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Abstract

We define generalizations of classical invariants of ramification, for coverings
on a variety of arbitrary dimension over a local field of mixed characteristic.
For an f-adic sheaf, we define its Swan class as a O-cycle class supported on the
closed fiber. We present a formula for the Swan conductor of cohomology and
its relative version.

Let K be a complete discrete valuation field of characteristic 0 and F' be the residue
field of K. We assume F' is a perfect field of characteristic p > 0.

Let U be a separated smooth scheme purely of dimension d of finite type over K.
Let f:V — U be a finite étale morphism. The goal of this talk is to introduce a map

(0.1) ((,AF)8: Zy(V xp V) —— FG(Vr) @2 Q

and to show that this map gives generalizations of classical invariants of ramification.

0.1 source

Since V' — U is assumed finite étale, the fiber product V' xy V is also finite étale over
U and hence is smooth of dimension d over K. Thus, Z4(V Xy V) is the free abelian
group generated by the classes of irreducible components of V' xy V. In particular, if
U is connected and V is a Galois covering of Galois group G, it is identified with the
free abelian group Z[G].

0.2 target

For a noetherian scheme X, the Grothendieck group of the category of coherent Ox-
modules is denoted by G(X). Let F,,G(X) C G(X) denote the topological filtration
generated by the classes of modules of dimension of support at most n.



For V' as above, we define Cy to be the category, whose objects are proper flat
schemes Y over Ok containing V' as a dense open subscheme. A morphism Y’ — Y in
Cy is a morphism Y’ — Y over Ok inducing the identity on V. We put

(0.2) FoG(Vp) = lime, FG(Yr).

The transitions maps are proper push-forwards.
For a map f : V — U of separated smooth schemes of finite type over K, the
push-forward map

(0.3) fo: FG(VE) —— FyG(Up)
is defined. In particular, taking U = Spec K, the degree map

is defined. For a finite flat map f : V' — U of separated smooth schemes of finite type
over K, the flat pull-back map

(0.5) f* i FoG(Up) —— FoG(Vr)

is defined by the flattening theorem of Raynaud-Gruson.
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1 Classical case

Let K and F' be as above. Let L be a finite separable extension and consider f :
V = Spec L — U = Spec K. Then, the target group FyG(Vr) of the map (0.1)
is FyG(Spec Op, ®o, F) = Z. The map f* : RG(Up) = Z — FyG(Vy) = Z is
the multiplication by the ramification index e x and the map f, : FoG(Vy) = Z —
FyG(Up) = 7Z is the multiplication by the residual degree fryx. If L is a Galois
extension of Galois group G, the source group Zg(V xy V) is Z[G].

1.1 different

For a finite separable extension L of K, the different and its wild part are defined by

(1.1) Drx = lengthoLQéL/OK,

(12) le;gK = DL/K — (eL/K — 1)

We have DlLOfK > 0. The equality is equivalent to p { er/x. For an intermediate
extension K C M C L, we have chain rules

(1.3) Dryx = Drp+ermDuyx

(1.4) Dl[(,)}gK = Df}gM + eL/MDEg/K'

1.2 Artin and Swan characters

If L is a Galois extension of Galois group G, the Artin character and the Swan character
are defined by

(1.5)  ar/k(o) = ac(o)
Dyp i ifo=1
{—lengthoLOL/(a(x) —x;x€0p) ifo#1,
(1.6)  sp/x(o) = sq(o)
{Df/gK ifo=1
—lengthy Op/(o(z)/r — 1,2 € O\ {0}) ifo# 1.

We have sg(0) = 0 unless the order of ¢ is a power of p. We also have sg(0) = sg(0”)
if (o) = (o).

