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Introduction

In the geometric case, the theory was established by Beilinson in [1]. In the mixed charac-
teristic case, the theory is far from complete [14]. First, we review the theory of Beilinson;
the definition and the existence of singular support. Later, we discuss its variations to
adjust it in mixed characteristic situation.

Let k be a field and X a smooth scheme over k. The cotangent bundle T ∗X is the
covariant vector bundle associated to Ω1

X/k.

Let Λ be a finite field of characteristic different from that of k. An object of Db
(c)(Xét,Λ)

will be called a sheaf on X.
A closed subset C ⊂ E of a vector bundle is called conical if it is stable under the

Gm-action.
The singular support SSF of F is defined as a closed subset C ⊂ T ∗X. The relation

between F and C is indirect, due to the lack of micro local sheaf theory. It goes along the
following general format:

First step: We say that F is micro supported on C if a certain good functorial property
for C implies the corresponding property for F .

Definition 0.1. If the smallest C on which F is micro supported exists, we call such C
the singular support of F .

The existence is non-trivial because it is not clear from the definition if the condition
that F is micro supported on C and on C ′ implies that F is micro supported on the
intersection C ∩ C ′.

The existence is proved in [1] by the reduction to the case where X = Pn. A closed
conical subset C is determined by its base C∩X and the projectivization P(C) ⊂ P(T ∗X).
The base of the singular support equals the support of the sheaf. If X = P, the projective
space bundle P(T ∗P) is canonically identified with the universal family Q of hyperplanes
over the moduli P∨ of hyperplanes. Using the diagram

P
q←−−− Qyq∨

P∨

and the (naive) Radon transform defined by RF = q∨∗ q
∗F , we will capture E = P(C) ⊂

Q = P(T ∗P) geometrically.

1 Original definition

1.1 Local acyclicity

Definition 1.1 ([5]). Let f : X → Y be a morphism of schemes and F be a sheaf on X.
We say that f is F -acyclic (or equivalently, locally acyclic relatively to F) if the following
condition is satisfied:
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Let t→ s be a specialization of geometric points of Y and let

Xs
i−−−→ X ×Y Y(s)

j←−−− Xty y y
s −−−→ Y(s) ←−−− t

be the cartesian diagram. Then the morphism

(1.1) FXs → i∗j∗FXt

is an isomorphism.
We say that f is universally F -acyclic if for every g : Y ′ → Y , the base change f ′ : X ′ =

X ×Y Y ′ → Y ′ is g′∗F -acyclic.

The condition that the morphism (1.1) is an isomorphism means that for every geo-
metric point x of Xs, the morphism Fx → RΓ(X(x) ×S(s)

t,FX(x)×S(s)
t) is an isomorphism.

The fiber X(x) ×S(s)
t of the morphism X(x) → S(s) is called the Milnor fiber.

To check the universal local acyclicity (abbreviated ula), it suffices to consider only
smooth morphisms Y ′ → Y .

Examples 1.2. 1. f : X → Y smooth, F locally constant. Local acyclicity of smooth
morphisms.

2. f : X → Spec k, F arbitrary. f is universally F -acyclic. Generic universal local
acyclicity ([5]).

3. If f : X → Y is F -acyclic and if g : Y → Z smooth, then gf : X → Z is F -acyclic
([8]). This is a generalization of 1.

4. f = 1X is F -acyclic if and only if F is locally constant.
5. If f : X → Y is proper and if gf : X → Z is F -acyclic, then g is f∗F -acyclic. This

is a consequence of the proper base change theorem.

1.2 Definition

Definition 1.3. Let X be a smooth scheme over k, F be a sheaf on X and C ⊂ T ∗X be
a closed conical subset. We say that F is micro supported on C if the following condition
is satisfied: Let h : W → X and f : W → Y be morphisms of smooth schemes over k. If
h is C-transversal and if f is h◦C-acyclic, then f is h∗F -acyclic.

In the original terminology in [1], the C-acyclicity was also called the C-transversality.
The condition that f is h∗F -acyclic can be equivalently replaced by the condition that

f is universally h∗F -acyclic. As h, it suffices to consider étale morphisms. As f , it suffices
to consider morphisms to A1.

For a closed conical subset C of a vector bundle E over a scheme X, we define the base
B and the support S by

B = {x ∈ X | Cx ̸= ∅} ⊃ S = {x ∈ X | Cx ̸⊂ {0}}

where Cx denotes the fiber of C at x. Both B and S are closed subsets of X since
B = C∩X is the intersection with the 0-section and S is the image of the projectivization
P(C) ⊂ P(E).
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Definition 1.4. Let X be a smooth scheme over k and C ⊂ T ∗X be a closed conical
subset. Let h : W → X be a morphism of smooth schemes over k. We say that h is
C-transversal if the support of the intersection

(1.2) h∗C ∩Ker(T ∗X ×X W → T ∗W )

is empty.

h∗C is defined to be the inverse image of C by T ∗X ×X W → T ∗X.

Examples 1.5. 1. Let Z ⊂ X be a closed subscheme smooth over k and let C = T ∗
ZX be

the conormal bundle. Then h is C-transversal if and only if h is transversal to Z → X.
Namely, V = W×XZ ⊂ W is smooth over k and the codimensions codimWV and codimXZ
are the same.

2. If h is smooth, h is C-transversal for every C.
3. If C is a subset of the 0-section T ∗

XX, every h is C-transversal.
4. If h is C-transversal and if C ′ ⊂ C, then h is C ′-transversal.
5. If h is an immersion, Ker(T ∗X ×X W → T ∗W ) is the conormal sheaf T ∗

WX.

Lemma 1.6. Let E → F be a linear morphism of vector bundles on a scheme X and let
C ⊂ E be a closed conical subset. If the intersection C ∩Ker(E → F ) is a closed subset of
the 0-section, then E → F is finite on C and consequently, the image C ′ ⊂ F is a closed
conical subset.

Proof. It is sufficient to prove the following statement: Let A → B be a morphism of
graded rings and J ⊂ B be a graded ideal. Let S ⊂ B a set of homogeneous elements.
Then, the following conditions are equivalent:

(1) B/J is generated by S as an A-module.
(2) B/(J + A≧1B) is generated by S as an A/A≧1-module.
By induction on n, condition (2) is equivalent to
(3) B/(J + A≧nB) is generated by S over A/A≧n for every n.
It is reduced to the equivalence of the following conditions applied to the graded A-

module M = B/(J + AS):
(1′) M = 0.
(3′) M/A≧nM = 0 for every n.

By Lemma 1.6, if h is C-transversal, the image h◦C ⊂ T ∗W of h∗C by T ∗X ×X W →
T ∗W is a closed conical subset.

Definition 1.7. Let X be a smooth scheme over k and C ⊂ T ∗X be a closed conical
subset. Let f : X → Y be a morphism of smooth schemes over k. We say that f is
C-acyclic if the support of the inverse image of C by T ∗Y ×Y X → T ∗X is empty.

C-acyclicity is also an open condition.

Examples 1.8. 1. If C is a subset of the 0-section and if f is smooth, then f is C-acyclic.
2. The morphism X → Spec k is C-acyclic for every C ⊂ T ∗X.
3. If f : X → Y is C-acyclic and if g : Y → Z is smooth, then gf : X → Z is C-acyclic.
4. f = 1X is C-acyclic if and only if C is a subset of the 0-section.
5. If f is C-acyclic, then f is smooth on a nbd of the base of C.
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The following conditions are equivalent:
(1) h : W → X is C-transversal and f : W → Y is h◦C-acyclic.
(2) (h, f) : W → X × Y is C × T ∗Y -transversal.
We say that (h, f) is C-acyclic if (2) (and hence (1)) is satisfied.

