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1 Introduction

Weil conjectures.
Exercise. Compute Z(Pn

Fp
, t) and show Z(Pn

Fp
, t) = (−1)n+1p(n+1)/2tn+1Z(Pn

Fp
, 1/pnt)

Z(X, t) = det(1− Ft : Hq(XFp
,Qℓ))

(−1)q+1
.

6 operations.
micro local.
F : an étale sheaf on a smooth scheme X over a field k.
November: Existence of SSF =

⋃
Ca ⊂ T ∗X.

Dimension dimCa = dimX for every irreducible component.
February: CCF =

∑
a maCa. Index formulaX projective χ(Xk,F) = (CCF , T ∗

XX)T ∗X .

2 Étale topology

X scheme. étale morphism. locally of finite presentation, flat and Ω1
U/X = 0. The last

condition is equivalent to; for every u ∈ U and x = f(u) ∈ X, the local ring OU,u⊗OX,x
k(x)

is a finite separable extension of k(x).
Exercise. Give an example of étale morphism that is not neither an open immersion

or finite extension or their base change.
Xét étale site of X.
Objects: étale morphisms U → X.
Morphisms: (étale) morphisms U → V over X.
Presheaves: contravariant functors F : Xét → (Abelian groups).
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Sheaf condition: For every family (Ui → U)i∈I such that U =
⋃

i∈I Im(Ui → U), the
morphism F(U)→ Ker(

∏
i∈I F(Ui)→

∏
i,j∈I F(Ui ×U Uj)) is an isomorphism.

OX is a sheaf. More generally, quasi-coherent OX-modules are sheaves. Abelian cate-
gory Sh/Xét. Enough injectives. cohomology.

Locally constant constructible if and only if representable by finite étale scheme.
stalk at geometric point Fx = lim−→F(U). OX,x a strictly local ring. Hensel’s lemma +

residue field is separably closed.
conservative. specialization.
Example: X = SpecK. GK = Gal(K/K) the absolute Galois group. Equiva-

lences of categories Xét → (discrete sets with continuous GK-action) sending U to U(K),
Sh/Xét → (GK-modules) sending F to M = F(K) = lim−→F(L). H

q(X,F) = Hq(GK ,M)
Galois cohomology.

Construction: G finite group. M representation of G on a Λ-vector space of finite
dimension. Étale G-torsor over X is a finite étale scheme W over X with G-action on X
such that W → X is surjective and that (pr2, µ) : G×W → W ×X W is an isomorphism.
Then the presheaf F defined by F(U) = {G-equivariant locally constant functions W ×X

U → M} is a locally constant constructible sheaf of Λ-modules. The restriction F|W is
the constant sheaf M .

Exercise. k field of characteristic p > 0. G = Fp. W = A1
k = Spec k[t] → X = A1

k =
Spec k[x]. Action of i ∈ Fp = G on W by sending t to t+ i.

1. Show that W is an étale G-torsor over X.
2. Construct a locally constant sheaf L of Λ-modules of rank 1 on X by taking an

injection Fp → Λ×.
Relative. f : X → Y morphism of schemes. f ∗ : Yét → Xét. direct image f∗ : Sh/Xét →

Sh/Yét. If f is finite, f∗ is exact. If f is universally homeomorphism, f∗ is an isomorphism.
Exercise. Decompose f∗Λ above as a Λ[G] =

∏
Λ-module to obtain L.

adjoint f ∗ : Sh/Yét → Sh/Xét.
higher direct image Rqf∗ : Sh/Xét → Sh/Yét. (Rqf∗F)x = Hq(Y ×X Xx,F), Xx =

SpecOX,x.
Exercise. 1 j : U → X open immersion, j∗ is the restriction.
2. i closed immersion. i! = i∗Hom(i∗Z,−).
j : U → X open immersion, i : Y → X closed immersion of the complement. j! =

Ker(j∗ → i∗i
∗j∗).

Constructible: There exists a finite stratification X =
∐

Xi by locally closed subsets
such that the restrictions F|Xi

are locally constant constructible. support the complement
of the largest open subset U such that F|U = 0.

Exercise. If we replace A1 by P1, we obtain a constructible sheaf but not locally
constant sheaf.

specialization Fs ← Γ(Xx,F)→ Ft.

Lemma 2.0.1. Let F be a constructible sheaf. Then the following conditions are equiva-
lent.
F is locally constant.
Every specialization Fs → Ft is an isomorphism.

derived categoryD(Xét). Category of complexes. invert quasi-isomorphisms. Rf∗ : D
+(Yét)→

D+(Xét). f
∗ : D(Xét)→ D(Yét).
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Db
c(X,Λ). ℓ invertible on X, Λ finite extension of Fℓ. Hq(F) constructible for every

q, is 0 except finitely many q. support the complement of the largest open subset U such
that HqF|U = 0 for every q. locally constant HqF is locally constant for every q.

Lemma 2.0.2. Assume that X = SpecOK. Then the following conditions are equivalent.
(1) F is locally constant.
(2) F ⊗Rj∗Λ→ Rj∗j

∗F is an isomorphism.

Exercise. K strictly henselian discrete valuation field. H1(K,M) = MI(−1).
f separated of finite type. Rf! = Rf ∗ ◦ j!.
6 operations. Rf∗, f

∗, Rf!, Rf !, ⊗, RHom preserve Db
c.

X smooth over a field k. F sheaf = object of Db
c(X,Λ).

C = SSF ⊂ T ∗X. closed conical subset.
support of F closed subset of X.
upgrade
F is micro supported on C. properties of F is controlled by properties of C.
Singular support: smallest C on which F is micro supported.

3 F-transversality
h : W → X separated morphism of finite type. F sheaf on X.

canonical morphism
ch,F : h∗F ⊗ h!Λ→ h!F .

by adjunction h!(h
∗F ⊗ h!Λ) → F . Projection formula F ⊗ h!h

!Λ → h!(h
∗F ⊗ h!Λ). j

open immersion, the inverse of the adjoint of the isomorphism j∗F ⊗ G → j∗(F ⊗ j!G).
h proper, adjoint of 1 ⊗ adj : h∗F ⊗ h∗Rh∗G → h∗F ⊗ G. isomorphism, by proper base
change, fiberwise F ⊗RΓ(W,G)→ RΓ(X,F ⊗ G).

Thus ch,F is the adjoint of 1⊗ adj.

