
Finite extensions of algebraic number fields ramify at finitely many primes. The primes
that ramify in an extension carry crucial information about the extension. For example,
the primes that ramify in the cyclotomic extension Q(ζn) generated by a primitive n-th
root ζn of unity for an integer n !≡ 2 mod 4 are precisely the prime divisors of n. The inertia
groups at primes dividing n generate the Galois group and this fact implies the surjectivity
of the canonical injection Gal(Q(ζn)/Q)→ (Z/nZ)×, or equivalently the irreducibility of
cyclotomic polynomials. Similarly, for a finite morphism X → Y of algebraic curves, if
the extension of the function fields is separable, there are finitely many points that ramify
in the covering.

We distinguish two types of ramifications; tame ramification and wild ramification.
Tame ramification is easier to understand and allows geometric intuition similar to the
ramification of finite coverings of Riemann surfaces. Tame ramification is determined
essentially by the ramification index.

Wild ramification means that the ramification index is divisible by the characteristic
of the residue field in the classical setting where the residue field extension is separable,
and is much more complicated. In the case of cyclotomic extensions, the ramification is
wild if and only if n is divisible by p2. The understanding of wild ramification inevitably
involves additive groups of some vector spaces such as the space of differential forms over
the residue fields.

To understand wild ramification, the key tool we use is the filtration by ramification
groups. In the case of cyclotomic fields, if we identify the Galois group with (Z/nZ)× by
the canonical isomorphism, the congruence modulo powers of prime divisors p of n defines
a filtration of the inertia subgroup at each ramified prime p. The fact that this filtration
actually gives the ramification groups is the first case of the Hasse–Arf theorem that is at
the core of the classical ramification theory.

A main application of the filtration is to the conductor of Galois representations. The
integrality of the conductor is proved as a consequence of the Hasse–Arf theorem. We
briefly introduce two examples of application of the theory of the conductor, one in number
theory and one in algebraic geometry.

In the Langlands correspondence between Galois representations and automorphic rep-
resentations, the conductor of a Galois representation equals the level of the corresponding
automorphic representation. For example, the proof of Fermat’s last theorem is completed
by proving the modularity of elliptic curves over Q: For an elliptic curve E over Q, there
exists a modular form f such that the L-function L(E, s) defined by the Galois represen-
tation on the Tate module T!E equals L(f, s). In this correspondence, the conductor of E
defined by the ramification of T!E equals the level of f .

In a geometric setting, the conductor appears as the local term in the Grothendieck–
Ogg–Shafarevich formula computing the Euler–Poincaré characteristic χc(U,F) of a locally
constant étale sheaf F on a smooth algebraic curve U over an algebraically closed field of
characteristic p > 0. The local terms are the contributions of points at infinity X U of
the smooth compactification X of U where the sheaf F ramifies.

In arithmetic geometry, beyond extensions of algebraic number fields or coverings of
algebraic curves, we are interested in coverings of schemes of finite type over Z or those
of varieties of higher dimension. Then, contrary to the local fields in the classical setting,
the residue fields of local fields are no longer perfect and the residue field extension may
be inseparable. This implies that the theory of wild ramification is required to cover
extensions such that the extension of residue fields are not separable.
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As a geometric application in this general setting, we will give a proof of the Deligne–
Kato formula [39] computing the dimension of the space of nearby cycles on a curve over
a local field. A special case of the formula plays a crucial role in the proof of the existence
of the characteristic cycle of a constructible sheaf on a smooth scheme over a perfect field
[61]. As another example of application, the characteristic cycle is known to be computed
in codimension 1 by using ramification groups of local fields with imperfect residue fields,
loc. cit.

Thus, the main subject of this book is the filtrations by ramification groups of the
Galois group of an extension of local fields with no restriction on the residue fields. There
are two kinds of ramification groups, the lower numbering ones and the upper numbering
ones. They have properties that show sharp contrast:

(1) The lower numbering ramification groups are defined in a fairly elementary way.
Let L be a finite Galois extension of a local field K and G be the Galois group. Then,

the inertia subgroup I ⊂ G is defined as the kernel of the action of G on the residue field
E = OL/mL. As a generalization, a decreasing filtration G′

i ⊂ G is defined as the kernel
of the action of G on OL/mi

L indexed by integers i ! 1. The lower ramification group
Gi ⊂ G is defined as its slight modification obtained by replacing the quotients of the
additive group by those L×/(1+mi

L) of the multiplicative group. From this definition, we
can easily deduce the following facts:

(2) The graded quotients GriG = Gi/Gi+1 are Fp-vector spaces for i ! 1 and Gi = 1
for sufficiently large i.

(3) For the subextension M ⊂ L corresponding to a subgroup H ⊂ G, we have Hi =
H ∩Gi.

However, in the case where M is a Galois extension of K and hence H ⊂ G is a normal
subgroup:

(4) There is no general way to express the ramification groups Gi ⊂ G of the quotient
G = G/H = Gal(M/K) out of Gi ⊂ G,
except in the classical case where the ring of integers of the extension is generated by a
single element. The properties (3) and (4) indicate that:

(5) The lower numbering filtration is an invariant of L rather than K.
We will see in Section 4.4 that the graded quotients GriG for i ! 1 are related to vector

spaces over the residue field E = OL/mL not over F = OK/mK .
On the other hand:
(1′) The definition of the upper numbering filtration requires a heavy geometric ma-

chinery.
We present a heuristic observation in Section V.0 using the terminology of rigid ge-

ometry leading to the definition of upper numbering groups. The actual definition in this
book is given entirely in the language of schemes and no knowledge of rigid geometry is
required. Still, it requires dilatations, stability of integral models, the going down theorem
in commutative algebra etc. The upper ramification subgroups Gr ⊂ G are indexed by
positive rational numbers r > 0 and the symbols r+ for rational numbers r ! 0. It is a
non-trivial fact that G1 equals the inertia subgroup I and G1+ equals its unique p-Sylow
subgroup P called the wild inertia subgroup.

(1′′) In the classical case where the ring of integers of the extension is generated by a
single element, the upper numbering filtration and the lower numbering filtration are the
same up to renumbering controlled by the Herbrand function.
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In general, there is no such relation. We will give an elementary counterexample in
Section 2.1 as compositions of Artin–Schreier extensions.

The following properties of upper ramification groups are highly non-trivial:
(2′) There exist finitely many rational numbers 1 = r0 < r1 < · · · < rn such that Gr

are constant on the intervals [ri+, ri+1] for i = 0, . . . , n− 1 and Gr = 1 on [rn+,∞).
(2′′) The graded quotients GrrG = Gr/Gr+ are Fp-vector spaces for r > 1.
The proof of (2′) requires the reduced fiber theorem and the stable reduction theorem

of curves. The proof of (2′′) is by the reduction to the classical case where the residue
field is perfect and relies on (2) and (1′′) above. The reduction requires a study of the
first homology group H1(LE/OK

) of the cotangent complex which plays the role of the
cotangent space at the closed point of the spectrum of the discrete valuation ring. The
most difficult case is the case where p is a uniformizer and dp = 0 in the usual sense. The
introduction of the vector space H1(LE/OK

) allows us to avoid this difficulty.
The statements (3) and (4) are switched as follows.
(3′) For the subextension M ⊂ L corresponding to a subgroup H ⊂ G, there is no

general way to express the ramification groups Hr ⊂ H out of Gr ⊂ G.
In the case where M is a Galois extension of K and hence H ⊂ G is a normal subgroup,

the following property is built in the definition of upper numbering subgroups:
(4′) The ramification groups G

r ⊂ G of the quotient G = G/H = Gal(M/K) equal
the images of Gr ⊂ G.

The exceptional classical case of (4) is a consequence of (4′) and (1′′). The property
(4′) indicates:

(5′) The upper numbering filtration is an invariant of K.
In Chapter 14, we will construct an injection called the characteristic form from the

dual group of the graded quotients GrrG for r > 1 to a twist of the vector space H1(LE/OK
)

that behaves like a scalar extension of that over the residue field F = OK/mK .
For abelian extensions, Kato defined another filtration [41], which we call the coho-

mological filtration, using the cup product of abelian characters with the multiplicative
group valued in the Brauer group. In the classical case where the residue field is finite,
this cohomological filtration is given as the images of 1 + mn

K ⊂ K× by the reciprocity
morphism K× → G of local class field theory. A feature of the cohomological filtration
is the property that the filtration is indexed by integers. Consequently, a comparison
of the lower numbering filtration with cohomological filtration implies the integrality of
conductor.

For a cyclic extension, under the assumption that the ring of integers is generated by
a single element, we prove in Section 4.4 a relation of the cohomological filtration and the
lower numbering filtration called the Hasse–Arf theorem. This is proved by induction on
the degree of the extension. In the first case where the degree equals the characteristic of
the residue field, this is proved by explicit computation for Artin–Schreier extensions in
the equal characteristic case and for Kummer extensions in the mixed characteristic case.
The induction step is proved by introducing a stronger version due to Kato formulated in
terms of a certain twisted differential form called the refined Swan conductor defined in
[41].

The cohomological filtration shares the property (5′) above with the upper numbering
filtration. The refined Swan conductor is a twisted differential form of the residue field
F = OK/mK with logarithmic pole. We prove in the last chapter of the book a fact proved
in [43] that the cohomological filtration and the refined Swan conductor are in fact equal
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to logarithmic variants of the upper numbering filtration and of the characteristic form.
In the equal positive characteristic case, by Artin–Schreier–Witt theory describing

cyclic extensions of degrees powers of p, the cohomological filtration and the logarithmic
variant of the upper numbering filtration admit a concrete description in terms of a filtra-
tion on Witt vectors defined by Brylinski [12]. In the mixed characteristic case, we present
Kato’s theory of the cohomological filtration without giving the details of the proof that
relies heavily on computations of p-adic cohomology.

The book consists of fifteen chapters. They are grouped into six parts of the book. Each
chapter usually starts with sections preparing some generalities on more basic subjects.
In later sections, we apply them to the study of ramification.

In the first two parts, we study the lower numbering filtration and the cohomological
filtration. We introduce the two filtrations in Part I and we describe them explicitly for
cyclic extensions of degree p in Part II. We prove the Hasse–Arf theorem linking the two
filtrations for cyclic extensions under the assumption that the ring of integers is generated
by a single element.

In the next two parts, we study applications to Galois representations and to geometric
invariants. In Part III, we introduce the conductor of Galois representations using the
lower numbering filtration and the Herbrand function and deduce the integrality of the
conductor from the Hasse–Arf theorem. In Part IV, we study geometric applications and
prove the Grothendieck–Ogg–Shafarevich formula and the Deligne–Kato formula.

In the last two parts, we study the upper numbering filtration. In Part V, after a
short introduction on heuristic observation on the construction of the upper numbering
filtration using rigid geometry, we construct the filtration in the language of schemes and
study its basic properties together with a logarithmic variant. In Part VI, we study the
graded quotients using the group structure in the geometric construction and introduce
characteristic forms that defines an injection from the dual group of the graded quotients
to twisted cotangent spaces.

The last two parts studying upper numbering filtration are almost independent of the
first four parts. The geometric results in Chapters 7 and 9 are not used in the rest of the
book.

At the end of each chapter, historical notes are included. They are rather personal
recollections and the author apologizes for not mentioning many important works. The
most part of Chapters 2, 4, 5, 6, 9 and 15 are due to Kazuya Kato and the most part of
Chapters 10–13 are done in collaboration with Ahmed Abbes.

Let us now describe the contents of each chapter in more detail. In many books
including [65], finite extensions of complete discrete valuation fields are studied. In this
book, we replace complete discrete valuation fields by a generalization, henselian discrete
valuation fields defined algebraically. Similarly as complete discrete valuation fields, finite
extensions of henselian discrete valuation fields are again henselian discrete valuation fields.
In Chapter 1, we prepare some generalities on henselian local rings, characterized by
Hensel’s lemma.

We introduce lower ramification groups in Chapter 1. We prove two formulas under
the assumption that the ring of integers is generated by a single element. The first is the
relation with the ramification groups of a quotient group and the second is the relation
with the different, called the conductor-discriminant formula. The latter is derived from
the computation of the trace mapping of the quotient ring of the polynomial ring by a
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monic polynomial.
In the classical case where the residue field is finite, the reciprocity morphism of local

class field theory is defined by the cup-product with values in the Brauer group, which is
canonically identified with Q/Z in this case. Chapter 2 begins with an introduction to
Brauer groups as Galois cohomology and a brief summary of local class field theory except
the theorem of existence. A classical theorem of Hasse gives a relation between the image
of the filtration 1 + mn

L by the reciprocity morphism and the ramification subgroups.
In Chapter 2, we give a definition of the cohomological filtration by Kato generalizing

this classical construction using Galois cohomology. A key construction due to Kato is
that of the refined Swan conductor giving an injection from the graded quotients to twisted
spaces of differential forms with log poles. We prepare the basic setup in Chapter 2 but
postpone the proof of the existence of refined Swan conductor to the last Chapter 15.

We compute explicitly the lower numbering filtration, the cohomological filtration and
the refined Swan conductor for cyclic extensions of degree p using Artin–Schreier theory
in the equal characteristic case and Kummer theory in the mixed characteristic case in
Chapter 3. This computation makes the first step of induction in the proof of the Hasse–
Arf theorem in Chapter 4 and is also used in the proof of Epp’s theorem in Chapter
8.

To prove the Hasse–Arf theorem, we formulate a stronger form involving the refined
Swan conductor. To make the induction work, the first three sections in Chapter 4 are
devoted to establishing various compatibilities on the trace of differential forms. We prove
an inequality for Swan conductor in general and prove the Hasse–Arf theorem as the
equality under the assumption that the ring of integers is generated by a single element.

In Chapter 5, under the classical assumption that the residue field extension is sepa-
rable, we introduce the conductor of Galois representations and study fundamental prop-
erties. We define the conductor by using the break decomposition and the Herbrand
function. We prove the integrality of the conductor. In the rank one case, this is a con-
sequence of the Hasse–Arf theorem. The general case is deduced from the rank 1 case
by the induction formula. The induction formula is proved by another description of the
conductor in terms of the Swan character. This is used as the definition in many books
including [66].

In Chapter 6, we introduce a variant of the conductor defined by Kato under the non-
classical assumption that the ramification index is 1 and that the residue field extension
is generated by a single element. In this setting, the refined Swan conductor is defined
as a certain twisted differential form of the residue field. This variant shares the same
properties as the conductor studied in Chapter 5. The refined Swan conductor will be used
in Chapter 9 to state and prove the Deligne–Kato formula. The refined Swan conductor
turns out to be a special case of the characteristic form constructed in general in Chapter
14.

In Chapter 7, we prove the Grothendieck–Ogg–Shafarevich formula computing the
Euler–Poincaré characteristic of an étale sheaf on a curve over an algebraically closed
field. The conductor defined in Chapter 5 appears as the local term in the formula. The
Grothendieck–Ogg–Shafarevich formula is deduced from the Lefschetz trace formula for an
endomorphism of a curve. We prove the Lefschetz trace formula in Section 7.1 admitting
some basic properties of étale cohomology.

Using the study of cyclic extensions in Chapter 3, we give a proof in Chapter 8 of Epp’s
theorem: For a transcendental extension of discrete valuation fields, there exists a finite
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extension of the base field such that the composition field has ramification index 1 under a
certain mild assumption. In a geometric situation, Epp’s theorem implies the reduced fiber
theorem. This theorem implies a stability of the integral model that is a crucial ingredient
in the definition in Chapter 11 of the upper numbering ramification groups. The reduced
fiber theorem also plays an important role in the statement of the Deligne–Kato formula.

In Chapter 9, after recalling the definition and some basic properties of nearby cycles
functor, we state and give a new local proof of the Deligne–Kato formula computing the
dimension of the space of nearby cycles of an étale sheaf on a curve over a local field.
The statement uses the refinement of conductor introduced in Chapter 6. Similarly to the
proof of the Grothendieck–Ogg–Shafarevich formula, the Deligne–Kato formula is derived
from a trace formula and the dimension formula in the constant coefficient case. These
two formulas are deduced directly from the Picard–Lefschetz formula in the case where
the curve over the discrete valuation ring is nodal, i. e. with at most nodes as singularities.
The general case is reduced to this case by a local version due to Temkin of the stable
reduction theorem of curves. The new point in the proof in this book is that we take a
blow-up avoiding taking compactification.

From Chapter 10 on, we study upper ramification groups. We define the upper ramifi-
cation groups in Chapters 10 and 11. To define subgroups Gr for r > 0 and Gr+ for r ! 0
of the Galois group G = Gal(L/K), it suffices to define quotient functors F r and F r+ of the
fiber functor F sending subextensions M ⊂ L to the finite set F (M) = MorK(M,L) and
to verify that F r and F r+ satisfy certain properties. For r > 0, to define the set F r(M),
first we take an immersion T = SpecOM → Q into a smooth scheme over S = SpecOK

and construct a dilatation Q[r]

S
with respect to the multiplicity r, of the base change

QS = Q ×S S to S = SpecOKs for the ring of integers in a separable closure. Then,

F r(M) is defined as the set π0(Q
(r)

F
) of connected components of the geometric closed

fiber of the normalization Q(r)

S
of Q[r]

S
. For r ! 0, the immersion T → Q induces a mor-

phism T S → Q(r)

S
of normalizations and the set F r+(M) is defined as the image of the

restriction of the morphism on the closed fibers.
In Chapter 10, we study this geometric construction. The fact that the functor F r(M)

is defined independently of the choice of the immersion T → Q is a consequence of a
homotopy property of the construction of dilatations. The existence of the stable integral
model is a consequence of the reduced fiber theorem proved in Chapter 8. The property
of the functors F r and F r+ used to define the subgroups Gr and Gr+ is a consequence of
the going down theorem in commutative algebra.

We compute the geometric construction explicitly in the case where the ring of integers
is generated by a single element and observe the appearance of the Herbrand function.
This implies property (1′′). We also prove the equalities G1 = I and G1+ = P . After
recalling the general form of the reduced fiber theorem, we prove property (2′) above to
close Chapter 11.

In Chapter 12, we study a logarithmic variant of the construction in Chapter 11. First,
we introduce some generalities on log smooth schemes over S = SpecOK and on log smooth
extensions of K without using the general theory of log geometry. Then by replacing an
immersion T → Q into a smooth scheme by an exact immersion into a log smooth scheme,
we define a logarithmic variant of the upper ramification groups. In the second half of
Chapter 12, we focus on Artin–Schreier–Witt extensions in characteristic p > 0. We
give a geometric proof of the fact that Brylinski’s filtration induces the logarithmic upper
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numbering filtration.
In Chapters 13 and 14, we study the graded quotients GrrG = Gr/Gr+ for r > 1. We

prove property (2′′) above in Chapter 13 and we study a construction of injection of the
dual group to a twisted ‘cotangent’ space in Chapter 14. Chapter 13 begins with the study
of H1(LE/S) that plays the role of the cotangent space at the closed point of S = SpecOK .

