Lie Group and Representation Theory Seminar

Date:	September 2 (Fri), 2005, 13:30–14:30
Place:	RIMS Room 402
Speaker:	Alexander Alldridge (University of Paderborn)
Title:	The Embedding of Discrete Series Representations
	of Facial Subgroups

Abstract: Consider a Hermitian symmetric domain B with connected automorphism group G. The boundary of the convex domain B decomposes into lower-rank Hermitian symmetric spaces \overline{B} with connected automorphism groups $\overline{G} \subset G$. It is natural to ask for embeddings of discrete series representations (or more general irreducible unitary representations) of \overline{G} into corresponding representations of G. If B is an irreducible classical domain, we exhibit an explicit unitary embedding of all discrete series representations of \overline{G} (holomorphic or non-holomorphic), such that the highest weight vectors of the lowest K-types correspond. The construction uses Knapp-Wallach's Szegö operators, and can be extended to all representations in the support of the Plancherel measure of \overline{G} .

Date:	September 2 (Fri), 2005, 15:00–16:00
Place:	RIMS Room 402
Speaker:	河添健氏 Takeshi Kawazoe (Keio University)
Title:	On Hardy's theorem on $SU(1,1)$

Abstract: The classical Hardy theorem asserts that f and its Fourier transform \hat{f} can not be very rapidly decreasing. This theorem was generalized on Lie groups by various people, and also for the Fourier-Jacobi transform. Especially, the heat kernel plays an essential role, which is a "good" function in the sense that f and a generalised Fourier transform both have good decay. However, on SU(1,1) there are infinitely many "good" functions. In this talk, we shall consider a characterization of "good" functions on SU(1,1).