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1 Weight-monodromy conjecture

The Galois representation associated to the étale cohomology of a variety defined over a
number field is a central subject of study in number theory. The Galois action on the Tate
module of an elliptic curve and the Galois representation associated to a modular form
that played the central role in the proof of Fermat’s last theorem by Wiles and Taylor are
typical examples.

To simplify the notation, we assume that a proper smooth variety X is defined over
the rational number field Q. We fix a prime number � and consider the representation of
the absolute Galois group Gal(Q̄/Q) acting on the �-adic étale cohomology Hq(XQ̄,Q�).
As is seen in the definition of the Hasse-Weil L-function, a standard method in the study
of a Galois representation is to investigate it locally at each prime.

Let p be a prime number different from �. If X has good reduction at p, the Galois rep-
resentation Hq(XQ̄,Q�) at p is almost completely understood thanks to the Weil conjecture
proved by Deligne [1]. Namely its restriction to the decomposition group Gal(Q̄p/Qp) at p
is unramified and the characteristic polynomial det(1−Fpt : Hq(XQ̄,Q�)) of the geometric
Frobenius is determined by counting the number of points of the reduction of X modulo
p defined over Fpn for every n � 1.

However, for a prime of bad reduction, an important piece, called the weight-monodromy
conjecture, is still missing. To state it, let us recall briefly the structure of the absolute Ga-
lois group Gal(Q̄p/Qp). Corresponding to the maximal unramified extension and the max-
imal tamely ramified extension Qp ⊂ Qur

p = Qp(ζm; p � m) ⊂ Qtr
p = Qur

p (p1/m; p � m) ⊂ Q̄p,
the inertia subgroup and its wild part Gal(Q̄p/Qp) ⊃ I ⊃ P ⊃ 1 are defined. The quotient
Gal(Q̄p/Qp)/I is canonically identified with Gal(F̄p/Fp) and is topologically generated by
the geometric Frobenius Fp. The quotient I/P by the pro-p Sylow subgroup P is non-
canonically identified with the product of Zp′ for p′ �= p.

By the monodromy theorem of Grothendieck, there exists a nilpotent operator N
on V = Hq(XQ̄,Q�) such that the restriction to an open subgroup of I is given by
exp(t�(σ)N) where t� : I → Z� is a surjection. By elementary linear algebra, the nilpo-
tent operator defines a unique finite increasing filtration W on V characterized by the
property that N(WiV ) ⊂ Wi−2V for every integer i and N i induces an isomorphism
GrW

i V = WiV/Wi−1V → GrW
−iV for every i � 0. Then the weight-monodromy conjecture

is stated as follows.
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Conjecture 1.1. Let F ∈ Gal(Q̄p/Qp) be a lifting of the geometric Frobenius Fp. Then
the eigenvalues of F acting on GrW

i Hq(XQ̄,Q�) are algebraic integers and the complex
absolute values of the conjugates are p(q+i)/2.

Conjecture was proved for q = 1 by Grothendieck by studying the Néron model of an
abelian variety. It is proved for q = 2 by Rapoport-Zink using the weight spectral sequence
in a semi-stable case and in general by using alteration by de Jong. For an arbitrary q,
the Weil conjecture and alteration by de Jong imply that the eigenvalues of F acting on
GrW

i V are algebraic integers and the complex absolute values of the conjugates are pn/2

for an integer n independent of the conjugates. The function field analogue is proved by
Deligne in the course of the proof of the Weil conjecture in [1].

P. Scholze introduced a new method in [7] to study the weight-monodromy conjecture
and proved it for smooth complete intersections in smooth toric varieties, stated later as
Theorem 6.2. The method is to construct and study the following diagram and reduce
it to the function field case already proved by Deligne. In the diagram, k, k′, K and K�

denote finite extensions of Qp,Fp((t)),Qp(ζp∞) and of Fp((t))(t
1/p∞) respectively.

(algebraic varieties/k) (algebraic varieties/k′)

?

⏐⏐� ⏐⏐�perfection

(perfectoid spaces/K)
�−−−→ (

perfectoid spaces/K�
)
.

(1.1)

The upper categories stay in the realm of algebraic geometry while the lower ones are
in that of rigid geometry in the sense of R. Huber [6]. A point is that we have a canonical
equivalence of categories on the lower line. Another point is that we have a canonical
isomorphism

Gal(K̄/K)← Gal(K̄�/K�).(1.2)

Since some important special cases were first introduced by Fontaine-Wintenberger [4], the
isomorphism (1.2) has been used effectively in the study of p-adic Galois representations
of p-adic fields. It allows us to expect to deduce results in characteristic 0 from the
corresponding results in characteristic p > 0.

A problem is that we do not have a natural functor for the left vertical arrow in (1.1)
with ?, in general. Another problem is that we may lose some information by going
down. The morphisms Gal(k̄/k)← Gal(K̄/K) and Gal(k̄′/k′)← Gal(K̄�/K�) defined by
inclusions k ⊂ K and k′ ⊂ K� induce isomorphisms on the quotients by the wild inertia
subgroups. Since the weight-monodromy conjecture can be regarded as a statement on
the actions of these quotients, we do not lose too much information by going down.