Examples 1.9. 1. Every sheaf on X is micro supported on T ∗X. (h, f) is T ∗X-acyclic if
and only if (h, f) : W → X × Y is smooth: We may assume W = X × Y ×An since the
local acyclicity is an étale local condition. Consider the cartesian diagram

X ←−−− X × Y ←−−− Wy y y
Spec k ←−−− Y ←−−− Y ×An.

By the generic local acyclicity (Examples 1.2.1), the right vertical arrow is h∗F -acyclic.
Since Y ×An → Y is smooth, the composition W → Y is h∗F -acyclic by Examples 1.2.3.

2. If F is ms on C, then supp F is a subset of the base B of C. In other words, F|U = 0
on the complement U = X B: Let h : U → X be the open immersion and f : U → Y be
the 0-map. Then (h, f) is C-acyclic and hence f is F|U -acyclic. This means F|U = 0.

3. Assume that F is ms on C. Let U ⊂ X be an open subset and assume that F|U is
ms on C ′. Then, F is ms on the union C1 = C|X U ∪ C ′. In particular, if F|U = 0, then
F is ms on C|X U : Assume (h, f) is C1-acyclic. Then, by the open condition property, on
a neighborhood V of the inverse image of the complement X U , (h, f) is C-acyclic. On
the inverse image of U , (h, f) is C ′-acyclic. Hence f is h∗F -acyclic on h−1(U) ∪ V = W .

4. F = 0 if and only if F is ms on ∅.
5. F is locally constant if and only if F is ms on the 0-section T ∗

XX: If (h, f) is
T ∗
XX-acyclic, then f is smooth by Examples 1.8.5. Hence if F is locally constant, f is

h∗F -acyclic by Examples 1.2.2.
Conversely, assume that F is ms on T ∗

XX. Since (1, 1) is T ∗
XX-acyclic, 1X is F -acyclic.

This means that F is lcc by Examples 1.2.4.

2 Proof of existence

2.1 Reduction to Pn

The existence is reduced to the case where X = Pn by the following steps.
1. reduction to affine schemes: Since the assertion is local, we may assume X is affine.
2. reduction to An: Since the existence of SSi∗F implies that of SSF for a closed

immersion i, we may assume X = An.
3. reduction to Pn: Since the assertion is local, we may assume X = Pn.

Local.

Proposition 2.1. 1. Let U ⊂ X be an open subset. If F is micro supported on C, then
F|U is micro supported on C|U . If SSF = C, then SSF|U = C|U .

2. Let (Ui) be an open covering of X. Let C be a closed conical subset. If F|Ui
is

micro supported on C|Ui
for every i, then F is micro supported on C. If SSF|Ui

= Ci,
then SSF =

⋃
Ci.
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Proof. 1. Assume that (h : W → U, f : W → Y ) is C|U -acyclic. Then (h : W → X, f : W →
Y ) is C-acyclic. Hence f is h∗F -acyclic.

Assume that F|U is ms on C ′. Then F is ms on C|X U ∪C ′ by Examples 1.9.3. Hence
we have C ⊂ C|X U ∪ C ′ and C|U ⊂ C ′.

2. Assume that (h, f) is C-acyclic. Then (hi : h
−1(Ui) → Ui, fi : h

−1(Ui) → Y ) is
Ci-acyclic for every i. Hence fi is h

∗
iF -acyclic for every i and f is h∗F -acyclic.

By 1., we have Ci|Ui∩Uj
= Cj|Ui∩Uj

for every i, j. Hence C =
⋃
Ci is a closed conical

subset and C|Ui
= Ci. Assume that F is ms on C ′. Then F|Ui

is ms on C ′|Ui
and we have

Ci ⊂ C ′|Ui
. Thus we have C ⊂ C ′.

Closed immersion. Let i : X → P be a closed immersion of smooth schemes. For a
closed conical subset C ⊂ T ∗X, define i◦C ⊂ T ∗P ×P X ⊂ T ∗P to be the inverse image
of C by the surjection T ∗P ×P X → T ∗X.

Examples 2.2. Let i : Z → X be a closed immersion of smooth schemes over k. Then
we have T ∗

ZX = i◦T
∗
ZZ.

Let C ⊂ T ∗Z be a closed conical subset. Assume that h : W → X is i◦C-transversal.
Then h is transversal to Z → X on a neighborhood V ′ of the inverse image of the base
of C. If h is transversal to Z → X and if h′ : V ′ → Z denotes the restriction of the base
change, then h′ is C-transversal.
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recall

Definition of ms. If (h, f) is C-acyclic (i.e. (h, f) is C × T ∗Y -transversal), f is h∗F -
acyclic.
Proof of the existence of SS.

Reduction to Pn. Local + closed immersion.
Pn. Radon transform.

Proposition 2.3. Let i : X → P be a closed immersion of smooth schemes over k.
1. If F is micro supported on C, then i∗F is micro supported on i◦C.
2. Let CP ⊂ T ∗P be a closed conical subset and let C ⊂ T ∗X be the closure of the

image of CP |X by the surjection T ∗P ×P X → T ∗X. If i∗F is micro supported on CP ,
then F is micro supported on C. If SSi∗F = CP , then SSF = C.

Proof. 1. Assume that (h, f) is i◦C-acyclic. We consider the commutative diagram

X

i
��

Vh′
oo

��

f ′

  A
AA

AA
AA

A

P W
hoo f // Y

with cartesian square. By replacing W by a neighborhood of the inverse image of the
base of i◦C, we may assume that h is transversal to X → P by Example 2.2. Then, V is
smooth over k and further (h′, f ′) is C-acyclic by Example 2.2. Hence f ′ is h′∗F -acyclic
and f is h∗i∗F -acyclic by Examples 1.2.5.

2. Assume that (h, f) is C-acyclic. Replacing W → X → P by W → X×W → P×W
and F by the pull-back, we may assume that h is an immersion. Then, locally, by lifting
the defining equations, we find a cartesian diagram

X × Y
(h,f)←−−− Wy y

P × Y
(h̃,f̃)←−−− V.

Since the commutative diagram

T ∗P × T ∗Y −−−→ T ∗Vy y
T ∗X × T ∗Y −−−→ T ∗W

induces an isomorphism on the kernels, the assumption that (h, f) is C-acyclic implies

that (h̃, f̃) is CP -acyclic on a neighborhood of W . Hence f̃ is h̃∗i∗F -acyclic, f = f̃ ◦ i is
h∗F -acyclic by Examples 1.9.5.

Assume that F is ms on C ′. Then, by 1, i∗F is ms on i◦C
′. Hence we have CP ⊂ i◦C

′

and C ⊂ C ′.
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2.2 Radon transform

Let V be a k-vector space of dimension n + 1 and P = P(V ) be the projective space
of dimension n parametrizing lines in V . The dual projective space P∨ = P(V ∨) is the
moduli space of hyperplanes in P. Let Q ⊂ P×P∨ be the universal family of hyperplanes
and let q : Q→ P and q∨ : Q→ P∨ be the projections.

