Regular Representations on Homogeneous Spaces. Representation Theory of Reductive Groups from Geometric and Analytic Methods. Kavli IPMU, Japan, 27-28 January 2020.

I plan to discuss some basic questions about regular representations on $X$ acted algebraically by real reductive groups $G$.

1. (function spaces) Does the group $G$ have a "good control" on the space $C(X)$ of function on $X$?
2. ($L^2$ theory) What can we say about "spectrum" for $L^2(X)$?

We highlight "multiplicities" and "temperdness" for these questions, and give their geometric criteria.

If time permits, I will mention some applications to branching problems for restriction of infinite-dimensional representations.

[ conference ]

Home EnHome Jp

© Toshiyuki Kobayashi