The tool we use to study the graded quotients GrrG is the reduced geometric closed
fiber Q(r)

F
→ Q[r]

F ,red
of the morphism to the dilatation from the normalization. The tar-

get Q[r]

F ,red
is a twist of the fiber NT/Q ⊗OL F of the conormal sheaf of an immersion

T = SpecOL → Q into a smooth scheme over S = SpecOK . If the immersion is min-
imal in the sense that dimQ is minimal, the canonical injection TorOL

1 (Ω1
OL/OK

, F ) →
NT/Q⊗OL F is an isomorphism and a connected component Q[r]

F ,red
is canonically identified

with a vector space denoted Θ(r)◦
L/K,F

. This space is linked to H1(LF/S) by the injection

TorOL
1 (Ω1

OL/OK
, F )→ H1(LF/S) defined by the functoriality of cotangent complexes.

By the compatibility (4′) with the quotient, the study of the graded quotients GrrG is
reduced to the study of the last piece Gr of the filtration satisfying Gr+ = 1. Under this
condition, the crucial property is that the finite morphism Q(r)

F
→ Q[r]

F ,red
is étale. This

for a minimal immersion T → Q defines a Gr-torsor Φ(r)◦
L/K,F

→ Θ(r)◦
L/K,F

. By using the

functoriality of this Gr-torsor, we first prove that Gr is abelian.
In the classical case where the residue field is perfect, the relation (1′′) of the upper and

lower ramification groups together with (2) implies property (2′′). We prove the general
case of (2′′) by the reduction to this case. By the functoriality of the construction in
the previous paragraph, this is proved by constructing an extension of henselian discrete
valuation field with perfect residue field such that the morphism on the ‘cotangent’ space
H1(LE/S) is an injection.

By the description of the extension group of a vector space by a finite Fp-vector space
prepared in the first sections in Chapter 13, the definition of the characteristic form is
reduced to showing that the Gr-torsor Φ(r)◦

L/K,F
→ Θ(r)◦

L/K,F
is in fact an isogeny of group

schemes. In this book, we prove this result only in the case where K is of characteristic
p > 0 and r is an integer and refer to [62] in the general case. The case above is reduced
to the case where K is a local field at the generic point of a smooth divisor in a smooth
scheme over a perfect field. In this geometric case, the group structure arises from the
groupoid structure of self-products at the boundary of the dilatation.

In Chapter 15, we study a logarithmic variant. We also study the cohomological
filtration for abelian extensions and its relation with the logarithmic variant. In the
equal characteristic p > 0 case, the cohomological filtration is also induced by Brylinski’s
filtration on Witt vectors. This and the result in Chapter 12 imply the equality of the
logarithmic upper numbering filtration and the cohomological filtration. We give a proof
with Kato of the equality also in the mixed characteristic case. By the functoriality of the
logarithmic characteristic form and the refined Swan conductor, the proof is reduced to the
case where the ramification index is one and the ring of integers is generated by a single
element. In this case, the equality follows from the Hasse–Arf theorem and property (1′′).
To assure the existence of a suitable extension in the reduction, we apply Epp’s theorem
proved in Chapter 8. In the final section, we sketch an outline of the proof by Kato of the
existence of refined Swan conductor.
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Throughout the book, we assume basic knowledge on commutative algebra. We recall
basic properties of étale morphisms in Section 1.1. Although we also use the language
of schemes, in the most part, it is limited to affine schemes. Exceptions are Chapters 7
and 9 where we use proper curves and blow-ups respectively. In Chapter 7, we also use
étale cohomology admitting its basic properties. We briefly recall the definition and basic
properties of nearby cycles in Section 9.2.

In Chapter 2, we freely use Galois cohomology as in [65, Chapitre X] including cup-
product and the inflation-restriction sequence. We also use some fundamental facts on
differential forms in characteristic p > 0. In Part III, we assume basic knowledge on
representations of finite groups as in [66, Partie III]. We briefly recall the theory of Brauer
trace of modular representations in Section 5.1.

In Chapter 11, it is not necessary but will be useful to be familiar with the terminology
of Galois categories and fiber functors. In Chapters 12 and 15, we introduce the terminol-
ogy of log geometry but the knowledge of its generality is not required. In the second half
of Chapter 12, we also use Artin–Schreier–Witt theory and Witt vectors. In Chapter 13,
we use some elementary homological algebra including Tor and cotangent complexes. We
only use basic properties and it is not necessary to go back to the construction. We also
use interpretation of H1 in terms of torsors in Chapter 13 and Artin–Schreier coverings in
characteristic p > 0. In Chapter 14, we use terminology of group schemes and groupoids.

The author thanks Hiroki Kato for helping preparing the manuscript of Chapter 9.
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Part I

Ramification of henselian discrete
valuation fields
We study elementary properties on ramification of finite extensions of henselian discrete
valuation fields. Complete discrete valuation fields are henselian discrete valuation fields
and similarly to the former, the rings of integers of finite extensions of the latter are again
discrete valuation rings.

We define the lower ramification groups of the Galois groups of finite Galois extensions
of henselian discrete valuation fields. We prove an equality giving a relation with the
filtration on quotient groups under the assumption that the ring of integers is generated
by a single element. We also define the different of finite separable extensions and show
its relation with lower ramification groups under the same assumption. These relations
will imply the compatibility with quotient groups of Swan conductor in Part III.

We introduce a filtration on the character group of the abelian quotient of the absolute
Galois group. This is defined as the dual of the filtration on the multiplicative group,
using the pairing with values in the Brauer group defined by the cup product of Galois
cohomology. In the classical case where the residue field is finite, the pairing induces the
reciprocity mapping of local class field theory.

Similarly as the p-torsion part of the unramified part of the character group receives
a surjection from the additive group of the residue field by the Artin–Schreier theory, the
p-torsion part of the unramified part of the Brauer group receives a surjection from the
group of differential forms of the residue field with logarithmic poles. Using this fact, we
study the graded pieces of the cohomological filtration and introduce the refined Swan
conductor.

1 Finite extensions

The ramification theory for complete discrete valuation fields works equally for henselian
discrete valuation fields. A main reason to consider henselian discrete valuation rings is
the equivalence (1)⇔(3) in Proposition 1.4.4 on the integral closures in finite extensions.

Before introducing henselian local rings in Section 1.3, we prepare fundamental prop-
erties of étale morphisms of rings in Section 1.1. We study basic properties of finite
extensions of henselian discrete valuation fields in Section 1.4.

We define the lower ramification groups in Section 1.6. The inertia group G0 and the
wild inertia group G1 correspond to the maximum unramified extension and the maximum
tamely ramified extension introduced in Section 1.5. The lower ramification groups provide
a tool to study the wild inertia group.

We define the different in Section 1.7 and give a criterion in terms of the different for
an extension to be unramified or tamely ramified. We will compute the different explicitly
using the derivative of the minimal polynomial of a generator of the ring of integers, using
the computation of the trace mapping prepared in Section 1.2. We also study in Section
1.8 some basic properties on the norm mapping and the filtration on the multiplicative
groups.
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1.1 Étale algebras

Definition 1.1.1. Let A→ B be a morphism of rings.
1. The B-module Ω1

B/A of differential forms is defined as J ⊗B⊗AB B where J is the
kernel of the surjection B ⊗A B → B sending x⊗ y to xy.

2. We say that B is of finite presentation over A, if there exists an isomorphism
A[X1, . . . , Xn]/(f1, . . . , fm)→ B of rings over A.

Proposition 1.1.2. Let A→ B be a morphism of rings.
1. The B-module Ω1

B/A represents the functor DerA(B,−) : (B-modules) → (Sets)
sending a B-module M to

DerA(B,M) = {d ∈ HomA(B,M) | d(xy) = xdy + ydx for any x, y ∈ B}.

2. Let B = A[X1, . . . , Xn]/(f1, . . . , fm) and regard the Jacobian matrix D =
( ∂fi
∂Xj

)
∈

M(m,n,B) as a B-linear morphism Bn → Bm. Then, dX1, . . . , dXn ∈ Ω1
B/A defines a

B-linear isomorphism Coker(D∨ : Bm → Bn)→ Ω1
B/A.

Proof. 1. For a B-moduleM , regard B⊕M as a ring over B by xy = 0 for x, y ∈M . Then,
the mapping MorA(B,B ⊕M) → HomA(B,M) sending f to pr2 ◦ f induces a bijection
P = {f ∈ MorA(B,B ⊕M) | pr1 ◦ f = 1B} → DerA(B,M). Let i1, i2 : B → B ⊗A B
be the morphisms defined by i1(b) = b ⊗ 1 and i2(b) = 1 ⊗ b and regard B ⊗A B as a
ring over B by i2. Then, by the universality of tensor product, the set P is identified
with Q = {g ∈ MorB(B ⊗A B,B ⊕M) | pr1 ◦ g ◦ i1 = 1B} by sending g to g ◦ i1. Since
(B ⊗A B)/J2 = B ⊕ (J/J2), the set Q is further identified with HomB(J/J2,M). Hence
the assertion follows.

