The Heat equation, the Segal-Bargmann transform and generalizations

Gestur Ólafsson
Department of Mathematics
Louisiana State University

Let $\Delta = \sum \partial^2 / \partial x_i^2$ be the Laplace operator on \mathbb{R}^n. The heat equation is given by

$$\Delta u(x, t) = \frac{\partial}{\partial t} u(x, t)$$

$$\lim_{t \to 0^+} u(x, t) = f(x)$$

where f can be a L^2-function, a distribution or an element in some other natural class of objects. The solution $u(x, t) = e^{t \Delta} f(x)$ is given by

$$H_t f(x) = \int_{\mathbb{R}^n} f(y) h_t(x-y) \, dy$$

where $h_t(x) = (4\pi t)^{-n/2} e^{-x^2/4t}$ is the heat kernel, i.e. the solution corresponding to $f = \delta_0$. The map $H_t : L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n)$ is smoothing, in fact one reads off from the explicit formula (1), that $\mathbb{R}^n \ni x \mapsto H_t f(x) \in C$ extends to an entire function on \mathbb{C}^n. The transform $L^2(\mathbb{R}^n) \ni f \mapsto H_t f \in O(\mathbb{C}^n)$ is the Segal-Bargmann transform. Its image is the space of holomorphic functions $F : \mathbb{C}^n \to \mathbb{C}$, such that

$$\|F\|_t^2 := (2\pi t)^{-n/2} \int \|F(x + iy)\|^2 e^{-\|y\|^2/2t} \, dx \, dy < \infty$$

and $\|f\| = \|H_t f\|_t$.

The Heat equation has a natural generalization to all Riemannian manifolds. The solution is again given by the Heat transform

$$u(x, t) = H_t f(x) = \int f(y) h_t(x, y) \, dy$$

where h_t is the heat kernel, but – as there is no natural complexification in general – it is not at all clear how to realize the image in a Hilbert space of holomorphic functions. One exception is the class of semisimple Riemannian symmetric spaces. The special case of K-invariant functions leads to generalizations of the Segal-Bargmann transform for the heat equation related to arbitrary multiplicity functions.

In those two talks, we will discuss the following:

1. The Heat equation and Segal-Bargmann transform on \mathbb{R}^n. Our proof of the unitarity and surjectivity will involve the restriction principle [2].
2. Basic structure of symmetric spaces of noncompact type and the crown, [1].
3. The image of the Segal Bargmann transform for Riemannian symmetric spaces of the noncompact type, [1].
4. The case of K-invariant functions and the Heckmann-Opdam hypergeometric transform, [3].
5. (Only if there is time enough) the restriction principle for semisimple symmetric spaces, [2].
All the following references, except [2, 11], are available on arxiv. The articles [2, 11] can be downloaded from www.math.lsu.edu/~preprint.

References

Basic references:

Some other references:

