# Étale cohomology and micro-local analysis

#### Takeshi Saito

2025/10/09,  $17.00 \rightarrow 18.00$ , Padova

#### Contents

| L | Etale conomology            | 1 |
|---|-----------------------------|---|
| 2 | $\mathcal{D}	ext{-modules}$ | 2 |
| 3 | Analogies                   | 2 |
| 1 | Micro-local analysis        | 1 |

- etale cohomology: number theory, more precisely arithmetic geometry. Weil conjectures, an analogue of Riemann hypothesis.
- micro-local analysis: partial differential equations of complex variables. They have different origins but have close similarities.

#### 1 Etale cohomology

Riemann zeta-function:

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p:\text{prime}} \frac{1}{1 - \frac{1}{n^s}}.$$

The second equality is a consequence of the prime factorization. analytic continuation, functional equation, zeros and a pole at s=1. zeros;  $s=-2,-4,\cdots$ , and  $\operatorname{Re} s=\frac{1}{2}$ . Riemann hypothesis. analogue in positive characteristic.  $\zeta(s)$  is the zeta function of the ring  $\mathbf Z$  p prime:

$$\begin{split} \zeta_{\mathbf{F}_p[t]}(s) &= \sum_{f: \text{monic}} \frac{1}{p^{\deg f \cdot s}} = \prod_{f: \text{monic,irreducible}} \frac{1}{1 - \frac{1}{p^{\deg f \cdot s}}} \\ &= \frac{1}{1 - p^{1 - s}}. \end{split}$$

poles 
$$1 + \frac{2\pi n\sqrt{-1}}{\log p}$$
.

for rings A finitely generated over  $\mathbf{F}_p$ , or more generally for algebraic varieties X over  $\mathbf{F}_p$ , the zeta functions  $\zeta_A(s), \zeta_X(s)$  are defined.

Weil conjectures.  $\zeta_X(s)$  is a rational function of  $p^{-s}$  and ...

Weil's observation: Suppose X is projective  $\subset \mathbf{P}^n$  and has no singularities. There should be a good cohomology theory satisfying the Lefschetz trace formula

$$\sum_{q=0}^{2d} (-1)^q \text{Tr}(F^n : H^q(X)) = \#X(\mathbf{F}_{p^n}).$$

F is the Frobenius operator induced by the endomorphism of X raising the coordinates to its p-th power.

RHS is the number of points of X with coordinates in  $\mathbf{F}_{p^n}$ , the field with  $p^n$  elements.  $d = \dim X$ .

LTF implies the rationality

$$\zeta_X(s) = \frac{P_1(p^{-s}) \cdots P_{2d-1}(p^{-s})}{P_0(p^{-s}) \cdot P_2(p^{-s}) \cdots P_{2d}(p^{-s})}.$$

$$P_q(T) = \det(1 - FT : H^q(X)).$$

Weil's expectation was realized by Grothendieck's  $\ell$ -adic étale cohomology  $H^q(X_{\overline{\mathbf{F}}_{\ell}}, \mathbf{Q}_{\ell})$ .

 $\mathbf{Q}_{\ell}$  is the completion of  $\mathbf{Q}$  with respect to the  $\ell$ -adic topology.  $\ell$  is a prime,  $\neq p$ .

Analogue of Riemann hypothesis:  $P_q(T) \in \mathbf{Z}[T] \subset \mathbf{Q}_{\ell}[T]$  and

the real parts of the zeros of  $P_q(p^{-s})$  is  $\frac{q}{2}$ . Deligne's theorem.

#### 2 $\mathcal{D}$ -modules

(algebraic) D-module on  $\mathbb{C}^n$ .

 $D = \mathbf{C}[X_1, \dots, X_n, D_1, \dots, D_n]$  non-commutative ring.

$$X_i X_j = X_j X_i, \ D_i D_j = D_j D_i, \ D_i X_j = X_j D_i \ \text{if} \ i \neq j, \ D_i X_i = X_i D_i + 1.$$

 $P \in D$  differential operator. The solution of P(f) = 0 is interpreted as a morphism of D-modules:  $\text{Hom}_D(\mathcal{M}, \mathcal{O})$  for  $\mathcal{M} = D/DP$ .  $\mathcal{O}$  holomorphic functions.

constant functions:  $\mathcal{O} = D/(D_1, \ldots, D_n)$ .

