analysis & rep theory ) There exists C > 0 s.t.
dim Homg; (r, C* (X)) < C for all & € Irr(G).
(i) ( Complex geometry ) Xc is spherical.
()" (Algebra) The ring Dg.(Xc) is commutative.
ii)” (Algebra ) The ring Dg.(Xc) is a polynomial ring.

e Remarkably, (i) uniform boundedness of the multiplicity is
detected soley by the complexification X¢c = G¢/Hc in (ii)-(ii)”.

e The equiv (ii) & (i)’ & (ii)’” was proven by Vinberg, Knop, - --.
e The equivalence (i) & (ii) gives a strong tie between

Global analysis < Algebra, Geometry,

which was proven in TK—T. Oshima*.

“ T. Kobayashi, T. Oshima, Adv. Math., 248 (2013), 921-944 for (i) & (ii).



When does the group “control” well the function space?

Theorem A* Let X = G/H, where G D H are reductive Lie groups.

The following four conditions (i), (ii), (ii)” and (ii)"” are equivalent:

(i) (_) There exists C > 0 such that
dim Homg (, C* (X)) < C for all z € Irr(G).

(i) ( Complex geometry ) X is spherical.

(i) ('Ring ) The ring D¢ (Xc) is commutative.

(i) (‘Ring ) The ring D¢ (Xc) is a polynomial ring.

Geometry Analysis
Ge ™ Xc ~o GTYCR(X)
y -
D¢.(Xc)
Algebra

* T. Kobayashi-T. Oshima, “Finite multiplicity theorems for induction and restriction”, Adv. Math., (2013), for ()< (ii).



Sketch of proof

(i) Global Analysis & Rep Theory < (ii) Complex Geometry
dim Home(r, C¥(X)) < C Ge ™Y Xc spherical

The original proof in [KO]* uses PDEs and integration.

Methods of proof*: Interpret (i) by means of PDEs

(i) « (ii) (Differential equations)
Determine “solutions to PDEs” by “boundary values”
~> Reduction to geometry of boundaries :
Equivariant compactification
+ hyperfunction-valued boundary maps for a system of PDEs.

(i) = (ii) (Integral operator)

Construct “solutions to PDEs” from “data on boundaries”
~> Find integral operators from functions on boundaries
(a generalization of the Poisson integral).

* T. Kobayashi, T. Oshima, Adv. Math., 248 (2013), 921-944.



Induction vs. Restriction

H c G groups
Induction
AND
{H-modules} - {G-modules}
Restriction

Example( Induction)  Ind$ (1) ~ C*(G/H), L*(G/H), - -

(depending on the class of “Induction”).

We now consider the H-module by Restriction :

Iy = Rest$ (1) for 11 € Irr(G).



Branching problems in the general setting

I1
G ——— GLV)
|rredu0|ble7
U -7
Lo g
Gl



Branching problems in the general setting

IT
G —— GLV)

irreducible7
U il

- Hlgr
Gl

Example (tensor product of two representations)
n ®a’
G x Gy GL(V'®V")
outer tensor producj7
U -
SUTS &-¥ &

diag G,




Branching problems in the general setting

11
G — GLV)

irreducibIQI
U il

- Hlgr
GI

Branching problem (in a broader sense than the usual)
wish to understand
how the restriction Il|; behaves as a G’-module.

e ForTI e Irr(G), m € Irr(G’)/

(¢ : ] := dim Homg (IT|g-, 7).



Good Control of Restriction G | G’

Theorem B (Uniformly bounded multiplicity criterion)
For a pair G > G" of real reductive groups, (i) (i) (& (i) e (ii)”).

((i) (Rep) sup  sup [Mg : 7] < oo.
TMelr(G) melrr(G’)

(if) (Geometry) (Gc x Gr.)/ diag(Gy.) is spherical.
(il (Ring) The ring U(ac)®" is commutative.
(i)’ (Ring) The ring U(gc)®* is a polynomial ring.

e The equivalence (i) < (ii) is proved in (T. Kobayashi—T. Oshima)*.

e A stronger estimate for (ii) = (i), namely, multiplicity-free
theorem holds for most of (not all of) the cases (Sun—-Zhu)**.

e Classification for (ii): If G is simple, (g,q") is (sl(n, C), gl(n — 1, C)),
(so(n,C), so(n — 1,C)), or their real forms up to automorphisms.

