Japan. J. Math. 15, 1–120 (2020) DOI: 10.1007/s11537-019-1566-3

Recent results on the Kobayashi and Green–Griffiths– Lang conjectures*

Jean-Pierre Demailly**

Received: 16 January 2018 / Revised: 20 June 2019 / Accepted: 1 July 2019 Published online: 29 January 2020 © The Mathematical Society of Japan and Springer Japan KK, part of Springer Nature 2020

Communicated by: Toshiyuki Kobayashi

Contribution to the 16^{th} Takagi Lectures in celebration of the 100^{th} anniversary of K. Kodaira's birth

Abstract. The study of entire holomorphic curves contained in projective algebraic varieties is intimately related to fascinating questions of geometry and number theory-especially through the concepts of curvature and positivity which are central themes in Kodaira's contributions to mathematics. The aim of these lectures is to present recent results concerning the geometric side of the problem. The Green–Griffiths–Lang conjecture stipulates that for every projective variety X of general type over \mathbb{C} , there exists a proper algebraic subvariety Y of X containing all entire curves $f: \mathbb{C} \to X$. Using the formalism of directed varieties and jet bundles, we show that this assertion holds true in case X satisfies a strong general type condition that is related to a certain jet-semi-stability property of the tangent bundle T_X . It is possible to exploit similar techniques to investigate a famous conjecture of Shoshichi Kobayashi (1970), according to which a generic algebraic hypersurface of dimension n and of sufficiently large degree $d \ge d_n$ in the complex projective space \mathbb{P}^{n+1} is hyperbolic: in the early 2000's, Yum-Tong Siu proposed a strategy that led in 2015 to a proof based on a clever use of slanted vector fields on jet spaces, combined with Nevanlinna theory arguments. In 2016, the conjecture has been settled in a different way by Damian Brotbek, making a more direct use of Wronskian differential operators and associated multiplier ideals; shortly afterwards, Ya Deng showed how the proof could be modified to yield

J.-P. DEMAILLY

Université de Grenoble-Alpes, Institut Fourier (Mathématiques) UMR 5582 du C.N.R.S., 100 rue des Maths, 38610 Gières, France (e-mail: jean-pierre.demailly@univ-grenoble-alpes.fr)

^{*} This article is based on the 16th Takagi Lectures that the author delivered at The University of Tokyo on November 28 and 29, 2015.

^{}** Work supported by the advanced ERC grant ALKAGE No. 670846 started in September 2015.

an explicit value of d_n . We give here a short proof based on a substantial simplification of their ideas, producing a bound very similar to Deng's original estimate, namely $d_n = \lfloor \frac{1}{3} (en)^{2n+2} \rfloor$.

Keywords and phrases: Kobayashi hyperbolic variety, directed manifold, genus of a curve, jet bundle, jet differential, jet metric, Chern connection and curvature, negativity of jet curvature, variety of general type, Kobayashi conjecture, Green–Griffiths conjecture, Lang conjecture

Mathematics Subject Classification (2010): 32H20, 32L10, 53C55, 14J40