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1 A Lefschetz trace formula for open varieties

Notations.
X: proper scheme over F'.
U C X: smooth dense open subscheme of dimension d.
I' c U x U: a closed subscheme of dimension d.
p; : I' = U: the composition with the projections pr; : U x U — U.
{: a prime number different from the characterstic of F'.

Lemma 1.1 py is proper if and only if
(1.1) 'N(Dx X)cI'N(X x D).

If p, : ' = U is proper,

I = pri.opry : H(U,Qp) — HY(U,Qy) is defined.

Write Te(I* : H2 (Up, Q) = S04 (—1)ITe(D" : HO(Up, Q).

Assume

X: smooth

U C X: the complement of a divisor D = D; U ---U D,, with simple normal
crossings.

Define

p: (X x X) — X x X: the blow-up at Dy x Dy,..., Dy, X Dy,

Ay = X — (X x X)": the log diagonal.

Theorem 1.2 Let [ be the closure of T in (X x X)) and assume
(1.2) I'N(Dx X)) cI'n(X x DY

where (D x X) and (X x D) are the proper transforms of D x X and X x D. Then,
po i I'— U 1s proper and we have

Te(I™ : H: (Up, Q1) = deg(I’, A )y



Corollary 1.3 (Fujiwara) Let F, be a finite field, U be a smooth and separated scheme
of finite type over Fy and I’ C U XU be an algebraic correspondence such thatpy : I' — U
15 proper and py 1s quasi-finite. Then there exists an integer ng > 0 such that, for every
integer n > ny, the intersection Fryl' N Ay is finite over F and we have

Te(I™ o Fry" : H:(Ur,, Q) = degFriT'N Ay.

Can not replace (1.2) ' N DY c "N D@ by (1.1) TN DY c T'n DA,

Example. X =P, U = A,

I'={(x,y) € U x Ulx = y"} the transpose of the graph of the n-th power map
f:U—=U.

Then,

Te(I™: H(Up, Qo) = Te(f - H(Up, Q) = 1
while
(F, A)(XXX)’ =n.

2 Euler characteristic and Swan class of sheaves

(1) Euler characteristic formula.
X: separated scheme of finite type over F.
U C X: smooth dense open subscheme of dimension d.
F: smooth f-adic sheaf on U. ¢ # char F.
Xe(Up, F) = 3020(=1)? dim H (U, F).
Goal:
Define
Sw(F) € CHy(X \U) @ Q)

and Prove
Theorem 2.1 If X is proper, we have
(2.1) XUz, F) = Xc(Up) - rank F — deg Sw(F).

For simplicity, assume F is trivialized by a finite etale Galois covering f : V — U
of Galois group G. F: corresponds to a representation M of G.
Consider a cartesian diagram

V =Y
(2.2) | |7
U —- X

of separated schemes of finite type.
U cC X,V CY: dense open subschemes.
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(2) Classical case.
X: a smooth curve
Y: the normalization of X in V.

D: Y \V.

Y xY) =Y xY: Blow up at (y,y),y € D.
Ay C (Y xY)": log diagonal.

ceG,#1,

T,: closure of I'y CV xy Vin (Y x Y.

Define

svu(l) =

(2.3)

svyu(o) =

=2 oz Svyu(o) and

Z SV/U

oeG

SWV/U

Then, we have

Theorem 2.2 (Hasse-Arf) There exists Sw(F) € CHy(B) satisfying

(2.4)

SWV/U (f) =

( mAY) yxyy € CHy(D

=Pz

yeD

o)Tr(o: M) € CHy(D).

f*Sw(F).

Theorem 2.3 (Grothendieck-Ogg-Shafarevich) Further if X is proper, we have

(21> XC(UF7F) = XC(UF)
Note
V XU V = HO’EG
and identify
CHy(V xp V) =D, Z.

-rank F — deg Sw(F).

The key in the classical theory is the map

(2.5)

(3) Definition.

( AY) Y xY)

OHd(V XU |4 \ Av)

@aec,;ﬂz —— CHy(D) =

D,ep Z-

In higher dimension, we can not assume resolution but we do have alteration.
Extend the diagram (2.2) to a cartesian diagram

w - Z

gl g

|

V —S5Y N\ h

A

U C

X 2 X
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where
h: X' — X: proper and isomorphism on U.
U C X': the complement of a divisor B’ of X".
Z: connected and smooth of dimension d.
W C Z: the complement of a divisor D with simple normal crossings.
g: Z — Y: proper surjective and generically finite.

(Z x Z)": Blow-up of Z x Z at Dy X Dy,...,D,, X D,, where Dy,...,D,, are the
irreducible components of D.

