
Proceedings of the International Congress of Mathematicians
Hyderabad, India, 2010
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Abstract. We discuss recent developments on geometric theory of ramification of schemes
and sheaves. For invariants of �-adic cohomology, we present formulas of Riemann-Roch
type expressing them in terms of ramification theoretic invariants of sheaves. The latter
invariants allow geometric computations involving some new blow-up constructions.
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Introduction

For an extension of a number field, the discriminant is an invariant of funda-
mental importance, in the classical theory of algebraic integers. The celebrated
conductor-discriminant formula [40, Chapitre VI Section 3 Corollaire 1] expresses
the discriminant as the product of local invariants of ramification, called the con-
ductor. The conductor is defined for a Galois representation, as a measure of the
wild ramification. The relation of the conductor of a Galois representation with
the level of corresponding modular form plays a crucial role in the quantitative
formulation of the Langlands correspondences.

In arithmetic geometry, the conductor showed up in the 60’s in the following
scenes among others. For an �-adic sheaf on a curve over an algebraically closed
field of positive characteristic different from �, the Grothendieck-Ogg-Shafarevich
formula [19] computes the Euler number, in geometric terms. The conductor ap-
pears in the formula as the local contribution of ramification. The formula is
a sheaf theoretic variant of the Riemann-Hurwitz formula, which is a geometric
counterpart of the conductor-discriminant formula, with the analogy between the
discriminant of a number field and the genus of a curve. Grothendieck raised a
question to find a formula of Riemann-Roch type computing the Euler number
in higher dimension, which generalizes the GOS formula. Deligne and Laumon
deduced a generalization for surfaces using fibration [16] [32], a method different
from that taken in this article.

For an elliptic curve over a local field, the Tate-Ogg formula [34] expresses the
relation between the discriminant and the conductor of the elliptic curve. In the
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seminal paper [11], Bloch found a correct generalization to arithmetic schemes in
general dimension and proved it for curves. His crucial insight is that the ramifi-
cation should give rise to an invariant as a 0-cycle class, although the ramification
does occur in codimension 1. Kato developed this idea in [28].

In this article, we discuss recent developments on geometric theory of rami-
fication, inspired by the insight of Bloch. Some of related results were already
discussed 20 years ago in Kyoto by Kato [27, Section 4]. We will not touch on
arithmetic applications of ramifications, including canonical subgroups of abelian
varieties [3], [42], explicit computation of local Fourier transform [8], finite flat
group schemes [21] etc., although they should not be ignored. We will not discuss
either the p-adic approach using p-adic D-modules [10], see e.g. [9], [33].

The article consists of two parts. In the first part, we introduce an invariant,
called the Swan class, as a measure of the wild ramification of a covering of schemes
or a sheaf. We present formulas of Riemann-Roch type computing the Euler num-
ber or the conductor of cohomology of an �-adic sheaf in terms of the Swan class,
as generalizations of the GOS formula and Bloch’s formula. In the geometric case,
the characteristic class of an �-adic sheaf is defined as a cohomology class and is
shown to equal the cycle class of the Swan class. This gives a refinement of the
generalized GOS formula.

In the second part, we discuss a new geometric method to study the wild
ramification, blowing-up at the ramification locus in the diagonal. A traditional
approach in the study of ramification of a sheaf, taken in the first part of the article,
is to kill the ramification by taking a ramified covering. The new approach replaces
ramified coverings by blowing-ups. It grew out of the definition of the upper
numbering filtration of ramification groups of the absolute Galois group of a local
field with not necessarily perfect residue field. By globalizing the construction, we
have a geometric method to study the ramification of a sheaf along the boundary.

At the end of the article, we introduce the characteristic cycle of an �-adic sheaf
satisfying a certain condition and show that it computes the characteristic class
and hence the Euler number. An analogy of the wild ramification of �-adic sheaves
with the irregularities of D-modules has been observed by many mathematicians
e.g [15], [28]. The author expects that the new geometric approach shed more light
on it.

The author would like to thank his coauthors Kazuya Kato and Ahmed Abbes
for long time and fruitful collaborations. Large parts of Sections 1.3 and 2.2 are
based on papers in preparation coauthored with them, respectively. It should be
evident from the article that a considerable part of the contents is due to them.

1. �-adic Riemann-Roch formulas

In Sections 1.1 and 1.2, we consider the geometric case where the base field is a
perfect field of positive characteristic. We introduce in Section 1.1 the Swan class
of an �-adic sheaf and state a formula for the Euler number, as a generalization
of the Grothendieck-Ogg-Shafarevich formula. We define the characteristic class
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in Section 1.2 as a refinement of the Euler number and gives a relation with the
Swan class. In Section 1.3, we consider the arithmetic case where the base field is
a p-adic field with perfect residue field and formulate results analogous to those in
Section 1.1.

1.1. Euler numbers. Let k be a perfect field and U be a smooth separated
scheme of finite type of dimension d over k. For a separated scheme X of finite type
over k, the Chow group CH0(X) denotes the group of 0-cycles modulo rational
equivalence. We define

CH0(∂U) = lim←−CH0(X \ U), CH0(∂V )Q = lim←− (CH0(X \ U)⊗Z Q)

to be the projective limits with respect to proper schemes X containing U as a
dense open subscheme and proper push-forward. The degree maps CH0(X \U)→
CH0(Spec k) = Z induce degk : CH0(∂U)→ Z.

For a finite etale Galois covering V → U of Galois group G, we define the Swan
character class

sV/U (σ) ∈ CH0(∂V )Q

for σ ∈ G. We refer to [31, Definition 4.1] for the definition in the general case that
requires alteration [14], causing the denominator. Here we only give a definition of
the image in CH0(Y \V ), for a smooth compactification Y of V satisfying certain
good properties.

