.

The Euler numbers of ¢-adic sheaves of rank 1
in positive characteristic.

TAKESHI SAITO
Department of Mathematics, University of Tokyo, Tokyo 113 Japan

One of the most important themes in ramification theory is the for-
mula for the Euler characteristic of ¢-adic sheaves. Although we have
the Grothendieck-Ogg-Shafarevich formula {G] in one dimensional case,
we don’t have a general formula in higher dimension even in the form
of a conjecture. However for sheaves of rank 1, K.Kato formulated a
conjecture in arbitrary dimension and actually proved it in dimension 2
in [K2]. In this paper, we will prove it in arbitrary dimension under a
certain hypothesis, which is hoped to hold when the variety is sufficiently
blowed up.

We consider a smooth £-adic sheaf F of rank 1 on a dense open sub-
scheme U of a proper smooth variety X over an algebraically closed field
k of characteristic p # € such that the complement X — U is a divisor
with normal crossing. At each generic point of the complement divisor,
we have the ramification theory of F by Kato’s theory on the abelian-
ized absolute Galois group of complete discrete valuation field in [K3].
When F is clean, which means the ramification of F is understood by
those at codimension 1 points, the characteristic variety Ch(F) in the
cotangent bundle with logarithmic poles and the characteristic 0-cycle

cr = (=1)4mO=1 (Ch(F), 0-section) € CHo(X)

are defined in [K1]. The definition will be reviewed in the text. The
main result of this paper is

THEOREM (VAGUE). Assume F as above is clean and something arising
from F are also clean. Then we have

XC(Usf) - Xc(U) = —deg CF.

We didn’t give the exact form of the theorem here because to write
down the precise assumption will need some preparation. The formula
is conjectured by Kato in [K2] without redundant assumption. If dim
X =1, the assumption is automatically satisfied and the formula is the
rank 1 case of the Grothendieck-Ogg-Shafarevich formula. In general, if
X, U and F are given, it is hoped that there is a resolution 7 : X' — X
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such that #*U =~ U and that =*F satisfies the assumption of the theorem
and also hoped that m,(cx- ) does not depend on the choice of X". If
this is true, we can eliminate the redundant assumption. Actually, if
dim X = 2, it is proved to be true in [K1] and the formula is shown in
(K2] by Kato. Although the theorem is not a final definitive one, the
author believes that the argument used in the proof will be a critical
step in a full proof of the conjecture.

Recently, P.Berthelot has made a great progress in p-adic ramification
theory by constructing a theory of p-adic D-modules. The author hopes
that this will shed some light on ¢-adic theory.

The author thanks Professor K.Kato greatly who kindly taught him a
proof of the main result of his unpublished paper [K2]. The discussion
with him was indespensible to complete this work. The author also
appriciate the hospitality of the Department of Mathematics of the J ohns
Hopkins University and JAMI where this work was done.

First we briefly review the ramification theory of sheaves of rank 1
by Kato ([K1] and [K3]) and fix the notations. Let K be a complete
discrete valuation field with arbitrary residue field K and let A be the
integer ring of K. We define a K-vector space wx to be Q(logK)@4 K
where Q) (log K) is the A-module of differential forms with logarithmic
poles (Q ®(A® K*))/(da —a®a,a € A,# 0) (cf. [K1] (2.2)). For
a € A, # 0, the class of 1®a is denoted by dloga. Then wy is generated
by Q‘? and dlog w, where 7 is a uniformizer of K , and fits in an exact
sequence

esidue .__
Oﬁﬂ%ﬂwxr—lﬁ»lf—-»O (res- dlogm = 1).

Let Gk be the abelianized absolute Galois group Gal(K%/K) and
Xk = Hom(Gx,Q/Z). Define the pairing { , }x: Xx x K* — Br(K)
by the cup product H*(K,Z) x H(K, Gn) - H*(K,G,,). Let K' be
the completion of the field K(T') with respect to the discrete valuation
corresponding to the prime ideal m 4 - A[T] of A[T). Forn € N,> 0, let
Uk =1+ m%. Then the filtration by ramification on X K is defined by

Xk ={x € Xx; {xxcr, U} g» = 0}
for n € N, where yx is the image of x in Xy . The set of at most

tamely ramified characters is X kand Xpe =X k- There is a canonical
morphism wg — Br(K) extending the Artin-Schreier theory K — X%
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and Q,‘7 — Br(K). We will give its definition in the proof of Lemma 5.
For n > 0, we have a commutative diagram

X,"(XU;} —_— Wik

l l

Xk x K* —— Br(K).

