Wild ramification and the cotangent bundle in mixed characteristic

Takeshi SAITO

Eighth Pacific Rim Conference, August 7, 2020 slides available at https://www.ms.u-tokyo.ac.jp/~t-saito/talk/PRim.pdf

Analogy

- 3 Settings (chlonoligical order).
 - Analytic: (Sato, Kashiwara, ...)
 D-modules on complex manifolds.
 - Algebraic: (Beilinson, S., ...)
 \ell-adic sheaves on smooth varieties over perfect fields, e.g. F_p.
 - Arithmetic: (S. partial results)
 ℓ-adic sheaves on regular schemes of finite type over Z, Z_p,...

Analogy: 1. Analytic. 2. Algebraic. 3. Arithmetic.

1. Micro local analysis. To study \mathcal{D} -modules on X, one need to work on the cotangent bundle T^*X .

Analogy:

Irregular singularities in 1. \leftrightarrow Wild ramification in 2 and 3.

Mysterious relation: wild ramification and differential forms e.g. explicit reciprocity law.

Contents

0. Analogy

2.4 Example

Algebraic case (7 pages)
 Arithmetic case (13 pages)
 Notation (2 pages)
 Cotangent bundle (4 pages)
 Micro support (5 pages)

(2 pages)

Algebraic case: Notation

- k: perfect field of characteristic $p \ge 0$.
- X: smooth variety over k.
- Λ : finite field of characteristic $\ell \neq p$.
- \mathcal{F} : constructible complex of Λ -modules on X_{et} . $(\ell$ -adic sheaf modulo ℓ)

Notation: Cotangent bundle

$$k, X, \Lambda, \mathcal{F}$$
,

- T^*X : cotangent bundle = vector bundle associated to the locally free \mathcal{O}_X -module Ω^1_X of rank $n=\dim X$. dim $T^*X=n+n=2n$.
- C: closed conical subset of T^*X . conical = stable under multiplication on vector bundle = action of the multiplicative group \mathbf{G}_m .

Singular support and Characteristic cycle

$$k, X, \Lambda, \mathcal{F}, T^*X$$
.

- $C = SSF \subset T^*X$: Singular support of \mathcal{F} (Beilinson) Closed conical (stable under \mathbf{G}_m) subset. $C = \bigcup_a C_a$ irreducible components. $\dim C_a = n = \dim X$.
- $CC\mathcal{F} = \sum_a m_a C_a$: Characteristic cycle of \mathcal{F} Z-linear combination of irreducible components of $SS\mathcal{F}$.

Characteristic cycle: Example 1

• \mathcal{F} locally constant on X, $n = \dim X$:

$$CC\mathcal{F} = (-1)^n rank \, \mathcal{F} \cdot T_X^* X.$$

 $T_X^*X = X$: 0-section of T^*X . Generalization to tamely ramified case.

Characteristic cycle: Example 2

• dim X = 1. $\mathcal{F}|_U$ locally constant U = X - D:

$$CC\mathcal{F} = (-1)(rank \mathcal{F}|_{U} \cdot T_{X}^{*}X + \sum_{x \in D} a_{x}\mathcal{F} \cdot T_{x}^{*}X).$$

 $T_X^*X = X$: 0-section of T^*X .

 $a_{x}\mathcal{F} = rank \mathcal{F}|_{U} - rank \mathcal{F}_{\bar{x}} + Sw_{x}\mathcal{F}$: Artin conductor.

 $Sw_x\mathcal{F}$: Swan conductor, measure of wild ramification.

 T_x^*X : fiber at $x \in D \subset X$.

Characteristic cycle: Index formula

$$k, X, \Lambda, \mathcal{F}, SS\mathcal{F} = \bigcup_a C_a \subset T^*X, CC\mathcal{F} = \sum_a m_a C_a$$

Theorem: Index formula

If X is projective (and smooth),

$$\chi(X_{\bar{k}},\mathcal{F})=(CC\mathcal{F},T_X^*X)_{T^*X}.$$

Euler number: $\chi(X_{\bar{k}}, \mathcal{F}) = \sum_{q} (-1)^q \dim H^q(X_{\bar{k}}, \mathcal{F}).$

Intersection number: $(CC\mathcal{F}, T_X^*X)_{T^*X}$.

 $T_X^*X = X$: 0-section of T^*X .

If $\dim X = 1$, recover the Grothendieck-Ogg-Shafarevich formula.