2. Let xi ∈ B be the images of Xi. It suffices to show that, for a B-module M ,
the mapping DerA(B,M) → Mn sending a derivation d to (dxi) induces a bijection
DerA(B,M) → Ker(D : Mn → Mm). In the case m = 0, s1, . . . , sn ∈ M defines uniquely

a derivation A[X1, . . . , Xn]→M sending g to
∑

j

∂g

∂Xj
sj. In the general case, the deriva-

tion d : A[X1, . . . , Xn] → M defined by s1, . . . , sn ∈ M factors though the surjection

A[X1, . . . , Xn] → B if and only if dfi =
∑

j

∂fi
∂Xj

sj is 0 for i = 1, . . . ,m. This means that

(s1, . . . , sn) ∈Mn lies in the kernel of D. Hence the assertion follows.

We give a functorial characterization of rings of finite presentation.

Lemma 1.1.3. Let A→ B be a morphism of rings. The following conditions are equiva-
lent:

(1) B is of finite presentation over A.
(2) For any filtered inductive system (Cλ)λ∈Λ of rings over A, the canonical mapping

lim−→λ∈Λ MorA(B,Cλ)→ MorA(B, lim−→λ∈Λ Cλ) is a bijection.

Proof. (1)⇒(2): We show the surjectivity. Let g : B = A[X1, . . . , Xn]/(f1, . . . , fm) →
C = lim−→λ∈Λ Cλ be a morphism over A. Since (Cλ)λ∈Λ is filtered, there exist λ ∈ Λ and

x1, . . . , xn ∈ Cλ such that their images are g(X1), . . . , g(Xn) ∈ C. Define g̃λ : A[X1, . . . , Xn]→
Cλ by x1, . . . , xn ∈ Cλ. Further, there exists µ ! λ such that the composition g̃µ : A[X1, . . . , Xn]→
Cµ maps f1, . . . , fm to 0 and hence induces gµ : B → Cµ. Then, the image of (gµ) is g.

2



We show the injectivity. Let (gλ) and (hλ) be two elements of lim−→λ∈Λ MorA(B,Cλ) with

the same image g : B → C. Then, since g(Xi) = h(Xi) for i = 1, . . . , n and (Cλ)λ∈Λ is
filtered, there exists µ ∈ Λ such that gµ(Xi) = hµ(Xi) for i = 1, . . . , n. Hence we have
(gλ) = (hλ).

(2)⇒(1): Let (Bλ)λ∈Λ be the inductive system of subrings of B of finite type over A.
Then, since the identity of B is factorized as B → Bλ → B for some λ ∈ Λ, it follows
that B = Bλ is of finite type over A. Let C = A[X1, . . . , Xn] → B be a surjection and I
be the kernel. Let (Iλ)λ∈Λ be the inductive system of subideals of I of finite type. Then,
we have an isomorphism lim−→λ∈Λ C/Iλ → B = C/I. The identity of B is factorized as

B → C/Iλ → B = C/I for some λ ∈ Λ. Further, there exists µ ! λ such that the
composition C → B → C/Iµ is the canonical surjection. Then, it follows that I = Iµ is of
finite type.

Definition 1.1.4. Let A→ B be a morphism of rings.
1. We say that B is étale over A if B is of finite presentation over A, if B is flat over

A and if Ω1
B/A = 0.

2. Let q be a prime ideal of B. We say that B is étale over A at q if there exists an
element b ∈ B q such that B[1/b] is étale over A.

A ring B of finite presentation over A is étale over A if and only if it is étale over A
at every prime ideal. If B is étale over A, for another ring A′ over A, the tensor product
B′ = B ⊗A A′ is étale over A′. Conversely, if A′ is faithfully flat over A and if B′ is étale
over A′, then B is étale over A.

We give examples of rings étale over A.

Lemma 1.1.5. Let A be a ring, P ∈ A[X] be a polynomial and P ′ be the derivative. Then,
the ring B = A[X]/(P )[P ′−1] is étale over A.

Proof. Since B is isomorphic to A[X,Y ]/(P, P ′Y − 1) over A, it is of finite presentation
over A. Further B is flat over A by [25, Chapitre 0III (10.2.4) b)⇒ a)]. Since the B-module
Ω1

B/A is generated by dX and its annihilator is (P ′) = B by Lemma 1.1.2.2, the assertion
follows.

To give a local description of étale morphisms, we show properties of idempotents.

Lemma 1.1.6. Let A be a ring.
1. For an ideal I ⊂ A, the following conditions are equivalent:
(1) I is finitely generated and I = I2.
(2) There exists an idempotent e ∈ A such that I = (1− e).
2. Let B be a ring of finite type over A and B → A be a morphism over A such that

Ω1
B/A⊗BA = 0. Then there exists an idempotent e of B such that Ker(B → A) = (1−e)B.

Proof. 1. (1)⇒(2): Let x1, . . . , xn be a system of generators of I. Since I = I2, there
exists aij ∈ I such that xi =

∑n
j=1 aijxj for i = 1, . . . , n. Namely, the matrix A ∈M(n,A)

with entries aij ∈ I and the column vector x ∈ An with entries xi ∈ I satisfy x = Ax.
Hence, we have e = det(1n−A) ≡ 1 mod I and e ·x = 0. Thus, the ideal I ′ = (e) satisfies
A = I ′ + I and II ′ = 0. Hence we obtain A = A/I × A/I ′ by the Chinese remainder
theorem and e ∈ A corresponds to (1, 0).

(2)⇒(1): The ideal I is generated by an idempotent 1 − e.
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2. Let I be the kernel of the surjection B → A and J be the kernel of the surjection
B⊗AB → B. Since B is of finite type over A, the ideal I ⊂ B is finitely generated. Since
I = JB and Ω1

B/A = J/J2, we have I/I2 = J/J2 ⊗B A = 0. Since I = I2, there exists an
idempotent e ∈ B such that Ker(B → A) = (1− e)B by 1.

Étale algebras over a field are products of finite separable extensions.

Proposition 1.1.7. Let k be a field and B be a ring of finite type over k.
1. For a prime ideal q ⊂ B, the following conditions are equivalent:
(1) B is étale over k at q.
(2) The quotient ring B/q is a finite separable extension of k and B is isomorphic to

a product ring B/q× B′.
2. The following conditions are equivalent:
(1) B is étale over k.
(2) B is isomorphic over k to a product of finitely many finite separable extensions of

k.

Proof. 1. (2)⇒(1): We may assume that B is a finite separable extension of k. Then,
we have a separable irreducible polynomial P ∈ k[X] and an isomorphism k[X]/(P )→ B
over k. Hence the assertion follows from Lemma 1.1.5.

(1)⇒(2): First, we assume that k is an algebraically closed field. Let n ⊃ q be a
maximal ideal. Then by Lemma 1.1.6.2, we have an isomorphism B → B/n×B′. Hence,
we have n = q and the assertion follows in this case.

By the case where k is an algebraically closed field, every point of Spec (B/q)⊗k k is an
isolated point. Since Spec (B/q)⊗k k is quasi-compact, the ring (B/q)⊗k k is a product of
finitely many copies of k and further B ⊗k k is isomorphic to a product (B/q)⊗k k ×B1.
Hence B/q is a finite separable extension of k and B is isomorphic to a product ring
B/q× B′.

2. (1)⇒(2): By 1 (1)⇒(2), every point of SpecB is an isolated point. Since SpecB is
quasi-compact, the assertion follows.

(2)⇒(1): Clear from 1 (2)⇒(1).

We prove the local description below using Zariski’s main theorem.

Theorem 1.1.8. (Zariski’s main theorem, [54, Chapitre IV, Théorème 1, Corollaire 1]).
Let f : A → B be a morphism of rings such that B is of finite type over A. Let q ⊂ B
be a prime ideal and p = f−1(q) ⊂ A. Assume that q is an isolated point of the fiber
SpecB ⊗A k(p).

Then, there exist a subring B′ ⊂ B finite over A and an element b ∈ B′ (B′ ∩ q)
such that the inclusion B′[1/b]→ B[1/b] is an isomorphism.

Theorem 1.1.9. ([26, Théorème (18.4.6)], [54, Chapitre V, §1, Théorème 1.1]). Let
f : A→ B be a morphism of rings such that B is of finite presentation over A. Let q ⊂ B
be a prime ideal and p = f−1(q) ⊂ A. Then, the following conditions are equivalent:

(1) B is étale over A at q.
(2) There exist a monic polynomial P ∈ Ap[T ], a maximal ideal n of C = Ap[T ]/(P )

not containing P ′ and an isomorphism Cn → Bq over Ap.

Proof. (1)⇒(2): By Proposition 1.1.7.1 and Theorem 1.1.8, we may assume that B is
finite over A. By replacing A by the localization Ap, we may assume that A is local and
that p is the maximal ideal.
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By Proposition 1.1.7.1, B/q is a finite separable extension of F = A/p and B/pB is a
product ring B/q×B′. Hence, there exists x ∈ B q such that B/q is generated by x over
A/p and that the image of x in B′ is 0. Since B is finite over A, the element x is integral over
A and the subring A[x] ⊂ B generated by x is also finite. Let n = dimF A[x]⊗A F . Then,
1, x, . . . , xn−1 is a basis of A[x]⊗A F and the A-module A[x] is generated by 1, x, . . . , xn−1

by Nakayama’s lemma. Hence, there exists a monic polynomial P ∈ A[X] of degree n and
a surjection C = A[X]/(P )→ A[x] ⊂ B.

Let n ⊂ C be the inverse image of q ⊂ B. Since q ∈ SpecB is a unique point above
n ∈ SpecC and since the morphism C/n → B/nB = B/q is an isomorphism, the finite
morphism Cn → B⊗CCn is a surjection by Nakayama’s lemma. The quotient ring B⊗CCn

of Cn is a local ring and hence we have B⊗C Cn = Bq. Since C and an open neighborhood
of SpecB are flat of finite presentation over A and since C/n = Cn/pCn → B/q = Bq/pBq

is an isomorphism, the local morphism Cn → Bq is flat by [26, Théorème (11.3.10)] and is
injective. Hence the morphism Cn → Bq is an isomorphism. Since Ω1

C/A ⊗C k(n) = 0, we
have P ′ /∈ n.