Definition 3.0.1. F-transversal.

later F perverse sheaf, h F -transversal, then h∗F perverse sheaf.

Lemma 3.0.2. Assume that h is F-transversal.
1. Then the following are equivalent.
(1) hg is F-transversal.
(2) g is h∗F-transversal.
2. f : X ′ → X smooth. Then h′ : W ′ → X ′ is f ∗F-transversal.

Lemma 3.0.3. Let h : W → X be a closed immersion and let j : U = X W → X be
the open immersion of the complement. Then, the following conditions are equivalent:

h is F-transversal.
The morphism F ⊗Rj∗Λ→ Rj∗j

∗F is an isomorphism.

Lemma 3.0.4. i : X → X ×A1.
i is i∗F-transversal.
F = 0.
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Proposition 3.0.5. 1. If F is locally constant, every morphism h is F-transversal.
2. If h is smooth, for every sheaf F , h is F-transversal.
2. Poincaré duality.
Conversely

Proposition 3.0.6. Assume that X is regular. Assume that for every morphism h of
regular schemes of finite type, h is F-transversal. Then F is locally constant.

Let S ⊂ T ⊂ X be the closure of the images of s and t. Let T ′ be the normalization
of the blow up of T at S and let D ⊂ T ′ be the exceptional divisor. By replacing T ′ by
the localization at the generic point of D, it is reduced to dvr.

Smooth base change.

Proposition 3.0.7. Let

X ′ h′
←−−− W ′

g

y yg′

X
h←−−− W

be a cartesian diagram. Assume that g′∗h!Λ→ h!Λ is an isomorphism.
1. Assume that h′ is F ′-transversal. Then the following conditions are equivalent:
(1) h is g∗F ′-transversal
(2) h∗g∗F ′ → g′∗h

′∗F ′ is an isomorphism.
2. Assume that g is finite. Then the following conditions are equivalent:
(1) h is g∗F ′-transversal
(2) h′ is F ′-transversal.

The condition (1) is satisfied if h is smooth. The condition (2) is satisfied if g is proper
on the support of F ′.

Proof. 1. We consider the commutative diagram

h∗g∗F ′ ⊗ h!Λ −−−→ h!g∗F ′y y
g′∗(h

′∗F ′ ⊗ h′!Λ) −−−→ g′∗h
′!F ′.

By proper base change theorem, the right vertical arrow is an isomorphism. By the
assumption, the lower horizontal arrow is an isomorphism. Further by the assumption,
the left vertical arrow is an isomorphism if and only if (2) holds.

2. The vertical arrows are isomorphisms.

Lemma 3.0.8. Let
X

h←−−− W

f

y yf ′

X ′ h′
←−−− W ′

be a cartesian diagram of smooth schemes. Assume that the base change morphism f ′∗h′!Λ→
h!Λ is an isomorphism and that f is proper.

1. If h is F-transversal, then h′ is f∗F-transversal.
2. Assume that there exists a closed subset E ⊂ W outside of which h is F-transversal

and that h′ is f∗F-transversal. Then h is F-transversal.
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Proof. 1. We have a commutative diagram

h′∗f∗F ⊗ h′!Λ
cf∗F,h−−−→ h′!f∗Fy y

f ′
∗(h

∗F ⊗ h!Λ)
f ′
∗cF,h−−−−→ f ′

∗h
!F

and the vertical arrows are isomorphisms.
2. By the assumption cF ,h is an isomorphism on the complement W E finite over

W ′. Hence if f ′
∗cF ,h is an isomorphism then cF ,h is an isomorphism.

Definition 3.0.9. (h, f) : W → X × Y is F-acyclic if for any G on Y , (h, f) is F ⊠ G-
transversal.

We say that (h, f) : W → X×Y is universally F-acyclic if for every smooth morphism
Y ′ → Y , the pair (h′, f ′) of morphisms h′ : W ′ = W ×Y Y ′ → W → X and f ′ : W ′ → Y ′

is F-acyclic.
We say f : X → Y is F-acyclic if (1, f) is F-acyclic. We say f : X → Y is universally

F-acyclic if for every smooth morphism Y ′ → Y , the base chane f ′ : X ′ → Y ′ is F-acyclic.

h is F -transversal if and only if (h, can) : W → X × Spec k is F -acyclic.
f is universally F -acyclic if and only if (1, f) is universally F -acyclic.
Example. 1. If (h, f) : W → X × Y is smooth, (h, f) is F -acyclic for every F .
2. If F is locally constant and if f : W → Y is smooth, then (h, f) is F -acyclic.

Lemma 3.0.10. 1. Assume h is universally F-transversal. Then,
(hg, f) is F-acyclic.
(g, f) is h∗F-acyclic.
2. Assume g is proper on the support of F ′. If (h′, fg′) is F ′-acyclic, then (h, f) is

g∗F ′-acyclic.
3. Assume (h, f) is F-acyclic and f ′ : Y → Y ′ is smooth. Then, (h, f ′f) is F-acyclic

Proof. 1. W × Y → X × Y is F ⊠ G-transversal. Apply Lemma 3.0.2 to V → W × Y →
X × Y .

2. If W ′ → X ′ × Y is F ′ ⊠ G-transversal, then W → X × Y is g∗F ⊠ G-transversal.
3. X × Y → X × Y ′ is F ⊠ G ′-transversal. Apply Lemma 3.0.2 to W → X × Y →

X × Y ′.

Construction. Assume g : X ′ → X proper. fg : X ′ → Y is smooth. F direct summand
of g∗F . Then, (1X , f) is F -acyclic.

Exercise. 1. Compute the normalization X of P1 ×A1 in the finite étale covering of
A2 defined by tp − t = xpy and show that pr1 : X → A1 is smooth.

2. Deduce from 1 that (j × 1)!L(xpy) on P1 ×A1 is (1, pr1)-acyclic.
3. Show that (j × 1)!L(xy) on P1 ×A1 is (1, pr1)-acyclic.

Lemma 3.0.11. Assume that (1, f) is universally F-acyclic. Then, for any morphism
g : Y ′ → Y and any sheaf G ′ on Y ′, the morphism F ⊗ f ∗g∗G ′ → g′∗(g

′∗F ⊗ f ′∗G ′) is an
isomorphism.

Proof. By decomposing g = hi as the composition a smooth morphism h and a closed
immersion, we may consider the 2 cases separately. If g is proper, the assertion follows
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from the projection formula and the proper base change theorem. Assume g is smooth
and consider the cartesian diagram

X ′ −−−→ X × Y ′y y
X −−−→ X × Y

and the commutative diagram

F ⊗ f ∗g∗G ′ ⊗ γ!Λ −−−→ γ!(F ⊠ g∗G ′)y y
g′∗(g

′∗F ⊗ f ′∗G ′ ⊗ γ′!Λ) −−−→ g′∗γ
′!(F ⊠ G ′).

Since f is assumed universally F -acyclic, the horizontal arrows are isomorphisms. By
pbc, the right vertical arrow is an isomorphism. Hence the right vertical arrow is an
isomorphism.

4 C-transversality

C closed conical subset is determined by its base and the projectivization.

Definition 4.0.1. h is C-transversal if the intersection with the kernel is a subset of the
0-section.

Example. Let Z ⊂ X be a closed subscheme smooth over k and let C = T ∗
ZX. Then, h

is C-transversal means that h is transversal to the immersion i : Z → X. Namely, Z×XW
is smooth over k and the codimensions are the same. This implies that h is i∗Λ-transversal.

Lemma 4.0.2. If h is C-transversal and C ′ ⊂ C, then h is C ′-transversal.

Lemma 4.0.3. {w ∈ W | Cw∩ ⊂ 0} is an open subset.
h◦C.

Proof. 1. Projectivization
2. Graded ring.
Exercise. Let A → B be a morphism of graded rings and J ⊂ B be the graded ideal.

Let S ⊂ B be a set of homogeneous elements. Show that the following conditions are
equivalent:

(1) The A-module B/J is generated by the image of S.
(2) The A/A⩾1-module B/(J + A⩾1B) is generated by the image of S.
(2)⇒(1): By induction on n, the A/A⩾n-module B/(J + A⩾nB) is generated by the

image of S. Since A⩾nB ⊂ B⩾n, the A/A⩾n-module B/(J +B⩾n) is also generated by the
image of S. Hence it suffices to apply the following lemma to M = B/J .

Lemma 4.0.4. Let A be a graded ring and M be a graded A-module. Let S be a subset
of M consisting of homogeneous elements. Then the following are equivalent:

(1) The A-module M is generated by S.
(2) For every n ≧ 0, the A/A⩾n-module M/M⩾n is generated by the image of S.
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By replacing M by the quotient generated by S, we may assume that S = ∅. Then
the assertion is clear.

Proposition 4.0.5. 1. The following conditions are equivalent.
(1) h is T ∗X-transversal.
(2) h is smooth.
2. If C is a subset of the 0-section, then every h is C-transversal.

Proposition 4.0.6. 1. Assume h is C-transversal. The following conditions are equiva-
lent.

(1) hg is C-transversal.
(2) g is h◦C-transversal.
2. Assume that f is proper on the support of C ′. The following conditions are equiva-

lent.
(1) h′ is C ′-transversal.
(2) h is f◦C

′-transversal.

Definition 4.0.7. We say (h, f) is C-acyclic if (h, f) is C × T ∗Y -transversal.

Example 1. If (h, f) is smooth, (h, f) is C-acyclic for every C.
2. (h, f) is T ∗

XX-acyclic if and only if f is smooth.

Lemma 4.0.8. Assume that (h, f) is C-acyclic and let B ⊂ C be the base of C.
1. f is smooth on a neighborhood W1 ⊂ W of the inverse image h−1(B).
2. Let Y ′ → Y be a morphism of smooth schemes over k and let W ′

1 = W1 ×Y Y ′ ⊂
W ′ = W ×Y Y ′. Let (h′

1, f
′
1) be the restrictions of the composition h′ = hpr1 : W

′ → X
and the base change f ′ : W ′ → Y ′. Then (h′

1, f
′
1) is C-acyclic.

Lemma 4.0.9. 1. The following conditions are equivalent.
(1) (h, f) is T ∗X-acyclic.
(2) (h, f) is smooth.
2. The following conditions are equivalent.
(1) Every (h, f) such that f is smooth is C-acyclic.
(2) C is a subset of the 0-section.

The condition that T ∗Y → T ∗W is injective means that the intersection of Ker(T ∗X×
T ∗Y → T ∗W ) with T ∗

XX × T ∗Y is a subset of the 0-section.
For (h, f) = (1, 1), the kernel Ker(T ∗X × T ∗X → T ∗X) is the diagonal and its inter-

section with C × T ∗X is identified with C.

Lemma 4.0.10. 1. Assume h is C-transversal.
(1) (hg, f) is C-acyclic.
(2) (g, f) is h◦C-acyclic.
2. Assume g is proper on the support of C ′.
(1) (h′, fg′) is C ′-acyclic.
(2) (h, f) is f◦C

′-acyclic.
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5 Micro support

Definition 5.0.1. F is ms on C if every C-acyclic (h, f) is F-acyclic.

Since C-acyclic implies universally C-acyclic, we may replace F -acyclic by universally
F -acyclic.

Proposition 5.0.2. 1. Every F is micro supported on T ∗X.
2. F is micro supported on ∅
F = 0.
3. F is micro supported on T ∗

XX
F is locally constant.

1. (h, f) T ∗X-acyclic means (h, f) is smooth.
2. Every (h, f) is ∅-acyclic. f = 0: X = W → Y = A1

k. G = i∗Λ. F ⊗ Ri!Λ →
Ri!i∗F = F

3. (h, f) is T ∗
XX-acyclic if and only if f is smooth. Example at the end of 3.

Conversely, for Y = Spec k, every h is T ∗
XX-acyclic. Hence every h is F -transversal.

This means F is locally constant.
Alternatively, the diagonal δ : X → X ×X is F ⊠DXF transversal. This implies that

F ⊗ DXF → RHom(F ,F) is an isomorphism. Then F is locally acyclic by [Lu-Zheng
Theorem 2.16].

More alternatively, for any morphism g : V → U over X of smooth schemes over k,
γ : U → X×U is F ⊠ g∗Λ-transversal and γ′ : V → X×V is F ⊠Λ-transversal. Hence by
Proposition 3.0.7.1, F ⊗ g∗Λ → g∗g

∗Λ is an isomorphism. This implies that F is locally
acyclic.

Proposition 5.0.3. 1. If F is micro supported on C and if h is C-transversal, then h∗F
is micro supported on h◦C.

2. If F ′ is micro supported on C ′ and if g is proper on the base of C, then g∗F is micro
supported on g◦C.

Corollary 5.0.4. If F is micro supported on C, the support of F is a subset of the base
of C.

j∗F is micro supported on ∅.

Lemma 5.0.5. 1. Assume that F is micro supported on C and that F|U is micro supported

on C ′. Then F is micro supported on C|X U ∪ C
′
.

2. F is micro supported on C if and only if F|Ui
is micro supported on C|Ui

.
3. Let → F ′ → F → F ′′ → be a distinguished triangle and suppose that F ′ and F ′′ are

micro supported on C ′ and on C ′′ respectively. Then F is micro supported on C = C ′∪C ′′.

1. open

Lemma 5.0.6. Let i : X → P be a closed immersion
1. Assume that F is micro supported on C ⊂ T ∗X. Then, i∗F is micro supported on

i◦C ⊂ T ∗P .
2. Assume that i∗F is micro supported on CP ⊂ T ∗P |X ⊂ T ∗P . Let C ⊂ T ∗X be the

closure of the image of CP by the surjection T ∗P |X → T ∗X. Then, F is micro supported
on C.
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3. Assume that i∗F is micro supported on CP ⊂ T ∗P |X ⊂ T ∗P . Let s be a section of
the surjection T ∗P |X → T ∗X. Then, F is micro supported on s−1CP ⊂ T ∗X.

Proof. 1. Let h : V → P and f : V → Y be morphisms of smooth schemes over k such that
(h, f) is i◦C-acyclic. Then, X → P and V → P is transversal on a neighborhood of the
basis of C. Hence shrinking V , we may assume that W = V ×P X is smooth. Further the
pair (h′, f ′) of the base change h′ : W → X and the composition f ′ : W → Y is C-acyclic
and the assertion follows.

2. Let h : W → X and f : W → Y be morphisms of smooth schemes over k such that
(h, f) is C-acyclic. We show that (h, f) is F -acyclic. By replacing P and X by P ×W
and X ×W , we may assume that h is an immersion. Then locally on P × Y , there exists
a transversal cartesian diagram

X × Y ←−−− Wy y
P × Y ←−−− V

of smooth schemes over k. Then the pair of V → P and V → Y is CP -acyclic and the
assertion follows.

3. Let h : W → X and f : W → Y be morphisms of smooth schemes over k such
that (h, f) is s−1CP -acyclic. We show that (h, f) is F -acyclic. As in the proof of 2, we
may assume that h : W → X is an immersion. Then, we may take V as loc. cit. further
satisfying that T ∗

V (P×Y )|W ⊂ T ∗(P×Y )|W equals the image of T ∗
W (X×Y ) ⊂ T ∗(X×Y )|W

by the section s : T ∗X → T ∗P |X times 1T ∗Y . Then the pair of V → P and V → Y is
CP -acyclic and the assertion follows.

Lemma 5.0.7. Let k′ be a finite separable extension of k.
1. If F is micro supported on C, then Fk′ is micro supported on Ck′.
2. If Fk′ is micro supported on C ′, then F is micro supported on p◦C

′.

Proof. 1. Let (h′, f ′) be a pair of morphisms of smooth schemes over k′. Then, (h′, f ′) is
a pair of morphisms of smooth schemes over k, Fk′ is micro supported on p◦C = Ck′ .

2. Let (h, f) be a pair of morphisms of smooth schemes over k. Then, its base change
(h′, f ′) is a pair of morphisms of smooth schemes over k′. If (h, f) is p◦C

′-acyclic, then
(h′, f ′) is C ′-acyclic. If (h′, f ′) is Fk′-acyclic, then (h, f) is F -acyclic. Hence F is micro
supported on p◦C

′.

6 Singular support

Definition 6.0.1. C is the singular support SSF of F if F is micro supported on C ′ and
is equivalent to C ′ ⊃ C.

Lemma 6.0.2. The following conditions are equivalent:
(1) SSF exists.
(2) If F is micro supported on C1 and on C2, then F is micro supported on C1 ∩ C2.
(3) F is micro supported on C0 =

⋂
C where C ⊂ T ∗X runs closed conical subsets on

which F is micro supported.
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Proof. (1)⇒(2): If SSF ⊂ C1 and SSF ⊂ C2, then SSF ⊂ C1 ∩ C2.
(2)⇒(3): Since T ∗X C0 is quasi-compact and F is micro supported on T ∗X, there

exists finitely many closed conical subsets C1, . . . , Cn, n ⩾ 1 on which F is micro supported
satisfying C0 = C1 ∩ · · · ∩ Cn.

(3)⇒(1): C0 = SSF .

Theorem 6.0.3. 1. SSF exists.
2. Every irreducible component of SSF has the same dimension as X.

Lemma 6.0.4. 1. Assume that SSF exists. Then, SS(F|U) = (SSF)|U .
2. If SSF|Ui

exists for every i, then
⋃

SSF|Ui
is SSF .

1. F|U micro supported on C ′. Then, F is micro supported on T ∗X|X U∪C
′ ⊃ SSF .

Lemma 6.0.5. Let k′ be a finite Galois extension of k. If SSF and SSFk′ exist, then we
have SSFk′ = p∗SSF .

Proof. Let C = SSF and C ′ = SSFk′ . Then, by Lemma 5.0.7, we have C ⊂ p◦C
′

and C ′ ⊂ p◦C ⊂ p◦p◦C
′. Since C ′ is G-stable, we have p◦p◦C

′ = C ′ and the assertion
follows.

Proposition 6.0.6. Assume that SSi∗F exists.
1. SSF exists.
2. If k is infinite, we have SSi∗F = i◦SSF .
3. If k is finite, assume further that SSik′∗Fk′ exists for any finite extension k′ of k.

Then we have SSi∗F = i◦SSF .

Proof. 1. Let CP = SSi∗F ⊂ T ∗P |X ⊂ T ∗P and define C ⊂ T ∗X to be the closure of
the image of CP by the surjection T ∗P |X → T ∗X as in Lemma 5.0.6.2. Then, F is micro
supported on C by loc. cit. We show that C is the smallest. Assume that F is micro
supported on C ′ ⊂ T ∗X. Then, i∗F is micro supported on i◦C

′ ⊂ T ∗P by Lemma 5.0.6.1.
Since CP is the smallest, we have CP ⊂ i◦C

′. This implies C ⊂ C ′ and hence C is the
smallest.