We define the naive Radon transform RF to be Rq∨∗ q
∗F and the naive inverse Radon

transform R∨G to be Rq∗q
∨∗G. They are inverse to each other up to geometrically constant

sheaves. We compute R∨RF .

Proposition 2.4. 1. We have a canonical isomorphism

(2.1) R∨RF → Rpr2∗
(
pr∗1F ⊗R(q × q)∗ΛQ×P∨Q

)
.

2. The isomorphism (2.1) induces a distinguished triangle

(2.2) →
n−2⊕
s=0

p∗p∗F(−s)[−2s]→ R∨RF → F(−(n− 1))[−2(n− 1)]→

where p : P→ Spec k denote the canonical morphism.

Proof. 1. By the definition, we have R∨RF = Rq∗q
∨∗Rq∨∗ q

∗F . By the proper base change
theorem to the cartesian diagram

P
q←−−− Q

pr1←−−− Q×P∨ Q

q∨

y ypr2

P∨ q∨←−−− Qyq

P,

we have a canonical isomorphism Rq∗q
∨∗Rq∨∗ q

∗F → R(q◦pr2)∗(q◦pr1)∗F . In the notation
of the diagram

(2.3)

P
pr1←−−− P×P

q×q←−−− Q×P∨ Q

pr2

y
P,

the latter is identified with R(pr2 ◦ (q × q))∗(pr1 ◦ (q × q))∗F . This is identified with
Rpr2∗(pr1∗F ⊗R(q × q)∗ΛQ×P∨Q) by the projection formula.

2. By the isomorphisms (2.1) and (2.4) below, we have a distinguished triangle

→ τ≦2(n−2)RΓ(P∨
k̄ ,Λ)⊗ ΛP×P → R(q × q)∗ΛQ×P∨Q → ΛP(n− 1)[2(n− 1)]→ .

Applying Rpr2∗(pr1∗F ⊗−) to this, we obtain (2.2).
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Lemma 2.5. We consider the commutative diagram

Q×P∨ Q
i //

q×q ''PP
PPP

PPP
PPP

P×P∨ ×P

pr13
��

P×P P
δPoo

where δP : P → P × P is the diagonal immersion. Then the closed immersion i induces
isomorphisms

(2.4) Rs(q × q)∗ΛQ×P∨Q →

{
Λ(−i)[−2i] if s = 2i, 0 ⩽ i ⩽ n− 2,

δP∗Λ(−(n− 1))[−2(n− 1)] if s = 2(n− 1)

and Rs(q × q)∗ΛQ×P∨Q = 0 otherwise.

Proof. The immersion i induces morphisms

(2.5) Rspr13∗ΛP×P∨×P → Rs(q × q)∗ΛQ×P∨Q

and we have isomorphisms Rspr13∗ΛP×P∨×P → Λ(−i)[−2i] for s = 2i, 0 ⩽ i ⩽ n and
Rspr13∗ΛP×P∨×P = 0 otherwise. The restriction of the closed immersion i : Q ×P∨ Q →
P × P∨ × P on the diagonal P ⊂ P × P is the sub Pn−1-bundle Q ⊂ P × P∨. On
the complement P × P P, it is a sub Pn−2-bundle. Hence (2.5) is an isomorphism for
s ̸= 2(n− 1) and induces an isomorphism δP∗R

2(n−1)q∗ΛQ → R2(n−1)(q × q)∗ΛQ×P∨Q.

Corollary 2.6. We have the implications (1)⇒(2).
(1) F is micro supported on C.
(2) R∨RF is micro supported on C+ = C ∪ T ∗

PP.

We will prove the existence of singular support by proving a refinement involving the
micro support of the Radon transform RF .

2.3 Proof of existence

Let g : X → X ′ be a proper morphism of smooth schemes over k and C ⊂ T ∗X be a closed
conical subset. Then, g◦C ⊂ T ∗X ′ is defined as a closed conical subset. The construction
i◦C for a closed immersion is a special case.

Lemma 2.7. Let g : X → X ′ be a proper morphism of smooth schemes over k and C ⊂
T ∗X be a closed conical subset. Assume that (h′, f ′) is g◦C-acyclic. Then h′ is transversal
to X → X ′ on a neighborhood of the inverse image of the base of C. Namely, W =
X ×X′ W ′ is smooth over k on a neighborhood of the inverse image W1 of the base of C
and dimW − dimW ′ = dimX − dimX ′. Further (h1, f1) is C-acyclic.

Proposition 2.8. Let X be a smooth scheme over k and F be a sheaf on X. Assume that
F is ms on C ⊂ T ∗X.

1. If g : X ′ → X is C-transversal, then g∗F is ms on g◦C.
2. If g : X → X ′ is proper, then g∗F is ms on g◦C.
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Proof. 1. Assume that a pair h : W → X ′ and f : W → Y is g◦C-acyclic. Then gh : W →
X and f : W → Y is C-acyclic and f is h∗g∗F -acyclic.

2. Proof is similar to that of Proposition 2.3.1. Assume that a pair h′ : W ′ → X ′ and
f ′ : W ′ → Y is g◦C-acyclic. Then on an inverse image of the base of C, W = X ×X′ W ′

is smooth over k and the pair of h : W → X and f : W → Y is C-acyclic by Lemma 2.7.
Hence f : W → Y is h∗F -acyclic and and f ′ is g′∗h

∗F = h′∗g∗F -acyclic.

We call
C∨ = q∨◦ q

◦C ⊂ T ∗P∨

the Legendre transform of C.

Corollary 2.9. We have the implications (1)⇒(2)⇒(3).
(1) F is micro supported on C.
(2) The Radon transform RF is micro supported on C∨.
(3) F is micro supported on C∨∨+.

Proof. (1)⇒(2): By Proposition 2.8, The Radon transform RF = p∨∗ p
∗F is micro sup-

ported on C∨ = p∨◦ p
◦C.

(2)⇒(3): By (1)⇒(2) and symmetry, R∨RF is micro supported on C∨∨.

We will prove a refinement of (1)⇒(2) involving the local acyclicity.
By the exact sequence 0 → Ω1

P/k(1) → OP ⊗ V ∨ → OP(1) → 0 of locally free OP-

modules, we identify Q = P(T ∗P). By symmetry, we also identify Q = P(T ∗P∨). The
kernel LQ = Ker

(
(T ∗P× T ∗P∨)|Q → T ∗Q

)
equals the conormal bundle

LQ = T ∗
Q(P×P∨) ⊂ (T ∗P× T ∗P∨)|Q

and its image L ⊂ T ∗P×PQ is the universal sub line bundle. The kernel LQ = T ∗
Q(P×P∨)

is also identified with the intersection q∗T ∗P∩ q∨∗T ∗P∨ ⊂ T ∗Q. We consider projectiviza-
tions P(C) ⊂ P(T ∗P) and P(C∨) ⊂ P(T ∗P∨) as closed subsets of Q. The projectiviza-
tion P(C) ⊂ Q is the support of the intersection (C ×P Q) ∩ L ⊂ T ∗P ×P Q. If we
regard T ∗P×P Q as a sub vector bundle of T ∗Q, it is also the support of the intersection
(C ×P Q) ∩ LQ ⊂ T ∗Q.

Proposition 2.10. Let C ⊂ T ∗P be a closed conical subset. Let E = P(C) ⊂ Q =
P(T ∗P) be the projectivization.