The upper horizontal map induces a pairing { , }% : gr"(Xg)x N r—
wr where Np = mi/mit! = UZJ/UZ*. This pairing is X-linear
with respect to N and characterized by the property that the pairing

X g x Ugs = Br(K') is given by the composite

X?( X U;}l -*gr"(XK) X N;:'! =~

gr™ (X)) x N& ®—T{-' — WK ®-—7,Hw1(l — Br K')
K YK K

since wy i wg+ — Br(K') is injective. For a character y € X,
we define the Swan conductor sw(x) to be the minimum integer n € N
such that x € X}.. We define the refined Swan conductor rsw(y) of a
character x with sw(x) =n > 0 to be the K-homomorphism

rsw(x) = (x, Vi : Nj = wic.

Let k£ be an algebraically closed field of characteristic p. Let X bea
smooth variety over & of dimension d and U be an open subscheme of X
whose complement is a divisor with (Zariski locally) normal crossings.
We call such (X,U) an RN-pair over k. Let £ # p be a prime number
and F be the smooth ¢-adic sheaf on U of rank 1 corresponding to a
character x : 7 (U)*® — Q, of finite order. We fix an isomorphism
Q/Z( )5, = Q/Z. For each irreducible component C; of X — U, let
K; be the completion of the function field of X with respect to the
discrete valuation corresponding to C;. Then by applying the' theory
reviewed above to the pull-back of x to each K;, we get swi(x) € N and
rswi(x) : IV,’(':"(X) — wici if swy(x) > 0. We define the Swan divisor D,
of F by

D, = ZSw;(x) - C;.

Let wx denote the sheaf (log(X — U)) of differential 1-forms with
logarithmic poles at X — U. Beware of the unusual notation. Generally,
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for a point z of a scheme X (resp. a closed immersion @ : Z — X)
and a quasi-coherent Ox-module £, we put &(z) = E: Qoyx.. K(2)
(resp. E&lz = i*£). Then at each generic point &; of C;, we have
wx (&) = wk,; and hence rswi(x) is a map Ox(—=Dy)(&) — wx(&)
for i with swi(x) > 0. By [K3] Theorem (7.1), this extends to a mor-
phism rswi{x) : Ox(-D)\c; — wxlei- Further it is shown there that

they extends to a morphism rsw(x) : Ox(—Dx)lp — wx|p where D
is the support of Dy with the reduced structure. The sheaf F is said

to be clean if rsw;(x) is locally an isomorphism onto a direct summand
for every i with swi(x) > 0. Assume F is clean. Then the characteris-
tic variety Ch(F) of F is a dimension d cycle of the cotangent bundle
V(wx) = V(Q’x/k(log(X — U))) with logarithmic poles

Ch(F) = 3 swi(F) - V(Ox(=Dylc:)l-

Here V denotes the covariant vector bundle associated to a locally free
sheaf and V(Ox{—Dy)lc:) is regarded as a subvariety of V(wx) by
rswi(x). The characteristic 0-cycle cz is

ey = (~1)4"'s*Ch(F) € CHo(X)

where 5 : X — V(wx) is the 0-section. By an elementary calculation,

we have
CF = {C‘(wX) -1+ Dx)-‘l : Dx}dimo

where c(wx) is the total chern class of wx = lek(log(X— U)) and *
denotes the operator multiplying (—1)' on codimension { part.

CONJECTURE (KATO). Let (X,U) be an RN-pair over k and F be the
smooth ¢-adic sheaf of rank 1 corresponding to a character of m(U)*
of finite order as above. Assume X is proper and F is clean. Then

x(U, F) - Xc(U) = — degcr.

Here x.(U, F) = T (~1)f dim Hi(U,F) and xc(U) = xe(U, Qe). If dim
X = 2, this conjecture is proved by Kato in [K2]. The Euler number
xo(U) itself is the degree of a O-cycle cx,u = c*(Wx )dimo (cf. Lemma 0
below).

We give the precise statement of the assumption of our main theorem.
Let (X,U) be an RN-pair over L as above. Let 6 be a character of
7 (U)e of order p. It is called s-clean if it is clean and for each C;

rsw;(0)
with sw;(8) > 0, the composite O(-Dg)lc; — wxlci I, Ociis
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either an isomorphism or a zero map (dependingon C;). Let 7: ¥ — X
be the integral closure of X in the etale covering V of U of degree p
trvializing @ and j : V — ¥ be the inclusion. Then as we will show in
' Lemma 1, the logarithmic structure M=0vyNjOf onYis regular,
We will briefly review the theory of logarithmic structure later (or see
[K4]). Hence we have the resolution ¥ — Y associated to a suitable
proper subdivision of the fan associated to (Y, M) by the procedure of
[K4] (10.4). We refer to (K4] Sections 5, 9 and 10 for the theory of fan
and associated resolution (cf. Proof of Lemma 2). This ¥ - Y is an
isomorphism on V and (Y,V)is an RN-pair over k.