2. If s is a section of the surjection T ∗P |X → T ∗X, F is micro supported on s−1CP ⊂
T ∗X by Lemma 5.0.6.3. Since C is the smallest, we have C ⊂ s−1CP . The other inclusion
is obvious and we have C = s−1CP . If k is infinite, there are sufficiently many sections
locally on X and the equality implies i◦C = CP .

3. If k is finite, there are sufficiently many sections locally on X over finite extensions
of k. Hence using Lemma 5.0.7, we also have i◦C = CP .

By Lemma, we may assume that X is affine. By Lemma, we may assume that X is
An

k . By Lemma, we may assume that X is Pn
k .

Advantage ofPn
k . Radon transform. The universal family Q of hyperplanes isP(T ∗Pn) ⊃

P(C).

Let j : U → X be a smooth morphism and consider morphisms

T ∗X
j∗←−−− T ∗X ×X U

dj−−−→ T ∗U.

For a closed conical subset C ⊂ T ∗U , we define a closed conical subset j!C ⊂ T ∗X by

j!C = T ∗X (j∗(T
∗X ×X U dj−1(C))).

10



Proposition 6.0.7. ASSUME that SS exists. Let j : U → X be a smooth surjection of
smooth schemes over k and assume that j∗F is micro supported on C ⊂ T ∗U . Then, F
is micro supported on j!C.

Proof. First, we prove the case where j is étale. Let h : W → X, f : W → Y be a pair
of morphisms of smooth schemes over k such that (h, f) is j!C-acyclic. Let x ∈ X be
any geometric point and show that (h, f) is F -acyclic on an étale neighborhood of x. Let
n ⩾ 1 be the degree of the fiber U ×X x = {x1, . . . , xn} at x. Let Un = U ×X · · · ×X U be
the n-fold fiber product and jn : Un → X and pri : Un → U, i = 1, . . . , n be the projections.
Since SS exists, j∗nF is micro supported on the intersection Cn =

⋂n
i=1 pr

◦
iC.

Let hn : Wn = W ×X Un → Un be the base change of h and fn : Wn → Y be the
composition with f . Since (h, f) is j!C-acyclic, the pair (hn, fn) is j

◦
nj!C-acyclic. At the

geometric point u = (u1, . . . , un), the fiber Cn,u =
⋂n

i=1 Cui
equals (j◦nj!C)u. Since the C-

transversality is an open condition, (hn, fn) is Cn-acyclic on a Zariski neighborhood of u.
Since j∗nF is micro supported on Cn, the pair (hn, fn) is j

∗
nF -acyclic on the neighborhood

of u as required.
We show the general case. Since j∗F is micro supported on j◦T ∗X and since SS exists,

by replacing C by the intersection with j◦T ∗X, we may assume that C ⊂ j◦T ∗X. Let
x ∈ X be a geometric point. We show that there exists a subscheme i : V → W such
that the composition s : V → X is étale, Vx ̸= ∅ that s!i

◦C = j!C at x. For any point
ω ∈ (T ∗X − j!C)x in the complement, the inverse image (T ∗X ×X U dj−1(C)) ×T ∗X ω
is a non-empty open subset. Since, (T ∗X − j!C)x is quasi-compact, there exist geometric
points u1, . . . , un of U ×X x above closed points with residue fields separable over k(x)
such that (j!C)x =

⋂n
i=1 Cui

. We take a subscheme i : U → W étale over X containing
u1, . . . , un. Then the inclusion j!C ⊂ s!i

◦C is an equality at x.
Let h : W → X, f : W → Y be a pair of morphisms of smooth schemes over k such that

(h, f) is j!C-acyclic. Let x ∈ X be any geometric point and show that (h, f) is F -acyclic
on a Zariski neighborhood of x. Since s!i

◦C = j!C at x and since the C-transversality is
an open condition, the pair (h, f) is s!i

◦C-acyclic on a neighborhood of x. Since i∗F is
micro supported on i◦C and since the assertion is already proved for an étale morphism,
F is micro supported on s!i

◦C on a neighborhood of x. Hence (h, f) is F -acyclic on the
neighborhood of x as required.

Corollary 6.0.8. Let h : W → X be a smooth morphism of smooth schemes over k. Then,
we have SSh∗F = h◦SSF .

Proof. Since h∗F is micro supported on h◦SSF , it suffices to show that, for any closed
conical subset C ⊂ T ∗W on which h∗F is micro supported, we have an inclusion h∗SSF ⊂
C. Since h is an open mapping, by replacing X by the image of h, we may assume that h is
a surjection. By Proposition, we have SSF ⊂ h!C. This implies h◦SSF ⊂ h◦h!C ⊂ C.

7 Legendre transform and Radon transform

Let V be a k vector space of dimension n + 1 and P = P(V ) be the projective space
of dimension n parametrizing lines in V . The dual projective space P∨ = P(V ∨) is the
moduli space of hyperplanes in P.

By the exact sequence 0 → Ω1
P/k(1) → OP ⊗ V ∨ → OP(1) → 0 of locally free OP-

modules, we define a closed subscheme Q = P(T ∗P) ⊂ P×P(V ∨) = P×P∨ of codimension

11



1. This equals the universal family of hyperplanes since it is defined by the tautological
section Γ(P × P∨,O(1) ⊠ O(1)) = V ∨ ⊗ V corresponding to the identity 1 ∈ End(V ).
Let p : Q → P and p∨ : Q → P∨ be the restrictions of the projections P × P∨ → P and
P×P∨ → P∨. By symmetry, Q ⊂ P×P∨ is identified with P(T ∗P∨).

The conormal bundle LQ = T ∗
Q(P × P∨) ⊂ (T ∗P × T ∗P∨)|Q is a line bundle. Since

1 ∈ End(V ) = V ∨ ⊗ V regarded as a global section of O(1) ⊠ O(1) is the bilinear form
defining Q ⊂ P×P∨, the morphism NQ/(P×P∨) → Ω1

(P×P∨)/P∨⊗OP×P∨ OQ = Ω1
P/k⊗OP

OQ

defines a tautological sub invertible sheaf on Q = P(T ∗P). In other words, the tautological
sub line bundle L ⊂ T ∗P ×P Q is the image of LQ by the first projection pr1 : (T

∗P ×
T ∗P∨)|Q → T ∗P ×P Q. By symmetry, the image by the second projection equals the
tautological sub line bundle L∨ on Q = P(T ∗P∨).