Assume Y is a proper smooth scheme containing V as the complement of a divi-
sor D with simple normal crossings. Let D1, . . . , Dn be the irreducible components
of D and let (Y ×kY )′ → Y ×kY be the blow-up at Di×k Di for every i = 1, . . . , n.
Namely the blow-up by the product of the ideal sheaves IDi×kDi ⊂ OY ×kY . We call
the complement Y ∗k Y ⊂ (Y ×kY )′ of the proper transform of (D×kY )∪(Y ×kD)
the log product. The diagonal map δ : Y → Y ×k Y is uniquely lifted to a closed
immersion δ̃ : Y → Y ∗k Y called the log diagonal. The log products and the
log diagonal seem to have been first introduced by Faltings [20] and by Pink [36]
apparantly independently. For an explicit local description, see Example 2.2 in
Section 2.2. For more intrinsic definition in the language of log geometry, we refer
to [30, Section 4]. We introduce the log product in order to focus on the wild
ramification. A heuristic reason for this is that a tamely ramified covering can be
regarded as an unramified covering in log geometry.

Let σ ∈ G be an element different from the identity and let Γ be a closed
subscheme of Y ∗k Y of dimension d = dimY such that the intersection Γ∩(V×kV )
is equal to the graph Γσ of σ. By the assumption that V is etale over U , the
intersection Γσ ∩ΔV with the diagonal ΔV = δ(V ) ⊂ V ×k V is empty. Hence the
intersection product (Γ,Δlog

Y )Y ∗kY with the log diagonal Δlog
Y = δ̃(Y ) ⊂ Y ∗k Y

is defined in CH0(Y \ V ). The intersection product (Γ,Δlog
Y )Y ∗kY is shown to be

independent of the choice of Γ under the assumption that V → U is extended to
a map Y → X to a proper scheme X over k containing U as the complement of a
Cartier divisor B and that the image of Γ in the log product X ∗k X defined with
respect to B is contained in the log diagonal Δlog

X .
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The Swan chararacter class sV/U (σ) ∈ CH0(Y \ V ) for σ 
= 1 is defined by

sV/U (σ) = −(Γ, Δlog
Y )Y ∗kY . (1)

For σ = 1, it is defined by requiring
∑

σ∈G sV/U (σ) = 0. For σ 
= 1, we have

2 dim V∑
q=0

(−1)qTr(σ∗ : Hq
c (Vk̄, Q�)) = − degk sV/U (σ) (2)

by a Lefschetz trace formula for open varieties [31, Theorem 2.3.4] for a prime
number � different from the characteristic of k.

Example 1.1. Assume that V is a curve. Then, Y is unique and we have
CH0(∂V ) = CH0(Y \ V ) =

⊕
y∈Y \V Z. For σ 
= 1,∈ G, we have

sV/U (σ) = −
∑

y∈{y∈Y |σ(y)=y}
length Oy

/(
σ(a)

a
− 1; a ∈ Oy, 
= 0

)
· [y]. (3)

Let � be a prime number different from p = char k > 0. We consider a smooth
�-adic sheaf F on U and define the Swan class SwUF ∈ CH0(∂U)Q(ζp∞ ). We refer
to [31, Definition 4.2.2] for the definition in the general case that requires reduction
modulo � and Brauer traces [22]. Here we only give a definition assuming that there
exists a finite etale Galois covering f : V → U trivializing F . Let G denote the
Galois group Gal(V/U ) and M be the representation of G corresponding to F .
Then, the Swan class is defined by

SwUF =
1
|G|

∑
σ∈G

f∗sV/U (σ) · Tr(σ : M). (4)

By the equality (3), this is an immediate generalization of the classical definition
of the Swan conductor [41, Partie III], see also Example 1.3 in Section 1.3. For
the Swan class, we expect that the Hasse-Arf theorem [40, Chapitre VI Section 2
Théorème 1] can be generalized as follows:

Conjecture 1.1. The Swan class SwUF ∈ CH0(∂U)Q(ζp∞ ) is in the image of
CH0(∂U).

Conjecture 1.1 implies a conjecture of Serre on the integrality of the Artin
character for an isolated fixed point [39] in the geometric case. By the standard
argument using Brauer induction, it is reduced to the rank 1 case. By computing
the Swan class in the rank 1 case using Theorem 2.12, Conjecture 1.1 is proved in
[31, Corollary 5.1.7] for U of dimension 2. The conjecture of Serre for surfaces is
proved earlier in [29].

For a smooth �-adic sheaf F on U , the Euler number χc(Uk̄,F) is defined as
the alternating sum

∑2 dim U
q=0 (−1)q dimHq

c (Uk̄,F). The Lefschetz trace formula for
open varieties (2) implies the following generalization of the Grothendieck-Ogg-
Shafarevich formula:
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Theorem 1.2 ([31, Theorem 4.2.9]). Let U be a separated smooth scheme of finite
type over k. For a smooth �-adic sheaf F on U , we have

χc(Uk̄,F) = rank F · χc(Uk̄, Q�)− degk SwUF . (5)

1.2. Characteristic classes. We recall from [6, Definition 2.1.1] the defi-
nition of the characteristic class of an �-adic sheaf on a separated scheme of finite
type over a field k of characteristic different from �. Although it is not stated
explicitly, essential ingredients in the definition are contained in [18], see also [24,
Section 9.1].

Let X be a separated scheme of finite type over a field k. As a coefficient ring
Λ, we consider a ring finite over Z/�nZ, Z� or Q� for a prime number � 
= char k.
Let a : X → Spec k denote the structure map and KX = Ra!Λ denote the dualizing
complex. If X is smooth of dimension d over k, we have KX = Λ(d)[2d].

Let F be a constructible sheaf of flat Λ-modules on X and consider the object

H = RHom(pr∗2F , Rpr!1F)

of the derived category Dctf(X×kX, Λ) of constructible sheaves of Λ-modules of fi-
nite tor-dimension on the product X×kX . If X is smooth of dimension d over k and
if F is smooth, we have a canonical isomorphism H → Hom(pr∗2F , pr∗1F)(d)[2d].

A canonical isomorphism

End(F)→ H0
X(X ×k X,H) (6)

is defined in [18]. Hence, we may regard the identity idF as a cohomology class
idF ∈ H0

X(X×kX,H) supported on the diagonal X ⊂ X×kX . Let δ : X → X×kX
be the diagonal map. Further in [18], a canonical map δ∗H → KX is defined as
the trace map. The characteristic class

C(F) ∈ H0(X, KX)

is defined as the image of the pull-back δ∗idF ∈ H0(X, δ∗H) by the induced
map H0(X, δ∗H) → H0(X, KX). If X is smooth and if F is smooth, we have
C(F) = rank F · (X, X)X×kX where (X, X)X×kX denotes the self-intersection in
the product X ×k X . The Lefschetz trace formula [18] asserts that, if X is proper,
the trace map H0(X, KX) → Λ sends the characteristic class C(F) to the Euler
number χ(Xk̄,F). In other words, the characteristic class is a geometric refinement
of the Euler number.