Let (X,U) be an RN-pair over k as above and X be a character of
71(U)%® of order n. We consider the following condition * on (X,U,x)
which says the above construction works inductively.

* There is a sequence (Xi, Uiy, xi)for 0 <4 < e = ordpn, satisfying
the following conditions

1). (Xo,Uo,Xo) =(X, U, x).

2). For 0 <i <e, the character 9; = ;—,’5_-[- * Xi s s-clean and of order
p, the pair (X;,,, Uis1) is (¥, V') constructed by the above procedure
from (X, U;, 6;) and Xi+1 is the pull-back of ;.

Then our main result is

THEOREM. Let (X,U) be an RN-pair over k and y be a character of
T1(U)®® of order n. Let F be the smooth ¢-adic sheaf of rank 1 on U
corresponding to x. Assume that X is proper, the condition * is satisfied
and that (Xi, Ui, x;) is clean for every0<ige = ord,n. Then we have

XU, F) - Xc(U) = — degcx.

REMARK: If dim X = 2, by [K1] Theorem (4.1), there is an RN-pair
(X', U") with a proper morphism 7 : X' — X such that 7 : U’ ~ I and
that (X', U’, n* F) satisfies the assumption of Theorem and ., (cy- F) =
cr by Theorem (5.2) loc. cit. Therefore if dim X = 2, Theorem implies
Conjecture above as is shown in [K2].

PROOF: First we reduce it to the case where n is a power of p. Let x, be
the character of order p® such that x-x;! is of order prime to p. Then it
is clear that y, satisfies the assumption of Theorem and Cx = Cy,- Let V
be the etale covering of U of degree n trivializing x and G = Auty(V) =
Z/n. For o € G, we put Try(o) = 3 A(-1)Tr(o; Hi(V, Q). Then

THEOREM DL ([D-L]) THEOREM 3.2 aND PROPOSITION 3.3). For all
o € G, Try(o) is a rational integer independent of ¢ and, if the order of
o is not a power of p, it is zero.
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e (U Fy) = (o Trv)a, we have xeU F) = xelUs Fro)-
Therefore it is sufficient to prove Theorem in the case n = ptand p #0.
Before continuing the proof, we need to review the theory of loga-
rithmic structure and that of ramification of an automorphism by Kato
[K4] and K2l A logarithmic structure on a scheme X is 2 morphism of
sheaves of commutative monoids & : M — Ox with respect to the mul-
tiplication of Ox such that e ' (O%) = O%. A log structure is called
¢rivial if M = O%. A scheme X with log structure M is called a log
scheme (X, M). In this paper, We only consider such a log structure M
that, locally on X, there is a finitely genera.ted integral monoid P and
o P — Ox such that M is induced by P. This condition is slightly
weaker than (S) in [K4] (1.5). Here M is induced by P means that M
;s the amalgamated sum of P and O} over o~} (0%) A commutative
monoid P is said to be integral if the canonical morphism P — P9 is
injective and it is said to be saturated further if every @ € P97 such
that a® € P for some n > 0 is contained in P. A log structure M
on a noetherian scheme X is called regular if it is locally induced by
a finitely generated saturated monoid and if for every T € X, the fol-
lowing condition 1is satisfied. If Iz denotes the ideal generated by the
image of Mg in Ox,= ~ O%.o» then Ox:fIz1s2 regular local Ting and
dim Ox,z = dim(Ox,z/1z) + rank(MZ?/OX z)- A scheme X with 2
regular log structure M is said to be log regular and is normal ({K4]
Theorem (4.1))- Further, for the largest open subscheme 7 : U < X
such that M is trivial on U, we have M = ;.05 NO0x and M9 = 7.0y
(loc. cit. Theorem (11.6)). We call this M the log structure associated
to U. f(X,U) s an RN-pair, the log structure associated to U is reg-
alar and U is the largest open- For a log structure M on X, we define
the sheaf wx,M of the differential forms with loga.rithmic poles in M to
be the quasi-coherent O x-module

wxX.M = (Qk ®(0x® M"’))/(da(a) ~oaf{a)®a; a€ M).

If X is of finite type over k and M is regular, then wx,M 18 locally free
of rank dim X. In fact, for every T € X, there is an exact sequence

0— Q}g(:)/k — wx m(T) k(z) ®(M§”/O§lz) - 0.

