RAMIFICATION GROUPS AND LOCAL CONSTANTS

Takeshi SAITO

Let K be a complete discrete valuation field with a perfect residue field k of
characteristic ch k = p # 0. The filtration by the ramification groups G* of
the absolute Galois group Gal (K */K’) has been known for long time [S3]. We
define a canonical isomorphism 7 (N?) ~ G?/G"* of pro-finite F,-vector spaces
for v € Q 2 0 where G** = J,,,,G". Here N* = {z € K **P;ord = > v}/{z €
K *°P;ord z > v} is a k %°P-vector space of dimension 1 and m;(/N?) denotes the
fundamental group [S1] of an affine line N? as an algebraic group. In particular, the
Pontragin dual of G¥/G¥* has a natural structure of k *¢P-vector space of dimension
1. We give an interpretation of a refinement of the Swan conductor defined by Kato
[K] in terms of the isomorphism. We also study a relation with an explicit formula
for local constants modulo roots of unity of p-power order by Henniart [He].

A part of this work was done during a stay at Orsay in the spring of 1995. The
author thanks Prof.Illusie for the hospitality and encouragement. He also thanks
Mme Bonnardel for typesetting.

1. The isomorphism.
Let

M =P M" = P mi/mi*! = Gr*(K)
nez n€Z
CN=EN"=Gr*(K *P)
veQ

be the associate graded with respect to the filtrations defined by the valuation. They
have natural structures of Z-graded k-algebra and Q-graded k *°P-algebra respec-
tively. They are non-canonically isomorphic to k[t,t~!] and to k **P[tm ¢~ (m >
1)] respectively. The natural action of Gx on N factors the quotient G/P =
Gal (K*'"/K) where the maximal tamely ramified extension K" = K" (x#,p{m)
is the union of the extensions with prime-to-p ramification index. In fact, N is
the perfect closure of the subalgebra Gr*(KX'"). The action of the inertia I/P =
Gal (K'"/K™") = lilnpim im on NV is given by a character [v] € Hom(I/P, k s¢P*)

defined as follows. Identify Hom(I/P, k **PX) = lim { Hom(pm, ptm) = Uppm 2/ Z
pim

pim m

C Q/Z and let p¢ be the p-part of the denominator of v. Then a character
[v] € Hom(I/P, k %P>} is characterized by p°[v] = ptv € Up{m 17Z/Z. From this,
we see that the fixed part NOX is the perfect closure of the subalgebra M. For a
finite separable extension L of K in K P, we naturally identify N for L and K
but the grading is multiplied by the ramification index er/k- When we want to
distinguish N for K and for L, we write Ng and Ny.

To define the isomorphism G?/G"" — m;(N?), we briefly recall the definition of
a refinement of the different by Kato [K] (2.1). Let L be a finite separable extension
of K. Let dj, /i be the smallest fractional ideal of L satisfying Tr /k(dryx) = Ok.
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The refined different Dy € L™ /1 4+ my, is defined to be the class of an element
D of L™ such that dp /- = D10, and that the diagram

Tri i
dyyy — Ok
ﬁxl l mod g
OL 14 f 4 k
mod my, Trese

is commutative where £ is the residue field of L. For a tamely ramified extension L,
the refined different D/ is the class of the ramified index ef /i € € C L*/14+my,.
For L D K' O K, we have the chain rule Dy = Dy X Dgery.

Letp =9/ = <pZ} K- R2° — R2° be Herbrand’s function for a finite separable
extension L over K [D2] A.4. We say that the ramification of L over K is bounded
by v if 1 is linear on the half line (v — ¢, 00) for some ¢ > 0. Assume that the
ramification of L over K is bounded by v. Then we have ¥(v) = ev — § for
6 =ord Dy k. Hence the multiplication by D induces an isomorphism

NP I, yev - Ny
Further if 1(v) is an integer, it induces an isomorphism of ¢-vector spaces of di-
mension 1
ap/i : 14+my 14 mPOH (Vg6

where ©% denotes the fixed part. Here and in the following, we naturally identify
1+ mp/1+mi*t = M2 forn € N,

LEMMA 1. Let L O K’ be finite separable extensions of K such that the ramifi-
cations over I{ are bounded by v and assume w = Yk (v) and w' = Y e (v) are

integers. Then the norm map Ny induces a map Ny g : 1+ my /1 + myt! -

14+ m¥/1+ m',‘:-','“ and the diagram

aL/ K’ N CE :
14+ m¥/1+mpt! —— (N})6r =€ @u(N})Cx
NL/K'l lTrl/kl®id
! '+1 Gyer
1+m?‘,‘l/l+m(;\}'l _— (N;i) K
it K

1s commutative.