Characteristic cycle: Index formula and a variant

$$k, X, \Lambda, \mathcal{F}, SS\mathcal{F} = \bigcup_a C_a \subset T^*X, CC\mathcal{F} = \sum_a m_a C_a$$

Theorem: Index formula

If X is projective (and smooth),

$$\chi(X_{\bar{k}},\mathcal{F})=(CC\mathcal{F},T_X^*X)_{T^*X}.$$

Arithmetic refinement (Daichi Takeuchi)

k: finite, \mathcal{F} : $\bar{\mathbf{Q}}_{\ell}$ -sheaf.

$$\det(Frob, H^*(X_{\bar{k}}, \mathcal{F})) = (\mathcal{EF}, T_X^*X)_{T^*X}$$

in $ar{\mathbf{Q}}_{\ell}^{ imes}\otimes\mathbf{Q}.$

Arithmetic case: Notation

- K: complete discrete valuation field of characteristic 0 with perfect residue field k of characteristic p > 0.
 - E.g. \mathbf{Q}_p or its finite extension.
 - (cf. k: perfect field of characteristic $p \ge 0$. e.g. $k = \mathbf{F}_p$.)
- X: regular flat scheme of finite type over O_K.
 (cf. smooth over k.)
- Λ : finite field of characteristic $\ell \neq p$.
- \mathcal{F} : constructible complex of Λ -modules on $X_{\rm et}$.

Notation (Algebraic case)

$$k, X, \Lambda, \mathcal{F}$$
,

- T^*X : cotangent bundle = vector bundle associated to the locally free \mathcal{O}_X -module Ω^1_X of rank $n=\dim X$. dim $T^*X=n+n=2n$.
- C: closed conical subset of T*X.
 conical = stable under multiplication on vector bundle
 = action of the multiplicative group G_m.

Cotangent bundle in arithmetic case?

 X/\mathcal{O}_K regular flat of finite type.

Problem: Cotangent bundle T^*X ?

 Ω^1_{X/O_K} is **not** a locally free sheaf of rank $n = \dim X$.

Solution: Modify Ω^1_{X/O_K} so that "dp" $\neq 0$.

Cotangent bundle T^*X ?

FW-derivation

Definition: Frobenius-Witt derivation cf. total *p*-derivation by Dupuy, Katz, Rabinoff, Zureick-Brown

p: prime number. A: ring flat over $\mathbf{Z}_{(p)}$.

- A mapping $w: A \to M$ to an A-module is an FW-derivation if $w(a+b) = w(a) + w(b) + \frac{a^p + b^p (a+b)^p}{p} \cdot w(p),$ $w(ab) = b^p \cdot w(a) + a^p \cdot w(b).$ (modified Leibniz' rule)
- $(F\Omega^1_A, w \colon A \to F\Omega^1_A)$: universal pair of A-module and FW-derivation.
- cf. δ -structure by Bhatt, Scholze = p-derivation by Buium

Cotangent bundle T^*X ?

Construction

X regular flat scheme of finite type over \mathcal{O}_K . $(F\Omega^1_X, w)$: sheafification of universal FW-differentials.

$$w(a+b) = w(a) + w(b) + \frac{a^p + b^p - (a+b)^p}{p} \cdot w(p),$$

$$w(ab) = b^p \cdot w(a) + a^p \cdot w(b).$$
 (modified Leibniz' rule)

$\mathsf{Theorem}$

X: regular, $X_{\mathbf{F}_p} = X \times_{Spec} \mathbf{Z} Spec \mathbf{F}_p$.

• $F\Omega_X^1$ is a locally free $\mathcal{O}_{X_{\mathbf{F}_p}}$ -module of rank dim X.

Cotangent bundle T^*X ?

Definition of $FT^*X|_{X_k}$

 $(F\Omega^1_X,w)$: sheafification of universal FW-derivation. $F\Omega^1_X$ is a locally free $\mathcal{O}_{X_{\mathsf{F}_p}}$ -module of rank dim X.

Definition: $FT^*X|_{X_k}$

X: regular:

• $FT^*X|_{X_k}$: vector bundle on X_k associated to $F\Omega^1_X \otimes_{\mathcal{O}_{X_{\mathbf{F}_p}}} \mathcal{O}_{X_k}$.

E.g. X is smooth over \mathcal{O}_K and $F: X_k \to X_k$ Frobenius:

$$0 \rightarrow F^*T^*_{X_k}X \rightarrow FT^*X|_{X_k} \rightarrow F^*T^*X_k \rightarrow 0$$
 exact

Micro support: support and singular support

$$X/\mathcal{O}_K, \Lambda, \mathcal{F}, FT^*X|_{X_k}$$
.

How to define SSF as a closed conical subset C of $FT^*X|_{X_k}$?

Support of \mathcal{F}

 $A \subset X$ closed subset. \mathcal{F} is supported on $A \Leftrightarrow \mathcal{F}|_{X-A} = 0$. Supp \mathcal{F} : Smallest A such that \mathcal{F} is supported on A.

Singular support SSF MOST involved part of the talk! Smallest closed conical subset C of $FT^*X|_{X_k}$ such that F is micro-supported on C.