For a subgroup H C G with corresponding intermediate extension M, we have
SG(l) — eL/MDi\(j[g/K ifo=1

(L) su(9) = {sG(a) it o #1



and a similar equality for the Artin character, for ¢ € H. For a quotient group G — G
with corresponding intermediate extension M, we have

(1.8) e sg(o) = > _SG(T)

and a similar equality for the Artin character, for o € G. In particular, putting G = 1,
we obtain ) _.aq(o) = o sa(o) =0.

1.3 Swan conductor

Let M be an (-adic representation of the absolute Galois group Gx = Gal(K/K). Let
L be a finite Galois extension of K of Galois group G such that the reduction modulo
¢ of the restriction to G, C G is trivial. Then, the Swan conductor of M is defined
by

(1.9) Sw(M) = f’LéT > 51k (o)Tr(o : M)
oeG
dim M? /M°"
(1.10) = f’LéT JEZGSL/K(O')(dimM‘T _ %)

It is independent of L by (1.8). We can use the second equality as the definition for a
mod-¢ representation.

The Hasse-Arf theorem asserts that Sw(M/) is an integer. We have Sw(M) > 0
and the equality holds if and only if the restriction to the p-Sylow subgroup Pk of the
inertia subgroup Ix C G is trivial. The equality (1.7) implies the induction formula

(1.11) Sw(IndgX M) = fr i (dim M - D% + Sw(M)).

2 Definition of the map (0.1)

2.1 Logarithmic diagonal

Let U be a separated smooth scheme of dimension d of finite type over K and X be a
separated regular flat scheme of finite type over Ok containing U as the complement
of a divisor D with simple normal crossing. Let (X X, X)~ be the log self-product
and the log diagonal closed immersion Ax : X — (X xo, X)~. Its generic fiber
Xk — (Xk Xx Xk)™ is a regular immersion of codimension d.

We give a local description. Assume X = Spec A and D is defined by [[.., t:.
Then, we have

(X xop X)™ = A0, AU (e D]/(t:i@1 - Ui(1®t;) (i € 1))
and the log diagonal map is defined by the map
A®o, AU (ie D]/(ti@1-U(1®t) (iel) — A
sending a ® 1 and 1 ® a toa € A and U; to 1 for ¢ € I.
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2.2 Logarithmic localized intersection product

Theorem 1 Let the notation be as above. Then,
1. There exists a unique map

(2.1) ((Ax))" : G((X xo, X)) —— G(Xp)

such that for a coherent module F and an integer q > d, we have

(1], D)) = (=1)9([Tory <" (F,0x)] - [Tor, ™ (F,0x))).
2. The map (2.1) induces a map
(2.2) (( ,AX))log G( Xk Xk Xk)¥) —— G(Xp).

Further, it maps Fur.G((Xkx Xx Xi)™) into F;G(Xp) fori € Z.
Now we define the map (0.1).

Corollary 2 Let f : U — V be a finite étale morphism. Then, there exists a unique
map

(0.1) ((,Ax)98: Zy(V xy V) —— FyG(Vr) @2 Q

that makes the diagram

((,Ag))'s —
(2.3) Za(V xu V) - FoG(Vr) ®2Q
®OV><KV OWXKW\L lprojection
FyGW xy W) FoG(Yr) ®2 Q
restrictionT 1 [WI:V] G
FdG((ZK X X ¢ ZK)N) ) F()G(ZF
(( 7AZ)) o8
commutative for an arbitrary diagram
(2.4) W—Z7
||
V—>Y
/|
U X

of schemes over O satisfying the following conditions:



(2.4.1) X is a proper flat scheme over Ok containing U as the complement of a Cartier
divisor B. The generic fiber Xk is smooth and the divisor By has simple normal
CT0SSINgs.

(2.4.2) Y is a proper flat scheme over Ok containing V as a dense open subscheme.
Namely, Y is an object of Cy .

(2.4.3) Z is a proper regular scheme over Ok containing W as the complement of a
divisor D with simple normal crossings.

(2.4.4) The quadrangles are Cartesian.

(2.4.5) The proper map g : W — V' is generically finite of constant degree [W : V.