Proof. By the chain rules Dy = Dy - Dyvyie, Yoy = ¥oi - Yy and by
the definition of o, we may assume K' = K and hence w' = v. By the assumption
that the ramification is bounded by v, the trace map Try;x : L — K induces a

map Tp,x : m¥/myPt! — my /miF! and the diagram

w1 w+1

NL/I(l lTL/K

1
1 + mllj\'/l + mtI)\+l m}’\/ml;j—
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is commutative. Now the assertion follows immediately from the definition of the
different Dy ;.

We briefly recall the fundamental group m;(V) of an affine line V ~ A?! over the
algebraically closed field & *°P. It is a pro-finite Fp-vector space and there exists a
one-to-one correspondence between a surjection m(V) — ¢ to a finite group and
an (isomorphism class of ) exact sequence

0—=g—-V -V =0

of algebraic groups where V' is isomorphic to A!. It is known that the k **P-vector
space Homone(m (Al), F,) is of dimension 1 and the exact sequence

0—>]F'p—>Al—>A1—->0

z— x—zP
gives a basis ([S1] 8.3 Prop. 3). By the basis, we identify
Homeont(71(V),Fp) = Homy sep(V, k *°P)

which determines (V') as the Pontrjagin dual.

For a positive rational number v € Q,> 0, let G* C G be the filtration by the
ramification group [S3] Chap IV. Sect. 3 Remarque 1 and let G’ be the closure
of the union | J,, Gv'.

THEOREM 1. There is a canonical G/P-equivariant isomorphism

m(NY) ~ G*/G"™.

Proof. Let L be a finite Galois extention of K in K %P with Galois group G such
that G**¢ = 1 for any ¢ > 0. Let K’ be the subextention corresponding to G".
Then the ramification of K’ over K is bounded by v and %k (v) is an integer.
By [S3] Chap. V Sect. 6 Prop.9, we have an exact sequence

1G5 sz/K(”) - M;l{’f{'”{(v) .

Since D /x induces an isomorphism NV ~~ M;ff" x () ® k 5P, it defines an exten-
tion of an affine line N? by the group G¥ which is a finite abelian group killed by
p- By passing to the limit, we obtain a surjection m(N?) — G¥/G"*.

We prove the injectivity. First we reduce to the case where v = n is an integer.
By the definition above, if the ramification of a finite separable extension L over K
is bounded by v, we have a commutative diagram

m(Ny©) —— 6LV /6r

(XDL/J()-l 1

m(NY%) ——  GY%/GY.
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Here the vertical arrows are isomorphisms. By taking such an L with ey g - v
integer, we can make ¥(v) integer. Thus we may assume v = n is an integer.
Further we may assume £ is algebraically closed. Then the induced map 71 (N ") —
G"/G" — G " /G "+ coincide with the graded piece of the isomorphism [S2]
2.4
8:m(U)— G

since 8 is defined by the covering defined by the norm. Hence it is injective by
Theorem 1 loc. cit. 4.1 and is an isomorphism.

By the proof above, the isomorphism in Theorem is characterised by the following

COROLLARY 1. 1. For a finite separable extension L over K with ramification
bounded by v, we have a commutative diagram

m(NY) —— G170 jep

i !
m(Ng) ——  Gy/Gy
2. For an integer v = n, the composition
m(N") = G%/GiF — God.r/Gab,n+!
is the graded piece of the isomorphism
T (Ugenr ) — G%..

of [S2].

For finite residue field case, we have

COROLLARY 2. If k is finite of order g, the isomorphism for an integer v = n
satisfies the commutative diagram

m(N") —— R/GR
Mf  —— (G /(G
Here the left vertical arrow is defined by the exact sequence
0> MpE—N* 224 N® S0

where the Frobenius ¢ is induced by = w— z9, the right vertical is the canonical one
and the bottom horizontal arrow is induced by the reciprocity map K> — G4 of
the local class field theory sending a prime element to a geometric Frobenius.