We put cx,M = c*(wx,M )dim0- When (X,U) is an RN-pair over k and
M is associated to U, the sheaf wx,M is equal to wx hence cx,U = €X,M-

LEMMA 0. Let X bea proper k-scheme with a regular logarithmic struc-

ture M. Let U be the Jargest open subscheme of X where M is trivial.
Then

x(U) = deg cx,M-
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PROOF: Take the resolution 7 : X' — X associated to a regular proper
subdivision of the fan F'(X) associated to (X, M) ([K4] (10.4)). Then
U’ = =*U is isomorphic to U, (X', U’) is an RN-pair and wxr >~ 7*wx, m-
Hence Lemma is reduced to the case where (X, U) is an RN-pair. The
proof is easy in this case and left to the reader.

Let (X, M) be a logarithmic scheme and ¢ be an automorphism of
(X, M). We define the fixed part X7 C X by the cartesian diagram

X7 — X
l lgraph of o

X —— XxX
diagonal

and I, to be the ideal sheaf of Ox corresponding to X?. We say that o
is admissible if the action of o on M;/O% _ is trivial for all z € X7. If
o is admissible, we define an ideal sheaf J, to be that gencrated by I,
and 1 — (o(a)/a) for a € M, at z € X?. The action of o is called clean
if J, is an invertible ideal. Then we let D, denote the Cartier divisor of
J,. Assume X is of finite type over k, the log structure M is regular and
that k-automorphism o of (X, M) is clean. Then we define the 0-cycle
¢ by

Co = {C‘(wX.M) ) (1 + Da)_l ) Da}dimo € CHO(X)

This O-cycle has the following property which will not be used in the
sequel.

PROPOSITION. Let X be a proper k-scheme, M be a regular log struc-
ture on X and o be a clean k-automorphism of (X, M). Let U be the
largest open subscheme of X where M is trivial. Assume one of the
followings

1). There is an open covering of X by o-stable affine subschemes.

2). (X,U) is an RN-pair.

Then we have

Try(o) = dege,.

This will be proved in [K2] at least in the case 2). In the present
version of {K2], only a k-automorphism ¢ of an RN-pair (X, U) is treated
and the definitions given there coincide with those here. We can reduce
the case 1) to case 2) but we omit the detail (cf. Proof of Lemmas 0 and
2).

We return to the proof of Theorem.




D= SRS

o ra e ——— A e T e LR
S T T gt o ot T PO BT SN -

- e m————
STIATTS

172

LEMMA 1. Let(X, U)'be an RN-pair over k and 0 be an s-clean character
of m(U)*® of order p. Let m: Y — X be the integral closure of X in
the etale covering V of U of degree p trivializing 9 and G = Autx(Y)
Then

1). The log structure M associated to V — Y is regular.
Let 0 € G bea non-trivial element. Then

2). The action of o on Y is clean with respect to M and we have
Dy = 7Dy, x*Dg = pD, and meCo = €

3). The sheafwy;x = Coker(m*wx — wy,M) is an invertible Opy, x -
module where Dy x is the divisor * Dg—Do- The map @o : wyyx|p. =
O(-D.)lp. defined by a - dlogh — a(1 — a(b)/b) is an isomorphism.
The total chern class c(wyyx) 18 equal to (1 = Do) - (1- x* D)~} and
cy X =CY.M ~ T ex,U 1S

ey x = —{¢"(wy.m)- (14 D,)~" - Dyx}dimo = —~(p—1) o

4). Let D be the support of Do with reduced structure. Then the
sequence

#* (rsw())|
0 — 7 Ox(—De)lD T

-

wxlp —

eel
wy mlp —— O(=Da)lp = 0

;s exact hence locally homotope to 0.

We show that Lemma 1 implies Theorem in the case n = p. By Lemma
0, we have x(V) —P: xo(U) = deg ¢y/x- Since Trv(o) € Lfor g € G
by Theorem DL, we have (p — 1) - x(U, Fo) = TTQ((F)/Q(O,Trv)G =
xe(V)—xc(U)- Hence (p—1)-(xe(U: Fo)—xeU)) = deg cy;x- Therefore
by 2) and 3) of Lemma 1, we have

x(U, Fo) - xc(U) = —degcs =~ deg co-

PROOF OF LEMMA 1: Let Dy = Y niCi and E be the union of the
divisors with p { ni. Let T € X be a point of X, I be the set of indices
; such that z € C; and for every ¢ € I, i be a section of Ox defining
C; at z. Then at a neighborhood of z, the character § corresponds to
an Artin-Schreier extension

such that
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1). If z ¢ E, every n; is divisible by p and du is everywhere non-
vanishing in Q} , for € = N;e;C; where J C I runs every subset J C [
containing at least one element i with n; # 0.

2). If ¢ € E, one of n; is not divisible by p and u is a unit.

Outside E, the integral closure (Y, V) is an RN-pair since Y is given
by ¥ = X[s}/(s? - Hvrgp_l)""/p + 8 — u) where s = (J] W?i/p) -t. We
consider at z € E. Let Y; be the scheme

Y, = X[s,w]/(sw — I, s 'w — w + u)

where II denotes [] #'. It is easy to check that Yy x x U = V by putting
s =t"1and w = u+II-t. The scheme Y] is finite over X since w satisfies
w? —[IP~1 . — v” = 0 and is a unit.

Let @ be the integral submonoid of @/ xQ-¢,, generated by N/ xZ-¢,,
and e, = i(En;ci — ew). Let M| be the log structure of ¥; induced
by Q1 — Oy, defined by e; — m;,e, — s and e,, — w. Let Q = {a €
@%;3n > 0,n-a € Q,} be the saturation of Q,.

CLAIM. The scheme Y, =Y, ®(Q,] k[Q] with the logarithmic structure
M, induced by Q — Oy, is log regular at the inverse image of z.

PROOF OF CLAIM: Let y be a unique point of ¥; lying on z. Let I,
be the ideal of Oy, , generated by the image of Q, — Oy, - By [K4]
Proposition (12.2), it is sufficient to check that

0). Qi7/Q; is torsion free

1). Oy, 4/1, is regular

2). dim Oy, y = dim (O, ,/I,)+ rank(Q77/QY).

The condition 0) is clear. By definition of Y}, it is clear that Ov, /1y
~ Ox,:/(7i,t € I) and is regular. Since Y; is finite over X, we see that
Y} is locally of complete intersection of dimension d = dim X. Thus
Claim is proved.

Since a log regular scheme is normal, Y = Y at y. Further it is easy
to see that V is the largest open set where M, is trivial. Hence the log
structure M associated to V coincides with M, and is regular.

Next we prove 2). Qutside E, we have o(s) = s+]] w?‘/". Using this,
it is easy to check that o is admissible and clean and that J, is generated
by [1; =] /P We consider at E. The log scheme (Y7, M) above has an
admissible action of G. In fact, o(s)/s = (s + 1)~! is invertible since
s?”'—1 = —u-w™! and o(w) = w+II is also invertible at E. Using this
and the fact that s divides II, we can also easily check that o is clean
and J, is generated by s. By the definition of Y5, it is easy to see that
the action of o is admissible and clean on Y; and that J,y, ~ ©1Jdo.v: s
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where @y : Y2 — Y;. Thus we have the cleanness of o and the equalities
w*Dg = pDs and 1,0, = De.

We prove 3) and the equality 7«Co = Co- Outside E,wy/x is generated
by ds and the relation is (I1 fr?"/ Pyp-1ds = 0. On the other hand at E,
wy,/x 18 generated by dlogs and dlogw and the relations are sP~1 -
dlogs = dlogw = 0. By the definition of Y;, we see that wy,/x =
PIwy, /X Thus we have the assertion on the structure of wyyx- Since
PoiSa surjection of invertible sheaves, it is an isomorphism. From these
fact, it is easy to check the formula for c(wy/x) and that for cy;x. The
equality T«Co = €8 also immediately follows from the definition, the
formula for c(wyy x) and from 7Dy = Do

We prove 4). In 3) we have already shown the exaciness at wy M|D
and at O(=Do)|p. BY ranks and the cleanness of 8, it is sufficient to
show that the composite x*Ox(—De)lp — wy,m|D is zero. Outside E,
rsw 0 is given by []mi" = du. Since u = s? mod [[#7 on Y, the
composite is zero. At E, rsw @ is given by [[nf —du—u Y nidlogmi.
Since u = w mod $ and dlogw = S nidlogmi on Y;, the composite is
also zero. Thus we have completed the proof of Lemma 1 and therefore
that of Theorem in the case n = p- '

We prove Theorem in the case n = p° by induction on e. Assume
e > 1. Let (l-’,V,x’) be (Xl,Ul,x1) in Theorem and let 7 : Yy - X
and p : ¥ = Y. Let W be the etale covering of U of degree n = p°
trivializing x and G = Auty(W) = Z/p". Since Trw(o) € Lfor o € G
by Theorem DL, we have p- xc(U, Fy) = TTQ(CpG)/Q(CPe—\)(X’TrW)G =
xe(VaFyxr)- Therefore by the assumption of induction and the equality
degey/x = x(V)—p- xc(U) of Lemma 0, it is sufficient to show that

— ey =—Ccx T pieyx-

LEMMA 2. Let (X,U) be an RN-pair over k and let x and 8 be clean
characters of my(U)*® of finite order. Assume that 8 is of order p and
s-clean and that Dg = 0 (resp. Dy < D, ) where Dx = 0 (resp. Dx # 0).
Let (Y, M) be as in Lemma 1, : Y — Y bethe resolution associated to
a regular proper subdivision F' — F(Y) and 7 denote the map ¥ — X.