(2)⇒(1): The isomorphism Cn → Bq is extended to an isomorphism C[1/c] → B[1/b]
over A for b ∈ B q, c ∈ C n by Lemma 1.1.3. Hence the assertion follows from Lemma
1.1.5.

We omit the proof of the following functorial characterization of étale morphisms.

Theorem 1.1.10. ([26, Théorème (17.6.1)], [54, Chapitre V, §1, Théorème 2, Corollaire
1]). Let f : A → B be a morphism of rings such that B is of finite presentation over A.
The following conditions are equivalent:

(1) B is étale over A.
(2) For any ring C over A and any ideal I ⊂ C such that I2 = 0, the surjection

C → C/I induces a bijection MorA(B,C) → MorA(B,C/I) of the sets of morphisms of
rings over A.

Lemma 1.1.11. Let A → B be a morphism of rings and assume that B is free of finite
rank as an A-module. Then, the functor F sending a ring C over A to the set Idem(B⊗AC)
of idempotents is representable by a ring E étale over A.

Proof. Let b1, . . . , bn be a basis of the A-module B. Let A[x1, . . . , xn] be a polynomial
ring and let x =

∑n
i=1 xi ⊗ bi ∈ A[x1, . . . , xn] ⊗A B be the universal section. Then, the

functor F is represented by the quotient E of A[x1, . . . , xn] by the ideal generated by the
coefficients of b1, . . . , bn in x2−x ∈ A[x1, . . . , xn]⊗AB. The ring E is of finite presentation
over A.

We show that E is étale over A. In the case B = A and b1 = 1, we have E =
A[X]/(X2−X). Since E is isomorphic to A×A by the Chinese remainder theorem, E is
étale over A.

We show the general case. Since the case B = A is already proved, for any ring
C over A and any ideal I ⊂ C satisfying I2 = 0, the surjection C → C/I induces a
bijection IdemC → IdemC/I by Theorem 1.1.10 (1)⇒(2). Applying this to the surjection
B ⊗A C → B ⊗A C/I, we see that F (C) → F (C/I) is also a bijection. Hence E is étale
over A by Theorem 1.1.10 (2)⇒(1).

Exercise 1.1. Let p > 2 be a prime number and ζp be a primitive p-th root of 1. Find
the prime ideals of Z[ζp] where Z[ζp] is not étale over Z.
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Solution. Since Z[1/p][X]/(Xp − 1) = Z[ζp][1/p] × Z[1/p] and (Xp − 1)′ = pXp−1 is
invertible in Z[1/p][X]/(Xp − 1), we see that Z[ζp][1/p] is étale over Z by Lemma 1.1.5.
Since Z[ζp] ⊗Z Fp is isomorphic to Fp[X]/(Xp−1) and is not étale over Fp for p − 1 > 1,
we see that Z[ζp] is not étale over Z at the prime ideal (ζp − 1).

1.2 Trace

We compute the trace mapping for the quotient ring of a polynomial ring by a monic
polynomial.

Lemma 1.2.1. Let A be a ring and let P ∈ A[X] be a monic polynomial of degree n.
Let b ∈ B = A[X]/(P ) be the image of X ∈ A[X] and define c0 = 1, c1, . . . , cn−1 ∈ B by
P = (X − b) · (c0Xn−1 + · · ·+ cn−1).

1. The sequence c0 = 1, c1, . . . , cn−1 is a basis of a free A-module B.
2. The B-module HomA(B,A) is a free module of rank 1. Let f0, . . . , fn−1 ∈ HomA(B,A)

be the dual basis of the basis c0 = 1, c1, . . . , cn−1 as a free A-module. Then fn−1 ∈
HomA(B,A) is a basis as a free B-module and we have fi = bn−1−ifn−1 for i = 0, . . . , n−1.

3. Let g0, . . . , gn−1 ∈ HomA(B,A) be the dual basis of the basis b0 = 1, b, . . . , bn−1 as a
free A-module. Then, we have gi = cn−1−ifn−1.

Proof. 1. Let P = Xn + a1Xn−1 + · · · + an ∈ A[X]. Then since P = P − P (b) =
(Xn − bn) + a1(Xn−1 − bn−1) + · · ·+ an−1(X − b), we have

(1.1)





1
c1
...

cn−1




=





1 0 · · · 0

a1
. . . . . .

...
...

. . . . . . 0
an · · · a1 1









1
b
...

bn−1





Since 1, b, . . . , bn−1 is a basis of an A-moduleB and since the matrix is invertible, 1, c1, . . . , cn−1

is also a basis.
2. By b · (c0Xn−1 + · · ·+ cn−1) = (c0Xn−1 + · · ·+ cn−1)X − P , we have

(1.2)

b





1
c1
...

cn−1




=





−a1 1 0

−a2 0
. . .

...
...

. . . 1
−an 0 · · · 0









1
c1
...

cn−1




and b





1
f1
...

fn−1




=





−a1 −a2 · · · −an
1 0 · · · 0

. . . . . .
...

0 1 0









1
f1
...

fn−1





The second equality means that fi = bn−1−ifn−1 for i = 0, . . . , n− 1 and that fn−1 defines
an isomorphism B = A[X]/(P )→ HomA(B,A) of B-modules.

3. By (1.1) and 2, we have
(1.3)



g0
g1
...

gn−1




=





1 a1 · · · an

0
. . . . . .

...
...

. . . . . . a1
0 · · · 0 1









f0
f1
...

fn−1




=





1 a1 · · · an

0
. . . . . .

...
...

. . . . . . a1
0 · · · 0 1









bn−1

bn−2

...
1




fn−1 =





cn−1

cn−2
...
1




fn−1.

We express the trace mapping using the basis in Lemma 1.2.1.
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Proposition 1.2.2. Let A be a ring and let P ∈ A[X] be a monic polynomial. Let
b ∈ B = A[X]/(P ) be the image of X ∈ A[X] and let fn−1 = gn−1 be the basis of the free
B-module HomA(B,A) of rank 1 constructed in Lemma 1.2.1. Then, we have

TrB/A = P ′(b) · fn−1

in HomA(B,A). In particular, if B is étale over A, we have

(1.4) TrB/A
bi

P ′(b)
=

{
1 if i = n− 1,

0 if i = 0, . . . , n− 2.

Proof. If x1, . . . , xn is a basis of the free A-module B and f1, . . . , fn ∈ HomA(B,A) is
the dual basis, for x ∈ B, we have TrB/Ax =

∑
i fi(xxi) =

∑
i xifi(x) and we have

TrB/A =
∑

i xifi ∈ HomA(B,A). Applying this to the basis 1, . . . , bn−1 and in the notation
of Lemma 1.2.1, we obtain

TrB/A =
n−1∑

i=0

bigi =
n−1∑

i=0

cn−1−ib
ifn−1 = Q(b) · fn−1

for Q = c0Xn−1 + · · · + cn−1 ∈ B[X] by Lemma 1.2.1.3. By P = (X − b) · Q, we have
P ′ = Q+ (X − b)Q′ and TrB/A = Q(b) · fn−1 = P ′(b) · fn−1.

If B is étale, then P ′(b) is invertible and we have gn−1 = fn−1 = 1/P ′(b) · TrB/A by
Lemma 1.2.1.3. This means (1.4).

As an application of Proposition 1.2.2, we show that rings étale over normal rings are
again normal.

Proposition 1.2.3. Let A be a ring and P ∈ A[X] be a monic polynomial. Set B =
A[X]/(P ) and let b ∈ B be the image of X. If A is normal, then B′ = B[P ′(b)−1] is also
normal.

Proof. By replacing A by the local ring at any prime ideal, we may assume that A is an
integrally closed integral domain. Let K be the fraction field of A and set L = B ⊗A K
and L′ = B′ ⊗A K. Since B′ is flat over A, the morphism B′ → L′ is an injection. First,
we reduce it to the case where the surjection L→ L′ is an isomorphism.

Since A is integrally closed, the minimal polynomial Q ∈ K[X] of the image b1 ∈ L′

of b is contained in A[X]. The image B1 ⊂ L′ of B is identified with the quotient ring
A[X]/(Q) of B = A[X]/(P ) since Q divides P . Since the surjection B → B1 induces a
surjection B′ → B1[P ′(b1)−1] of subrings of L′, we may identify B′ = B1[P ′(b1)−1]. If we
define R ∈ A[X] by P = QR, then we have P ′(b1) = Q′(b1)R(b1). Hence B′ = B1[P ′(b1)−1]
is a localization of B1[Q′(b1)−1]. Thus by replacing P by Q, we may assume L = L′.

Since L = B′ ⊗A K is étale over K by Lemma 1.1.5, the ring L is a product of
finitely many finite separable extensions of K by Proposition 1.1.7.2 (1)⇒(2). Let C ⊂
L be the normalization of B. Since A is normal, we have TrL/KC ⊂ A. Hence the
injection TrB/A : B → HomA(B,A) is extended to an injection C → HomA(B,A). Thus we
obtain injections B′ = B[P ′(b)−1]→ C[P ′(b)−1]→ HomA(B,A)⊗B B[P ′(b)−1]. Since the
composition is an isomorphism by Proposition 1.2.2, the first morphism B′ → C[P ′(b)−1]
is an isomorphism and B′ is normal.
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Corollary 1.2.4. Let B be a ring étale over A.
1. If A is normal, then B is also normal.
2. If A is a discrete valuation ring with the maximal ideal m and if n ⊂ B is a prime

ideal such that the inverse image is m ⊂ A of A, then the local ring Bn is a discrete
valuation ring.