Proof. 1t follows from Corollary 1.2 and the commutative diagram

mU) —s G,

! l

Uk C KX —— G2.



Here the left vertical arrow is defined by the exact sequence

0—»U1\-—>U£>U—»0

the horizontal arrows are the reciprocity maps of the local class field theory for
algebraically closed field and finite residue field respectively and the right vertical
arrow is the canonical map. The commutativity follows from the definition of the
reciprocity map in [Ha] which is the inverse of ours.

2. Refined break and refined conductor.

We define a refinement of the notion of break of a continuous representation of
G and give its relation with the refined Swan conductor defined by Kato.

Let C be an algebraically closed field of characteristic # pand p: G — GLc(V)
be a continuous representation of G on a C-vector space V of finite dimension. We
say that a rational number v is a break of V if VC" S VGt We put my(V) =

dim VC"H'/VGv Then v is a break of V if and only 1f my(V) # 0. Wesay V is

pure of break v if m,(V) = dimV # 0 namely V = yert # VG = 0. We know
that the Swan conductor is given by the formula

sw(V) = Z v - my(V)
veQ

and is an integer.

We define a refinement. Let g = p,(C) = {¢ € C;¢? = 1} and N”* denote
the k *P-vector space Homy seo(N", k **P) ®, p. By the isomorphism 7, (NV) —
G?/G** defined in section 1 and by the canonical isomorphism Homy sep( N, k %¢P) =
Homeon (m1(N?),Fp), we identify N** = Homeon (G¥/G®*, 1). A natural action of
G/P on N'* is induced by that on N?, or equivalently by that on G¥/G*. We
consider an orbit £ of N¥* — {0} with respect to the action of G/P. We say that an
orbit o is a refined break of a representation V, if v is a break of V and if an (and
hence any) element o of £ appears in the representation VE'* of G /G't. We put
mg(V) to be the multiplicity of a character ¢ € ¥ in the representation VST of
G?/G"*. 1t is independent of the choice of ¢ and is well-defined. Obviously we
have

my(V) =) _ Card (£) - mg(V)

where ¥ runs the orbits of N**—{0}. We say V is pure of refined break T if dimV =
Card (£)mz(V) # 0 namely if V is pure of break v and if the representation
of G*/G™* on V = VO is (@) o)imV/Cd = An irreducible wildly ramified

o€
representation has a pure refined break.

We briefly recall the definition of the refined Swan conductor rsw(V') of a con-
tinuous representation p : G — GL¢(V) [K] (3.1). For a finite totally ramified
Galois extension L over K with Galois group G of degree n a power of p, let
sg: G = L*/1 4+ my, be the function

(1= (o(m)/m)~! o #1

s6lo) = { Dypsx o=1
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which is independent of choice of a prime element 7 of L. Since Dy i = f'(7)/7""! =

H (1 = (o(m)/ 7)) for the minimal polynomial of 7 over I, we have H sa(o) =

oc#1€G el
1.

Let p : Gk — GLc(V) be a continuous representation. Take a finite Galois
extension L such that p factors the finite quotient G = Gal (L/K). Then the
refined Swan conductor is almost defined by the formula

rsw'L/K(p) = Z spe(0)DTrp(c) € (LX/1+m )@z OCN*@z0
U’EPG

upto the slight modification below. Here O denotes the integral closure of Z in
C and Pg is the subgroup of G corresponding to the maximal tamely ramified
extension in L.

Let N(u)* = Uyeq.icz(N"®F, 12 —{0}) be the multiplicative group of the bases
of the k **P-vector spaces N¥ @r, @' for v € Q and ¢ € Z with natural (tensor)
product. It is an extension of Z by N*. We define a morphism N(u)* — N*®z0
to be the identity on N> and 1 & ¢ — £(¢) = Z [r] & ¢" for a basis ¢ of p. It is

rEF:
well-defined since (") = [r] - (().

THEOREM K (Theorem (3.4) [K]). There exists a unique non-zero element
rsw(p) € Arsv(o) @ ll(;)—dim vivE

whose 1mage is equal to

- dim V/VP
rsw'L/,\-(p) L dimVIVE

Here L is as above and m is the prime-to-p part of the ramification index er

We call rsw(p) the refined Swan conductor of p.