By a standard devissage, the computation of the characteristic classes is reduced
to that of the difference C(j!FU ) − rank FU · C(j!Λ) where j : U → X is the
immersion of a dense open subscheme U ⊂ X smooth over k and FU is a smooth
sheaf of flat Λ-modules on U . Under a certain mild technical assumption on F ,
the difference is computed by the Swan class as follows.

Theorem 1.3 ([6, Theorem 3.3.1]). Let U be a smooth dense open subscheme of a
separated scheme X of finite type over k. Let Λ be a finite extension of Q� and FU
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be a smooth Λ-sheaf on U . Assume that there exists a finite etale covering V → U
such that the pull-back FV is of Kummer type with respect to the normalization Y
of X in V .

Then, we have

C(j!FU )− rank FU · C(j!Λ) = −[SwUFU ] (7)

in H0(X, KX), where [ ] denotes the cycle class.

We refer to [6, Definition 3.1.1] for the definition of being of Kummer type.
We only remark here that the purity theorem of Zariski-Nagata and Abhyankar’s
lemma [37] imply that the assumption on F is satisfied if we admit a strong form of
resolution of singularities for Y . One can also deduce Theorem 1.2 unconditionally
from Theorem 1.3.

Problem 1. Find a definition of the characteristic class of an �-adic sheaf on a
separated scheme of finite type over a complete discrete valuation ring with perfect
residue field and prove a relation similar to Theorem 1.3 with the Swan class defined
in Section 1.3.

1.3. Conductor formula. Let K be a complete discrete valuation field
with perfect residue field F = OK/mK . For simplicity, we will assume that the
characteristic of K is 0. We consider constructions and formulas for schemes over K
analogous to those in Section 1.1. For a scheme X of finite type over S = Spec OK ,
let G(X) denote the Grothendieck group of coherent OX -modules and F• be the
increasing filtration of G(X) defined by the dimension of support.

Let U be a smooth separated scheme of finite type of dimension d− 1 over K.
We define

F0G(∂F U) = lim←−F0G(XF ), F0G(∂F U)Q = lim←− (F0G(XF )⊗Z Q)

to be the projective limits with respect to schemes X proper over S containing U
as a dense open subscheme and proper push-forward. For a morphism f : U → V
of separated smooth schemes of finite type over K, the push-forward maps define
a map f! : F0G(∂F U) → F0G(∂F V ). In particular, for V = Spec K, the degree
map degF : F0G(∂F U)→ Z is defined.

For a finite etale Galois covering V → U of Galois group G, we define the Swan
character class

sV/U (σ) ∈ F0G(∂F V )Q

for σ ∈ G. Here we only sketch the definition of the image in F0G(YF ), for a
smooth compactification Y of V satisfying certain good properties similarly as in
Section 1.1.

Assume Y is a proper regular flat scheme over S containing V as the comple-
ment of a divisor D with simple normal crossings. Then, we define the log product
Y ∗S Y similarly to Y ∗k Y . The diagonal map δ : Y → Y ×S Y is uniquely lifted
to a closed immersion δ̃ : Y → Y ∗S Y called the log diagonal.
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Let σ ∈ G be an element and let Γ be a closed subscheme of Y ∗S Y of
dimension d = dimY such that the intersection Γ∩(V×SV ) is equal to the graph Γσ

of σ. The localized K-theoretic intersection product ((Γ,Δlog
Y ))Y ∗SY ∈ F0G(YF )

is then defined by

((Γ,Δlog
Y ))Y ∗SY = (−1)q

(
[T or

OY ∗SY

q (OΓ,OΔlog
Y

)]− [T or
OY ∗SY

q+1 (OΓ,OΔlog
Y

)]
)
(8)

for q ≥ d = dimY [30, Section 3]. It is a non-trivial fact that the right hand side
is independent of the choice of Γ or q ≥ d, under an assumption similar to the
corresponding one in Section 1.1. We write ((Γσ, ΔV )) for ((Γ,Δlog

Y ))Y ∗SY .
The Swan chararacter class sV/U (σ) ∈ F0G(YF ) for σ 
= 1 is defined by

sV/U (σ) = −((Γσ, ΔV )). (9)

For σ = 1, it is defined by requiring
∑

σ∈G sV/U (σ) = 0.

Example 1.2. Assume that V = Spec L for a totally ramified extension of K.
Then, Y = Spec OL is unique and we have F0G(∂F V ) = F0G(Spec F ) = Z. The
log product Y ∗S Y is Spec OL⊗OKOL[U±1]/(1⊗ t− t⊗1 ·U) for a prime element
t of L, by definition. The minimal polynomial f ∈ OK [T ] of t is an Eisenstein
polynomial. We have Y ∗S Y = Spec OL[U±1]/(f(tU)).

Assume L is a Galois extension and let σ be an element of G = Gal(L/K). We
define gσ ∈ OL[U ] by f(tU) = gσ · (U − σ(t)/t) and put A = OL[U±1]/(f(tU)),
Oσ = A/(U − σ(t)/t). Then we have a periodic free resolution

· · · �� A
×(U−σ(t)/t) �� A

×gσ �� A
×(U−σ(t)/t) �� A �� Oσ → 0.

Hence, for σ 
= 1, we have

T orA
q (Oσ,O1) =

{
OL/(σ(t)/t− 1) if q is even,
0 if q is odd.

Consequently, we have

sV/U (σ) = −ordL

(
σ(t)

t
− 1

)
. (10)

For a smooth �-adic sheaf F on U , the Swan class SwUF ∈ F0G(∂F U)Q(ζp∞ )

is defined. Under the same simplifying assumptions, the Swan class is defined
by the same formula (4) as in the geometric case. By the equality (10), this is
an immediate generalization of the classical definition of the Swan conductor as
follows.