* T. Kobayashi-T. Oshima, “Finite multiplicity theorems for induction and restriction”, Adv. Math., (2013), 921-943.

EE
Sun-Zhu, “Multiplicity one theorems: the Archimedian case”, Ann. of Math., (2012), 23-44.



Good Control of Restriction G | G’

Theorem B (Uniformly bounded multiplicity criterion)
Fora pair G > G’ of real reductive groups, (i) (ii) (also (ii)" or (ii)").

((i) ( Rep) sup sup [H|g : 7] < oo.
el (G) relr(G')

(i) ( Geometry ) (Gc x G1.)/ diag(G7.) is spherical.
(i)Y ( Ring ) The ring U(g;)GE is commutative.

i)y ( Ring ) The ring U(gg)% is a polynomial ring.

Geometry Representation
Gc x G/ diag(G.) ~y g
" -
U(ge)

Algebra



Basic Questions
in Group-Theoretic Analysis on Manifolds

Plan

e General questions on regular representations

G Y X (manifold) ~» G C*(X),L*(X), -

Geometry Functions

Does the group sulfficiently control the space of functions on X?

2. What can we say about the “spectrum” on L?(X)?



Second theme of this talk

GYX ~w  GTVLAX) (regular rep)
Geometry Function Space

Basic Question 2 What can we say about the “spectrum” on L?(X)?




Tempered representations
Let G be a locally compact group.

Def A unitary rep 7 of G is called tempered if 7 < L*(G) . I

< --- weakly contained

i.e., every matrix coefficient of = is a uniform limit on every
compacta of G by a sequence of sum of coefficients of L2(G).

e G"YIL*G) (regular rep)
L*(G) > f(x) > f(g™'x) € L*(G).

e For a unitary rep  of G on a Hilbert space H,
matrix coefficients are functions on G defined by

Pup(g) = (m(gu, v)y € C(G)

foru,v e H.



When is L?(X) tempered?

GVX G Y LA(X) regular rep
Geometry Function Space

Basic Question 2 When is L>(X) tempered?

i.e., for which G-space X, does one have
L*(X) < L*(G)?



Question: When is L*(X) < L*(G)?
“Young” research topics that have been recently explored from
various disciplines such as
algebra (polyhedral combinatorics, - - - );
analysis  (functional analysis, L”-matrix coefficients, - - - );
geometry (dynamical system, geometric quantization, - - -);
(

topology  (limit algebras, quantification of proper actions, - - -).

More detalils:
“Tempered Spaces”
— “Geometry” for Tempered Representations

IHP Mini-Courses, February 17-21, Paris.

References Y. Benoist—TK, “Tempered Homogeneous Spaces”
| (2015), 1l (2022), 11l (2021), IV (2023), +&.



Temperedness under disintegration
Mautner: Any unitary rep I1 can be decomposed into irreducibles:

II :ﬁmﬂn du(r) (direct integral).
G

Fact II is tempered < irreducible reps m are tempered for u-a.e.

—_

G = {irreducible unitary reps}
U

aemp = G, :={irreducible tempered reps}.

That is,

IT is tempered f;; my © du(r).

temp



Classification theory of the unitary dual o

Fact (Duflo) Classification problem of the unitary dual G
for real algebraic groups G is reduced to that
for real reductive Lie groups .

Suppose G is a real reductive Lie group (e.g., GL(n,R), O(p, q)).

irred. admissible irred. unitary irred. tempered
IH(G) ) G o Gtemp
classified (still mysterious) classified
Langlands over 70 years Knapp—-Zuckerman

reduce



Tempered representations (warming up)

V. Bargmann (1947): Irreducible unitary reps of S L(2,R)
= {1} U{ principal series } LI { complementary series }
LI{ discrete series } 11 { limit of discrete series }




Tempered representations (warming up)

V. Bargmann (1947): Irreducible unitary reps of S L(2,R)
= {1} U{ principal series } LI { complementary series }
LI{ discrete series } 11 { limit of discrete series }

—% Casimir operator acts on them as scalars
{0}, [%,00) ; O, %) ; {%(n2 -1):neN,}, {0}

I': congruence subgroup of G = SL(2,R)

Selberg’s i eigenvalue conjecture *:
All eigenvalues of A on Maas wave forms for I" > %.
& Theunitaryrep of G" ¥ L2, (I\G) is tempered .

cusp

Just one irred non-tempered rep would disprove the conjecture.