The purpose of the lecture is to explain the diagram and sketch the proof of the weight-
monodromy conjecture for smooth complete intersections in toric varieties. For these
varieties, one can construct the left vertical arrow with ? and recover enough information
to prove the weight-monodromy conjecture.

The contents of the notes are summarized as follows. In Section 2, we introduce a
perfectoid field and the tilting functor associating to a perfectoid field of characteristic 0
a perfectoid field of characteristic p > 0. The canonical isomorphism (1.2) is obtained as
a special case of the almost purity theorem discussed in Section 5.

We also introduce perfectoid algebras in Section 2. The perfectoid spaces are defined by
patching their associated adic spaces in Section 4, after recalling briefly some foundations
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on adic spaces. The key fact that the categories of perfectoid algebras over a perfectoid
field K and its tilt K� are equivalent to each other is proved using the language of almost
commutative algebra recalled in Section 3. The idea of the proof of the equivalence will
be sketched at the end of the section.

In Section 5, we recall a crucial generalization of the almost purity theorem of Faltings
and compare the étale topology in characteristic p > 0 and characteristic 0. Finally, we
state the main result on the weight-monodromy conjecture and sketch the proof in Section
6.

For the full detail of proof, we refer to the original article [7]. A survey [3] is written
by Fontaine.

2 Perfectoid fields and perfectoid algebras

We begin with recalling the definition of perfectoid fields and the tilting construction. We
also state an isomorphism of Galois groups of a perfectoid field of characteristic 0 and its
associated perfectoid field of characteristic p > 0, whose sketch of proof is postponed to
the Section 5.

Let K be a field. A mapping v : K → R ∪ {∞} = (−∞,∞] is called a(n additive)
valuation of K (of height 1) if v(a + b) � min(v(a), v(b)) and v(ab) = v(a) + v(b) for
a, b ∈ K, if v(a) =∞ is equivalent to a = 0 and if v(K) � {0, 1}. A field K equipped with a
valuation of height 1 will be called a valuation field. The subringOK = {a ∈ K | v(a) � 0}
is called the valuation ring of OK and m = {a ∈ K | v(a) > 0} is the maximal ideal of
OK . Choosing a real number 0 < a < 1, we define a metric d(x, y) = av(x−y) on K. The
topology is independent of the choice of a.

A valuation field K of characteristic 0 is said to be of mixed characteristic (0, p) if the
residue field OK/m is of characteristic p > 0.

Definition 2.1. Let K be a valuation field such that the restriction v|K× : K× → R has
dense image and assume that K is either of characteristic p > 0 or of mixed charac-
teristic (0, p). Then K is called a perfectoid field if K is complete and if the Frobenius
endomorphism OK/pOK → OK/pOK : x 
→ xp is a surjection.

A perfectoid field K of characteristic p > 0 is a perfect field and its valuation ring
OK is a perfect ring. Let K be a perfectoid field of mixed characteristic (0, p). Then
the inverse limit lim←−OK/pOK with respect to the Frobenius endomorphism is a complete

valuation ring and its fraction field K� is a perfectoid field of characteristic p, called the
tilt of K. For a = (an) ∈ OK�, the limit a� = limn→∞(ãn)pn ∈ OK , defined by taking
liftings, is independent of the choices and induces a mapping K� → K compatible with
the multiplications and the valuations.

Example 2.2. The p-adic completion K of Qp(ζp∞) is a perfectoid field of mixed charac-
teristic (0, p). Its tilt K� is isomorphic to the t-adic completion of Fp((t))(t

1/p∞).

The following fact is fundamental.

Proposition 2.3 ([7, Theorem 3.7]). Let K be a perfectoid field of mixed characteristic
(0, p). Then, a finite extension L of K is also a perfectoid field and its tilt L� is a finite
(separable) extension of K�. Further, the functor

(finite separable extensions of K)→ (finite separable extensions of K�)(2.1)
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sending L to L� is an equivalence of categories.

Proposition 2.3 is proved as a special case of Theorem 5.1 and makes an important
step of the proof. The equivalence of categories (2.1) induces a canonical isomorphism
(1.2) of absolute Galois groups. It gives a generalization of the theory of fields of norms
by Fontaine-Wintenberger [4].

We define perfectoid algebras over a perfectoid field. We fix a perfectoid field K of
characteristic p > 0 or of mixed characteristic (0, p). Let OK denote its valuation ring
and we also fix a non-zero element � satisfying 0 < v(�) � v(p). We take a real number
0 < a < 1 and define a norm |x| = av(x) on K. A K-algebra R is said to be a K-Banach
algebra if it is complete and separated with respect to a norm | | on the K-vector space
R compatible with multiplication. An element x of R is said to be power-bounded if the
subset {xn | n � 0} is bounded with respect to a norm. Let A denote the subring of R
consisting of power-bounded elements.