Example 1.3. We consider F on U = Spec K corresponding to an �-adic repre-
resentation M of the absolute Galois group GK = Gal(K̄/K) factoring through
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a finite quotient G = Gal(L/K). Then, the Swan class SwUF is nothing but the
Swan conductor SwKM ∈ Z = CH0(∂F U) = CH0(Spec F ) defined by

SwKM =
1
|G|

∑
σ∈G

sL/K(σ) ·Tr(σ : M). (11)

For the Swan class defined above, we also expect that the Hasse-Arf theorem
can be generalized as in Conjecture 1.1. As in the geometric case, it is proved for a
curve U over K. A proof of the conjecture of Serre [39] in the corresponding case
is announced in [27], see also [1], [2].

Let U1 ⊂ U be a regular closed subscheme and i : U1 → U and j : U0 = U \U1 →
U denote the immersions. Then, we have an excision formula

SwUF = j!SwU0F|U0 + i!SwU1F|U1 . (12)

This enables us to extend the definition of the Swan classes to constructible sheaves.
For a smooth sheaf F on U , we define a variant of the Swan class by

SwUF = −rank F · ((ΔU , ΔU )) + SwUF .

This is also extended to constructible sheaves by the excision formula.
For the variant, we have the following formula of Riemann-Roch type:

Theorem 1.4. Assume K is of characteristic 0. For a morphism f : U → V of
separated schemes of finite type over K and for a constructible �-adic sheaf F on
U , we have

SwV Rf!F = f!SwUF . (13)

The outline of the proof is as follows. By standard devissage using the excision
formula, it is reduced to the relative curve case. Then, we take an alteration and
apply a logarithmic Lefschetz trace formula for an open variety over a local field
generalizing [30, Theorem 6.5.1], to conclude the proof.

In the case where V = Spec K, Theorem 1.4 gives a conductor formula. For
a smooth �-adic sheaf F on a separated scheme U of finite type over K, let
SwKH∗

c (UK̄ ,F) denote the alternating sum
∑2 dim U

q=0 (−1)qSwKHq
c (UK̄ ,F) of the

Swan conductor.

Corollary. Let U be a separated smooth scheme of finite type of dimension d− 1
over K.

1. For a smooth �-adic sheaf F on U , we have

SwKH∗
c (UK̄ ,F) = rank F · SwKH∗

c (UK̄ , Q�) + degF SwUF . (14)

2. ([30, Theorem 6.2.3]) Assume U is proper over K and let X be a proper
regular flat scheme such that U = XK . Assume that the reduced closed fiber XF,red

is a divisor with simple normal crossings. Then, we have

χc(XK̄ , Q�)− χc(XF̄ , Q�) + SwKH∗
c (XK̄ , Q�) = (−1)d−1 degF cd(Ω1

X/S), (15)

where cd(Ω1
X/S) ∈ CH0(XF ) denotes the localized Chern class.
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The formula (15) is conjectured by Bloch in [11] and proved there for curves.
For surfaces dimU = 2, we can remove the assumption on the reduced closed fiber
XF,red, since the strong resolution of singularity is now obtained by blow-up in
dimension 2 [23]. In a geometric case, a formula analogous to (14) is obtained by
using a localized refinement of the characteristic class in [43], assuming resolution
of singularities.

2. Geometric ramification theory

We recall the geometric definition of the filtration by ramification groups of Galois
groups of local fields in Section 2.1. We globalize it in Section 2.2 and study the
ramification of a Galois covering of a smooth scheme over a perfect field of char-
acteristic p > 0 along the boundary. We compute in Section 2.3 the characteristic
class using the construction in Section 2.2 and introduce the characteristic cycle
of an �-adic sheaf that enables one to compute the Euler number.

2.1. Ramification groups of a local field. Let K be a complete dis-
crete valuation field with not necessarily perfect residue field F = OK/mK . For
a finite Galois extension L over K, the Galois group G = Gal(L/K) has two
decreasing filtrations, the lower numbering filtration (Gi)i∈N and the upper num-
bering filtration (Gr)r∈Q,>0. In the classical case where the residue field is perfect,
they are the same up to renumbering by the Herbrand function [40, Chapitre IV
Section 3]. However, their properties make good contrasts. The lower one has
an elementary definition and is compatible with subgroups while the upper one
has more sophisticated definition and is compatible with quotients. The lower
one is simply defined by Gi = Ker(G → Aut(OL/mi

L)). More geometrically, it is
rephrased as follows.

Take a presentation OK [X1, . . . , Xn]/(f1, . . . , fn)→ OL of the integer ring of
L. We consider the n-dimensional closed disk Dn defined by ‖x‖ ≤ 1 over K in
the sense of rigid geometry and the morphism of disks f : Dn → Dn defined by
f1, . . . , fn. Then the Galois group G is identified with the inverse image f−1(0) of
the origin 0 ∈ Dn. In other words, we have a cartesian diagram

G ��

��

Dn

f

��
{0} �� Dn.

(16)

The subgroups Gi and Gr are defined to consist of the points of G that are close to
the identity in certain senses. For the lower one, the closeness is simply measured
by the distance. Namely, the lower numbering subgroup Gi ⊂ G consists of the
points σ ∈ G satisfying d(σ, id) ≤ |πi

L| for a prime element πL of L.
To define the upper numbering filtration, we consider, for a rational number

r > 0, the inverse image Vr = {x ∈ Dn | d(f(x), 0) ≤ |πK |r} ⊂ Dn of the
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closed subdisk of radius |πK |r, as an affinoid subdomain containing G. The upper
numbering subgroup Gr consists of the points in G contained in the same geometric
connected component of Vr as the identity.

Theorem 2.1 ([4, Theorems 3.3, 3.8]). Let L be a finite Galois extension over K
of Galois group G = Gal(L/K).

1. For a rational number r > 0, the subset Gr ⊂ G defined above is independent
of the choice of presentation OK [X1, . . . , Xn]/(f1, . . . , fn)→ OL and is a normal
subgroup of G. Further the inclusion G→ Vr induces a bijection G/Gr → π0(Vr)
to the set of geometric connected components.

2. There exist rational numbers 0 = r0 < r1 < . . . < rm such that Gr = Gri

for r ∈ (ri−1, ri] ∩Q and i = 1, . . . , m and Gr = 1 for r > rm.
3. For a subfield M ⊂ L Galois over K and for a rational number r > 0, the

subgroup Gal(M/K)r ⊂ Gal(M/K) is the image of Gr = Gal(L/K)r.