For an orbit & C N* — {0}, we define its norm N(L) g N~vCard L o, @Card &
to be the product H o. It is invariant under the action of G .

o€EX
THEOREM 2. Let p: Gy — GLc(V) be a continuous representation such that
VP = 0. Then we have
rswp = (H N(E)mg(V))—l
E

where ¥ runs the refined breaks of V.

COROLLARY 1. Let V be as in Theorem 2 and L be a finite separable extension
whose ramification is bounded by any break v of V. Then we have

G deg p
rswy p = rswi(Resc¥ p) - ‘DL/SI\' .

Proof of Theorem 2. First, we prove the case where p = x is a character of order
p. Let L be the corresponding totally ramified cyclic extension of degree p and
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t = ordp(a) where o(n)/m = 1 + « for a prime element 7 of L and a generator o
of Gal (L/K). By [K] Lemma (3.9), the refined Swan conductor is given by the
formula
rsw(x) = =Ny ca® x(a)®7! .
We compute the refined break. Let f € K[T] be the minimal polynomial of .
Since the refined different is given by

Dy = f,(ﬁ li[(

) =(p- D’ = =7,

we have
Triji(za) = —za® = 2(~Nyka) .

Hence we have

NL/I\'(l + .’L’a) =1 +TrL/K(:z:a) -+ NL/K(:C(I)
=1+ (x - :c”)(—NL/Ka) .

Namely we have an isomorphism of exact sequences

0 — F, — A EmEmThoa

l l !

0 —— Gal (L/K) ——— N, —— NL.
oro(m)/n Nerx

Here the vertical arrows are 1 +— o,  — za, y — y(—Np/xa) respectively and
NL — N} is the induced map by the norm N, /- 1t means that the refined break
is given by

(=Np/ka)® ' ® x(0) € Hom(Ni, k*P)@ u = N** .

Thus theorem is proved in this case.

We reduce the general case to the case of characters of order p. Let G =
Gal (L/K) = Imp be the finite image of p : G — GL(V). First we reduce to
the case where L is totally ramified of order a power of p. Let K’ be the maximal
tamely ramified extension in L so that L over K’ satisfies the condition. By [K]
Lemma 3.2 (3), we have

rswg(p) = rswy(Resp) - D}"f}‘/’;‘

where the different D)y is the class of the ramification index eg:/x € k*. We
show that

HN(EI me (V) _ H N(E}g m‘.:K,(ReSV) D}—(Id/eﬁp )
e



For v € Q, > 0 and a non-trivial character o : %/ ‘,’\-+ — u, let oy denote the

composite G'f"(,v) / G'}I:-(,v) t o v./G*F — p. Then the multiplicity of ¢ in VCx'
) ) v (v)+ . . e .
is equal to that of oy in V e and o regarded as in N3 is D 1\‘} / ,o-times oy
regarded as in N,"\'is v by Corollary 1 of Theorem 1. Thus the equality is proved
and we may assume ' = K and L is totally ramified of order a power of p.

We reduce to the case of character. We may assume p is irreducible. Since G is
a p-group, it is monomial and there exists a subextension K’ C L and a character
of x of Gal (L/K') such that p = Ind x. Then by loc. cit. Prop. (3.3) (2), we have

rswi(p) = (sswio(\) - Doy 0T

We consider the right hand side of the theorem. Let v be the break of p. Since p
is irreducible and G* is in the center of G, the restriction of p to GV is the direct
sum of copies of an isomorphism o : G* — y. Further G' C Gal (K'/K) and the
ramification of iK' is bounded by v. Hence V is purely of refined break o and,
similarly as above, we have o = gy - D;f s where oy is the refined break of y.
Thus the right hand side is

leg V -1 deg V
a.( eg = (0'1\', X Dl\"/[\') €g ,

and it is reduced to the case of characters.
Finally we assume p = y is a character. Let K’ C L be the subextension with
(L : K'] = p. By [K] Lemma (3.10), we have

rswy(x) = rswy(Resy) - Dyryw -
By a similar argument as above we have
Of = Ok 'D,_\»f/,\-
and it is reduced to the case where x is of order p and the proof is completed.

Proof of Corollary 1. By a similar argument as in the proof of Theorem 2 for v € Q
bounding the ramification of L, for ¢ € N'*,# 0, the multiplicity of o in yvEx**
1s equal to that of o, = ok - Dy in et
Theorem 2.