1. The projectivization E = P(C) ⊂ Q is the complement of the largest open subset
where (q, q∨) is C-acyclic.

2. The Legendre transform C∨ equals the image of the union of LQ|E ⊂ LQ ⊂ T ∗P∨×P∨

Q and its base. We have P(C) = P(C∨).
3. We have C∨∨ ⊂ C+.

Proof. 1. The largest open subset is the complement of the support of the intersection
(q∗C × T ∗P∨)|Q ∩Ker((T ∗P× T ∗P∨)|Q → T ∗Q). This equals (C ×P Q) ∩ LQ ⊂ T ∗Q and
its support is E = P(C) ⊂ P(T ∗P).

2. The Legendre transform C∨ is defined as follows: Take the intersection q∗C ∩
q∨∗T ∗P∨ ⊂ q∗T ∗P ∩ q∨∗T ∗P∨ = LQ ⊂ T ∗Q. Then, C∨ is the image by the projection
q∨∗T ∗P∨ → T ∗P∨. The intersection q∗C ∩ q∨∗T ∗P∨ equals (C ×P Q)∩LQ ⊂ T ∗Q and its
support is E. Hence it is L|E up to the base.
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By symmetry, we also identify LQ as the universal sub line bundle L∨ of T ∗P∨ on
Q = P(T ∗P∨). Then, we have q∗C ∩ LQ = q∨∗C∨ ∩ LQ and P(C) = P(C∨) = E.

3. By 2 and symmetry, we have P(C) = P(C∨) = P(C∨∨). Hence we have C∨∨ ⊂
C+.

Proposition 2.11. We have the implications (1)⇒(2)⇒(3)⇒(4).
(1) F is micro supported on C.
(2) q∨ is universally q∗F-acyclic outside E = P(C).
(3) RF is micro supported on C∨+ = C∨ ∪ T ∗

P∨P∨.
(4) F is micro supported on C+.

Proof. (1)⇒(2): By Proposition 2.10.1, (q, q∨) is C-acyclic outside E. Hence (q, q∨) is
C-acyclic outside E.

(2)⇒(3): Assume that (h, f) is C∨+-acyclic and consider the commutative diagram

P Q
qoo

q∨

��

QW
h′

oo

q∨W
��

f ′

!!B
BB

BB
BB

B

P∨ W
hoo f // Y

with cartesian square. Since q∨W is proper, it suffices to show that f ′ is (qh′)∗F -acyclic.
By (2), outside E, q∨ is universally q∗F -acyclic. Hence outside the inverse image EW ,

the base change q∨W is (qh′)∗F -acyclic. Since (h, f) is T ∗
P∨P∨-acyclic, f is smooth. Hence

outside EW , the composition f ′ = fq∨W is (ph′)∗F -acyclic by Examples 1.9.3.
Since (h, f) is C∨-acyclic, (h′, f ′) is q◦C-acyclic by Lemma 2.7. Hence (qh′, f ′) is

C-acyclic. The conormal bundle of the immersion QW → P × W is the pull-back LW

of L. The support of (C × T ∗W ) ∩ LW is EW and hence (C × T ∗W ) ∩ LW contains
(T ∗P×T ∗W )∩LW |E as a subset. Since f : W → Y is smooth, this implies that (qh′, f ′) is
T ∗P-acyclic on a neighborhood U of EW . Since F is micro supported on T ∗P by Example
1.9.1, f ′ is (qh)∗F -acyclic on U .

(3)⇒(4): By (3) and (1)⇒(3), R∨RF is micro supported on (C∨+)∨+ = C+. By the
distinguished triangle in Proposition 2.4.2, F is also micro supported on C+.

We prove the existence of singular support for X = P.

Corollary 2.12. Let F be a sheaf on P. Let E ⊂ Q = P(T ∗P) be the complement of the
largest open subset on which q∨ is universally q∗F-acyclic. Then, the closed conical subset
C ⊂ T ∗P such that the base is the support B of F and P(C) = E is the singular support
of F .

Proof. By Proposition 2.11 (2)⇒(4), F is micro supported on (C∨+)∨+ = C+. Hence F
is micro supported on C = C+|B. If F is micro supported on C ′, then we have E ⊂ E ′ by
Proposition 2.11 (1)⇒(2). Since the base of C ′ contains B = suppF , we have C ⊂ C ′.

11
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3 Variations

We want to transplant Beilinson’s theory to mixed characteristic case. There are two
obstacles:

- There is no cotangent bundle of the correct rank.
- There are not sufficiently many morphisms f .
A solution to the first problem is given by the Frobenius–Witt cotangent bundle. Al-

though it is supported on the characteristic p fiber, it has the correct rank. A solution to
the second problem is given by the transversality.

In the original definition, the C-acyclicity corresponds to the F -acyclicity. We in-
troduce the property corresponding to the C-transversality. As we don’t have enough
morphisms f in the mixed characteristic case, we define micro support using only the
transversality. However, to adapt the proof of existence, we need to use the second mor-
phism f by fixing the base scheme. Thus, we introduce a relative variant of micro support
using pairs of morphisms and an equivalent condition of the original definition.

3.1 F-transversality
Let h : W → X be a separated morphism of finite type and F be a sheaf on X. We define
a canonical morphism

ch,F : h∗F ⊗ h!Λ→ h!F

comparing the two pull-backs h∗F and h!F . It is defined as the adjoint of h!(h
∗F⊗h!Λ)→

F . By the projection formula, this is defined as 1 ⊗ adj : F ⊗ h!h
!Λ→ F .

Definition 3.1. Let h : W → X be a separated morphism of smooth schemes over k and
F be a sheaf. We say that h is F -transversal if ch,F : h∗F ⊗h!Λ→ h!F is an isomorphism.

Without assuming h being separated, the F -transversality can be defined locally on
W .

Examples 3.2. 1. Let Z ⊂ X be a closed subscheme smooth over k. If h is transversal
to Z → X, then h is ΛZ-transversal.

2. If h is smooth, h is F -transversal for every F . Poincaré duality.
3. If F is locally constant, every h is F -transversal.

Relation between the transversality and the acyclicity.
Let

W
h−−−→ Xy yf

y −−−→ Y

be a cartesian diagram of smooth schemes over k. Then h is C-transversal if and only
if f is C-acyclic on a neighborhood of W since T ∗Y ×Y W is canonically identified with
Ker(T ∗X ×X W → T ∗W ).

In a more general situation, we have the following

12



Lemma 3.3. Let
X

h←−−− W

f

y yg

Y ←−−− V
be a cartesian diagram of smooth schemes over k. Assume that f is smooth.

1. If f is C-acyclic, then (h, g) is C-acyclic.
2. If f is universally F-acyclic, then h is F-transversal and g is h∗F-acyclic.

Proof. 1. Since the kernel Ker(T ∗X ×X W ⊕T ∗V ×V W → T ∗W ) is canonically identified
with T ∗Y ×Y W , the support of the intersection with h∗C × g∗T ∗V is empty.

2. It suffices to show the F -transversality. By the factorization V → X × V → X
and by the transitivity, we may assume that V → X is an immersion and further a closed
immersion. Let j : U = X W → X be the open immersion and consider the commutative
diagram

F ⊗ h!h
!Λ −−−→ F ⊗ Λ −−−→ F ⊗ j∗j

∗Λ −−−→y ∥∥∥ y
h!h

!F −−−→ F −−−→ j∗j
∗F −−−→

of distinguished triangles. By the F -acyclicity and Corollary 3.5 below, the right vertical
arrow is an isomorphism. Hence the left vertical arrow is an isomorphism which means
that h is F -transversal.

