Papers and preprints

Home | CV | Papers | Talks | Teaching
arXiv MathSciNet

Published/Accepted Papers

  1. On log surfaces.
    O. Fujino, H. Tanaka,
    Proc. Japan Acad. Ser. A Math. Sci. 88 (2012), no. 8, 109-114.

  2. Minimal models and abundance for positive characteristic log surfaces.
    H. Tanaka,
    Nagoya Math. J. 216 (2014), 1-70.

  3. On rational connectedness of globally F-regular threefolds.
    Y. Gongyo, Z. Li, Z. Patakfalvi, K. Schwede, H. Tanaka, R. Zong
    Adv. Math. 280 (2015), 47-78.

  4. The trace map of Frobenius and extending sections for threefolds.
    H. Tanaka,
    Michigan Math. J. 64 (2015), no. 2, 227-261.

  5. The X-method for klt surfaces in positive characteristic.
    H. Tanaka,
    J. Algebraic Geom. 24 (2015), no. 4, 605-628.

  6. On base point freeness in positive characteristic.
    P. Cascini, H. Tanaka, C. Xu,
    Ann. Sci. Éc. Norm. Supér. (4) 48 (2015), no. 5, 1239-1272.

  7. Abundance theorem for semi log canonical surfaces in positive characteristic.
    H. Tanaka,
    Osaka J. Math. 53 (2016), no. 2, 535-566.

  8. A characterization of ordinary abelian varieties by the Frobenius push-forward of the structure sheaf.
    A. Sannai, H. Tanaka,
    Math. Ann. 366 (2016), no. 3-4, 1067-1087.

  9. On log del Pezzo surfaces in large characteristic.
    P. Cascini, H. Tanaka, J. Witaszek,
    Compos. Math. 153 (2017), no. 4, 820-850.

  10. Semiample perturbations for log canonical varieties over an F-finite field containing an infinite perfect field.
    H. Tanaka,
    Internat. J. Math. 28 (2017), no. 5, 1750030, 13 pp.

  11. Smooth rational surfaces violating Kawamata-Viehweg vanishing.
    P. Cascini, H. Tanaka,
    Eur. J. Math. 4 (2018), no. 1, 162-176.

  12. Minimal model program for excellent surfaces.
    H. Tanaka,
    Ann. Inst. Fourier (Grenoble) 68 (2018), no. 1, 345-376.

  13. Klt del Pezzo surfaces which are not globally F-split.
    P. Cascini, H. Tanaka, J. Witaszek,
    Int. Math. Res. Not. IMRN 2018, no. 7, 2135-2155.

  14. Zariskian adic spaces.
    H. Tanaka,
    Kodai Math. J. 41 (2018), no. 3, 652-695.

  15. Behavior of canonical divisors under purely inseparable base changes.
    H. Tanaka,
    J. Reine Angew. Math. 744 (2018), 237-264.

  16. Infinite dimensional excellent rings.
    H. Tanaka,
    Comm. Algebra 47 (2019), no. 2, 482-489.

  17. Purely log terminal threefolds with non-normal centres in characteristic two.
    P. Cascini, H. Tanaka,
    Amer. J. Math. 141 (2019), no. 4, 941-979.

  18. Infinitely generated symbolic Rees algebras over finite fields.
    A. Sannai, H. Tanaka,
    Algebra Number Theory 13 (2019), no. 8, 1879-1891.

  19. Rational points on log Fano threefolds over a finite field.
    Y. Gongyo, Y. Nakamura, H. Tanaka,
    J. Eur. Math. Soc. (JEMS) 21 (2019), no. 12, 3759-3795.

  20. A Witt Nadel vanishing theorem for threefolds.
    Y. Nakamura, H. Tanaka,
    Compos. Math. 156 (2020), no. 3, 435-475.

  21. Abundance theorem for surfaces over imperfect fields.
    H. Tanaka,
    Math. Z. 295 (2020), no. 1-2, 595-622.

  22. Relative semi-ampleness in positive characteristic.
    P. Cascini, H. Tanaka,
    Proc. Lond. Math. Soc. (3) 121 (2020), no. 3, 617-655.

  23. Pathologies on Mori fibre spaces in positive characteristic.
    H. Tanaka,
    Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 20 (2020), no. 3, 1113-1134.

  24. Minimal model program for log canonical threefolds in positive characteristic.
    K. Hashizume, Y. Nakamura, H. Tanaka,
    Math. Res. Lett. 27 (2020), no. 4, 1003-1054.

  25. On del Pezzo fibrations in positive characteristic.
    F. Bernasconi, H. Tanaka,
    to appear in Journal of the Institute of Mathematics of Jussieu.

  26. Invariants of algebraic varieties over imperfect fields.
    H. Tanaka,
    to appear in Tohoku Math J.

  27. On p-power freeness in positive characteristic.
    H. Tanaka,
    to appear in Math. Nachr.


Preprints

  1. Vanishing theorems of Kodaira type for Witt canonical sheaves.
  2. Boundedness of regular del Pezzo surfaces over imperfect fields.