Definition 2.4. Let K be a perfectoid field of characteristic p > 0 or of mixed character-
istic (0, p). We say that a Banach K-algebra R is a perfectoid K-algebra if the subring
A ⊂ R consisting of power-bounded elements is bounded and if the Frobenius endomor-
phism A/� → A/� : x 
→ xp is surjective. A morphism of perfectoid K-algebras is a
continuous morphism of K-algebras.

Similarly as for perfectoid fields, we define tilting construction. Let K be a perfectoid
field, R be a perfectoid K-algebra and A ⊂ R be the subring as above. Then, we set

A� = lim←−A/�A(2.2)

with respect to the Frobenius endomorphism. It is naturally an OK�-algebra. Thus R� =
A� ⊗O

K�
K� is defined as a Banach K�-algebra, called the tilt of R.

Lemma 2.5 ([7, Proposition 5.9]). Let K be a perfectoid field of characteristic p > 0
and R be a Banach K-algebra such that the subring A consisting of power-bounded elements
is open and bounded. Then, the following conditions are equivalent:

(1) R is a perfectoid K-algebra.
(2) R is perfect.
(3) A is perfect.

Example 2.6. 1. If k is a complete discrete valuation field of characteristic p > 0 with
a uniformizer t, the fraction field K of the t-adic completion of the perfection O1/p∞

k is
a perfectoid field. If A is a flat Ok-algebra of finite type, the t-adic completion of the
perfection A1/p∞ tensored K is a perfectoid algebra over K.

2. The �-adic completion R of K[T
1/p∞
1 , . . . , T

1/p∞
n ] is a perfectoid K-algebra, denoted

K〈T 1/p∞
1 , . . . , T

1/p∞
n 〉. Its tilt R� is K�〈T 1/p∞

1 , . . . , T
1/p∞
n 〉.

Now we state a key result.

Theorem 2.7 ([7, Theorem 5.2]). Let K be a perfectoid field of mixed characteristic
(0, p). Then, for a perfectoid K-algebra R, its tilt R� is a perfectoid K�-algebra. Further
the functor

(perfectoid K-algebras)→ (perfectoid K�-algebras)(2.3)

sending R to R� is an equivalence of categories.
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3 Almost commutative algebra

A basic idea on almost commutative algebra in the context of perfectoid extension of a
complete discrete valuation ring is the following. Let k be a complete discrete valuation
field and Ok be the valuation ring. We consider the factorization

(Ok-modules)

��

⊗Ok
k

�� (k-vector spaces)

(Ok-modules)/(torsion modules)

������������������������

of the scalar extension functor by the quotient category. Then the slant arrow is an
equivalence of category.

Now, let K denote a perfectoid field and OK be the valuation ring. Similarly, we
consider the factorization

(OK-modules)

��

⊗OK
K

�� (K-vector spaces).

(OK-modules)/(almost zero modules)

��������������������������

Here an OK-module is said to be almost zero if every element is annihilated by the maximal
ideal mK , satisfying mK = m2

K . This time, the vertical arrow is very close to an equivalence
of categories. This is analogous to ignoring infinitesimal in classical calculus. Moreover,
one can develop a theory of commutative algebra in the lower tensor abelian category,
which is called almost commutative algebra.

We work in a more general setting. Let A be a commutative ring and let m be a flat
ideal of A satisfying m2 = m. We say that an A-module M is almost zero if mM = 0. The
essential image of the natural fully faithful functor

(A/m-modules)→ (A-modules)

is the subcategory consisting of almost zero modules.

Lemma 3.1. For an A-module M , the following conditions are equivalent.
(1) M is almost zero.
(2) TorA

q (m,M) = 0 for every q � 0.
(3) ExtqA(m,M) = 0 for every q � 0.

Proof. Since mM is the image of the composition m⊗A M → m⊗A HomA(m,M) → M ,
either of the vanishings m⊗A M = 0 and HomA(m,M) = 0 implies mM = 0.

A free resolution of the A-module m defines spectral sequences

E2
p,q = TorA/�

p (TorA
q (m, A/m), M)⇒ TorA

p+q(m, A/m⊗A/� M),

Ep,q
2 = ExtpA/�(TorA

−q(m, A/m), M)⇒ Extp+q
A (m, HomA/�(A/m, M))

for an A/m-module M . Since the A-module m is assumed flat, they induce isomorphisms

Tor
A/�
p (m ⊗A (A/m), M) → TorA

p (m,M) and ExtpA/�(m ⊗A (A/m), M) → ExtpA(m,M).

Since m⊗A (A/m) = m/m2 = 0, the assertion follows.
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Either of the conditions (2) and (3) implies that the subcategory consisting of almost
zero modules is closed under extensions.

We say that a morphism of A-modules f : M → N is an almost isomorphism if the
kernel and the cokernel of f are almost zero. For morphisms f : L → M, g : M → N of
A-modules, if two of f, g and g ◦ f are almost isomorphisms, so is the third.