We will later state an inverse proved using alterations.

Proposition 3.4 (Fu Lei Theorem 7.6.9). Let f : X → Y be a morphism of schemes and
F be a sheaf on X. Then the following conditions are equivalent:

(1) f is F-acyclic.
(2) For every cartesian diagram

X
h←−−− U

f

y yg

Y
j←−−− V

such that the horizontal arrows are immersions and for every constructible sheaf G on V ,
the morphism

F ⊗ f ∗j∗G → h∗(h
∗F ⊗ g∗G)

is an isomorphism.

Corollary 3.5. Let

X
h←−−− W

f

y y
Y

i←−−− V
be a cartesian diagram of schemes such that the vertical arrows are smooth and that the
horizontal arrows are immersions. Let F be a sheaf on X and G be a sheaf on Y . Assume
that f : X → Y is F-acyclic and i : V → Y is G-transversal. Then h : W → X is F⊗f ∗G-
transversal.

In particular, for any immersion i : V → Y , the morphism h : W → X is F-transversal.

13



3.2 Equivalent definitions

Proposition 3.6. Let X be a smooth scheme over k. Let F be a sheaf on X and C be a
closed conical subset of T ∗X. Then the following conditions are equivalent:

(1) F is micro supported on C.
(2) Let (h, f) be a pair of morphisms h : W → X and f : X → Y of smooth schemes

over k such that h is C-transversal and f is h◦C-acyclic. Then, h is F-transversal and f
is h∗F-acyclic.

(3) Let (h, f) be a pair of morphisms h : W → X and f : X → Y of smooth schemes
over k such that (h, f) : W → X × Y is C × T ∗Y -transversal. Then, for any sheaf G on
Y , the morphism (h, f) : W → X × Y is F ⊠ G-transversal.

Proof. (2)⇒(1) is clear.
(1)⇒(2): It suffices to show that the C-transversality of h implies the F -transversality

of h. By the transitivity, by considering the factorization W → X ×W → X, we may
assume that h is an immersion. Since the question is local, we may assume that there
exists a cartesian diagram

W
h−−−→ Xy yf

y −−−→ Y.

Since h is C-transversal, f is C-acyclic on a neighborhood of W . Hence f is F -acyclic on
a neighborhood of W . By Lemma 3.3.2, h is F -transversal.

(2)⇔(3): We consider the decomposition (h × 1Y ) ◦ (1W , f) : W → W × Y → X × Y
of (h, f) and compare

(h) the F -transversality of h and the F ⊠ G-transversality of h× 1Y for every G on Y .
(f) the h∗F -acyclicity of f and the h∗F ⊠G-transversality of (1W , f) for every G on Y .
(h) Let p : W → P = Spec k be the canonical morphism. Then the C-transversality

of h is equivalent to C × T ∗P -transversality of (h, p). By Lemma 3.7, (2) implies that
h is F -transversal and (3) implies that h is F ⊠ G-transversal for every G on P . Thus,
in both case h is F -transversal. By Lemma 3.8, the F -transversality of h implies the
F ⊠ G-transversality of h× 1Y for every G on Y .

Hence by the transitivity, it suffices to show the equivalence in (f). This follows from
Proposition 3.9.

Lemma 3.7. Let (h, f) be a pair of morphisms h : W → X and f : W → Y of smooth
schemes and C be a closed conical subset. Then the following conditions are equivalent:

(1) h is C-transversal and f is h◦C-acyclic.
(2) (h, f) : W → X × Y is C × T ∗Y -transversal.

Proof. If (2) is satisfied, then (h, f) : W → X × Y is C × T ∗
Y Y -transversal. Hence h is

C-transversal. The condition (2) means that if ξ ∈ C ⊂ T ∗X and η ∈ T ∗Y have the same
image in T ∗W , then ξ = 0 and η = 0. Under the C-transversality of h, this is equivalent
to the h◦C-acyclicity of f .

Lemma 3.8. Let h : W → X be a morphism and assume that h is F-transversal. Then,
for any G on Y , the morphism h× 1: W × Y → X × Y is F ⊠ G-transversal.

14



Proof. We consider the cartesian diagram

X × Y
h×1←−−− W × Yy y

X
h←−−− W.

Since Y → Spec k is universally G-acyclic, the projection X × Y → X is pr∗2G-acyclic.
Hence by Corollary 3.5, h× 1 is F ⊠ G = pr∗1F ⊗ pr∗2G-transversal.

Proposition 3.9. (cf. [2, Appendix Theorem B.2]) Let f : X → Y be a morphism of
schemes over an excellent regular noetherian scheme S and let F be a sheaf on X. If
X → S is universally F-acyclic and if Y is smooth over S, then the following conditions
are equivalent:

(1) f is F-acyclic.
(2) For any constructible sheaf G on Y , the morphism γ = (1X , f) : X → X ×S Y is

F ⊠ G-transversal.
The assumption that X → S is universally F -acyclic is satisfied if S = Spec k for a

field k by Example 1.2.2.

Proposition 3.10. Let X be a smooth scheme over k. Let F be a sheaf on X and C be
a closed conical subset of T ∗X. We consider the following conditions:

(1) F is micro supported on C.
(2) The support of F is a subset of the base of C. Let h : W → X be a morphism of

smooth schemes over k such that h is C-transversal. Then, h is F-transversal.
We have (1)⇒(2). If k is perfect, they are equivalent to each other.

Proof. The implication (1)⇒(2) is proved in Proposition 3.6 (1)⇒(2).
We show (2)⇒(1) assuming that k is perfect. Assume that (h, f) is C-acyclic. We show

that f is h∗F -acyclic. By the transitivity, we may assume that h = 1X . By shrinking
W , we may assume that f is smooth. In the diagram Lemma 3.11 below, f is smooth
and C-acyclic. Further, since k is assumed perfect, k′ is separable and X ′ and W are
smooth over k and the morphisms p′ and p′h are C-transversal. Hence by (2), p′ and p′h
are F -transversal. By the transitivity, this implies that h is p′∗F -transversal. Thus by
Lemma 3.11, f is F -acyclic.

Lemma 3.11. Let f : X → Y be a smooth morphism of schemes of finite type over a field
k and let F be a sheaf on X . Assume that for every cartesian diagram

X
p′←−−− X ′ h←−−− W

f

y f ′

y yg

Y ←−−− Y ′ i←−−− Z

satisfying the following condition, the immersion h is p′∗F-transversal: Y ′ and Z are
smooth schemes over a finite extension of k, p : Y ′ → Y is proper and generically finite
and i : Z → Y ′ is a closed immersion.

Then, f is F-acyclic.
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4 Mixed characteristics

First, we need to find a vector bundle where the singular support is defined. The OX-
module Ω1

X may not be locally free. Even if it is so, it can be too small, eg for X =
SpecZ(p). We expect to have a locally free sheaf such that the fiber at the closed point
x with perfect residue field is the Zariski cotangent space mx/m

2
x. We will define a sheaf

FΩX that is locally free on XFp such that at every points x ∈ XFp we have an exact
sequence

0→ F ∗(mx/m
2
x)→ FΩX,x ⊗ k(x)→ F ∗(Ω1

k(x))→ 0.

4.1 Frobenius–Witt cotangent bundle

Definition 4.1. Let p be a prime number.
1. Define a polynomial P ∈ Z[X,Y ] by

P =

p−1∑
p=1

(p− 1)!

i!(p− i)!
·X iY p−i.