Micro support: Definition MOST involved part of the talk!

$$X/\mathcal{O}_K, \Lambda, \mathcal{F}, FT^*X|_{X_k}$$
.

Definition: micro support

- 1. \mathcal{F} is micro-supported on a closed conical subset $C \subset FT^*X|_{X_k}$ if
- (1) For any morphism $h \colon W \to X$ of regular schemes of f. t. $/ \mathcal{O}_K$, C-transversality implies \mathcal{F} -transversality.
- (2) $C \cap FT_X^*X|_{X_k} \supset supp \mathcal{F} \cap X_k$.
- 2. SSF: smallest C on which F is micro-supported.

Transversality: Definition MOST involved part of the talk!

$$X/\mathcal{O}_K$$
, Λ , \mathcal{F} , $C \subset FT^*X|_{X_k}$.

Definition: transversality

- 1. $h: W \to X$ morphism of regular schemes of finite type over \mathcal{O}_K .
 - h is C-transversal if the intersection

$$(C \times_{X_k} W_k) \cap Ker(h^* : FT^*X|_{X_k} \times_{X_k} W_k \to FT^*W|_{W_k})$$

is a subset of the 0-section.

- h is \mathcal{F} -transversal if $h^*\mathcal{F} \otimes Rh^!\Lambda \to Rh^!\mathcal{F}$ is an isomorphism.
- 2. \mathcal{F} is micro-supported on C:
- (1) h C-transversal \Rightarrow \mathcal{F} -transversal + (2) a condition on support.
- 3. SSF: smallest C on which F is micro-supported.

Transversality: Examples

$$X/\mathcal{O}_K$$
, Λ , \mathcal{F} . $C \subset FT^*X|_{X_k}$.

 $h \colon W \to X$: morphism of regular schemes of finite type over \mathcal{O}_K .

- $Z \subset X$ regular closed subscheme, $C = F^*T_Z^*X|_{Z_k} \subset FT^*X|_{X_k}$ Frobenius pull-back of conormal bundle:
 - h is C-transversal \Leftrightarrow

h is transversal with $Z \subset X$ on a nbd of W_k .

- h smooth $\Rightarrow \mathcal{F}$ -transversal for any \mathcal{F} . (Poincaré duality)
- \mathcal{F} locally constant \Rightarrow any h is \mathcal{F} -transversal.

Singular support: Existence?

 $X/\mathcal{O}_K, \Lambda, \mathcal{F}.$

 $SS\mathcal{F}$: smallest closed conical subset $C \subset FT^*X|_{X_k}$ on which \mathcal{F} is micro-supported.

Proposition

Suppose $supp \mathcal{F} = X$.

SSF = 0-section $\Leftrightarrow F$ is locally constant on a nbd of X_k .

Question

Does SSF exist?

We don't know yet in general. Example with wild ramification.

Example: Kummer covering

K: finite extension of \mathbf{Q}_p containing a primitive p-th root ζ_p of 1. π : uniformizer of K. $e = e_{K/\mathbf{Q}_p}$: ramification index. $i \geq 1$ integer.

$$X = Spec \mathcal{O}_K[T^{\pm 1}, (1 + \pi^i T)^{-1}]$$

 $\supset U = X_K = Spec K[T^{\pm 1}, (1 + \pi^i T)^{-1}].$

 $V \rightarrow U$: Kummer covering defined by $t^p = 1 + \pi^i T$.

 \mathcal{F} : locally constant sheaf of Λ -modules of rank 1 on U defined by a non-trivial character $\mu_p = \operatorname{Gal}(V/U) \to \Lambda^{\times}$.

Example: Kummer covering

```
K/\mathbb{Q}_p: finite, \zeta_p \in K. \pi: unif. e = e_{K/\mathbb{Q}_p}. k: residue field. \mathcal{F}: rank 1 on U = X_K \subset X = Spec \mathcal{O}_K[T^{\pm 1}, (1 + \pi^i T)^{-1}] defined by t^p = 1 + \pi^i T. X_k = X - U = Spec k[T^{\pm 1}]. FT^*X|_{X_k}: vector bundle of rank 2, basis w(\pi), w(T). \mathcal{F}: unramified along X_k if i \geq ep/(p-1).
```

Proposition

Assume $1 \le i < ep/(p-1)$. $j: U \to X$ open immersion.

- $SS j_! \mathcal{F}$ exists.
- $SS j_! \mathcal{F} = F^* T^*_{X_k} X = \langle w(\pi) \rangle$ if $p \nmid i$, $= \langle w(T) \rangle$ if $p \mid i$ unless p = 2, i = 2(e - 1), $= \langle w(T) - T \cdot w(\frac{2}{\pi^{e-1}}) \rangle$ if p = 2, i = 2(e - 1).