If ' = 7*(x) is also clean, we have
Ty = Cx' — Py x-
We see Lemma 2 implies the induction step. In fact, it is clear that

§=2"X satisfies D¢ = 0 where Dy = 0 and Dg < Dy where Dy # 0.
Therefore we will complete the proof of Theorem by showing Lemma 2.
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PROOF OF LEMMA 2: We show that everything appeared in Lemma
1 has its counterpart on ¥ and that it is a pull-back to ¥ of that on
Y. By the definition [K4] (10.4), locally on Y,y : ¥ — Y is described
as follows. Let ¥ = SpecA and P — A be a morphism of monoids
such that P x AX ~ M. Then locally on ¥, there is a submonoid P
of P9 containing P and isomorphic to N" x Z*® for some r and s € N
such that ¥ — Y is given by A — A ®yp k[P] = B. By loc. dit.,
we see that ¢ induces an isomorphism on V, that (¥,V) is an RN-
pair, and that the log structure induced by P — B coincides with that
associated to V. Here we identified V and ¢*V. From this description,
it is easy to show that ¢*wyy = wy. We show that the action of G
extends to Y. Since Y is affine over X, we may assume G acts on A
above. For all a € M,# 0, we have o(a)/a € A, since the action
of o on (Y, M) is admissible. It is straight forward to check that the
action of G extends to B = A Q(p) k{P] hence to Y. (More canonically,
B = A @i kIM xpor P} and hence G acts on it.) Once we have the
action of G, it is quite easy to check that the action of each o € G is
admissible ane clean and that J, ¢ = ¢*Jo,y. Hence every statement in

Lemma. 1 applies to'Y.
Now by definition and 3) of Lemma 2, w*cy, — (cyr — @*cy/x) is equal
to the dimension 0 part of

c*(wy) (1+#"Dg)- 7Dy _(_ Dy Dy ))
Y7\ (1 + Do)(1 + 7*Dy) 1+Dy 1+D,/))°

By an elementary calculation, this is equal to

. 7Dy —(Dy + Dy x) (x*Dy —w*Dp) - (x*Dy — Dys)
c*(wy) :

(1+Dy)(1+D,;)  (1+7Dy)(1+Dy)(1+ D)

LEMMA 3. Let the notation be as in Lemma 2 except that we do not
assume the relations between Dy and D,. Then

1). We have Dy» £ w*Dy. If C is a component of Y — V such that
D, < «*Dy at C, then 7Dy > 0 at C and the sequence

. x* (rawy) .
0—nr O(—Dx)IC —— 1twxlc — wyic

is exact. :

2). Assume n*Dg < 7* D, at a component C of Y — V. Then we have
7Dy < Dy + Dy, x and Dy: > 0 at C. Further if 7*Dy < Dy +Dy,x
at C, then ©*Dy > 0 at C and the sequence

4

rsw el
0 — O(=Dy)lc -, wyle =, O(=Dg)lc — 0
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is a complex. The cohomology sheaves are zero except at wylc and it is
locally free of rank dim X — 2 there.

We show Lemma 3 implies Lemma 2. It is sufficient to show the
following equalities.
1). (" Dy — 7" Dg)(m* Dy — Dy') = 0.

c*(wy) . ) _
2)' ((1+Dx')(1+Dg)(1r DX—(DX' +DY/X)))dim0—0.

To prove 1), it is sufficient to show that at each component C where
Dy # w" Dy, there is an isomorphism x*Ox(—Dy)lc = 7 Ox(-Do)lc-
By 1) of Lemma 3 and 4) of Lemma 1, they are both equal to the kernel
of m*wx|c — wylc. To prove 2), it is sufficient to show

((1 - Dci:;zl)— D,) C>dimo =0

for each component C where x*Dy # Dy + Dyx- By the assumption,
we have 7*Dg < "Dy 3t C and 2) of Lemma 3 applies. Therefore it is
equal to the (dim X = 1)-th chern class of the cohomology sheaf there,
which is of rank dim X —2, and is zero.

ProoF oF LEMMA 3: The assertions a.re~reduced to those at the generic
point of each irreducible component of ¥ — V. In fact, this is clear for
the inequalities and, for the rest, it follows from the cleaness of x and
x' and 4) of Lemma 1. Furthur by 4) of Lemma 1, for the assertions
concerning on the sequences and the cohomology sheaves, it is sufficient
to show that the sequences are complexes i.e. the composites of the
maps are zero at each generic point. We will show that we may assume
¥ = Y ie. Y is finite over X.