Since the conormal bundle LQ is the kernel of the surjection (T ∗P× T ∗P∨)|Q → T ∗Q,
the intersection p◦T ∗P ∩ p∨◦T ∗P∨ ⊂ T ∗Q equals the image of the tautological bundle
L ⊂ T ∗P ×P Q. By symmetry, the intersection also equals the image of the tautological
bundle L∨ ⊂ T ∗P∨ ×P∨ Q.

Let C ⊂ T ∗P denote a closed conical subset. We define the Legendre transform C∨ ⊂
T ∗P∨ to be p∨◦ p

◦C. We consider projectivizations P(C) ⊂ P(T ∗P) and P(C∨) ⊂ P(T ∗P∨)
as closed subsets of Q.

Proposition 7.0.1. Let C ⊂ T ∗P be a closed conical subset. Let E = P(C) ⊂ Q =
P(T ∗P) be the projectivization. Let LQ = T ∗

Q(P×P∨) ⊂ (T ∗P×T ∗P∨)|Q be the conormal
line bundle.

1. The projectivization E = P(C) ⊂ Q is the complement of the largest open subset
where (p, p∨) is C-acyclic.

2. The Legendre transform C∨ equals the image of the union of L|E ⊂ p◦T ∗P ∩
p∨◦T ∗P∨ ⊂ T ∗Q and its base. We have P(C) = P(C∨).

3. We have C∨∨ ⊂ C+.

Proof. 1. The kernel Ker((T ∗P×T ∗P∨)|Q → T ∗Q) equals the conormal bundle LQ and the
first projection induces an isomorphism LQ → L. By this isomorphism, the intersection
(C × T ∗P∨)|Q ∩LQ is identified with p∗C ∩L. Hence (p, p∨) is C-acyclic on U ⊂ Q if and
only if the restriction (p∗C ∩ L)|U is a subset of the 0-section. Since the projectivization
E = P(C) ⊂ P(T ∗P) equals P(p∗C ∩ L) ⊂ P(L) = Q, the assertion follows.

2. The Legendre transform C∨ is the image of the intersection p◦C ∩ p∨◦T ∗P∨ ⊂ T ∗Q
by p∨◦T ∗P∨ → T ∗P∨. We identify the intersection p◦T ∗P ∩ p∨◦T ∗P∨ ⊂ T ∗Q with the
tautological line bundle L ⊂ T ∗P×P Q. Then, the intersection p◦C ∩ p∨◦T ∗P∨ ⊂ T ∗Q is
identified with p∗C ∩ L. Since the projectivization E = P(C) ⊂ P(T ∗P) equals P(p∗C ∩
L) ⊂ P(L) = Q, the closed conical subset p∗C ∩ L equals L|E up to the base.

Since L|E is identified with L∨|E inside T ∗Q, we have P(C∨) = P(L∨|E) = E ⊂
P(T ∗P∨) = Q.

3. By 2 and symmetry, we have P(C) = P(C∨) = P(C∨∨). Hence we have C∨∨ ⊂
C+.

We define the naive Radon transform RF to be Rp∨∗ p
∗F and the naive inverse Radon

transform R∨G to be Rp∗p
∨∗G.

Lemma 7.0.2. Assume that F is micro supported on C.
1. The Radon transform RF is micro supported on C∨.
2. R∨RF is micro supported on C+.
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Proof. 1. RF = p∨∗ p
∗F is micro supported on C∨ = p∨◦ p

◦C.
2. By 1, R∨RF is micro supported on C∨∨ ⊂ C+.

By computing R∨RF , we prove more refined assertion.

Lemma 7.0.3. We consider the commutative diagram

Q×P∨ Q
i //

p×p ''PP
PPP

PPP
PPP

P×P∨ ×P

pr13
��

P×P P
δPoo

where δP : P → P × P is the diagonal immersion. Then the closed immersion i induces
isomorphisms

(7.1) Rq(p× p)∗ΛQ×P∨Q →

{
Λ(−i)[−2i] if q = 2i, 0 ⩽ i ⩽ n− 2,

δP∗Λ(−(n− 1))[−2(n− 1)] if q = 2(n− 1)

and Rq(p× p)∗ΛQ×P∨Q = 0 otherwise.

Proof. The immersion i induces morphisms

(7.2) Rqpr13∗ΛP×P∨×P → Rq(p× p)∗ΛQ×P∨Q

and we have isomorphisms Rqpr13∗ΛP×P∨×P → Λ(−i)[−2i] for q = 2i, 0 ⩽ i ⩽ n and
Rqpr13∗ΛP×P∨×P = 0 otherwise. The restriction of the closed immersion i : Q ×P∨ Q →
P × P∨ × P on the diagonal P ⊂ P × P is the sub Pn−1-bundle Q ⊂ P × P∨. On
the complement P × P P, it is a sub Pn−2-bundle. Hence (7.2) is an isomorphism for
q ̸= 2(n− 1) and induces an isomorphism δP∗R

2(n−1)p∗ΛQ → R2(n−1)(p× p)∗ΛQ×P∨Q.

We consider the diagram

(7.3)

P
pr1←−−− P×P

p×p←−−− Q×P∨ Q

pr2

y
P.

Proposition 7.0.4. 1. We have a canonical isomorphism

(7.4) R∨RF → Rpr2∗
(
pr∗1F ⊗R(p× p)∗ΛQ×P∨Q

)
.

2. The isomorphism (7.4) induces a distinguished triangle

→
n−2⊕
q=0

RΓ(Pk̄,F)(−q)[−2q]→ R∨RF → F(−(n− 1))[−2(n− 1)]→ .

Proof. 1. By the cartesian diagram

P
p←−−− Q

pr1←−−− Q×P∨ Q

p∨

y ypr2

P∨ p∨←−−− Qyp

P,
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we haveR∨RF = Rp∗p
∨∗Rp∨∗ p

∗F . By the proper base change theorem, we have a canonical
isomorphism Rp∗p

∨∗Rp∨∗ p
∗F → R(p ◦ pr2)∗(p ◦ pr1)∗F . In the notation of (7.3), the latter

is identified with R(pr2 ◦ (p× p))∗(pr1 ◦ (p× p))∗F . This is identified with Rpr2∗(pr1∗F ⊗
R(p× p)∗ΛQ×P∨Q) by the projection formula.