Proof. 1. By Theorem 1.1.9, we may assume that B = A[X]/(P )[P ′−1] for a monic
polynomial P ∈ A[X]. Hence the assertion follows from Proposition 1.2.3.

2. By 1, Bn is a normal local noetherian ring. Since Bn has exactly two prime ideals,
the maximal ideal nBn and 0, it follows that Bn is a discrete valuation ring.

Exercise 1.2. Let the notation be as in Lemma 1.2.1. Compute TrB/Aci for i = 0, . . . , n−

1. Let A denote the matrix in (1.1) and show





TrB/A 1
TrB/A b

...
TrB/A bn−1




= A−1





n
(n− 1)a1

...
an−1




.

Solution. We have TrB/A = P ′(b) · fn−1 = n · f0 + (n − 1)a1 · f1 + · · · + an−1 · fn−1 by
Proposition 1.2.2 and Lemma 1.2.1.2. Hence TrB/Aci = (n− i)ai for i = 0, . . . , n − 1. By

(1.1), we have





1
b
...

bn−1




= A−1





1
c1
...

cn−1




. By applying TrB/A on the both sides, we obtain

the equality.

1.3 Henselian local rings

If you are interested only in complete discrete valuation rings, you may skip this section
and read henselian as complete in the later sections admitting the characterization of
henselian discrete valuation rings Proposition 1.4.4 and Hensel’s lemma Lemma 1.4.6.
Henselian local rings are defined as follows.

Definition 1.3.1. Let A be a local ring and m be the maximal ideal.
1. We say that a ring B over A is an étale neighborhood of m if a morphism B → A/m

over A is given and if B is étale over A.
2. We say that A is henselian if for any étale neighborhood B of m and n = Ker(B →

A/m), the morphism A→ Bn to the localization is an isomorphism.

A field is a henselian local ring as we will see in Corollary 1.3.3 below.

Proposition 1.3.2 ([54, Chapitre 7, §3, Proposition 3]). Let A be a local ring and F =
A/m be the residue field. Then, the following conditions are equivalent:

(1) A is henselian.
(2) Let P ∈ A[X] be a polynomial and let a ∈ F be a root of P ∈ F [X] satisfying

P
′
(a) != 0. Then, there exists a root a ∈ A of P satisfying a ≡ a mod m.
(2′) Let P ∈ A[X] be a monic polynomial and let a ∈ F be a simple root of P ∈ F [X].

Then, there exists a root a ∈ A of P satisfying a ≡ a mod m.
In conditions (2) and (2′), the solution a congruent to a is unique.
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Proof. 1. (1)⇒(2): The ring B = A[X]/(P )[P ′−1] is étale over A by Lemma 1.1.5. Hence
B is an étale neighborhood of m with respect to the surjection B → F defined by the
solution a of P . Since A is henselian, the morphism A → Bn to the localization at
n = Ker(B → F ) is an isomorphism. The composition B → Bn → A with its inverse
defines a unique root a of P lifting a.

(2)⇒(2′): If a is a simple root of P , we have P
′
(a) != 0.

(2′)⇒(1): Let B be an étale neighborhood of m and n = Ker(B → F ). By Theorem
1.1.9 (1)⇒(2), we may assume that B = A[X]/(P )[P ′−1] for a monic polynomial P ∈ A[X].
Let a ∈ F be the image of X by B → F . Then, P

′
(a) != 0 and the morphism B/n → F

defined by a is lifted to a section B → A defined by a lifting a of a by (2′). This induces
an isomorphism Bn → A by Lemma 1.1.6.2.

A complete noetherian local ring is a henselian local ring.

Corollary 1.3.3. Let A = lim←−n
A/mn be a complete noetherian local ring. Then A is

henselian. In particular a field is a henselian local ring. In other words, a complete
noetherian local ring A satisfies (2) in Proposition 1.3.2.

The last property in Corollary 1.3.3 is called Hensel’s lemma.

Proof. We show that A satisfies the condition (2) in Proposition 1.3.2. The case where A
is a field is clear. Let m ⊂ A be the maximal ideal. Since B = A[X]/(P )[P ′−1] is étale over
A by Lemma 1.1.5, the mapping MorA(B,A/mn+1) → MorA(B,A/mn) is a bijection for
every n ! 1 by Theorem 1.1.10. Hence by induction on n, there exists a unique solution
an ∈ A/mn of P = 0 satisfying an mod a mod m. Then a = (an)n ∈ A = lim←−A/mn is a
solution of P = 0.

We give another criterion for a local ring to be henselian.

Proposition 1.3.4 ([54, Chapitre 7, §3, Proposition 3]). Let A be a local ring and F =
A/m be the residue field. Then, the following conditions are equivalent:

(1) A is henselian.
(2) Let B be a ring finite over A. Then, B is isomorphic to a finite product

∏
i∈I Bi

of local rings.

Proof. (1)⇒(2): First, we show that a field A = K satisfies the condition (2). Let B be
a ring over K of finite dimension as a K-vector space. We prove that the condition (2)
is satisfied by induction on the dimension dimK B. If dim = 0, then B = 0. Assume
B != 0 and let m ⊂ B be a maximal ideal. Then, there exists an integer n ! 1 such that
mn+1 = mn. By Lemma 1.1.6.1, B is decomposed as a product B = B/mn × B′. Since
B/mn is a local ring and dimK B′ < dimK B, the assertion follows.

Assume that A is henselian and let m be the maximal ideal. Let B be a ring finite
over A. First assume that B is free of finite rank as an A-module. Let F be the functor
in Lemma 1.1.5.2 for B over A and let E be the ring étale over A representing F . Since
B/mB is of finite dimension over A/m, it isomorphic to a product

∏
i(B/mB)i of finitely

many local rings. Let ei ∈ B/mB be the corresponding primitive idempotents. Then each
ei ∈ IdemB/mB = F (A/m) defines a morphism E → A/m over A.

Since E is étale over A, the ring E is an étale neighborhood of m with respect to
the morphism E → A/m corresponding to ei. Since A is henselian, for the kernel
ni = Ker(E → A/m), the morphism A → Eni is an isomorphism and the correspond-
ing morphism E → Eni → A defines an idempotent ẽi ∈ F (A) = IdemB lifting ei. Then,
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the product B →
∏

i Bi of the projections B → Bi = B/(1 − ẽi) is an isomorphism by
Nakayama’s lemma. Since Bi/mBi = (B/mB)i is a local ring, Bi is also a local ring.

We show the general case. Let b1, . . . , bn be a system of generators of B over A
and let P1, . . . , Pn ∈ A[X] be monic polynomials satisfying Pi(bi) = 0. Then, B′ =
A[X1, . . . , Xn]/(P1(X1), . . . , Pn(Xn)) is free of finite rank as an A-module and the mor-
phism B′ → B over A sending Xi to bi is a surjection. Since B′ is already shown to be a
product of finitely many local rings, its quotient B is also a product of finitely many local
rings.

(2)⇒(1): We show that the condition (2′) in Proposition 1.3.2 is satisfied. If P ∈ A[X]
is a monic polynomial, then B = A[X]/(P ) is a free A-module. If a ∈ F is a simple root
of P , then B = F [X]/(P ) is isomorphic to a product F × B1. If B is a product of local
rings, we have B = B0 × B1 such that B0 ⊗A F = F . Since B0 is a free A-module, the
canonical morphism A→ B0 is an isomorphism by Nakayama’s lemma.

Proposition 1.3.5 ([54, Chapitre 8, Théorème 1]). The inclusion

(1.5) (henselian local rings)→ (local rings)

of a full subcategory has a left adjoint. If Ah denotes the image of a local ring A by
the adjoint functor, the canonical morphism A → Ah is faithfully flat and induces an
isomorphism on the residue fields.

For a local ring A, we call its image by the adjoint functor of (1.5) the henselization
of A and write it by Ah.

Proof. Let A be a local ring and F be the residue field. Let (A→ Ai → F )i∈I be a cofinal
filtered system of étale neighborhoods of the maximal ideal m of A and set Ã = lim−→i∈I Ai.

Since Ai are flat over A, the local morphism A → Ã is faithfully flat. We show that the
local ring Ã is henselian. Let B̃ be an étale neighborhood of the maximal ideal m̃ of Ã
and let ñ ⊂ B̃ be the kernel of B̃ → Ã/m̃ = F . Then, since B̃ is of finite presentation
over Ã, there exist i ∈ I, a ring Bi étale over Ai and an isomorphism Bi ⊗Ai Ã → B̃.
Since Bi is an étale neighborhood of m and since (Ai)i∈I is cofinal, there exist j ! i and
an morphism Bi → Aj. This induces a morphism B̃ → Ã and an isomorphism Ã → B̃ñ

by Lemma 1.1.6.2.
Let B be a henselian local ring with maximal ideal n and let A → B be a local

morphism. We show that there exists a unique local morphism Ã → B compatible with
A→ B. Let i ∈ I. Then, Bi = Ai ⊗A B is étale over B and the kernel of Ai → F defines
a maximal ideal ni of Bi such that B/n→ Bi/ni is an isomorphism. Since B is henselian,
the morphism B → Bi,ni to the localization is an isomorphism. The compositions Ai →
Bi,ni → B with its inverse define an inductive system of morphisms and Ã → B. The
uniqueness follows from the construction.