We need a lemma on fans ([K4] Section 9) as below. Let F and G be
fans satisfying (S7") (loc. cit (9.4)). We call 2 morphism f : G — F
an isogeny if the following conditions are satisfied.

1). fisa homeomorphism of underlying spaces.

2). MP, = M 1y 38 injective for all ¢ € F.

3). There is an integer 7 > 0 such that n(Mg -1 () C Image MFp,
forallt € F.

LEMMA 4. Let f: G — F be an isogeny and G' — G be a subdivision.
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Then there is a cartesian diagram of fans

G —

L

G —— F.

Here F' — F is a subdivision and G' — F' is an isogeny. When G' —» G
is proper, F' — F is also proper.

The proof of Lemma 4 is easy by using F — G such that the composite
F — F is induced by the multiplication by n and is left to the reader.

Let F' and G be the fans associated to X and Y respettively. By the
construction of Y given in the proof of Lemma 1, there is a natural map
G — F induced by Y — X. Let G' — G be the proper subdivision to
which ¥ — Y is associated. We apply Lemma 4 to G' — G — F. Then
by (K4] Proposition (9.9) and (9.10), we have ¢ : X; — X associated to
the proper subdivision F' of F = F(X). It is clear that ¥ is the integral
closure of X, in V. Let U; = ¢*U and x; = ¢*x. To reduce Lemma 3
to the case where ¥ =Y, it is sufficient to show the following. At the
generic point £ of every component C of X; — Uy, if x; is not unramified,
then x; is clean and we have D,, = ¢*D, and rsw x, = ¢"rsw x. By
the definition of X, there is an open neighborhood X (m) of £ and a
sequence

XM x| oxG) L xO) c x

Here X(® is an open subscheme of X and X(**1) is an open subscheme
of the blowing-up of X( at the closure C¥) of the image of . Further
for each ¢, C") is the intersection of some irreducible components of the
divisor X(¥ — () with normal crossing, where U(") is the inverse image
of U. If x is unramified at C(%), there is nothing to prove. Assume x is
ramified at C®). Then x is strongly clean at the generic point of C(®)
([K3] Definition (7.4)). In fact, for the generic point of the intersection of
some components of the divisor, the cleaness is equivalent to the strong
cleaness. Hence by applying inductively [K3] Theorem (8.1), we see
that x, is clean, D,, = ¢*D, and rsw x; = ¢ rsw x at {. Thus we
have reduced Lemma 3 to the case ¥ = Y. Namely Lemma 3 has been
reduced to

LEMMA 3'. Let K be a complete discrete valuation field with residue
field K of ch = p. Let x and 8 be characters of Gx = Gal (K®*/K) of
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finite order. Assume that the order of @ is p. Let L be the extension of
K of degree p trivializing 6 and x' be the restriction of x to L. Then

1). We have sw(x') € ek - sw(x). If sw(x') < ersx - sw(x), then L
is ramified over K and the sequence

sw(x) _ rawx®ly _
0= N Y@L —— wg @ L - we

is exact.

2). Assume sw(8) < sw(x). Then we have ey x - sw(x) < sw(x') +
di/x and sw(x') > 0. Here dy i denoteser k -sw(8)— s, and s, is the
integer n such that m? is generated by 1 —a(a)/a,a € O, # 0. Further
assume ey - sw(x) < sw(x') +dp k. Then L is ramified over K and

the composite

’
¢ TIW X Po
swy S
N}"X ——— w, — N}

is zero, where p, 1wy, — Nj° is defined by a - dlogb— a- (1 — a(b)/b).

REMARK: The integer dj x is equal to the length of Qy, ( log L)/
01 Qo Q},K(log_l?) (cf. 3) of Lemma 1). It is also equal to &,k —
(eLsx — 1) where 61,k is the valuation of the different of L over K.
PROOF: Let K' be the completion of K(¢t) appeared in the definition
of the Swan conductor reviewed before and L' = L ®x K'. We put
s = sw(x),s' = sw(x'),so = sw(f),e = ey x and d = dy i for short.
First we show 1). By (K3] Proposition (6.3), we see x;+ annihilates
Ufit! which means sw(x') < ep/x - sw(x). Assume s' < es. Then
L is ramified over K by [K3) Lemma (6.2). For the exactness, it is
sufficient to show that the composite N — wy is zero since the kernel
of wy ® L — wy, is of dimension 1. By commutativity of the diagram

(V ', '
gx e gk

! !