2. By the isomorphisms (7.1) and (7.4), we have a distinguished triangle

→ τ≦2(n−2)RΓ(P∨
k̄ ,Λ)⊗ ΛP×P → R(p× p)∗ΛQ×P∨Q → ΛP(n− 1)[2(n− 1)]→ .

Proposition 7.0.5. For F on P and C ⊂ T ∗P, we have implications (1)⇒(2)⇒(3)⇒(4).
(1) F is micro supported on C.
(2) (p, p∨) is universally F-acyclic outside E = P(C).
(3) RF is micro supported on C∨+.
(4) F is micro supported on C+.

Proof. (1)⇒(2): The pair (p, p∨) of p : Q → P and p∨ : Q → P∨ is C-acyclic outside
E = P(C) by Proposition 7.0.1.1. Hence (1) implies that p∨ is universally p∗F -acyclic
outside E.

(2)⇒(3): Assume that a pair of morphisms h : W → P, f : W → Y is C+-acyclic and
show that (h, f) is RF -acyclic. We consider the commutative diagram

P Q
poo

p∨

��

QW
h′

oo

p∨W
��

f ′

!!B
BB

BB
BB

B

P∨ Whoo f // Y

with cartesian square. Since p∨ is proper, it suffices to show that (h′, f ′) is p∗F -acyclic by
Lemma 3.0.9.2. Since p is smooth, it suffices to show that (ph′, f ′) is F -acyclic by Lemma
3.0.9.1.

By (2), (ph′, p∨W ) is F -acyclic on the complement of EW . Since (h, f) is C∨+-acyclic
and C∨+ contains the 0-section, the morphism f : W → Y is smooth. Hence (ph′, f ′) is
F -acyclic on the complement of EW by Lemma 3.0.9.3.

By the description of C∨ in Proposition 7.0.1.3 and by the open condition Lemma
4.0.3, the C∨-acyclicity of (h, f) implies the T ∗P-acyclicity of (ph′, f) on a neighborhood
U of EW ⊂ QW . Since F is micro supported on T ∗P by Proposition 5.0.2.1, (ph′, f) is
F -acyclic as required.

(3)⇒(4) By (3) and (1)⇒(3), R∨RF is micro supported on (C∨+)∨+ = C+. By the
distinguished triangle in Proposition 7.0.4.2, F is also micro supported on C+.

We prove Theorem 6.0.3 for X = P.

Corollary 7.0.6. Let F be a sheaf on P. Let E ⊂ Q = T ∗P be the complement of the
largest open subset on which (p, p∨) is universally F-acyclic. Then the closed conical subset
C ⊂ T ∗P corresponding to B = suppF and E is the singular support of F .

Proof. By Proposition 7.0.5 (2)⇒(4), F is micro supported on C+. Hence F is micro
supported on C = C+|B.

Assume that F is micro supported on C ′. Then, by Proposition 7.0.5 (1)⇒(2), we have
P(C ′) ⊃ E = P(C) since E is the smallest. Since the base of C ′ contains B = suppF as
a subset, we have C ′ ⊃ C.
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8 Upper bound of dimension

Let L ⊂ P = PS be a sub P1-bundle. Let PL → L be the moduli space of lines in the
Pn-bundle P×SL over L passing through the points of L ⊂ P×SL and let P̃L ⊂ PS×SPL

be the universal P1-bundle over PL. If PS = P(ES) for a vector bundle ES over S of
rank n + 1 and if V ⊂ ES ×S PS denotes the universal sub line bundle, then PL is the
Pn−1-bundle P((ES ×S PS)/V )×PS

L over L.
The dual Pn−1-bundle P∨

L over L is the moduli space of hyperplanes in the Pn-bundle
P ×S L over L passing through the points of L ⊂ P ×S L. The coincidence variety
QL ⊂ PL ×L P∨

L consists of pairs of a line and a hyperplane including the line. We
consider the cartesian diagram

P̃L ←−−− Q̃L QL −−−→ Q

r

y yr p∨L

y yp∨

PL
p←−−− QL

p∨−−−→ P∨
L −−−→ P∨

where P∨
L → P∨ is the tautological morphism. The morphism P∨

L → P∨ induces an open
immersion on the open subset P∨◦

L ⊂ P∨
L consisting of hyperplanes not containing the line

L. The image in P∨ consists of hyperplanes meeting L transversally.
Let s : PL → P̃L be the section defined by the intersection P̃L∩(L×SPL) ⊂ PS×SPL

and s : QL → Q̃L be the base change. Similarly, let s∨ : P∨
L → QL be the section defined by

the intersection QL∩ (L×SP
∨
L) ⊂ PS×SP

∨
L. Since we have an inclusion Q̃L ⊂ QL×P∨

L
QL

of lines in hyperplanes over QL, we have a canonical morphism

r̃ : Q̃L → QL.

Since the fiber of Q̃L → P∨
L is the universal family of lines in the hyperplane passing

through the point of L, the morphism r̃ : Q̃L → QL is the blow-up of the Pn−1-bundle
QL over P∨

L at the section s∨ : P∨
L → QL. The exceptional divisor in Q̃L is the image of

the section s : QL → Q̃L. The morphism r̃ : Q̃L → QL induces an isomorphism on the

complement Q̃L s∨(P∨
L)→ QL s(QL) of the sections.

Proposition 8.0.1. Let D ⊂ P = PS be the complement of the largest open subset on
which F is locally constant. On the inverse image of the complement L◦ = L (L ∩D),
we have the following.

1. The morphism r̃ : Q̃L → QL induces a bijection

E(FQL◦ , p
∨
L◦ : QL◦ → P∨

L◦)→ E(FQ̃L◦ , p
∨r : Q̃L◦ → P∨

L◦).

2. The P1-bundle r : Q̃L → QL induces a finite surjection

E(FQ̃L◦ , p
∨r : Q̃L◦ → P∨

L◦)→ E(r∗FQ̃L◦ , p
∨ : QL◦ → P∨

L◦).

Proof. 1. On the inverse image of L◦, the pull-backs of F are locally constant on neigh-
borhoods of sections s∨ : P∨

L◦ → QL◦ and s : QL◦ → Q̃L◦ . Hence, the intersections of the

sections with E(FQL◦ , QL◦ → P∨
L◦) and E(FQ̃L◦ , Q̃L◦ → P∨

L◦) are empty.
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2. Since r : Q̃L → QL is a P1-bundle and the closed subset E(FQ̃L◦ , Q̃L◦ → P∨
L◦) does

not meet the section s : QL◦ → Q̃L◦ , the closed subset E(FQ̃L◦ , Q̃L◦ → P∨
L◦) is finite over

QL◦ .