Since the residue field F is henselian, the local morphism A→ F defines a morphism
Ah → F h = F compatible with A→ Ah.

Corollary 1.3.6. Let A→ B be a finite morphism of local rings.
1. If A is a henselian local ring, then B is also a henselian local ring.
2. Let Ah and Bh be the henselizations. Then, the morphism B ⊗A Ah → Bh is an

isomorphism.
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Proof. 1. Let C be a ring finite over B. Then, since C is finite over A, the ring C is a
product of local rings by Proposition 1.3.4 (1)⇒(2). Hence B is henselian by Proposition
1.3.4 (2)⇒(1).

2. Since the ring B ⊗A Ah finite over Ah has a unique prime ideal above the maximal
ideal of Ah, it is a local ring and hence is henselian by 1. By the universality of Bh,
we obtain a morphism Bh → B ⊗A Ah going the other way. By the universality of the
henselizations and the tensor product, they are inverse to each other.

Exercise 1.3. Show that the field Qp of p-adic numbers contains all the p− 1-st roots of
1.

Solution. Since Qp is complete, Zp is a henselian local ring by Corollary 1.3.3. The
polynomial Xp−1 − 1 ∈ Zp[X] is decomposed as Xp−1 − 1 =

∏
a∈F×

p
(X − a) in Fp[X].

Hence we may apply Proposition 1.3.2 (2′).

1.4 Finite extensions

We study elementary properties of finite extensions of henselian discrete valuation fields.

Definition 1.4.1. We call the fraction field K of a discrete valuation ring OK a discrete
valuation field.

Let K and L be discrete valuation field and K → L be a morphism of fields. If K → L
induces a local morphism OK → OL of discrete valuation rings, we say that L is an
extension of discrete valuation field K.

If L is an extension of discrete valuation field K, the ramification index eL/K is the
unique integer e ! 1 satisfying me

L = mKOL for the maximal ideals mK ⊂ OK and
mL ⊂ OL.

We say that a finite extension L is a totally ramified extension of K if the normalization
OL is a discrete valuation ring, if the morphism OK/mK → OL/mL of residue fields is an
isomorphism and if eL/K = [L : K].

If OK is henselian (resp. complete), we call K a henselian (resp. complete) discrete
valuation field.

The residue field OK/mK of a discrete valuation ring OK will be denoted by F . By
Corollary 1.3.3, a complete discrete valuation field is a henselian discrete valuation field.

Proposition 1.4.2. Let K be a discrete valuation field with residue field F . Let L be a
finite extension of K and assume that the integral closure OL of OK is a discrete valuation
ring. Then, the residue field E of L is a finite extension of F and the dimension of the
F -vector space OL/mKOL is eL/K · [E : F ] " [L : K]. If OL is finite over OK, then the
equality eL/K · [E : F ] = [L : K] holds.

Proof. Let E be the residue field of L. The F -vector space OL/mKOL is a successive
extension of mi

L/m
i+1
L for i = 0, . . . , e − 1. If x1, . . . , xn ∈ OL are liftings of elements of

E linearly independent over F and if t is a uniformizer of L, then the images of xitj; i =
1, . . . , n, j = 0, . . . , e−1 form a basis of an F -vector space of OL/mKOL and the submodule
〈xitj; i = 1, . . . , n, j = 0, . . . , e − 1〉 ⊂ OL is a free OK-module of rank n · e " [L : K].
Hence E is a finite extension of F and we have [E : F ] · eL/K " [L : K].

If the torsion free OK-module OL is of finite type, it is a free module and its rank
[L : K] equals the dimension [E : F ] · eL/K of the F -vector space OL/mKOL.
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Totally ramified extensions are generated by roots of Eisenstein polynomials. We
say that a monic polynomial P ∈ OK [X] of degree n is an Eisenstein polynomial if
P ≡ Xn mod mK and if the constant term t = P (0) is a uniformizer of K.

Lemma 1.4.3. Let K be a discrete valuation field.
1. Let P ∈ OK [X] be an Eisenstein polynomial. Then, L = K[X]/(P ) is a totally

ramified extension of K, the integral closure OL is OK [X]/(P ) and the class x of X is a
uniformizer.

2. Conversely, let L be a totally ramified extension of K and x be a uniformizer of
OL. Then, the minimal polynomial P ∈ OK [X] of x is an Eisenstein polynomial and
OL = OK [x].

Proof. 1. Let B = OK [X]/(P ). Then, v(
∑n−1

i=0 aixi) = mini(i + n · ordKai) defines a
discrete valuation and B is a discrete valuation ring with uniformizer x. Hence L is a
totally ramified extension and B is the integral closure.

2. We have OL/mKOL = F [x]/(xn). Hence we have degP = [L : K] = n and
P ≡ Xn mod mK . The constant term t = P (0) equals xnu ∈ OK for a unit u ∈ O×

L and is
a uniformizer of K since eL/K = n. Hence P is an Eisenstein polynomial and the subring
OK [x] is isomorphic to OK [X]/(P ) and equals OL by 1.

Proposition 1.4.4. Let K be a discrete valuation field and OK be the valuation ring.
Then, the following conditions are equivalent:

(1) OK is henselian.
(2) Let L be a finite separable extension of discrete valuation field K. If the ramification

index eL/K is 1 and if the morphism OK/mK → OL/mL of residue fields is an isomorphism,
then K → L is an isomorphism.

(3) Let L be a finite extension of K. Then, the integral closure OL of OK in L is a
discrete valuation ring.

Proof. (1)⇒(3): The integral closure OL is the inductive limit lim−→λ
Bλ of subrings finite

over OK . Since OK is henselian and since the extension L has a unique idempotent, each
Bλ is local and the morphisms Bλ → Bµ are local. Hence their limit OL is also local.

We show that OL is a discrete valuation ring. Assume first that L is a separable
extension of K. Since OK is noetherian, the integral closure OL ⊂ L of OK is finite over
OK . Hence OL is a normal noetherian local ring and has exactly two prime ideals 0 and
the maximal ideal. Therefore OL is a discrete valuation ring in this case. By replacing K
by the separable closure in L, we may assume that L is a purely inseparable extension of
K. Let q = [L : K] be the degree of the extension. Then, since 1

qordKxq is the unique
valuation of L extending ordK , an element x ∈ L is integral over OK if and only if xq ∈ OK .
Hence the integral closure OL ⊂ L of OK is a discrete valuation ring.

(3)⇒(2): By (3), the normalization B of OK in L is a discrete valuation ring. Hence
the subring B ⊂ OL equals OL. Since L is a finite separable extension, B = OL is finite
over OK . Hence the morphism OK → OL is an isomorphism by Nakayama’s lemma.

(2)⇒(1): Let B be a ring étale over OK and n ⊂ B be the maximal ideal such that
F = OK/mK → B/n is an isomorphism. Then, the local ring Bn is a discrete valuation
ring by Corollary 1.2.4.2 and its fraction field L is a finite separable extension of K by
Proposition 1.1.7.1 (1)⇒(2). Since eL/K = 1 and F → B/n is an isomorphism, the
morphisms K → L and OK → Bn are isomorphism by (2).
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Corollary 1.4.5. Let K be a discrete valuation field with residue field F . Let L be a finite
extension of K and OL be the integral closure of OK.

1. If K is henselian, then OL is a henselian discrete valuation ring.
2. If K is complete, then OL is finite over OK and L is also complete.

Proof. 1. By Proposition 1.4.4 (1)⇒(3), the integral closure OL ⊂ L of OK is a discrete
valuation ring. We may write the local ring OL as an inductive limit lim−→i

Bi of finite local
rings Bi with the same residue fields as OL. By Corollary 1.3.6, Bi are henselian. Hence
the inductive limit OL is also henselian by Proposition 1.3.2 (1)⇔(2′).

2. By Corollary 1.3.3, K is henselian and by 1, OL is a discrete valuation ring. Since
OL/mKOL is of finite dimension by Proposition 1.4.2, there exists a finitely many elements
in OL generating the completion OL̂ = lim←−n

OL/mn
KOL as an OK-module by Nakayama’s

lemma. Hence the injection OL → OL̂ is an isomorphism of OK-modules of finite type.

For henselian discrete valuation rings, we will use Proposition 1.3.2 (2) in the following
generalized form. We will refer to this as Hensel’s lemma.

Lemma 1.4.6. Let K be a henselian discrete valuation field and P ∈ OK [X] be a
polynomial. Let a ∈ OK and assume P ′(a) != 0 and ordKP (a) > 2 · ordKP ′(a). Let
n = ordKP ′(a) < m be integers satisfying n+m " ordKP (a). Then, there exists a unique
solution x ∈ OK of P (x) = 0 satisfying x ≡ a mod mm

K.

Proof. Let t be a generator of mm−1
K . Since P (a + tX) ≡ P (a) + P ′(a)tX mod t2 and

P ′(a)t divides P (a) and t2, we have Q(X) = P (a + tX)/P ′(a)t ∈ OK [X]. Since Q(0) ≡
P (a)/P ′(a)t ≡ 0 mod mK and Q′(0) ≡ 1 mod mK , there exists a unique solution x ∈ mK

of Q(x) = 0 by Proposition 1.3.2 (1)⇒(2). This means that there exists a unique solution
x ≡ a mod mm

K of P (x) = 0.

The henselization and the completion have the same absolute Galois groups.