Lemma 3.2. 1. For an A-module M , the canonical morphisms m ⊗A M → M →
HomA(m,M) are almost isomorphisms.

2. For a morphism of A-modules f : M → N , the following conditions are equivalent.
(1) f is an almost isomorphism.
(2) f∗ : m⊗A M → m⊗A N is an isomorphism.
(3) f∗ : HomA(m,M)→ HomA(m, N) is an isomorphism.

Proof. 1. The exact sequence 0 → m → A → A/m → 0 induces exact sequences
TorA

1 (A/m, M) → m ⊗A M → M → (A/m) ⊗A M → 0 and HomA(A/m, M) → M →
HomA(m,M)→ Ext1A(A/m, M) and the assertion follows.

2. Since (1) in Lemma 3.1 implies (2) and (3) in Lemma 3.1 respectively, (1) implies (2)
and (3) respectively. Conversely, the left (resp. right) square of the commutative diagram

m⊗A M −−−→ M −−−→ HomA(m,M)⏐⏐� ⏐⏐� ⏐⏐�
m⊗A N −−−→ N −−−→ HomA(m, N)

shows that (2) (resp. (3)) implies (1) by 1. and the remark preceding Lemma.

We define the category of almost A-modules to be the quotient category of that of
A-modules by the subcategory consisting of almost zero A-modules. We have a canonical
functor

(A-modules)→ (almost A-modules)(3.1)

sending an A-module M to the associated almost A-module Ma. The category (almost A-modules)
is an abelian category and inherits tensor products and internal Hom from the category
(A-modules). Consequently, we can do linear algebra as well as multi-linear algebra and
commutative algebra in the category.

For A-modules M and N , we call a morphism in the category of almost A-modules
an almost morphism and let HomAa(Ma, Na) denote the A-module of almost morphisms.
We set ∗M = m⊗A M and N∗ = HomA(m, N).

Lemma 3.3. 1. The functors M 
→ ∗M and N 
→ N∗ are adjoint to each other. The
canonical morphisms ∗M → M and N → N∗ induce isomorphisms of functors ∗(∗M) →
∗M and N∗ → (N∗)∗.

2. The canonical functor (3.1) admits left and right adjoint functors

(almost A-modules)→ (A-modules),(3.2)

induced by the functors M 
→ ∗M and N 
→ N∗ respectively. For A-modules M and N ,
we have a canonical isomorphism HomAa(Ma, Na)→ HomA(M, N)∗.

3. The functors (3.2) are fully faithful and the essential images consist of A-modules M
such that the canonical morphism M → ∗M is an isomorphism and N such that N → N∗
is an isomorphism respectively.
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Proof. 1. The canonical isomorphisms HomA(m ⊗A M, N) → HomA(M, HomA(m, N))
define an adjunction. Since the multiplication induces an isomorphism m⊗A m → m, we
obtain an isomorphism ∗(∗M) = m ⊗A m ⊗A M → m ⊗A M = ∗M . The isomorphism
N∗ → (N∗)∗ follows from this and the adjunction.

2. By Lemma 3.2, the functors M 
→ ∗M and N 
→ N∗ induce functors (3.2). By the
definition of the quotient category and Lemma 3.2, the almost isomorphisms ∗M → M
and N → N∗ induce an isomorphism HomA(∗M, N∗) → HomAa(Ma, Na). By 1., we
obtain canonical isomorphisms HomA(∗M, N∗) → HomA(∗(∗M), N) → HomA(∗M, N)
and HomA(∗M, N∗)→ HomA(M, (N∗)∗)→ HomA(M, N∗).

Further, we have a canonical isomorphism HomA(∗M, N) = HomA(m ⊗A M, N) →
HomA(m, HomA(M, N)) = HomA(M, N)∗.

3. Since M →M∗ is an almost isomorphism and N 
→ N∗ induces the right adjoint, we
obtain canonical isomorphisms HomAa(Ma, Na) ← HomAa(Ma

∗ , Na) → HomA(M∗, N∗).
The description of the essential image follows from the isomorphism N → (N∗)∗.

The assertion for the functor ∗M is proved similarly.

Let R be an A-algebra. We say that an R-module M is almost locally free of finite
rank if the canonical map M ⊗R HomR(M, R) → EndR(M) is an almost isomorphism.
For an almost locally free R-module M of finite rank, the trace map is defined to be the
composition

EndR(M)→ EndR(M)∗
∼← (M ⊗R HomR(M, R))∗ → R∗,

where the last map is induced by the evaluation map x⊗ f 
→ f(x).
We say that a surjection R → S of commutative A-algebras defines an almost open

immersion if S is an almost locally free R-module of finite rank. We say that a morphism
R → S of commutative A-algebras is almost finite étale if S is an almost locally free R-
module of finite rank and if the surjection S⊗R S → S defines an almost open immersion.

A commutative ring R over A is an object of the category of (A-modules) equipped with
the multiplication R ⊗A R → R satisfying a certain set of axioms. Similarly, one defines
an almost commutative ring R over A as an object of the category of (almost A-modules)
equipped with an almost multiplication R ⊗A R → R satisfying the corresponding set of
axioms. It is established in [5] that one obtains a completely parallel theory.

