Lie Groups and Representation Theory Seminar at the University of Tokyo

リー群論・表現論セミナー

DATE June 6 (Mon), 2016, 15:00–17:00

question.

PLACE Room 123, Graduate School of Mathematical Sciences

Speaker **Hidenori Fujiwara (藤**原英徳) (Kinki University)

TITLE Monomial representations with multiplicities of discrete type of an exponential solvable Lie group (指数型可解リー群の離散型重複度をもつ単項表現)

ABSTRACT Let $G = \exp \mathfrak{g}$ be a connected and simply connected exponential solvable Lie group with Lie algebra \mathfrak{g} . By the orbit method the unitary dual \hat{G} is realized as the orbit space \mathfrak{g}^*/G of the coadjoint representation of G. In this framework we study some monomial representations of G. Let G be a closed connected subgroup of G and G a unitary character of G. When the irreducible decomposition of G has multiplicities of discrete type, we describe explicitly the Penney's Plancherel formula for G and show the commutativity of the algebra G be also the G-invariant differential operators on the line bundle over the base space G/H associated with data G. We also

 $G=\exp \mathfrak{g}$ をリー環 \mathfrak{g} をもつ連結かつ単連結な指数型可解リー群とする。軌道の方法により、G のユニタリ双対 \hat{G} は G の余随伴表現の軌道空間 \mathfrak{g}^*/G により実現される。この枠組みの中で G のある種の単項表現を調べよう。 H を G の連結閉部分群、 χ を H のユニタリ指標として G の誘導表現 $\tau=\inf_H^G \chi$ を考える。 τ の既約分解が離散型重複度をもつとき、 τ に対する Penney の Plancherel 公式を具体的に記述し、データ (H,χ) に伴い底空間 G/H をもつ直線東上の G-不変微分作用素環 $D_{\tau}(G/H)$ の可換性を示す。また関連する Duflo の問題に否定的な例を与えよう。

give an example which replies negatively to a related Duflo's