S
A. Selberg, On the estimate of Fourier coefficients of modular forms, Proc. Symp. Pure Math. 1965.



When is L?(X) tempered?

GVX G Y LA(X) regular rep
Geometry Function Space

Basic Question 2 When is L?(X) tempered, that is,
when is L*(X) weakly contained in L*(G)?

e Even when X = G/H is a reductive symmetric space,
this question involves a hard problem regarding

vanishing conditions of cohomological parabolic inductions
with singular parameters.

e How about more general (non-symmetric) space X = G/H?

~» A new machinery?



Examples of temperedness criterion

Example(2022*) G = GL(p + g+ r,R)
H L*(G/H) is tempered
p 4q9 r
p p<qg+r+1
q g<p+r+1
r r<p+qg+1
p 4q9 r
p p=1
q g<r+1
r r<g+1
Why?

* Y. Benoist-T. Kobayashi, Tempered homogeneous spaces I, In; Festschrift of Margulis, Chicago Univ. Press, (2022).



Topology (proper actions) ~» Quantification

Definition A continuous action G RX is called proper if the subset

Gs ={geG:5nNgS + 2}
is compact for any compact subset S C X.

Two “ quantifications ” of properness of the actionon X = G/H:

“asymptotic” volume proper “sharpness condition”
(Benoist—K, ’15) (Kassel-K, ’15)
3 “more proper” 2
spectrum of deformation theory of

G VILA(X) I'\G/H




First key idea for temperedness criterion

e Study the asymptotic decay of vol(S N gS) as G 5 g tends to
“infinity” when S is a compact subset in X.

S

TN
(] =
"




Function p,: h — R,

Setting
b: Lie algebra
ad: h — Endg(h): adjoint representation

We set :
pv:h—-=Rs, Y EZlRe/ll

where the sum is taken over all eigenvalues A of the complex linear
extension 7(Y)c € End(be).

e Coincide with the usual p on the dominant chamber.



Tempered criterion for G/H

Theorem C (2015%, 2022)*

Let H be a connected subgp of a real reductive Lie group G.
Then (i) & (ii).

(i) (Global analysis & rep theory) L*(G/H) is tempered.

(i) (Combinatorial geometry) 20,(Y) < py(Y), 'Y €D.

py is for ad: b — End(b),
d
P, is for b = g — End(g).
Remark The criterion can be used to detect whether L*(X) is

tempered or not for any real algebraic variety X with algebraic
G-action, even when the G-action on X is not transitive.

*Y. Benoist-T. Kobayashi, Tempered homogeneous spaces |, II, Euro. J. Math. 17 (2015), pp. 3015-3036; Univ. Chicago



G/H = GL(p + g+ r)/GL(p) X GL(q) X GL(r)
Example Equivalent (i) < (ii).
(i) 2py < p,y (Temperedness Criterion).
(i) 2max(p,q,r) < p+q+r+1.

Proof The condition 2p, < p,, amounts to:

S, -l e 3 f-vil+ 3 fai-l
1<i<j< 1<i<j< 1<i<j<r
P q
< 3 s-wil+ 3 i -ml+ 3 fan-rsl
1<i<p 1<j<q 1<k<r
1<j<q 1<k<r L<i<p

forall (xp,- . Xp , Y1, "" ¥ s 2= »2 ) ERPFI With Y, x =0,Y y; =0, % & =0.

By some combinatorics on convex polyhedral cones, one sees

2pp £ pg &= 2max(p,q,r) <p+q+r+1.



First key idea for temperedness criterion

e Study the asymptotic decay of vol(S N gS ) as G > g tends to

“infinity” when S is a compact subset in X = G/H.
S

N\ g5

) >
N

e Global picture

+ some further ideas for nonreductive H.



