The 18th Takagi Lectures

November 5, 2016 (Sat) 17:00–18:00 November 6, 2016 (Sun) 14:00–15:00 Graduate School of Mathematical Sciences The University of Tokyo

The Size of Infinite-Dimensional Representations

David Vogan

(Massachusetts Institute of Technology)

Abstract

The simplest geometric invariant of a differential equation Df = 0 is its characteristic variety: the collection of zeros (in the cotangent bundle) of the principal symbol of D. This invariant carries over to the theory of \mathcal{D} -modules: a \mathcal{D} -module \mathcal{M} on a manifold X has a characteristic variety $\operatorname{Ch}(\mathcal{M}) \subset T^*(X)$.

The beautiful and sophisticated extension of the Riemann-Hilbert correspondence to (regular holonomic) \mathcal{D} -modules relates them to perverse sheaves on X, and provides powerful techniques for computing these perverse sheaves. But the much more elementary invariant $Ch(\mathcal{M})$ remains difficult or impossible to compute in important examples (like Schubert varieties).

I will discuss the (classical) representation-theoretic incarnations of these ideas, and recent work offering ways to compute something like characteristic cycles.