COROLLARY 2. Assume k is finite and let y : k — p be a non-trivial additive
character. Let x : G432 — C* be a wildly ramified character and, by the reciprocity
map of the local class field theory sending a prime element to a geometric Frobenius,
we identify it with a character x : K™ — C*. Then the refined Swan conducter is
given by

Now the assertion follows by

rsw(x) =y~ @ P!

where y € m ¥ is characterized by

X(1+2) = Yo(yz)



for z € 77’1";:3'(‘).

Proof. By Theorem 2, it is enough to compute the refined break of x. Hence it
follows from Corollary 2 of Theorem 1.
3. Relation with e¢-factors.
We study the relation with formulas for local epsilon-factors in [D-He] and [He].
First we study the multiplicative group N> of N. We have an exact sequence

quse"x—)j\’x-ﬂ»(@—»().

We show that the canonical map K */1 + myp — N induces an isomorphism
K*/14+my ® Z[%] — (N*)YK onto the Gp-fixed part. In fact, we have a com-
mutative diagram of exact sequences

0 — k> —_— I\'x/1+m;(®Z[%] —_— Z[%] — 0
0 —— (k sep x)GK (.NX)G"' Q

The image of (N*)6% — Q is in Z[%] since the action of I/P on NV is non-trivial
ifvéd Z[;—’]. For a finite separable extension L, we identify L*/1 + m; ® Z[%] =
(N)Ge.

Assume the residue field 4 is finite of order ¢. Let 1 : ¥ — C* be a non-trivial
character and pu be a C-valued Haar measure of K such that y(Og) = ¢q. For a
continuous representation p of Gy on a C—vector space V', we consider the image

1
6[\'(‘/7 !/)0) (S Cx ® Z[I_)] = Cx/upoo

of the local epsilon-factor e (V, 4, u) [D1]. Here ppe is the group of roots of unity
with p-power order and ¥ : K — C* is an additive character annihilating the
maximal ideal mg and inducing ¥y on k = O /my. It is well-defined since 9 is
unique modulo multiplication by a pro-p group 1 + my.

Since the epsilon-factor ¢ (V, %, ) is well understood for tamely ramified V,
we assume V¥ = 0 in the following. Further without any loss of generality, we
assume V is pure of break ¥ for some orbit ¥ of NV* — {0}. To state a formula

for ex(V, 1), we introduce invariants det p(X) and 7(Z) in C* ® Z[%]. First we
note that the basis ¥y € Homg, (k, 1) of a k-vector space of dimension 1 defines an
isomorphism

N** =Homgy, (m(N"), n) — Homy sep (N, k *°P) @1 Hom(k, p1)
% Homg sen( NV, k *P) = N,
Hence by Theorem 1 m;(N?) ~ G*/G"*, we identify

Homp, (G*/G"t,p) = N~"
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and we regard T as an orbit of N=* — {0}.

Take an element 0 € £ and let L be the tamely ramified extension of K cor-
responding to the fixing subgroup of o. Let p, be the subrepresentation of the
restriction Res® (,\p on which G}./G}} acts by . By local class field theory, the
determinant det p, : G¢° — C"‘ defines a character L* — C'* and hence mduces
det pg : L*/U' ® Z[ ] - C* ® Z[ ) = C*/ppe. We define det p(E) € C%/ppo
to be the value of det po cvaluated at o x Dy € (N*)9t = L*/U' @ Z[;—,]. It is
independent of choice of ¢ € .

We define 7(Z). Let m be the prime-to-p part of the denominator of v so that

w=mv € Z[%] Let 7 = Z ¥o(x?/2) be the quadratic Gauss sum. We define the

rek
square residue symbol

(K):{sEI\x/1+mk )Z[ ]01(1 €2. Z[ ]}——»{:i:l}

to be the unique surjection such that (% ) =1forse K*/U! C>Z[ -]. Let an orbit
¥ and a tamely ramified extension L b( as above and f = i/ be the residual
degree. Then we define

"(—(’7'\'*)7”"'_'(11—%&) if ordyr <0
T(S) =
(_}‘_S)(qu 7) if ord,v > 0.

In the first (resp. second) case, H;—"—' (resp. %) € Z[ ] and hence q e (resp.

g%) € C*/ptpe = C* @ Z[%] is well-defined.