We will sketch the proof of the equivalence of categories (2.3). The functor ⊗OK
K :

(OK-modules) → (K-vector spaces) induces a functor ⊗Oa
K
K : (almost OK-modules) →

(K-vector spaces). Let (Perf/K) and (Perf/K�) denote the categories of perfectoid alge-
bras. Theorem 2.7 is proved by constructing a diagram

(Perf/K)← (Perf/Oa
K)→ (Perf/(OK/�OK)a)← (Perf/O�a

K )→ (Perf/K�)(3.3)

of equivalences of categories. First, we define the categories in the diagram (3.3). By abuse
of notation, for an Oa

K-algebra A and for a non-zero element � ∈ mK , let A/�1/pA denote
the quotient by the principal ideal generated by an element of valuation v(�)/p. An almost
OK-module M is said to be complete if the canonical morphism M → (lim←− nM∗/�nM∗)a

is an isomorphism.

Definition 3.4. Let K be a perfectoid field of characteristic p > 0 or of mixed char-
acteristic (0, p). Let OK be the valuation ring and � be a non-zero element satisfying
0 < v(�) � v(p).
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1. We say that a �-adically complete flat Oa
K-algebra A is a perfectoid Oa

K-algebra if
the morphism A/�1/pA→ A/�A : x 
→ xp is an isomorphism. A morphism of perfectoid
Oa

K-algebras is a morphism of Oa
K-algebras.

2. We say that a flat (OK/�OK)a-algebra Ā is a perfectoid (OK/�OK)a-algebra if
the morphism Ā/�1/pĀ → Ā : x 
→ xp is an isomorphism. A morphism of perfectoid
(OK/�OK)a-algebras is a morphism of (OK/�OK)a-algebras.

The following Lemma defines the arrows in (3.3) and shows that the first and the last
ones are equivalences of categories.

Lemma 3.5. Let K be a perfectoid field and OK be the valuation ring.
1.([7, Proposition 5.5]) Let R be a perfectoid algebra over K and A be the subring con-

sisting of power-bounded elements. Then, the Frobenius morphism induces an isomorphism
A/�1/pA→ A/�A and Aa is a perfectoid algebra over Oa

K.
2.([7, Lemma 5.6]) Let A be a perfectoid algebra over Oa

K and equip the K-algebra
R = A ⊗Oa

K
K a Banach K-algebra structure such that A∗ ⊂ R is open and bounded.

Then, R is a perfectoid algebra over K and A∗ ⊂ R is the subring consisting of power-
bounded elements.

To prove that the middle arrows are equivalences of categories, we need to find liftings
of perfectoid (OK/�OK)a-algebras and their morphisms. This is done by using the theory
of cotangent complexes adjusted to the context of almost commutative algebras developed
in [5]. It is eventually reduced to that the cotangent complex of a perfect Fp-algebra
vanishes. One also needs to check that the composition of (3.3) is actually given by the
construction (2.2).

4 Perfectoid spaces

So far, we have studied only local pieces. We make a global construction using the language
of adic spaces in the sense of R. Huber [6]. A building block of an adic space is a locally
ringed space Spa(R,R+) defined for an affinoid k-algebra (R, R+).

Let k denote a complete valuation field. We call a topological k-algebra R a Tate
k-algebra if there exists a subring R0 (over Ok) such that aR0 for a ∈ k× form a basis of
open neighborhoods of 0. For a Tate k-algebra R, let A denote the subring consisting of
power-bounded elements. A pair (R, R+) of a Tate k-algebra R and an open and integrally
closed subring R+ ⊂ A (over Ok) is called an affinoid k-algebra.

For an affinoid k-algebra (R, R+), the underlying set of Spa(R,R+) is defined as the
set of (equivalence classes of) continuous valuations v satisfying v(f) � 0 for f ∈ R+. For
a ring R and a totally ordered additive group Γ, a mapping v : R → Γ ∪ {∞} is called
a(n additive) valuation if the following conditions are satisfied; v(xy) = v(x) + v(y) and
v(x+ y) � min(v(x), v(y)) for x, y ∈ R, v(0) =∞ and v(1) = 0. If R is a topological ring,
a valuation v is said to be continuous if v−1((g,∞]) ⊂ R is open for every g ∈ Γ such that
g = v(x) for some x ∈ R.