2. Let A be a ring and M be an A-module. We say that a mapping w : A → M
is an Frobenius–Witt derivation or FW-derivation for short if the following condition is
satisfied: For any a, b ∈ A, we have

w(a+ b) = w(a) + w(b)− P (a, b) · w(p), w(ab) = bp · w(a) + ap · w(b).

3. The module FΩA of Frobenius–Witt differentials is an A-module representing the
functor sending an A-module M to the set {FW-derivations w : A→M}.

The polynomial P appears in the addition of Witt vectors W2 of length 2.

If w : A → M is an FW-derivation, for an integer n, we have w(n) =
n− np

p
· w(p).

If A is a ring over Z(p), we have p · w(a) = 0 for any a ∈ A. By induction on n, we
have w(na) = n · w(a) + ap · w(n). Comparing this with the defining equality, we have
(np − n) · w(a) = 0. FW-derivations naturally arise from the cotangent complex and also
in a construction due to Gabber–Ramero. It is a linearization of δ-ring.

In the following, we assume that X is of finite type over S = SpecOK for a discrete
valuation ring of characteristic (0, p) with perfect residue field k. If X is regular, FΩX

is a locally free OXFp
-module of rank dimX. Define the FW-cotangent bundle to be the

associated vector bundle. If X is smooth over S, we have an exact sequence

(4.1) 0→ FT ∗S ×S X → FT ∗X → F ∗T ∗X/S|XFp
→ 0

of vector bundles on XFp .

4.2 Singular supports

Definition 4.2. Let X be a regular scheme of finite type over S. Let F be a sheaf on X
and C ⊂ FT ∗X be a closed conical subset. We say that F is micro supported on C if the
following conditions are satisfied:

The intersection of the support of F with XFp is a subset of the base of C.
Let h : W → X be a (separated) morphism of regular schemes of finite type over S. If

h is C-transversal, then h is F -transversal on a neighborhood of WFp .
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C-transversality: Support of h∗C ∩Ker(FT ∗X×X W → FT ∗W ) is empty. A property
on a neighborhood of WFp .
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Examples 4.3. 1. Every sheaf is ms on FT ∗X. If h : W → X is FT ∗X-transversal, then
h is smooth on a neighborhood of WFp .

2. locally constant F is ms on the 0-section F ∗T ∗
XX. Converse also holds but is less

trivial.

Open problems.
- Existence of SS. We can’t adapt the method of Beilinson to prove the existence

because we don’t have f . So, prove the existence, we introduce a relative variant. We will
study the relation between the absolute one and the relative one.

- dimension of SS. In the geometric case, Beilinson proved that every irreducible com-
ponent of S has the same dimension as X. The mixed characteristic is an analogue of
the situation where a morphism X → C to a smooth curve is given and we have only the
restriction to the fiber of a closed point of c. So, we expect that every irreducible compo-
nent of S has the same dimension as X or 1 less. I don’t know how to adapt Beilinson’s
method in the mixed characteristic case.

- description at the generic point of an irreducible component of the closed fiber. In
the geometric case, we have a description in terms of the characteristic form. Assume that
F = j!G for a locally constant sheaf G and the open immersion j : U = X D → X of the
complement of a divisor. Let K be the local field at the generic point ξ of an irreducible
component of D and V be the representation of the absolute Galois group GK defined by
F . Then, V has the slope decomposition V =

⊕
r≧1 V

(r) by the filtration by ramification

groups and the representation V (r) of the abelian graded quotient GrrGK = Gr
K/G

r+
K has

the decomposition by characters V (r) =
⊕

χni
i . If r > 1, we have a canonical injection

char : Hom(GrrGK ,Fp)→ Hom(mr
K
/mr+

K
,Ω1

X,ξ ⊗ k(ξ)) called the characteristic form. The
fiber of the singular support at ξ is given by the lines defined as the image of char χi

together with the conormal bundle if V (1) ̸= 0. In the mixed characteristic case, we expect
to replace Ω1

X,ξ ⊗ k(ξ) by FΩ1
X,ξ ⊗ k(ξ).

- CC. It is not convenient to have two types of components. dim = n and dim = n− 1.
To avoid this problem, assume that on the generic fiber the rank function is the constant
function 0. The ramification in the generic fiber is tame as characteristic is 0. Then,
we expect to define CC as a Z-linear combination of components with dimension n. We
further expect that they satisfy the following properties.

– Compatibility with pull-back for properly transversal morphisms.
– Compatibility with push-forward for proper morphisms.
– If X = S, CCF = (rankFx − SwF)[T ∗

s S].
In the case where dimX = 2 and rankF = 1, Ooe defined a candidate of CC and

proved a conductor formula [10].

Definition 4.4. Let X be a regular scheme of finite type over S. Let F be a sheaf on X
and C ⊂ FT ∗X be a closed conical subset. We say that F is S-micro supported on C if
the following conditions are satisfied:

Let h : W → X and f : W → Y be (separated) morphisms of regular schemes of finite
type over S and assume Y is smooth over S. If (h, f) is C-acyclic over S, then (h, f) is
F -acyclic over S on a neighborhood of WFp .

Heuristic observation: Pretend that S had a base field k, and let f0 : W → Y0 be a
morphism to smooth scheme over k. Then, (h, f0) would be F -acyclic if (h, f0) : W → X×k
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Y0 is F ⊠G0-transversal for every sheaf G0 on Y0. The base change Y = Y0×k S is smooth
over S and for the pull-back G to Y of G0, the F⊠G0-transversality of (h, f0) : W → X×kY0

means the F ⊠ G-transversality of (h, f) : W → X ×S Y . Thus, to formulate the relative
F -acyclicity, it suffices to determine which sheaves on Y are obtained as the pull-back
from Y0. If G is a such sheaf, it must be micro supported on the pull-back C ′ ⊂ FT ∗Y
of a closed conical subset of FT ∗Y0. If C

′ is obtained in this way, then Y → S should be
C ′-acyclic; the support of its inverse image by FT ∗S ×S Y → FT ∗Y should be empty.

Definition 4.5. 1. Let Y be a smooth scheme over S and G be a sheaf on Y . We say that
G is S-acyclic if there exists a closed conical subset C ′ ⊂ FT ∗Y satisfying the following
conditions:
G is micro supported on C ′ and Y → S is C ′-acyclic.
2. Let h : W → X and f : W → Y be (separated) morphisms of regular schemes of

finite type over S and assume Y is smooth over S. Let F be a sheaf on X. We say
that (h, f) is F -acyclic over S if for every sheaf G on Y which is S-acyclic, the morphism
(h, f) : W → X ×S Y is F ⊠ G-transversal.
Definition 4.6. Let X be a regular scheme of finite type over S and let C ⊂ FT ∗X be a
closed conical subset.

1. Let h : W → X and f : W → Y be morphisms of regular schemes of finite type over
S and assume Y is smooth over S. We say that (h, f) is C-acyclic over S if

(h∗C ×W f ∗FT ∗Y ) ∩Ker
(
(FT ∗X ×X W )×W (FT ∗Y ×Y W )→ FT ∗W )

⊂ Ker
(
(FT ∗X ×X W )×W (FT ∗Y ×Y W )→ FT ∗(X ×S Y )×X×SY W

)
.