THEOREM 3. (cf. Theorem [He]) Let the notation be as above. Then we have
ex(p o) =det p(£)7" - r(D)m=V)

in C* fppee = C* ®Z[%]

COROLLARY (cf. Th. 4.2 [D-He]). Assume VP = 0. Then for a tamely

ramified representation = : Gy — GLc(W), we have

ex(p® m. o) = det m(rswp) - ek (p, 10 ) "

in C*fupee = C*Q® Z[’l—,]. Here det w(rswp) is the value of the character detw :
K*X/1+my c K*® Z[;—)] - C*® Z[%] at rswp € K /1 + my,.

Proof of Corollary. We may assume p is pure of refined break ¥. Then p® 7 is also
pure of refined break ¥ and we have

d;t pRT(X) (l(,t p(Z)45 ™ . det w(rswp)

by Theorem 2. Now it follows immediately from Theorem 3.
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Proof of Theorem 3. First we check that it is exactly Theorem [He| if we assume
B = {o} for 0 € (N*)9¥ = K*/1 + my @ Z[;]. Note that the assumption means
that p is homogeneous in the terminology loc. cit. We show that the g—invariant ¢
loc. cit. is equal to 0. Let G = Imp = Gal (L/K) and K’ C L be the subextension
corresponding to GV for the break v of p. Let y : GY = Gal (L/K') — u be the
central character of p. Then the equality

x(1+zx)= J'/’(Trlx"/l\'g"”)

for x € m'ﬁ(,")_l , which is equivalent to that in 1.-3 p.120 loc. cit., implies that

rswio(x) = (9 Drrjr)™

by Corollary 2 of Theorem 2 . Thus we have g = o.
Since €'(p) loc. cit. is e(p - w%,t/),q'%p) in our notation, we have

L(sw
€'(p) = g2 M PHIBPe(p, 4 p)

using ord ¥ = —1. Therefore to complete the proof, it is enough to check that

L

{q 2 ordv =0
(o) = .
() g2 -7 ordyv > 0.

is G(o) x ¢ loc.cit.. It is quite elementary and left to the leader.

We reduce the general case to the case proved above. Let L be the fixed field
corresponding to the fixing group of an element ¢ € £ and p;, be the subrepresenta-
tion of Resgfp consisting on which G- acts by 0. Then we have p = Indp;, and the

. . . xD
break of p; consists of {o} where o is the composite N}{’(”) — LK, N5 Do

We prove

5[\'(P7¢0) {1\ -rlz_ _m—1\f\deg pr
EL(pL9'/)O°T1'E/F) X detpL(DL/K) =((-1) ((F) TF ) ) 8p ).

We show it completes the proof. In fact Theorem for p; which is already proved

gives
EL(pLa¢0 o TrE/F) = detpL(O'L)_l X TL(UL)deSPL .

By o~! = O’ZIDL/K, it 1s enough to show
- m, -
7(Z) = (-1)f l((f)"p Y xrp(oL) .

By considering the action of inertia, we have e, /i = m. Hence ord ;v < 0 (resp.
> 0) is equivalent to ord ,w = 0 (resp. > 0). Now it is easily deduced from

g = (=1)/~'rr and (%) = (§8)- (P)".



Finally we prove the equality above. By the induction property of the epsilon
factor, we have

en(Indl, vg) )dcg P

(left hand side) = (51(/’1 T
2 L T Yo \

We give a proof of the equality

EI\'(Indlvlj”O) _1)f—l((

m
slpr,woTry ) F

by mimicing an argument by Henniart {He]. Let x be a wildly ramified character
of K> of order p-power such that v = sw(y) is even and s = rsw(y) is a square.
Applying Theorem for y; = Resg‘,'f xy and p = Indg’,f v, which is already proved
and using the induction property, we have

exl{p - o) _ det p(s)™! ((Ti,)q}grp)[l,:lx']

mu

(left hand side) = = iTe .
) erxes¥oTriyn)  \ulp-m™)71 ((emzlyg 2 rp)

By degp = \1¥%1 @ det Indl and by det Ind1(s) = 1 since s is a square, the first
term in the right hand side is a root of unity of p-power order. Hence the right

hand side is (§) T;,«L:k] gl = (—l)f_l((%-)v',',l’_l ¥ and the proof is completed.
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