Example of (non-degenerate)  $\mathcal{D}$ -module  $\mathcal{M}$ ; locally free  $\mathcal{O}$ -modules of finite rank equipped with integrable connections;

de Rham complex

$$DR\mathcal{M} = [\mathcal{M} \xrightarrow{\nabla} \mathcal{M} \otimes_{\mathcal{O}_X} \Omega_X^1 \xrightarrow{\nabla} \mathcal{M} \otimes_{\mathcal{O}_X} \Omega_X^2 \xrightarrow{\nabla} \cdots \xrightarrow{\nabla} \mathcal{M} \otimes_{\mathcal{O}_X} \Omega_X^d].$$

## 3 Analogies

- 6 functor formalism: 6 operations  $f_*, f^*, f_!, f^!, \otimes, \mathcal{H}om$  vs 4 operations  $+, -, \times, \div$ .

Sheaf theory. vector spaces are sheaves on one point set. To study X variety, we need to work with sheaves. D(X) derived category of étale sheaves on X.

$$f: X \to Y$$
 morphism,  $f^*: D(Y) \to D(X), f_*: D(X) \to D(Y), ...$ 

 $H^q(X_{\overline{\mathbf{F}}_{\ell}}, \mathbf{Q}_{\ell})$ . special case of  $f_*$  where  $Y = \operatorname{Spec} \mathbf{F}_p$  is 1 point.

For a family  $f: X \to Y$  of varieties,  $f_* \mathbf{Q}_{\ell}$  parametrizes a family of  $H^q(X, \mathbf{Q}_{\ell})$ .

Similarly, X complex manifolds,  $D(\mathcal{D}_X)$ , ...

X affine and  $\mathcal{M}$   $\mathcal{O}$ -coherent,

de Rham cohomology  $H^q(X, DR\mathcal{M}) =$ 

$$H^q([\Gamma(X,\mathcal{M}) \xrightarrow{\nabla} \Gamma(X,\mathcal{M} \otimes_{\mathcal{O}_X} \Omega_X^1) \xrightarrow{\nabla} \cdots \xrightarrow{\nabla} \Gamma(X,\mathcal{M} \otimes_{\mathcal{O}_X} \Omega_X^d)])$$

is the special case of  $f_*$  where Y is 1 point.

For a family  $f: X \to Y$  of varieties, we have Gauss–Manin connection parametrizing a family of  $H^q(X, DR\mathcal{M})$ .

- wild ramification and irregular singularity.

To study Riemann surfaces locally, we focus on a point and a disk surrounding it.

Algebraically, we consider the local ring at a point and its completion.

Spec  $\mathbf{F}_{p}(t)$  is an positive characteristic analogue of

the punctured disc  $\Delta^* = \{z \in \mathbb{C} \mid 0 < |z| < 1\}.$ 

The absolute Galois group  $G_{\mathbf{F}_p((t))}$  corresponds to the fundamental group  $\pi_1(\Delta^*) = \mathbf{Z}$ .

 $G_{\mathbf{F}_p((t))}$  has a 3 step filtration. The graded quotients from above are:

the arithmetic part  $G_{\mathbf{F}_p} = \widehat{\mathbf{Z}} = \langle F \rangle$ ,

the geometric (or tame) part  $\hat{\mathbf{Z}}'$  (away from p),

and the wild part P a huge pro-p-group.

**Example** of a sheaf with wild ramification:

 $X = \mathbf{A}_{\mathbf{F}_p}^1 = \operatorname{Spec} \mathbf{F}_p[t] \to Y = \mathbf{A}_{\mathbf{F}_p}^1 = \operatorname{Spec} \mathbf{F}_p[x] \text{ sending } t \text{ to } x = t^p - t.$ 

The Galois group  $G = \operatorname{Aut}_Y X$  is  $\mathbf{F}_p$ .  $a \in \mathbf{F}_p$  acts on  $X = \mathbf{A}^1_{\mathbf{F}_p}$  by  $t \mapsto t + a$ .

a character of the additive group  $G = \mathbf{F}_p \to \mathbf{Q}_{\ell}(\zeta_p)^{\times}$  defines a locally constant rank 1 sheaf  $\mathcal{L}$  on  $Y = \mathbf{A}_{\mathbf{F}_p}^1$ .

The Euler–Poincaré characteristic  $\chi(\mathbf{A}_{\mathbf{F}_p}^1, \mathcal{L}) = \sum_{q=0}^1 (-1)^q \dim H^q(\mathbf{A}_{\mathbf{F}_p}^1, \mathcal{L})$  satisfies  $\chi(\mathbf{A}_{\mathbf{F}_p}^1, \mathcal{L}) = \chi(\mathbf{A}_{\mathbf{F}_p}^1, \mathbf{Q}_{\ell}) - 1$ .

a special case of the Grothendieck-Ogg-Shafarevich formula.

1 is the contribution of the wild ramification at the infinity.