The definition of the upper numbering filtration in the general residue field case
is first found using rigid geometry, as described above. The use of rigid geometry is
quite essential. For example, the proof of 2. in Theorem 2.1 relies on the reduced
fiber theorem in rigid geometry [12]. However, an alternative scheme theoretic
approach described below turned out to be quite powerful as well.

In the following, we give a definition of a logarithmic variant of the upper
numbering filtration, that seems more essential than the non-logarithmic one and
is defined using the natural log structure of the integer rings. For the generality
on log schemes, we refer to [26] and [30, Section 4]. In the classical case where the
residue field is perfect, the two filtrations are the same up to the shift by 1. In the
general residue field case, there is no simple relation among them. We emphasize
here that both filtrations have scheme theoretic descriptions.

We regard S = SpecOK as a log scheme with the canonical log structure defined
by the closed point DS = Spec F . Let Q be a regular flat separated scheme of
finite type over S. Assume that the reduced closed fiber DQ = (Q ×S DS)red is
regular and that the log scheme Q endowed with the log structure defined by DQ

is log smooth over S. For example, Q = Spec OK [T1, . . . , Td, U
±1]/(π−UT m

1 ) for
integers d,m ≥ 1 and a prime element π of OK .

Let L be a finite Galois extension of K. We put T = Spec OL and DT =
(T ×S DS)red. We consider a closed immersion i : T → Q that is exact in the sense
that DT = DQ ×Q T . Let P be a separated smooth scheme of finite type over S,
s : S → P be a section and f : Q → P be a finite and flat morphism over S such
that the diagram

T

��

i �� Q

f

��
S

s �� P

(17)

is cartesian. This diagram should be regarded as a scheme theoretic counterpart
of (16).



Wild ramification of schemes and sheaves 11

We consider a finite separable extension K ′ of K containing L as a subextension,
in order to make a base change. We put S′ = Spec OK′ , F ′ = OK′/mK′ and let
e = eK′/K be the ramification index.

Let r > 0 be a rational number and assume that r′ = e′r is an integer. We
regard the divisor R′ = r′DS′ = Spec OK′/mr′

K′ of S′ as a closed subscheme of
PS′ = P ×S S′ by the section s′ : S′ → PS′ induced by s : S → P . We consider the
blow-up of PS′ at the center R′ and let P

(r)
S′ denote the complement of the proper

transform of the closed fiber PS′ ×S′ DS′ . The scheme P
(r)
S′ is smooth over S′ and

the closed fiber P
(r)
S′ ×S′ DS′ is the vector bundle Θ(r)

F ′ over F ′ such that the set
of F ′-valued points is the F ′-vector space HomF ′(mr′

K′/mr′+1
K′ , Is(S)/I2

s(S)⊗OK F ′)
where Is(S) ⊂ OPS denotes the ideal sheaf.

We consider the normalizations Q̄
(r)
S′ and T̄S′ of Q ×P P

(r)
S′ and of T ×S S′

respectively. Then, the diagram (17) induces a diagram

T̄S′

��

i(r)
�� Q̄(r)

S′

f(r)

��
S′ s(r)

�� P (r)
S′ .

(18)

By the assumption that K ′ contains L, the scheme T̄S′ is isomorphic to the disjoint
union of finitely many copies of S′ and the geometric fiber T̄F̄ = T̄S′ ×S′ F̄ is
identified with Gal(L/K).

By Epp’s theorem [17], after replacing K ′ by some finite separable extension,
the geometric closed fiber Q̄

(r)

F̄
= Q̄

(r)
S′ ×S′ Spec F̄ is reduced and the formation

of Q̄
(r)
S′ commutes with further base change. We call such Q̄

(r)
S′ a stable integral

model. The finite map i(r) : T̄S′ → Q̄
(r)
S′ induces surjections

T̄F̄ = Gal(L/K)

i(r)
∗ �������������

i(r+)
∗ �� f (r)−1(0)

��
π0(Q̄

(r)

F̄
)

(19)

to the set of geometric connected components and to the inverse image of the origin
0 ∈ P

(r)

F̄
= Θ(r)

F̄
.

Theorem 2.2 ([4, Theorems 3.11, 3.16], [38, Section 1.3]). Let L be a finite Galois
extension over K of Galois group G and we consider a diagram (17) as above.

1. For a rational number r > 0, we take a finite separable extension K ′ of
K containing L such that eK′/Kr is an integer and that Q

(r)

S̄′ is a stable integral
model.

Then, the inverse image i
(r)−1
∗ (i(r)

∗ (1)) = Gr
log ⊂ G is independent of the choice

of diagram (17) or an extension K ′ and is a normal subgroup of G. Further the
surjection i

(r)
∗ (19) induces a bijection G/Gr

log → π0(Q̄
(r)

F̄
).
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2. Let the notation be as in 1. Then, there exist rational numbers 0 = r0 <
r1 < . . . < rm such that Gr

log = Gri

log for r ∈ (ri−1, ri] ∩ Q and i = 1, . . . , m and
Gr

log = 1 for r > rm.
3. For a subfield M ⊂ L Galois over K and for a rational number r > 0, the

subgroup Gal(M/K)r
log ⊂ Gal(M/K) is the image of Gr = Gal(L/K)r

log.

For a rational number r ≥ 0, we put Gr+
log =

⋃
s>r Gs

log. Then, under the

same assumption as in Theorem 2.2.1., the surjection i
(r+)
∗ (19) induces a bijection

G/Gr+
log → f (r)−1(0).

Example 2.1 ([25], [7]). If K is of characteristic p > 0, a cyclic extension L
of degree pm+1 is defined by a Witt vector by the isomorphism Wm+1(K)/(F −
1) → H1(K, Z/pm+1Z) of Artin-Schreier-Witt theory. An increasing filtration on
Wm+1(K) is defined in [13] by

FnWm+1(K) = {(a0, . . . , am) ∈Wm+1(K) | pm−ivK(ai) ≥ −n for i = 0, . . . , m}.