For a valuation v, define the value group Γv to be the subgroup of Γ generated by
{g ∈ Γ | g = v(x) for some x ∈ R} and the support as a prime ideal of R by pv = {x ∈
R | v(x) = ∞}. Then, the valuation v induces a valuation of the fraction field of R/pv.
Valuations v and v′ are said to be equivalent, if there exists an isomorphism of totally
ordered groups Γv → Γv′ compatible with v and v′.
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For an affinoid k-algebra (R, R+), we define the set X = Spa(R,R+) to be the equiv-
alence classes of continuous valuations v of R such that v(R+) ⊂ [0,∞]. We equip X a

topology with a basis consisting of rational subsets U
(f1, . . . , fn

g

)
= {v ∈ X | v(fi) �

v(g) for i = 1, . . . , n} defined for f1, . . . , fn, g ∈ R satisfying (f1, . . . , fn) = R.
We define the structure presheaf OX on X. Let f1, . . . , fn, g ∈ R be elements satisfying

(f1, . . . , fn) = R. We define a topology on the ring R
[f1

g
, . . . ,

fn

g

]
= R

[1

g

]
by a basis of

open neighborhood of 0 consisting of aR0

[f1

g
, . . . ,

fn

g

]
for a ∈ k×. Let R

〈f1

g
, . . . ,

fn

g

〉
be

the completion of R
[f1

g
, . . . ,

fn

g

]
and let R+

〈f1

g
, . . . ,

fn

g

〉
denote abusively the completion

of the integral closure of R+
[f1

g
, . . . ,

fn

g

]
in R

[f1

g
, . . . ,

fn

g

]
. Then, the morphism R →

R
〈f1

g
, . . . ,

fn

g

〉
induces a homeomorphism

Spa

(
R

〈f1

g
, . . . ,

fn

g

〉
, R+

〈f1

g
, . . . ,

fn

g

〉)
→ U

(f1, . . . , fn

g

)
⊂ X = Spa(R,R+).

Further, the topological rings R
〈f1

g
, . . . ,

fn

g

〉
and R+

〈f1

g
, . . . ,

fn

g

〉
depend only on the

rational subset U
(f1, . . . , fn

g

)
⊂ X = Spa(R,R+).

We define a presheaf OX on X by requiring OX(U) = R
〈f1

g
, . . . ,

fn

g

〉
for rational

subsets U = U
(f1, . . . , fn

g

)
. For each point x of X = Spa(R,R+), the (equivalence class

of) continuous valuation of R induces a(n equivalence class of) continuous valuation of
the local ring OX,x. We regard X = Spa(R,R+) as a topological space equipped with
the presheaf OX of topological rings together with the (equivalence class of) continuous
valuation of the local ring at each point.

If the presheaf OX is a sheaf, we call X = Spa(R,R+) equipped with these structures
an affinoid adic space. An adic space X is defined to be a topological space equipped
with an sheaf OX of topological rings together with a(n equivalence class of) continuous
valuation of the local ring at each point, that is locally isomorphic to an affinoid adic
space.

For a perfectoid affinoid algebra (R, R+), the presheaf OX on X = Spa(R,R+) is
a sheaf. Let K be a perfectoid field. We say that an affinoid K-algebra (R, R+) is a
perfectoid affinoid K-algebra if R is a perfectoid K-algebra. The tilting functor (2.3)
induces an equivalence of categories

(perfectoid affinoid K-algebras)→ (perfectoid affinoid K�-algebras)(4.1)

sending (R, R+) to (R�, R�+). Here R�+ denotes the open and integrally closed subalgebra
satisfying mR�◦ ⊂ R�+ ⊂ R�◦ and corresponding to mR◦ ⊂ R+ ⊂ R◦.

Theorem 4.1 ([7, Theorem 6.3]). Let K be a perfectoid field, (R, R+) be a perfectoid
affinoid K-algebra and let X = Spa(R,R+) be the associated topological space equipped
with the structures as above.
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1. The presheaf OX is a sheaf.
2. Assume K is of mixed characteristic (0, p) and let K� and (R�, R�+) be the tilts of

K and (R, R+). Then, there exists a unique homeomorphism � : X → X� = Spa(R�, R�+)
compatible with the construction of rational subsets U and isomorphisms OX(U)� →
OX�(U �).

Theorem 4.1.1 is a part of an analogue for perfectoid algebras of Tate’s acyclicity
theorem in rigid geometry. Theorem 4.1.2 is proved by using the equivalence of categories
established in Theorem 2.7 and some approximation property. Theorem 4.1.1 is reduced
to the case of characteristic p > 0 by Theorem 4.1.2. In the latter case, it is proved by
reducing eventually to Tate’s acyclicity theorem in the classical case.

Theorem 4.1 enables us to define perfectoid spaces.

Definition 4.2. An adic space over a perfectoid field K is called a perfectoid space if it
is locally isomorphic to Spa(R,R+) for an perfectoid affinoid K-algebra (R, R+).

Theorem 2.7 and Theorem 4.1 immediately imply an equivalence of categories

(perfectoid spaces over K)→ (perfectoid spaces over K�)(4.2)

attaching to a perfectoid space X over K its tilt X� over K�. Further Theorem 4.1 implies
a homeomorphism X → X� compatible with tilting construction on the structure sheaves.

To prove (cases of) the weight-monodromy conjecture, we still need to understand the
compatibility of étale topology with the equivalence of categories (4.2).

5 Almost purity theorem and étale topology

The most important point in the theory is the following generalization of the almost purity
theorem of Faltings [2].