3 Ramification theory

Let K and F be as above. Let f : V — U be a finite étale morphism of separated
smooth schemes purely of dimension d of finite type over K. We define generalizations
of classical invariants recalled in Section 1 to higher dimension by using the map

(0.1) (AP : Zy(V xy V) —— FRG(Vr) ®2 Q.

3.1 different
We define the wild different by

(31) Dy =V xu VI = [Av], Ap))® = f*(([Au], Ap))*™® — (([Av], Ap))*®

in FyG (V) ®7 Q. For a finite étale morphism g : V' — V, we have obviously a chain
rule

(32) DV//V = DV//V —|— g*DV/U'

3.2 Swan character class

If V' is a Galois covering of Galois group G, we define the Swan character class sy, (o) €
FyG(Vr) ®2 Q by

B B D5/3U if o =1,
(3.3 splo) = slo) = {—«rmAv))bg it #1

We have sg(0) = 0 unless the order of ¢ is a power of p. We expect but do not know
sq(0) = sq(o’) if (o) = (0’). We have equalities analogous to (1.7) and (1.8).



3.3 Swan class

Let F be a smooth f-adic sheaf on U. We take a finite étale Galois covering f : V — U
trivializing the reduction F. Let G be the Galois group and M be the representation
of G corresponding to F. Then, we define the Swan class SwF € FyG(U) ®z Q and
the naive Swan class Sw"*"°F € [,G(U) @z Q({y~) by

1 dim M° /M°”
(3.4) SWwF = — Z fesa(o)(dim M7 — u),
’G‘ oelG p— !
. 1
(3.5) SwhF = o > fuse(o)Tr® (o : dim M)
’ ‘ O'EG(p)
where G(,) = {0 € G| the order of o is a power of p} and Tr”" denotes the Brauer

trace. They are independent of V' by an analogue of (1.8). The Swan class SwF is the
image of the naive Swan class by the projection Q((y) — Q.
We expect the following generalization of the Hasse-Arf theorem.

Conjecture 3 The Swan class SwF € FoG(U) ®7 Q is in the image of FoG(U)
Theorem 4 Conjecture 3 is true if dimU = 1.

Idea of Proof. By the induction formula below, it is reduced to the rank 1 case. In
the rank 1 case, one can compute the Swan class explicitly in terms of the ramification
divisor in the sense of Kato. [ |

Conjecture 3 implies a conjecture of Serre:

The Artin central function for an isolated fixed point is a character.

We have a conductor formula.

Theorem 5 If V = Spec K, we have

(3.6) SwRI.(Ug, F) = degSwF — rankF - deg((Ay, Ag))'°8.
Further if F = Qq, we obtain
(37) SWRFC(Uf, QE) = —deg((AU, Aﬁ))log'

Idea of Proof. A logarithmic Lefschetz trace formula for open variety and the
associativity for the localized intersection product. [ |
We expect have the following relative version.

Conjecture 6 Let f : U — V be a smooth morphism of relative dimension d of
separated smooth schemes of finite type over K. We assume that there exist a proper
smooth scheme X over V' containing U as the complement of a divisor D with relative
simple normal crossings.

Then, for a smooth Qq-sheaf or a smooth F-sheaf F, we have

(3.8)  rankRAF - ((Ay, Ay))°8 — SWRAF = f.(rankF - ((Ay, Ap))'°8 — SwF).



We can prove Conjecture 6 if dimV = 0.
Note that we have

rank RfiF = rankF - rankRf,Q, = rankF - (—1)%deg ca(Q )y (log D)).
The equality (3.8) is equivalent to the combination of

(3.9) SWRHF = [f.SwF + rankF - SWRfQy,
(3.10SwRAQ, = (—1)deg ca(Qx v (log D)) - (Av, Ay))"® — f.((Av, Ag))'*e.

If d = 0, in other words, if f : V — U is finite étale, the right hand side of (3.10) is
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