The filtration induced by the surjection Wm+1(K) → H1(K, Z/pm+1Z) is con-
sidered in [25]. For G = Gal(L/K), the filtration (Gn

log)n≥0 indexed by integers
is the dual of the restriction to Hom(Gal(L/K), Z/pm+1Z) ⊂ H1(K, Z/pm+1Z).
Namely, we have Gn

log = {σ ∈ G | c(σ) = 0 if c ∈ FnH1(K, Z/pm+1Z)}. Further,
for a rational number r ∈ (n− 1, n] ∩Q, we have Gr

log = Gn
log.

Problem 2. Prove that, for an abelian extension in the mixed characteristic case,
the filtration (Gn

log)n≥0 is the same as that defined by Kato in [25] and show
Gr

log = Gn
log for r ∈ (n− 1, n] ∩Q.

Definition 2.3. Let L be a finite etale K-algebra and r > 0 (resp. r ≥ 0) be a
rational number. Let M be a finite Galois extension of K such that L⊗K M is iso-
morphic to the product of copies of M . Then, we say that the log ramification of L
over K is bounded by r (resp. by r ≥ 0) if the action of the subgroup Gal(M/K)r

log

(resp. Gal(M/K)r+
log) on the finite set HomK(L, M) is trivial.

It is interpreted geometrically as follows.

Proposition 2.4 ([38, Lemma 1.13]). Let r > 0 be a rational number and we
consider a diagram (17) and a finite separable extension K ′ of K as in Theorem
2.2 such that Q̄

(r)
S′ is a stable integral model.

1. The following conditions are equivalent:

(1) The log ramification of L over K is bounded by r.

(2) The finite covering Q̄
(r)
F ′ → P

(r)
F ′ is a split etale covering.

2. The following conditions are equivalent:

(1) The log ramification of L over K is bounded by r+.

(2) The finite map Q̄
(r)
S′ → P

(r)
S′ is etale on a neighborhood of the closed fiber

Q̄
(r)
F ′ .
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2.2. Ramification along a divisor. Let X be a smooth separated scheme
of finite type over a perfect field k of characteristic p > 0 and U = X \D be the
complement of a divisor D with simple normal crossings. We consider a finite
etale G-torsor V over U for a finite group G and study the ramification of V
along D. The ramification of V along D will be measured by linear combinations
R =

∑
i riDi with rational coefficients ri ≥ 0 of irreducible components of D as

follows.
We consider the log product P = X ∗k X ⊂ (X ×k X)′ and the log diagonal

δ̃ : X → P = X ∗k X as in Section 1.1. We define a relatively affine scheme
P (R) over P . If the coefficients of R =

∑
i riDi are integers, the scheme P (R) is

the complement of the proper transforms of P ×X R in the blow-up of P at the
center R ⊂ X embedded by the log diagonal map δ̃ : X → P . In other words,
P (R) is the relatively affine scheme over P defined by the quasi-coherent OP -
algebra OP [IX(RP )] =

∑
n≥0 In

X(nRP ) where IX ⊂ OP is the ideal sheaf defining
the log diagonal and the divisor RP ⊂ P is the pull-back of R ⊂ X . The base
change P (R) ×X R with respect to the projection P (R) → X ⊃ R is the twisted
tangent bundle Θ(R) = V(Ω1

X(log D)(R)) ×X R where V(Ω1
X(log D)(R)) denotes

the vector bundle defined by the symmetric algebra of the locally free OX -module
Ω1

X(log D)(R).
For general R, it is defined by the quasi-coherent OP -algebra

∑
n≥0 In

X(�nRP �)
where �nRP � denotes the integral part. The log diagonal δ̃ : X → P = X ∗k X is
uniquely lifted to an immersion δ(R) : X → P (R). The open immersion U ×k U →
X ∗k X = P is lifted to an open immersion j(R) : U ×k U → P (R).

Example 2.2. Assume X = Spec k[T1, . . . , Td] and D is defined by T1 · · ·Tn for
0 ≤ n ≤ d. Then, the log product P = X ∗k X is the spectrum of

A = k[T1, . . . , Td, S1, . . . , Sd, U
±1
1 , . . . , U±1

n ]/(S1 − U1T1, . . . , Sn − UnTn) (20)

and the log diagonal δ̃ : X → P = X ∗k X is defined by U1 = · · · = Un = 1 and
Tn+1 = Sn+1, . . . , Td = Sd.

Further assume that the coefficients of R =
∑n

i=1 riDi are integral. Then, if
we put T R = T r1

1 · · ·T rn
n , the scheme (X ∗k X)(R) is the spectrum of

A[V1, . . . , Vd]/(U1 − 1− V1T
R, . . . , Un − 1− VnT R,

Sn+1 − Tn+1 − Vn+1T
R, . . . , Sd − Td − VdT

R) (21)

= k[T1, . . . , Td, V1, . . . , Vd, (1 + V1T
R)−1, . . . , (1 + VnT R)−1].

The immersion δ(R) : X → (X ∗k X)(R) is defined by V1 = · · · = Vd = 0.

Let V be a G-torsor over U for a finite group G. We consider the quotient
(V ×k V )/ΔG by the diagonal ΔG ⊂ G × G as a finite etale covering of U ×k U
and let Z be the normalization of (X ∗k X)(R) in the quotient (V ×k V )/ΔG. The
diagonal map V → V ×k V induces a closed immersion U = V/G→ (V ×k V )/ΔG
on the quotients and is extended to a closed immersion e : X → Z.
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Definition 2.5. Let V be a G-torsor over U for a finite group G. We say that the
ramification of V over U is bounded by R+ if the normalization Z of (X ∗k X)(R)

in the quotient (V ×k V )/ΔG is etale over (X ∗k X)(R) on a neighborhood of the
image of e : X → Z.

The following is an immediate consequence of Proposition 2.4.2.

Lemma 2.6. Assume D is irreducible and let K = Frac ÔX,ξ be the fraction field
of the completion of the local ring OX,ξ at the generic point ξ of D. Then, for a
rational number r ≥ 0, the following conditions are equivalent:

(1) The log ramification of the etale K-algebra Γ(V ×U Spec K,O) is bounded by
r+.

(2) There exists an open neighborhood X ′ of ξ such that the ramification of V ∩X ′

over U ∩X ′ is bounded by r(D ∩X ′)+.