Theorem 5.1 ([7, Theorem 7.9]). Let K be a perfectoid field, R be a perfectoid K-
algebra and A be the perfectoid Oa

K-algebra associated to the subring of R consisting of
power-bounded elements. Then, a finite étale R-algebra S is a perfectoid K-algebra and
the Oa

K-algebra B associated to the subring of S consisting of power-bounded elements is
a perfectoid Oa

K-algebra and is almost finite étale over A.

We sketch the proof. Let R be a perfectoid K-algebra and let A be the perfectoid
Oa

K-algebra associated to the subring consisting of power-bounded elements. Setting Ā =
A/�A and we consider the following diagram of categories

(FÉt/R)← (FÉt/A)→ (FÉt/Ā)← (FÉt/A�)→ (FÉt/R�)(5.1)

consisting of (almost) finite étale algebras, similar to the diagram (3.3). Using the theory
of almost commutative algebra [5], one checks ([7, Theorem 4.17, Proposition 5.22]) that
the middle two arrows are equivalences of categories, that a finite étale A-algebra is a per-
fectoid Oa

K-algebra and that a finite étale Ā-algebra is a perfectoid (OK/�OK)a-algebra,
respectively. This implies that the middle three categories in (5.1) are subcategories of the
corresponding categories in (3.3) and that the middle two arrows are compatible to each
other.
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Using Lemma 2.5 in characteristic p > 0, it is proved rather directly ([7, Proposition
5.23]) that the last arrow in (5.1) is an equivalence of categories and is compatible with
that in (3.3). By what is already proven and by Theorem 2.7, the proof of Theorem 5.1 is
reduced to showing that the composite functor from the right end to the left end of (5.1)
is essentially surjective. This is proved first in the case where R is a field. Then, applying
this to the residue field of each point and using that the local rings are henselian, we show
that we obtain an etale covering locally. Then, by using the sheaf property, Theorem 4.1.1,
we conclude the proof.

An isomorphism of étale sites follows directly from Theorem 5.1. First, we define the
étale site. A morphism X → Y of adic spaces is said to be étale if locally on Y , there
exists an open covering by affinoids V = Spa(R) and an almost finite étale R-algebra S
such that X ×Y V → V factors through an open immersion X ×Y V → U = Spa(S) over
V .

Definition 5.2. Let X be a perfectoid space. Then, the underlying category of the étale
site Xét consists of perfectoid spaces étale over X. A family of morphisms in Xét is a
covering if the family of underlying continuous mappings is a covering.

Theorem 5.1 and Theorem 4.1.2 imply the following.

Corollary 5.3 ([7, Theorem 7.12]). The tilting induces an isomorphism Xét → X�
ét of

the étale sites.

This completes the construction of the bottom arrow in the diagram (1.1).

6 Complete intersections in toric varieties

We recall the definition of toric varieties. Let P be a free abelian group of finite rank and
N = Hom(P,Z) be the dual. A cone σ ⊂ NR is said to be rational if it is spanned by a
finitely many elements of N . It is said to be strongly convex if it does not contain a line.
A sub cone τ of a rational cone σ is called a face if there exists a ∈ P such that f(a) � 0
for every f ∈ N and τ = {f ∈ σ | f(a) = 0}. For a rational cone σ ⊂ NR, let σ∨ ⊂ PR

denote the dual {a ∈ PR | f(a) � 0 for f ∈ σ} and set Pσ = P ∩ σ∨.
A fan Σ is a finite set of strongly convex rational cones of NR such that a face τ of an

element σ of Σ is an element of Σ and the intersection σ ∩ τ of elements σ, τ of Σ is a face
of σ and of τ . We say a fan Σ is proper if the union

⋃
σ∈Σ σ is equal to NR. We say a fan

Σ is smooth, if the monoid N ∩ σ is isomorphic to the product of copies of N for every
σ ∈ Σ.

For a fan Σ and a field k, we define the toric variety XΣ,k by patching Xσ,k = Spec k[Pσ]
along Xσ∩τ,k. The toric variety XΣ,k has a natural action of the torus T = Spec k[P ] ⊂ XΣ,k

defined by k[Pσ]→ k[Pσ]⊗ k[P ] = k[Pσ×P ] induced by Pσ → Pσ×P : a 
→ (a, a). If Σ is
a proper fan, the toric variety XΣ,k is proper. If Σ is a smooth fan, the toric variety XΣ,k

is smooth. If τ is a one dimensional face of a smooth fan Σ, the ideals of k[Pσ] generated
by {a ∈ Pσ | f(a) > 0 for f ∈ τ} define a smooth irreducible divisor Dτ of XΣ,k.

Example 6.1. Set P = Ker(sum: Zn+1 → Z) and N = Zn+1/ΔZ. For a subset σ �
{0, . . . , n}, let σ also denote abusively the cone of NR spanned by the images of the standard
basis ei ∈ Zn+1 for i ∈ σ. Let Σ be the set of cones σ associated to subsets σ � {0, . . . , n}.
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For i = 0, . . . , n, set σi = {j | j �= i}. Then, Pσi
is generated by xj − xi where xj

denote the standard basis of Zn+1 ⊃ P . Thus the toric variety XΣ,k is defined by patching

Spec k
[Xj

Xi

]
and is nothing but the projective space Pn

k .