Collapsing Lie algebras

Definition (limit algebra) b C g Lie algebras

We say b has a solvable limit in g if

d¢; € G such that lim Ad(g))b is a solvable Lie algebra.
J—o0 ——

Example Letn > 3. h = so(n) is a semisimple subalgebra
of g = gl(n, R).
n j
n—1
Takegjz[ . ] (j=12,---).
1
0 %k

Then lim Ad(g;)so(n) = --- solvable Lie algebra.
Jj—oo ——

0 o




Example: lim Ad(g;)h C g
J—0

G=GL(p+q+7r)
U
H =GL(p) x GL(g) X GL(r)

The Lie algebra h has a solvable limit in g,
i.e. 1asequence g;j € G such that lim Ad(g;)} is solvable.
j—)oo

= 2max(p,q,r) <p+qg+r+1.




Example G/H = GL(p + g + r)/GL(p) X GL(g) X GL(r)

Theorem The following conditions on (p, g, r) are equivalent:
(i) (Rep Theory) L*(G/H) is a tempered representation of G.

(if) (Combinatorics: 2py < pg)

) xi—xj‘+ D) \yi—y,-\+2 Zi_Zj‘
1<i<j<p 1<i<j<q I<i<j<r
< X xi—yj‘+Z‘Yj—Zk+Z Z — Xi
1<i<p 1<j<q 1<k<r
1<j<q 1<k<r I<i<p

forall ( Xp,=+.Xp o Y1,oot2¥g 5 2,0t a2r DERPIWith Y x5 =0,% y; =0,% z =0.

(iii) (Collapsing Lie algebra) 1 a sequence g such that
lim Ad(g;)b is a solvable Lie algebra.
j—)m

(iv) (Classification) 2max(p,q,r) < p+q+r+ 1.




Geometric quantization and temperedness

Ad: G — GLg(g) adjoint representation.
Coadjoint orbit O, := Ad*(G)A for A € g*.
Every O, carries a symplectic structure (Kostant—Kirillov—Souriau).

92 —_
“Geometric quantization™ g* > 0, = Ad*(G)Aw m, € G
symplectic mfd unitary rep

Theorem (2023%)

Suppose G is a complex reductive Lie group,

and H a connected closed subgroup. Then (i) < (ii).
(i) G L*(G/H) is tempered.

(il) gree N B # 0.

Oree =14 € g" 1 Ad"(G) - 4 is of maximal dimension}
bt :={1eg : A =0}

*Y. Benoist-T. Kobayashi, Tempered homogeneous spaces 1V, J. Inst. Math. Jussieu, 22 (2023), 2879-2906.



Further interactions for “tempered spaces”

Theorem D (2023)* Let g be a complex reductive Lie algebra.
The following 4 conditions on a Lie subalgebra )y are equivalent.

(i) (unitary rep) L*(G/H) is tempered .
) (combinatorics) 2py < pg.

(ii
(iii) (Iimit algebra) b has a solvable limit in g.
(iv) (orbit method) BN gfeg #0ing".

* Y. Benoist-T. Kobayashi, Tempered homogeneous spaces 1V, J. Inst. Math. Jussieu, 22 (2023), 2879-2906.



Equivalent characterization: Tempered spaces

Thm (2023) Let g be a complex reductive Lie algebra.

The following 4 conditions on a Lie subalgebra §) are equivalent.
(i) (unitary rep) L%(G/H)is tempered .

(i) (combinatorics) 2py < pq.

(iii) (limit algebra) b has a solvable limitin g.

(iv) (orbit method)  b* N gl # 0in g*.

Analysis (i)
dynamical system / \ geometric quantization

Classification < Algebra (ii) = Geometry (iv)

N 7

Topology (iii)



Basic Questions
in Group-Theoretic Analysis on Manifolds

GX o GTYCR0), LX), -+
Geometry Function Space

Basic Question 1 (Multiplicity)
Does the group sufficiently control the space of functions?

Basic Question 2 (Tempered homogeneous spaces)
Is G L2(X) a tempered representation?




Thank you very much!
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The second topic is joint with Yves Benoist. For more details of the
talk today, we discuss in IHP, February 17-21.
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—— . (J. Euro Math., 2015)
Method (Dynamical System)
— II.  (Margulis Festschrift, 2022, Chicago Univ. Press)
Representation Theory
—— lll.  (J. Lie Theory, 2021)
Classification Theory (Combinatorics)
IV. (J. Inst. Math. Jussieu, 2023)
Limit algebra, geometric quantization

Tensor product of GL,, (J. Algebra, 2023)