The action of  $P \subset G_{\mathbf{F}_p[[1/x]]}$  is non-trivial because the function x has a pole at  $\infty$ .

character of the additive group exp:  $\mathbf{C} \to \mathbf{C}^{\times}$  is a solution of the differential equation Pf = 0 for  $P = D_1 - 1 \in \mathbf{C}[X_1, D_1]$ .

corresponding D-module  $\mathcal{M} = D/DP$  is a free  $\mathcal{O} = \mathbf{C}[X_1]$ -module of rank 1 with integrable connection  $\nabla \colon \mathcal{M} \to \mathcal{M} \otimes \Omega^1_X$  sending f to  $(f' - f)dX_1$ .

The Euler–Poincaré characteristic

$$\chi(\mathbf{A}_{\mathbf{C}}^1, DR\mathcal{M}) = \dim \operatorname{Ker}(\nabla \colon \mathbf{C}[X_1] \to \mathbf{C}[X_1] dX_1) - \dim \operatorname{Coker}(\nabla \colon \mathbf{C}[X_1] \to \mathbf{C}[X_1] dX_1)$$

satisfies

$$\chi(\mathbf{A}_{\mathbf{C}}^1, DR\mathcal{M}) = 0 - 0 = \chi(\mathbf{A}_{\mathbf{C}}^1, DR\mathcal{O}) - 1.$$

1 is the contribution of the irregular singularity at  $\infty$ .

 $d\frac{1}{X_1}$  has a pole of order 2.

order at most 1: regular singularity

order greater than 1: irregular singularity. order -1 = irregularity.

### 4 Micro-local analysis

-  $\mathcal{M}$  coherent (=finitely generated)  $\mathcal{D}$ -module on a complex manifold X.

Singular support of  $\mathcal{M}$ ,

 $SSM \subset T^*X$  is defined as a closed conical (=stable under  $\mathbb{C}^{\times}$ -action) subset in the cotangent bundle  $T^*X$ .

We have  $\dim SSM \ge \dim X$ . Involutivity (Gabber).

We say that  $\mathcal{M}$  is holonomic if the equality holds.

For an integrable connection  $\mathcal{M} \neq 0$ ,

SSM is the 0-section  $T_X^*X$  and M is holonomic.

Assume that  $\mathcal{M}$  is holonomic.

Characteristic cycle  $CC\mathcal{M} = \sum_a n_a C_a$  of  $\mathcal{M}$  is defined as

a **Z**-linear combination of irreducible components of  $SSM = \bigcup_a C_a$ .

Further if X is compact, we have the index formula

$$\chi(X, DR\mathcal{M}) = \deg(CC\mathcal{M}, T_X^*X).$$

RHS is the intersection number with the 0-section.

**Example** For the open immersion  $j \colon \mathbf{C} \to X = \mathbf{P}^1_{\mathbf{C}}$  and  $\mathcal{M} = D/D(D_1 - 1)$  on  $\mathbf{C}$  as in Example. We have

$$CCj_*\mathcal{M} = -(T_X^*X(0\text{-section}) + 2T_\infty^*X(\text{ fiber at }\infty)).$$

2 = 1(rank) + 1(irregularity). In the index formula, RHS is -(-2+2) = 0.

- X variety over  $\mathbf{F}_p$  without singular points.

 $\mathcal{F}$  étale sheaf on X.

Beilinson defined  $SS\mathcal{F}$  as a closed conical subset of the cotangent bundle  $T^*X$ . and proved the holonomicity dim  $C_a = \dim X$  for irreducible components of  $SS\mathcal{F} =$ 

 $\bigcup_a C_a$ .

S. defined  $CC\mathcal{F} = \sum_{a} n_a C_a$ ,  $n_a \in \mathbf{Z}$ .

and for X projective proved the index formula

$$\chi(X_{\mathbf{F}_p}, \mathcal{F}) = \deg(CC\mathcal{F}, T_X^*X).$$

**Example** For the open immersion  $j: \mathbf{A}^1_{\mathbf{F}_p} \to X = \mathbf{P}^1_{\mathbf{F}_p}$  and  $\mathcal{L}$  as in Example. We have

$$CCj_*\mathcal{L} = -(T_X^*X(0\text{-section}) + 2T_\infty^*X(\text{ fiber at }\infty)).$$

2 = 1(rank) + 1(wild ramification).

-mixed characteristic.

replace  $\mathbf{F}_p$  by  $\mathbf{Z}_{(p)} = \{m/n \in \mathbf{Q} \mid n \text{ prime to } p\}.$ 

What is the cotangent bundle.

Geometric case, Kähler differential:

$$d(x+y) = dx + dy,$$
  $d(xy) = xdy + ydx.$ 

replace this by Frobenius–Witt differential:

$$w(x+y) = wx + wy - P(x,y)wp, \qquad w(xy) = x^p wy + y^p wx.$$

$$P(x,y) = \frac{1}{p}((x+y)^p - x^p - y^p).$$