By the following lemma, the general case is reduced to the case where the
coefficients of R are integral.

Lemma 2.7. Let f : X ′ → X be a morphism of separated smooth schemes of finite
type over k. Let U ⊂ X and U ′ ⊂ X ′ be the complements of divisors with simple
normal crossings respectively satisfying U ′ ⊂ f−1(U).

Let V → U be a G-torsor for a finite group G and V ′ = V ×U U ′ → U ′ be the
pull-back. Let R =

∑
i riDi ≥ 0 be an effective divisor with rational coefficients

and R′ = f∗R be the pull-back. We consider the following conditions.

(1) The ramification of V is bounded by R+.

(2) The ramification of V ′ is bounded by R′+.

We always have an implication (1)⇒ (2). Conversely, if f : X ′ → X is log smooth
and is faithfully flat and if U ′ = f−1(U), we have the other implication (2)⇒ (1).

The main result is the following.

Theorem 2.8. Let X be a separated smooth scheme of finite type over k and
U = X \D be the complement of a divisor with simple normal crossings. Assume
that the coefficients of R =

∑
i riDi ≥ 0 are integral. Let V be a G-torsor over

U for a finite group G and Z0 ⊂ Z be the maximum open subscheme etale over
(X ∗k X)(R) of the normalization Z of (V ×k V )/ΔG. Let e : X → Z be the section
induced by the diagonal.

Then, the base change Z0,R = Z0 ×X R with respect to the projection Z0 →
(X ∗k X)(R) → X ⊃ R has a natural structure of smooth commutative group
scheme over R such that the map eR : XR → Z0,R induced by e : X → Z is the
unit. Further the etale map Z0,R → Θ(R) = (X ∗k X)(R) ×X R induced by the
canonical map Z → (X ∗k X)(R) is a group homomorphism.

For every point x ∈ R, the connected component Z0
0,x of the fiber Z0,x is iso-

morphic to the product of finitely many copies of the additive group Ga,x and the
map Z0

0,x → Θ(R)
x is an etale isogeny.
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Problem 3. Prove an analogous result for schemes over a discrete valuation rings
with perfect residue field.

Theorem 2.8 has the following application to the filtration by ramification
groups in the equal characteristic case.

Let K be a complete discrete valuation field of characteristic p > 0 and as-
sume that the residue field F has a finite p-basis. Let Ω1

OK
(log) denote the OK-

submodule of the K-vector space Ω1
K generated by Ω1

OK
and d log π for a prime

element π of K. By abuse of notation, let Ω1
F (log) denote the F -vector space

Ω1
OK

(log)⊗OK F . Then, we have an exact sequence 0→ Ω1
F → Ω1

F (log) res→ F → 0
of F -vector spaces of finite dimension. We extend the normalized discrete val-
uation v of K to a separable closure K̄ and, for a rational number r, we put
mr

K̄
= {a ∈ K̄ | v(a) ≥ r} and mr+

K̄
= {a ∈ K̄ | v(a) > r}. The F̄ -vector space

mr
K̄

/mr+
K̄

is of dimension 1.

Corollary ([5, Theorem 2.15], [38, Theorem 1.24, Corollary 1.25]). Let K be a
complete discrete valuation field of characteristic p > 0 and L be a finite Galois
extension of Galois group G. Then, for a rational number r > 0, the graded
quotient Grr

logG = Gr
log/Gr+

log is abelian and killed by p.
If F has a finite p-basis, there exists a canonical injection

Hom(Grr
logG, Fp)→ HomF̄ (mr

K̄/mr+
K̄

, Ω1
F (log)⊗F F̄ ). (22)

For a non-trivial character χ ∈ Hom(Grr
logG, Fp), we call the image rswχ ∈

HomF̄ (mr
K̄

/mr+
K̄

, Ω1
F (log)⊗F F̄ ) the refined Swan character of χ.

For K of mixed characteristic, one has an analogous result. The proof is similar
but technically more difficult.

Problem 4. Determine the union of the images of the injections (22) for all finite
Galois extensions L ⊂ K̄ over K.

In the classical case where the residue field is perfect, the union is the whole.

Example 2.3 ([25], [7]). We keep the notation in Example 2.1. We define a
canonical map Fmd : Wm+1(K) → Ω1

K by sending (a0, . . . , am) to apm−1
0 da0 +

· · ·+ dam. It maps FnWm+1(K) to FnΩ1
K = m−n

K Ω1
OK

(log) for n ∈ Z and induces
an injection

GrnH1(K, Z/pm+1Z)→ GrnΩ1
K = HomF (mn

K/mn+1
K , Ω1

F (log)) (23)

for n > 0.
Let L be a cyclic extension of degree pm+1 corresponding to a character χ ∈

H1(K, Z/pm+1Z). The smallest integer n ≥ 0 such that χ ∈ FnH1(K, Z/pm+1Z)
is called the conductor of χ and is equal to the smallest rational number r such
that the ramification of L is bounded by r+. The character is ramified if and
only if the conductor is > 0. For a ramified character χ of conductor n > 0,
the image of the class of χ by the injection (23) in HomF (mn

K/mn+1
K , Ω1

F (log)) ⊂
HomF̄ (mn

K̄
/mn+

K̄
, Ω1

F (log)⊗F F̄ ) is the refined Swan character rswχ.
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2.3. Characteristic cycles. We keep the notation in Section 2.2 that X is
a separated smooth scheme of dimension d over a perfect field k of characteristic
p > 0 and U = X \D is the complement of a divisor with simple normal crossings.
For each irreducible component Di of D, let ξi be the generic point of Di and
Ki = Frac ÔX,ξi be the local field. Recall that, for a divisor R =

∑
i riDi with

rational coefficients ri ≥ 0, we have a cartesian diagram

U
j ��

��

X

δ(R)

��
U ×k U

j(R)
�� (X ∗k X)(R).

For a smooth sheaf on U , we make a definition similar to Definition 2.5. As
a coefficient ring Λ, we consider a ring finite over Z/�nZ, Z� or Q� for a prime
number � 
= char k as in Section 1.2.