Let K be a perfectoid field and Σ be a proper smooth fan. For a face σ ∈ Σ, set
P

1/p∞
σ = PZ[ 1

p
] ∩ σ∨ and K〈Pσ〉,OK〈Pσ〉, K〈P 1/p∞

σ 〉 and OK〈P 1/p∞
σ 〉 be the �-adic com-

pletions. Then, we define an adic space Xad
Σ,K and a perfectoid space Xperf

Σ,K by patching

Spa(K〈Pσ〉,OK〈Pσ〉) and Spa(K〈P 1/p∞
σ 〉,OK〈P 1/p∞

σ 〉) respectively. The construction of
Xperf

Σ,K corresponds to the vertical arrow with ? in the diagram (1.1).

Assume that K is of mixed characteristic (0, p). Then the tilt of Xperf
Σ,K is Xperf

Σ,K� and we
obtain morphisms of étale sites;

Xad
Σ,K,ét ←−−− Xperf

Σ,K,ét

�−−−→ Xperf

Σ,K�,ét
−−−→ Xad

Σ,K�,ét
(6.1)

By Corollary 5.3, the middle arrow is an isomorphism. Since a surjective radicial mor-
phism induces an isomorphism on the étale site, the right arrow is also an isomorphism.
For a prime number � �= p, the right arrow induces an isomorphism Hq(Xad

Σ,K̄,ét
,Q�) →

Hq(Xperf
Σ,K̄,ét

,Q�) by the proper base change theorem. This means that we do not lose too

much information by going down in the diagram (1.1).
Let k be a field and Σ be a smooth proper fan. A closed subscheme Y of XΣ,k defined

by a non-zero section of an invertible sheaf defined by a linear combination of Dτ for
one-dimensional faces is called a hypersurface of XΣ,k.

Theorem 6.2 ([7, Theorem 9.6]). Let Y be a smooth closed subscheme of codimension
c of a smooth projective toric variety XΣ,k over a finite extension k of Qp. If there exist
hypersurfaces H1, . . . , Hc of XΣ,k such that the underlying set of Y is equal to that of the
intersection H1 ∩ . . . ∩Hc, then the weight-monodromy conjecture is true for Y .

We take a perfectoid extension K of k, for example the completion of k(ζp∞). We
prove Theorem 6.2 by constructing a proper smooth variety Z of dimension dimY over K�

defined over a dense subfield k0 ⊂ K� that is a function field of one variable over Fp and
a generically finite morphism Z → XΣ,K� and an injection Hq(YK̄,Q�) → Hq(ZK̄�,Q�)

compatible with the canonical isomorphism Gal(K̄/K) ← Gal(K̄�/K�) such that the
image is a direct summand.

By the theory of étale cohomology of adic space, there exists an open neighborhood Ỹ
of Y ad

K such that the pull-back Hq(ỸK̄,ét,Q�)→ Hq(YK̄,ét,Q�) is an isomorphism for every
q � 0. Let π : Xad

Σ,K� → Xad
Σ,K denote the composition of continuous mappings similarly

defined as (6.1). Then, by approximation, we find a closed subscheme Z0 ⊂ XΣ,K� of

codimension c defined over a subfield k0 ⊂ K� that is a function field of one variable over
Fp such that Zad

0,K� is contained in �(Ỹ ). By a theorem of de Jong, we find an alteration
Z → Z0 proper smooth over k0. The weight-monodromy conjecture for Z is known by
Deligne in [1].
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The diagram

Hq(XΣ,K̄,ét,Q�)
�−−−→ Hq(XΣ,K̄�,ét,Q�)⏐⏐� ⏐⏐�

Hq(ỸK̄,ét,Q�) −−−→ Hq(�(ỸK̄)ét,Q�)

�
⏐⏐� ⏐⏐�

Hq(YK̄,ét,Q�) Hq(ZK̄�,ét,Q�)

(6.2)

defines a morphism Hq(YK̄,Q�) → Hq(ZK̄�,Q�) compatible with the isomorphism (1.2).
The Poincaré duality implies that, in order to show that it satisfies the required property,
it suffices to show that it is non-zero for q = 2 dimY . If it was zero, the composition
of the right vertical arrows would be zero. This contradicts the fact that the dimY -th
power of the class of an ample divisor of XΣ,K̄� is non-zero in H2dim Y (ZK̄�,ét,Q�). Since
the weight-monodromy conjecture is known for Hq(ZK̄�,ét,Q�) by Deligne [1], it also holds
for a direct summand Hq(YK̄,ét,Q�).

The author thanks A. Abbes, T. Mihara, K. Miyatani, K. Tokimoto and N. Umezaki
for useful comments on a preliminary version.
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