Since PL is a Pn−1 bundle over L, the assertion follows by induction.

Lemma 8.0.2. Let x0, . . . , xn ∈ Pn be n + 1 points not contained in any hyperplane and
let Lij be the line containing xi and xj for 0 ⩽ i < j ⩽ n. Then a hyperplane H ⊂ Pn is
uniquely determined by the subset I = {i | xi ∈ H, i = 0, . . . , n} ⊂ I = {0, . . . , n} and the
intersections H ∩ Lij for {i, j} ∩ I = ∅.

Lemma 8.0.3 ([2, 3.10]). Let s : QT ◦ → Q̃T ◦ and s′ be the tautological sections of r and
p∨ respectively.

1. q : Q̃T ◦ → QT ◦ induces an isomorphism on the complements of the images of the
sections s, s′. The images of the sections are disjoint with the inverse images of D ⊂ P.

2. r is finite on the inverse image π−1(D).

1. Since t /∈ D, they are disjoint. A line is uniquely determined by the points t ̸= x.
2. Since Q̃ is a line bundle over Q, the assertion follows from 1.

It suffices to show that there exists an open subset U ⊂ PS such that the complement
PS U is generically finite and that dimE ∩ p∨−1(U) ⩽ dimPS − 1.

To prove this, by Lemma8.0.4, it suffices to show the following:
Let T ⊂ P be a line not contained in D. Let P∨

T be the open subset of P∨ consisting of
hyperplanes meeting transversally with T . Then, there exists an open subset UT such that
the inverse image P∨

UT
by the morphism P∨

T → T sending a hyperplane to the intersection
satisfies dimE ∩ p∨−1(P∨

UT
) and that the complement T UT is generically finite.

9 Perverse sheaves and Radon transform

Theorem 9.0.1. 1. The subcategory Perv(X) ⊂ Db
c(X,Λ) is an abelian category. Every

object of Perv(X) is of finite length.
2. Let F be a simple perverse sheaf. Then, its support Z = suppF is irreducible. If

dimZ = d, there exist a dense open subset U ⊂ Z, a simple locally constant sheaf L on U
and an isomorphism F|U = L[d].

Lemma 9.0.2. Let X be a connected smooth scheme over k.
1. Assume that F is a perverse sheaf on X. If F is geometrically constant, every

constituant of F is geometrically constant.
2. The following conditions are equivalent:
(1) F is locally constant.
(2) Every constituant of F is locally constant.

Proof. 1. F is a successive extension of irreducible locally constant sheaves Fi. Since F
is geometrically constant, every Fi is geometrically constant.

2. (1)⇒(2): Constituants of F as locally constant sheaves corresponds to constituants
of F as perverse sheaves.

(2)⇒(1): For every q, pHqF is a successive extension of locally constant sheaves and
hence is itself locally constant. Hence HqF is locally constant for every q.
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Theorem 9.0.3. Let f be an affine morphism. Then, f∗ is right t-exact and f! is left
t-exact.

Let U = P × P∨ Q be the complement and u : U → P and u∨ : U → P∨ be the
projections. Define a functor R! : D

b
c(P,Λ)→ Db

c(P
∨,Λ) by R! = u∨

! u
∗. For F ∈ Db

c(P,Λ),
we have a distinguished triangle

R!F → p∨∗p∗F → RF → .

With an appropriate shift, this defines

RF → R!F → p∨∗p∗F [n]→ .

Dually, we have
p∨∗p∗F [n]→R∗F → RF → .

By Theorem 9.0.3, for F ∈ Perv(P,Λ), we haveR!F ∈ pD⩾0(P∨,Λ),R∗F ∈ pD⩽0(P∨,Λ),
and p∨∗p∗F [n] ∈ pD[−2n,0](P∨,Λ)

Proposition 9.0.4. Let F be a sheaf on P and let RF be the Radon transform.
1. Assume that F is a perverse sheaf. For q ̸= 0, the perverse sheaf pHqRF is geo-

metrically constant. Further if F is geometrically constant, every pHqRF is geometrically
constant.

2. Assume that F is a simple perverse sheaf and is not geometrically constant. Then,
the perverse sheaf pH0RF has a unique constituant RF0 not geometrically constant.

3. Let Fi, i = 1, . . . , n be the constituants of F not geometrically constant. Then, the
constituants of RF not geometrically constant are RF0

i , i = 1, . . . , n.

2. Let Gi, i = 1, . . . ,m be the non-geometrically constant constituants of RF and let
Fij, i = 1, . . . ,m, j = 1, . . . ,mi be the non-geometrically constant constituants of R∨Gi.
Then, since

∑
ij mi = 1, we have m = m1 = 1.

3. This follows from 2.

10 Legendre transform and Veronese embedding

11 Dimension

Lemma 11.0.1. Let X be a smooth scheme over k and F be a sheaf on X.
1. The support of P(SSF) equals the complement of the largest open subset on which

the restriction of F is locally constant.
2. Let Fi, i = 1, . . . , n be the constituants of F . Then, the support of P(SSF) equals

the supports of
⋃n

i=1 P(SSFi).

Proof. 1. SSF is a subset of the 0-section if and only if F is locally constant.
2. This follows from 1 and Lemma 9.0.2.2.

Theorem 11.0.2. 1. dimSSF = dimX.
2. Let Fi, i = 1, . . . , n be the constituants of F . Then, SSF equals the union

⋃n
i=1 SSFi.
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Proof. 1. By Lemma 11.0.1.2, we may assume F is a simple perverse sheaf. If RF is
generically 0, then the support of P(SSRF) equals the support of RF and is irreducible.
Since P(SSRF) = P(SSF) is irreducible, this equals the P(T ∗

ZP) and is of dimension n.
If otherwise the complement of the support DF of P(SSRF) is the largest open subset of
P∨ on which RF is locally constant. Since RF0 is a simple perverse sheaf, DF is a divisor.

2. By Lemma 11.0.1.2, we have SSF =
⋃n

i=1 SSFi except for the 0-section. Since
F = 0 generically if and only if Fi = 0 generically for every i = 1, . . . , n, we have
SSF =

⋃n
i=1 SSFi including the 0-section.
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