2. We say that C is S-saturated if C is stable under the action of FT ∗S.

Examples 4.7. 1. If (h, f) is C-acyclic over S and if Y → S is C ′-acyclic, then, (h, f) is
pr◦1C + pr◦2C

′-transversal.
Since the right hand side is the image of FT ∗S ×S W , the C ′-acyclicity of Y → S

implies that the intersection of (FT ∗X ×X W ) ×W f ∗C ′ with the right hand side is a
subset of the 0-section. Since pr◦1C + pr◦2C

′ is the image of C ×S C ′, the intersection
(pr◦1C + pr◦2C

′) ∩ Ker
(
FT ∗(X ×S Y ) ×X×SY W → T ∗W

)
is the image of (C ×S C ′) ∩

Ker
(
(FT ∗X ×X W )×W (FT ∗Y ×Y W )→ T ∗W

)
. By the C-acyclicity of (h, f) the image

of the intersection is a subset of the 0-section.
2. Assume that h : W → X is C-transversal and let f : W → S be the canonical

morphism. If C is S-saturated, then (h, f) is C-acyclic over S.
Assume that (a, b) is in the kernel. Then, since C is S-saturated, (a + b, 0) is in the

kernel. Since h is C-transversal, we have a+ b = 0. This means the inclusion.

Relation between the absolute micro support and S-relative micro support.

Expectation 4.8. Assume F is micro supported on C and G is micro supported on C ′.
If supp (C ∩ C ′) is empty, then F ⊗ G is micro supported on C + C ′.

More weakly, assume F on X is micro supported on C and G on Y smooth over S is
micro supported on S-acyclic C ′. Then F ⊠ G is micro supported on pr◦1C + pr◦2C

′.

Lemma 4.9. 1. Assume that F is ms on C. If Expectation 4.8 holds, then F is S-ms on
C.

2. Assume that F is S-ms on S-saturated C. Then F is ms on C.
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Proof. 1. Suppose (h, f) is C-acyclic over S. Let G be a sheaf on Y micro supported on
S-acyclic C ′. Then, by Expectation, F ⊠ G is micro supported on pr◦1C + pr◦2C

′. Since
(h, f) is pr◦1C + pr◦2C

′-transversal by Example 4.7.1, it is F ⊠ G-transversal.
2. Assume that h : W → X is C-transversal. Let f : W → S be the canonical mor-

phism. Then, since C is assumed S-saturated, (h, f) is C-acyclic over S by Example 4.7.2.
Hence (h, f) : W → X ×S S is F ⊠ Λ-transversal.

If the singular supports exist, Lemma means the inclusions SSSF ⊂ SSF ⊂ SSsat
S F .

Thus, SSSF can be too small and SSsat
S F can be too large. Their difference is at most

dimension 1. If FT ∗S ×S X → FT ∗X is the 0-mapping, then we have SSSF = SSsat
S F

and SSF should be also the same. If X is smooth over S, S-saturated closed conical
subsets of FT ∗X corresponds to closed conical subsets of T ∗(X/S)|Fp .

Theorem 4.10. SSsat
S F exists.

We may reduce to the case X = Pn. Then, we may work with closed conical subsets
of T ∗(X/S)|Fp and the method of Beilinson works.

5 Appendix. Local acyclicity and transversality

Proof of Proposition 3.9. By devissage, the condition (2) is equivalent to the condition
where G is restricted to G = i∗L for immersions i : V → Y of regular subschemes and
locally constant constructible sheaves L on V as in Proposition 5.1 (2′) since Y is excellent.

Let h : W = X ×Y V → X be the base change of i : V → Y and consider the cartesian
diagram

(5.1)

W
γ′
−−−→ X ×S V

pr2−−−→ V

h

y y1×i

yi

X
γ−−−→ X ×S Y

pr2−−−→ Y.

The condition (2′) in Proposition 5.1 means that the morphism

γ∗(F ⊠ i∗L) = F ⊗ f ∗i∗L → h∗(h
∗F ⊗ g∗L) = h∗γ

′∗(F ⊠ L)

is an isomorphism. Hence this for every V and L as above is equivalent to (1) by Propo-
sition 5.1 (2′)⇔(1). Thus it suffices to show that the following conditions are equivalent:

(1′) For every immersion i : V → Y of regular subscheme and every locally constant
constructible sheaf L on V , the morphism

(5.2) γ∗(F ⊠ i∗L)→ h∗γ
′∗(F ⊠ L)

is an isomorphism.
(2′) For every immersion i : V → Y of regular subscheme and every locally constant

constructible sheaf L on V , the morphism

(5.3) cγ,F⊠i∗L : γ
∗(F ⊠ i∗L)⊗ γ!Λ→ γ!(F ⊠ i∗L)

is an isomorphism.
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For an immersion i : V → Y of subscheme and a constructible sheaf G on V , we
construct a commutative diagram

(5.4)

γ∗(F ⊠ i∗G)⊗ γ!Λ
cγ,F⊠i∗G−−−−−→ γ!(F ⊠ i∗G)

(5.2)′
y y

h∗(γ
′∗(F ⊠ G)⊗ h∗γ!Λ) −−−→ h∗γ

′!(F ⊠ G)

similarly as (5.17). The lower horizontal arrow is obtained by applying h∗ to the compo-
sition

(5.5) γ′∗(F ⊠ G)⊗ h∗γ!Λ→ γ′!(F ⊠ G)

of cγ′,F⊠G with the morphism induced by h∗γ!Λ → γ′!Λ. The right vertical arrow is
the composition of γ!(F ⊠ i∗G) → γ!(1 × i)∗(F ⊠ G) and the base change isomorphism
γ!(1× i)∗ → h∗γ

′!. By the assumption that the morphism X → S is universally F -acyclic
and by Corollary 5.2, the morphism F ⊠ i∗G → (1× i)∗(F ⊠G) is an isomorphism. Hence
the right vertical arrow is an isomorphism. The left vertical arrow is the adjoint of the
isomorphism h∗γ∗(F⊠i∗G)⊗h∗γ!Λ→ γ′∗(F⊠G)⊗h∗γ!Λ. By the assumption that Y → S
is smooth, we have an isomorphism Λ(−d)[−2d] → γ!Λ for the relative dimension d of Y
over S. Hence the left vertical arrow (5.2)′ is an isomorphism if and only if (5.2) is an
isomorphism. By applying Lemma 5.3.2 to the left square of (5.1), we see that (5.4) is
commutative.

We show that the following conditions are equivalent:
(1◦) (5.5) and the left vertical arrow (5.2)′ are isomorphisms.
(2◦) (5.3) is an isomorphism,
(3◦) All arrows in (5.4) are isomorphisms.
(1◦)⇒(3◦): If (5.5) is an isomorphism, then the lower horizontal arrow in (5.4) is an

isomorphism. Further if the left vertical arrow (5.2)′ is an isomorphism, (3◦) is satisfied.
(2◦)⇒(1◦): If (5.3) is an isomorphism, then the composition of (5.4) via upper right is

an isomorphism. Since h is an immersion, this implies that (5.5) is an isomorphism. The
rest is similar to the proof of (1◦)⇒(3◦).

(3◦)⇒(2◦) is clear.
The implication (2◦)⇒(1◦) implies (2′)⇒(1′). Thus it suffices to show that (5.5) is an

isomorphism assuming (1′) for an immersion i : V → Y of regular schemes and a locally
constant sheaf L on V . Since (5.5) for locally constant L is the tensor product of (5.5) for
Λ with the identity of the pull-back of L, it suffices to show the isomorphism for a single
rank 1 sheaf L. Thus, we may further assume that L = i!Λ by purity, [7, Exposé XVI,
Théorème 3.1.1].