L% {xzei Yo BT(L'),

R {x: } ! .
we see the composite U}, - Br(K') — Br(L') is zero. This
. . ) rsw x xT .
implies the composite Njy —— wg — wy — wys — Br(L') is zero.

xT
Since w; — wy — Br(L') is injective, we have N§ — wy is zero.
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We prove 2). By [K3] Proposition (6.8), we have d = (p — 1)esy/p.
For n > 35, we have en — d > €sp and, by a similar computation as in
[S] Chap.V § 3, we have UE, = N, 1k (UE~4). The diagram

' {xgs, Yoo Br(L')

NLl,Kll lCOTLl/KI

Erxe X e g e,

is commutative. Hence by taking s = swy > sy as n above, we see that
XL’ does not annihilate UZ:"'d. Therefore we have sw(x') > es - d >
eso/p 2 0.

To complete the proof, we need the trace map Try p : wy — wg. If
L is unramified over K, it is simply Treg i we ~ wie @ L — wg.
We assume L is ramified over K. Then it is defined as follows. It is
easily seen that the exterier differential d ‘wg — A%wy and the Cartier
operator C' : wk 4-¢9 — wg are defined in the same way as in the usual
case. Namely, d is defined by d(a - dlogb) = da A dlogb, the kernel
wi,d=0 of d is generated by da and a? - d log b as an abelian group and
C is defined by C(da) = 0 and C(a”? -dlogb) = a- dlogb. We define the
trace map Try p : wy, — wi by Try k(a-dlogb) = C(a"-dlogNL/Kb).
By an elementary computation, we check it is well-defined. It is also
easily checked that it is non zero, K-linear and annihilates the image of
Wiy ®I_(-f

LEMMA 5. Let K, 9 and L be as in Lemma 3’. Then
1). The diagram below is commutative,
wy, —— Br(L)
TrL/Kl 1COTL/K

wx ——— Br(K).

Here the horizontal arrows are the canonical maps, whose definition is
reviewed below.
2). Let x and x' be as in Lemma 3’ and assume sw(f) < sw(x). Then



180

rsw(x') is defined and there is a commutative diagram

, rswyx
N — wye

| L

rsw x
N} —— wk

where the left vertical map is the one induced by Try i if s =es—d
and 0 if s' > es —d.
PROOF: First we give the definition of the canonical map wyg — Br(K)
used in the definition of the refined Swan conductor. The kernel
Br(Kar/K) of Br(K) — Br(K.) is isomorphic to H*(K, {g,’f,/Ul). It
is easy to see that we have an exact sequence of Gal(K ,ep/ K )-module
d1 1-C

0 = (K% /UMY [P — WKy =0 —— WKay = 0
extending the Artin-Schreier sequence of K. Hence by taking cohomol-
ogy, we have an isomorphism

wi/(1 - Clwk,d=0 = pBr(Kar/K)

and the canonical homomorphism wx — Br(K).

We show 1). If L is unramified over X, it immediately follows from the
definition of the canonical map. If L is ramified over K, it also follows
from the definition and the commutative diagram of exact sequences

1-C

dl
0 —— (LXJUY/p —— Wi dm0 — Wiay — O

sorm] | |

" dlog 1-C
0 — (I\:r/Ul)/P —_— WK, d=0 — WKa T 0.

We prove 2). Since we have already shown sw(x') > 0, the refined
swan conductor rsw(x') is defined. By definition of rsw and by 1), we
have a commutative diagram

s s rsw x’
Ut » N — Wi —  Br(L)
NLIKl TTL/Kl lCOTL,K

raw x

Ul » Nj — wg —— Br(K).
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By a similar computation as in (S] Chap. V §3, if n > so, we have
NL/K(UZ“"“'I) C U}\"“H,Trw;((mi"_d"'l) C mi™! and a commutative
diagram

Uzn—d/Uzn—d+l ~ zn—d

NL/Kl lTrLIK

UR/URY —— Ng.

Now it is easy to see the diagram of 2) is commutative. Thus Lemma 5
is proved.
We complete the proof of 2) of Lemma 3’. Assume s’ > es — d. Then

. , rsw x' Try x .
by 2) of Lemma 5, the composite N} » wr » W IS zero.

By [K3] Lemma (6.2), L is ramified over K. Hence ¢, : wy — N} is

—_ Po .
well-defined. It is clear that the composite wx ® L — wy, — N;° is
zero and the cokernel of wyx ® L — wy, is one dimensional. Therefore,

. . ’ x' 4

if the composite N} T, wy, =z, N}’ was not zero, wy would be
the sum of the image of rsw x' and that of wx ®7 L. But this is a
contradiction since Trp i (wy) # 0. Thus we have completed the proof

of Lemma 3’ and hence of Theorem. Q.E.D.
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