Definition 2.9 ([38, Definition 2.19]). Let F be a smooth sheaf of Λ-modules on
U and we put H0 = Hom(pr∗2F , pr∗1F) on U ×k U . We say that the ramification
of F is bounded by R+ if the identity idF is in the image of the base change map

Γ(X, δ(R)∗j(R)
∗ H0)→ Γ(X, j∗End(F)) = End(F). (24)

The following is an immediate consequence of Definition.

Lemma 2.10. The following conditions are equivalent:

(1) The ramification of F is bounded by R+.

(2) The base change map δ(R)∗j(R)
∗ H0 → j∗End(F) is an isomorphism.

Example 2.4 ([6, Proposition 4.2.2]). Let F be a smooth sheaf of rank 1 corre-
sponding to a character χ : π1(U)ab → Λ×. For each irreducible component Di,
let Ki be the local field and ni be the conductor of the p-part of the character
χi : Gab

Ki
→ Λ×. We put R =

∑
i niDi. Then, the ramification of F is bounded by

R+. Further, j
(R)
∗ H0 is a smooth sheaf of Λ-modules of rank 1 on (X ∗k X)(R).

For a component with ri > 0, the restriction of j
(R)
∗ H0 to the fiber Θ(R)

ξi
is the

Artin-Schreier sheaf defined by the refined Swan character rswχi regarded as a
linear form on Θ(R)

ξi
.

In the remaining part of the article, we present a computation of the char-
acteristic class C(j!F) ∈ H2d(X, Λ(d)) for a smooth �-adic sheaf F on U whose
ramification is bounded by R+ using the geometric ramification theory under a
certain assumption. We assume that the coefficients of R =

∑
i riDi are integral

for simplicity. For the general case, we refer to [38, Section 3].
For each irreducible component Di of D such that ri > 0, we consider the

�-adic representation Mi of the local field Ki = Frac ÔX,ξi defined by F . By the
assumption that the ramification of F is bounded by R+, the subgroup Gri+

Ki,log

acts trivially on Mi. We assume the following condition:
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• The Gri

Ki,log
-fixed part of Mi is 0.

This condition means that, for each irreducible component, the wild ramification
of F at the generic point is homogeneous. The restriction to Gri

Ki,log
is then decom-

posed as the sum Mi|Gri
Ki,log

=
⊕

j χ
⊕mij

ij of non-trivial characters of Grri

logGKi . By
the assumption that ri is an integer, the refined Swan character defines a non-trivial
F i-linear homomorphism

rsw χij : mri

Ki
/mri+1

Ki
⊗Fi F i → Ω1

X(log D)ξi ⊗ F i,

where Fi = κ(ξi) is the function field of Di. Let Eij be a finite extension of Fi

such that rsw χij is defined and let Tij be the normalization of Di in Eij .
We assume further the following condition:

(C) The refined Swan character rsw χij defines a locally splitting injection

rsw χij : OX(−R)⊗OX OTij → Ω1
X(log D)⊗OX OTij .

This condition says that for each irreducible component, the wild ramification of
F is controlled at the generic point. In the rank one case, the condition (C) is
called the cleanness condition and studied in [28]. The key ingredient in the proof
of the following computation is Theorem 2.8.

Proposition 2.11 ([38, Corollary 3.3]). Assume the condition (C) above is satis-
fied. Let π(R) : (X ∗k X)(R) → X ×k X denote the canonical map. We put H0 =
Hom(pr∗2F , pr∗1F) on U ×k U and H = RHom(pr∗2j!F , Rpr!1j!F) on X ×k X. We
regard the identity idF as an element of H0

X(X×kX,H) and of H0(X, δ(R)∗j(R)
∗ H0)

by the isomorphisms End(j!F)→ H0
X(X×k X,H) (6) and H0(X, δ(R)∗j(R)

∗ H0)→
End(F) (24).

Then, the image of the identity idF by the pull-back map

H0
X(X ×k X,H) −→ H2d

π(R)−1(X)((X ∗k X)(R), j
(R)
∗ H0(d))

is equal to the image of the cup-product [X ] ∪ idF ∈ H2d
X ((X ∗k X)(R), j

(R)
∗ H0(d))

of the cycle class [X ] ∈ H2d
X ((X ∗k X)(R), Λ(d)) with idF ∈ H0(X, δ(R)∗j(R)

∗ H0).

Corollary ([38, Theorem 3.4]). For the characteristic class, we have an equality

C(j!F) = rank F · (X, X)(X∗kX)(R) .

Consequently, if X is proper, we have

χc(Uk̄,F) = rank F × deg(X, X)(X∗kX)(R) .

We keep the assumptions and define the characteristic cycle in order to describe
the computation in Corollary more geometric terms. We call the vector bundle
over X defined by the symmetric OX -algebra of the dual module Ω1

X(log D)∗ the
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logarithmic cotangent bundle T ∗X(log D). Let L denote the line bundle over X
defined by the symmetric OX -algebra of OX(R). By the condition (C), the refined
Swan character rsw χij defines a linear map

rij : L×X Tij → T ∗X(log D)×X Tij .

We define the characteristic cycle CC(F) by

CC(F) = (−1)d

⎛⎝rank F · [X ] +
∑

i

∑
j

mij

[Eij : Fi]
pr1∗rij∗[L×X Tij ]

⎞⎠
as a dimension d-cycle of T ∗X(log D). In the first term of the right hand side, [X ]
denotes the class of the 0-section. In the second term, pr1∗rij∗[L×X Tij ] denote the
image of the class [L×X Tij ] by the composition L×X Tij → T ∗X(logD)×X Tij →
T ∗X(log D). The reason why the characteristic cycle defined above is determined
by points of codimension 1 is the condition (C).

As a consequence of Corollary, we have the following.

Theorem 2.12 ([38, Theorem 3.7]). Assume the condition (C).
1. The characteristic class C(j!F) is equal to the pull-back by the 0-section

0: X → T ∗X(log D) of the cycle class of the characteristic cycle CC(F):

C(j!F) = 0∗[CC(F)].

2. Assume further that X is proper. Then the Euler number χc(Uk̄,F) is equal
to the intersection number of the 0-section with the characteristic cycle:

χc(Uk̄,F) = (X, CC(F))T∗X(log D).

Problem 5. Find an intrinsic definition of the characteristic cycle.
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