First, we prove (5.5) is an isomorphism in the case where i is an open immersion and
L = Λ. Since Y is smooth over S, the morphism γ is a section of a smooth morphism
pr1 : X ×S Y → X. Hence γ is F ⊠ Λ-transversal. Since i is an open immersion, its
restriction γ′ : W → X×SV is also F⊠Λ-transversal. This means that γ′∗(F⊠Λ)⊗γ′!Λ→
γ′!(F ⊠ Λ) (5.5) is an isomorphism, Since we assume (1′), γ is F ⊠ i∗Λ-transversal by
(1◦)⇒(2◦). Namely, (5.3) is an isomorphism for L = Λ.

Before proving the general case, we prove (5.3) is an isomorphism for a closed immersion
i and G = i!Λ. Let j : Y V → Y be the open immersion of the complement and consider
the distinguished triangle F ⊠ i∗i

!Λ→ F ⊠ Λ→ F ⊠ j∗Λ→ . As we have already shown
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above, γ : X → X ×S Y is transversal for the last two terms. Hence the morphism γ is
also F ⊠ i∗i

!Λ-transversal and (5.3) for G = i!Λ is an isomorphism. By (2◦)⇒(1◦), (5.5) is
an isomorphism for G = i!Λ.

We show (5.5) is an isomorphism in the general case where V is regular and L = i!Λ.
Let i : V → Y be the closed immersion of the closure. Then we obtain an isomorphism

(5.5) for L = i!Λ as the restriction of that for G = i
!
Λ.

Proposition 5.1. (cf. [6, Theorem 7.6.9]) Let f : X → Y be a morphism of schemes and
F be a sheaf on X. The following conditions are equivalent:

(1) f is F-acyclic.
(2) For every cartesian diagram

(5.6)

X
h←−−− W

f

y yg

Y
i←−−− V

such that i is an immersion and for every sheaf G on V , the morphism

(5.7) F ⊗ f ∗i∗G → h∗(h
∗F ⊗ g∗G)

is an isomorphism.
(2′) For every cartesian diagram (5.6) such that i is an immersion and for every locally

constant constructible sheaf L on V , the morphism

(5.8) F ⊗ f ∗i∗L → h∗(h
∗F ⊗ g∗L)

is an isomorphism.
If Y is an excellent noetherian scheme, we may assume that V is regular in (2′).

Proof. (1)⇒(2): The immersion i is the composition of an open immersion and a closed
immersion. For an open immersion, the isomorphism (5.7) is [8, Proposition 2.10], [6,
Lemma 7.6.7]. If i is a closed immersion, the isomorphism (5.7) follows from the projection
formula and the proper base change theorem.

(2)⇒(2′) is clear.
(2′)⇒(1): Let y be a geometric point of Y and t be a geometric point of Y(y). We show

that the morphism

(5.9) F|Xy → i∗j∗F|Xt

is an isomorphism. Let v be the image of t by Y(y) → Y and V ⊂ Y be the closure of {v}.
Then, there exists a projective system pλ : Uλ → Vλ of finite étale morphisms of integral
schemes and open immersions jλ : Vλ → V and an isomorphism lim−→(jλpλ)∗Λ → j∗Λ. If Y
is excellent, we may assume that Vλ are regular. Let j : t→ V be the canonical morphism
and consider the cartesian diagram

X
h←−−− W

hλ←−−− W ×V Vλ
kλ←−−− W ×V Uλ

f

y yg

ygλ

y
Y

i←−−− V
jλ←−−− Vλ

pλ←−−− Uλ

22



extending (5.6). As the isomorphism (5.8) for the immersions ijλ : Vλ → Y and the locally
constant sheaves pλ∗Λ on Vλ, we obtain an isomorphism

(5.10) F ⊗ f ∗i∗jλ∗pλ∗Λ→ (hhλ)∗((hhλ)
∗F ⊗ g∗λpλ∗Λ)

on X. The target of (5.10) is identified with (hhλkλ)∗(hhλkλ)
∗F by the projection formula.

We consider the cartesian diagram

Y
i←−−− V

jλ←−−− Vλ
pλ←−−− Uλ ←−−− tx x x x x

Y(y)

i(y)←−−− V(y)

jλ(y)←−−− Vλ(y)

pλ(y)←−−− Uλ(y) ←−−− t(y)

and let (y) denote the base change by Y ← Y(y). Then the pull-back of (5.10) to X ×Y Y(y)

gives an isomorphism

(5.11) F|X×Y Y(y)
⊗ f ∗

(y)(i(y)pλ(y)jλ(y))∗Λ→ (hhλkλ)(y)∗(hhλkλ)
∗
(y)F|X×Y Y(y)

.

Let Tλ(y) ⊂ Uλ(y) be the connected component containing the image of t→ Uλ(y) induced
by t→ Y(y) and consider the cartesian diagram

X ×Y Y(y)

hTλ(y)←−−−− X ×Y Tλ(y)

f(y)

y yfTλ(y)

Y(y)

jTλ(y)←−−− Tλ(y)

whose limit gives the cartesian diagram

(5.12)

X ×Y Y(y)
j←−−− Xt

f(y)

y yft

Y(y)
jY←−−− t.

Then, we obtain an isomorphism

(5.13) F|X×Y Y(y)
⊗ f ∗

(y)jTλ(y)∗Λ→ hTλ(y)∗hTλ(y)
∗F|X×Y Y(y)

.

as a direct summand of (5.11). Since t = lim←−Tλ(y), by taking the limit of (5.13), we obtain
the isomorphism

(5.14) F|X×Y Y(y)
⊗ f ∗

(y)jY ∗Λ→ j∗j
∗(F|X×Y Y(y)

).

Corollary 5.2. ([9, Proposition 2.2]) Assume that X → S is universally F-acyclic. Then,
for any immersion i : V → Y of schemes over S and for any sheaf G on V , the morphism
F ⊠ i∗G → (1× i)∗(F ⊠ G) is an isomorphism.
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Lemma 5.3. Let

(5.15)

W ′ h′
−−−→ X ′

g

y yf

W
h−−−→ X,

be a cartesian diagram of noetherian schemes and assume that the horizontal arrows are
separated morphisms of finite type.

1. For a sheaf F on X, the diagram

(5.16)

g∗(h∗F ⊗ h!Λ)
g∗ch,F−−−−→ g∗h!Fy y

h′∗f ∗F ⊗ h′!Λ
ch′,f∗F−−−−→ h′!f ∗F

is commutative.
2. Let F ′ be a sheaf on X ′. Then, the following diagram is commutative:

(5.17)

h∗f∗F ′ ⊗ h!Λ
ch,f∗F′
−−−−→ h!f∗F ′y y

g∗(h
′∗F ′ ⊗ h′!Λ)

g∗(ch′,F′ )
−−−−−→ g∗h

′!F ′

where the left vertical arrow is the adjoint of

g∗(h∗f∗F ′ ⊗ h!Λ) = g∗h∗f∗F ′ ⊗ g∗h!Λ
can⊗1−−−→ h′∗f ∗f∗F ′ ⊗ g∗h!Λ −−−→ h′∗F ′ ⊗ h′!Λ.
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