Ay :Z — (Z x Z)': the log diagonal map.
(Z x Z)"is smooth and the immersion Z — (Z x Z)' a regular immersion of codimension
d.

Proposition 2.4 Let 0 € G,# 1. For I € Zy(W xg W\ W xy W) such that
[F/|W><UW\W><VW] = (g x Q)Tm

1
(W V]

G(I",A2)(zxzy € CHy(Y \ V) ®7Q

depends only on U «—V CY and 0.
Definition 2.5 1. Intersection product with the log diagonal
(2.6)  (,Ay)s: CHy(U xy U\ Ay) = @UEQ’# Z-0 —— CHy(Y\V)®,Q

by
Ty, Ay)o8 =

3T, Ag) 2520
[W:V]g( 2)(2x2)

2. Foro e G,# 1,
(27) SV/U(U) — —(FJ, Av)log
syy(l) = — ZUGG,#I syyu(0).

3.
Swyu(F) = syw(o)Tr(o: M) € CHy(Y \ V) ® Q.

oceG
Proposition 2.6 If f: Y — X is proper

‘—é' F.Swy o (F) € CHy(X \U) @ Q,

15 independent of V C Y.

Proof. Proposition 2.4. [ |



Definition 2.7

Sw(F) = é F.Swyu(F) € CHy(X \ U) © Q.

(4) Integrality.

Conjecture 2.8 1. If X and Y are smooth, Swy,y(F) € CHo(Y \' V) ® Qq is in the
image of f*: CHy(X \U) - CHy(Y \ V) ® Q.

2. Sw(F) € CHo(X \U)®@Qy is in the image of CHy(X \U) — CHy(X \U) @ Q.
Theorem 2.9 1. Conjecture 2.8.1 is true if d = dimU < 2 and rankF = 1.

2. Conjecture 2.8.2 is true if d = dimU < 2.

Proof. 1. May assume X is smooth and U is the complement of a divisor D =), D;
with simple normal crossings. Then, one can define a divisor Dy = >, sw;(F)D;.
Further after blowing-up, we prove

Swyu(F) = (=) {e(Qx/r(log D)) N (1 = Dr) ™' N [Drlfaimo.
2. By Brauer’s theorem and the induction formula for the Swan class, it is reduced
to the case where rank F = 1. [ ]

(5) Proof of Theorem 2.1.
Suffices to show the trace formula for an open variety.

Te(o* : HY (Vey Qi) = X2 (—1)7Te(o” : HI(Ve, Q).
Theorem 2.10 Assume Y is proper. For o € G, we have
CT(ot: Hi(Ve, Q) ifo#£1
XC(UF)[V : U] - XC(VF) ZfO' =L

Proof of Theorem 1.2 = Theorem 2.10. W xuy WN (D xY) =W xy Wn (Y x D).
|

deg sy (o) = {

3 Serre’s conjecture

Conjecture 3.1 Let A be a reqular local ring with perfect residue field and G be a
finite group of automorphisms of A. Assume that, foro € G,# 1, A/(o(a)—a:a € A)
i1s of finite length. Then the function ag : G — Z defined by

(0) —length A/(c(a) —a:a € A) if o #1
agl\o) = .

— 2 rec106(7) if o= 1.
is a character of G.

Lemma 3.2 Conjecture 2.8 implies Conjecture 3.1 if A is the local ring at a closed
point of a smooth variety over a perfect field.

Corollary 3.3 ([KSS]) Conjecture 3.1 is true if A is the local ring at a closed point of
a smooth surface over a perfect field.



4 Proof of Theorem 1.2.

We may assume F = F. By Poincaré duality and Kiinneth formula, we identify

P End HI(U,Qp) = H*(X x U, (j x 1):Qq(d)).

Then, we have
Tr(I'™ : HI(U, Q) = TrA™([T])
where
] € H*(X x U, (j x 1)1Qq(d)): the cycle class,
A* H*H(X x U, (5 x 1)1Qu(d)) — H?*(U,Qu(d)): the pull-back
J (X xX)Y\N(DxX)U(X xD))— (X xX)\ (X xD)" open immersion.

(4.1) H* (X x U, (j x 11Qu(d)) — H*((X x X)'\ (X x DY, 5iQq(d)).

sends [I'] to [[] where T' =T\ I N (X x D)
Points: The assumption implies and [I'] is defined.
The map (4.1) is an isomorphism by Faltings.

By the commutative diagram

A*

H2(X x U, (j x 1),Q(d)) —— HZ2YU,Q(d))

l l

H2(X x X)'\ (X x DY, (j x DiQq(d)) 2" HX(X,Qu(d)),

TrA*([[)) = TrA™ ([F]) = deg(I", A ) rcxy