Proposition 1.4.7 ([7, Lemme 2.2.1]). Let K be a henselian discrete valuation field and
let K̂ be the completion of K. Then, the completion defines an equivalence of categories

(1.6) (Finite separable extensions of K)→ (Finite separable extensions of K̂).

For any finite separable extension L over K, the canonical morphism

(1.7) OL ⊗OK OK̂ → OL̂

is an isomorphism.

Proof. Let L be a finite separable extension of K. By Proposition 1.4.4 and Corollary
1.4.5.2, the normalizationOL is a discrete valuation ring and the tensor product OL⊗OKOK̂

is the completion of OL and hence is a discrete valuation ring. Consequently, L ⊗K K̂
is the completion L̂ of L and is a finite separable extension of K̂. Thus the morphism
GK̂ → GK of absolute Galois groups is a surjection.

To prove the injectivity of GK̂ → GK , it suffices to show the essential surjectivity of

the functor (1.6). Namely, we show that for any finite separable extension M of K̂, there
exist a finite separable extension L of K and an isomorphism L ⊗K K̂ → M . Take an
element a ∈ OM such that M = K̂(a) and let P ∈ OK̂ [X] be the minimal polynomial.
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Since M is a separable extension, we have P ′(a) != 0. Let m > n = ordMP ′(a) be an
integer such that mm

M ⊂ mK · OK̂ [a] ⊂ OM .
Take a monic polynomial Q ∈ OK [X] such that Q ≡ P mod mn+m

K . We have Q(a) ≡
P (a) = 0 mod mn+m

M . Since Q′(a) ≡ P ′(a) mod mn+m
M , we have ordMQ′(a) = ordMP ′(a).

Hence by Hensel’s lemma, there exists a unique solution b ≡ a mod mm
M of Q(b) = 0. Since

b ∈ a+mm
M ⊂ OK̂ [a], the solution b of Q defines a morphism OK̂ [X]/(Q)→ OK̂ [a] overOK̂ .

Since this is a morphism of OK̂-modules of the same rank and b ≡ a mod mm
M ⊂ mKOK̂ [a],

it is an isomorphism by Nakayama’s lemma. If we set L = K[X]/(Q), we obtain an
isomorphism L ⊗K K̂ → M . Hence L is a finite separable extension of K satisfying the
required condition.

The henselization and the completion are related as follows.

Proposition 1.4.8. Let K be a discrete valuation field and let Oh
K be the henselization of

OK.
1. The henselization Oh

K is a discrete valuation ring and the canonical morphism
OK → Oh

K induces an isomorphism on the completions.
2. We identify the fraction field Kh of Oh

K as a subfield of the completion K̂ by the
isomorphism in 1. Then, we have Kh = {x ∈ K̂ | x is separably algebraic over K}.

Proof. 1. WriteOh
K = lim−→i∈I Bi as an inductive limit of étale neighborhoods of the maximal

ideal m ⊂ OK . Let ni ⊂ Bi be the kernel of the surjection Bi → F = OK/m. The local ring
Bi,ni is a discrete valuation ring by Corollary 1.2.4.2 and the ramification index over OK

is 1 by Proposition 1.1.7.1 (1)⇒(2). Hence the limit Oh
K = lim−→i∈I Bi,ni is also a discrete

valuation ring of ramification index 1 over OK . Since the residue field of Oh
K is F by

Proposition 1.3.5, the morphism OK/mn
K → Oh

K/m
n
Kh is an isomorphism for every integer

n ! 1 and the morphism ÔK = lim←−n
OK/mn

K → lim←−n
Oh

K/m
n
Kh = Ôh

K of completions is an
isomorphism.

2. Since Kh is an inductive limit of finite separable extensions of K, any element of Kh

is separably algebraic over K. To show the other inclusion, it suffices to show that if L is
a finite separable extension of Kh inside K̂, then we have L = Kh. Since Oh

K ⊂ OL ⊂ ÔK ,
we have eL/Kh = 1 and the residue field of L is F . Hence we have L = Kh by Proposition
1.4.4 (1)⇒(2) as required.

Exercise 1.4. Let p be a prime number and n ! 1 be an integer. Let ζpn ∈ Qp(ζpn) be a
primitive pn-th root of 1. Find the minimal polynomial of ζpn − 1 over Qp and show that
ζpn − 1 is a uniformizer of Qp(ζpn). Compute the degree of the extension Qp(ζpn) over Qp.

Solution. The cyclotomic polynomial P = (Xpn − 1)/(Xpn−1 − 1) = Xpn−1(p−1) + · · · +
Xpn−1

+ 1 satisfies P (X + 1) ≡ X(p−1)pn−1
mod p and P (1) = p. Hence P (X + 1) is

an Eisenstein polynomial. By Lemma 1.4.3.1, P (X + 1) is the minimal polynomial of a
uniformizer ζpn − 1 of Qp(ζpn) and Qp(ζpn) is an extension of Qp of degree (p− 1)pn−1.

1.5 Tamely ramified extensions

We study finite extensions of henselian discrete valuation fields without or with little
ramification.

Definition 1.5.1. Let K be a henselian discrete valuation field and let L be a finite
extension of K. Let F and E be the residue field of K and L respectively.

14



1. Assume that L is a separable extension. We say that L is an unramified extension of
K if E is a separable extension of F and if eL/K = 1. We say that L is a tamely ramified
extension of K if E is a separable extension of F and if the ramification index eL/K is
invertible in F .

2. If L is not a tamely ramified extension, we say that L is wildly ramified. If E = F ,
we say L is totally ramified.

Lemma 1.5.2. Let K be a henselian discrete valuation and let F be the residue field of
K.

1. For any finite separable extension L of K and the integral closure OL of OK, the
following conditions are equivalent:

(1) OL is étale over OK.
(2) L is an unramified extension of K.
2. Let L be an unramified extension of K. Then for any extension K ′ of henselian

discrete valuation field K, a composition field L′ = LK ′ is an unramified extension of K ′.

Proof. 1. (1)⇒(2): By Proposition 1.1.7.2 (1)⇒(2), OL⊗OK F is a finite separable exten-
sion of F . Hence L is an unramified extension of K.

(2)⇒(1): The normalization OL is a free OK-module of finite rank. Hence OL is of
finite presentation and flat over OK . Since Ω1

OL/OK
⊗OK F = Ω1

OL⊗OK
F/F = 0, we have

Ω1
OL/OK

= 0 by Nakayama’s lemma. Hence OL is étale over OK .
2. Since OK′ is henselian, the finite ring OL ⊗OK OK′ over OK′ is decomposed as a

product
∏

i Bi of local rings. Since OL is étale over OK by 1 (2)⇒(1), each Bi is étale
over OK′ . Hence by 1 (1)⇒(2), L′

i = Bi ⊗OK′ K
′ is an unramified extension of K ′.

Proposition 1.5.3. Let K be a henselian discrete valuation field and let F ′ be a finite
separable extension of the residue field F . Then the functor (Extensions of henselian
discrete valuation field K)→(Sets) sending L to MorF (F ′, E) where E denotes the residue
field of L is representable by a finite unramified extension K ′ of K with residue field F ′.

Proof. First, we construct a finite unramified extension K ′ of K with residue field F ′. Let
a ∈ F ′ be a generator over F and let P ∈ OK [X] be a lifting as a monic polynomial of the
minimal polynomial of a. Then, OK′ = OK [X]/(P ) is étale over OK and hence is normal
by Corollary 1.2.4.1. Hence OK′ is the ring of integers in a finite separable extension K ′

of K and is a discrete valuation ring by Proposition 1.4.4. Therefore by Lemma 1.5.2.1
(1)⇒(2), K ′ = OK′ ⊗OK K is a finite unramified extension of K and the residue field is
F ′.

We show that the canonical mapping MorK(K ′, L) → MorF (F ′, E) is a bijection. We
may identify MorK(K ′, L) = {x ∈ OL | P (x) = 0} and MorF (F ′, E) = {x ∈ E | P (x) =
0}. Since P ∈ F [X] is a separable polynomial, the reduction defines a bijection {x ∈ OL |
P (x) = 0}→ {x ∈ E | P (x) = 0} by Hensel’s lemma.

Corollary 1.5.4. Let K be a henselian discrete valuation field and L be a finite extension
of K.

1. There exists a largest subextension Mu ⊂ L unramified over K. The residue field of
Mu is the separable closure of F in E.

2. Let K ′ ⊂ L be a subextension. Then K ′Mu is the largest unramified extension of K ′

in L.

We call Mu the maximum unramified extension of K in L.
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Proof. 1. Let F ′ be the separable closure of F in E. By Proposition 1.5.3, there exists
an unramified extension K ′ ⊂ L with residue field F ′. If K ′′ ⊂ L is another unramified
extension with residue field F ′′ ⊂ E, then F ′′ is a subfield of F ′ and K ′′ is a subfield of K ′

by Proposition 1.5.3.
2. Since the residue field E of L is a purely inseparable extension of F ′, it is a purely

inseparable extension of the residue field of K ′Mu. Since K ′Mu is an unramified extension
of K ′ by Lemma 1.5.2.2, the assertion follows.

If the residue field F is of characteristic 0, then L is a totally and tamely ramified
extension of the maximum unramified extension Mu.

Proposition 1.5.5. Let K be a henselian discrete valuation field and let L be a finite
extension of K. Assume that the residue fields F and E of K and L are of characteristic
p > 0.

1. Assume that L is a tamely ramified extension of K and let K ′ be a extension of
henselian discrete valuation K. Then, a composition field L′ = LK ′ is a tamely ramified
extension of K ′. The ramification index eL′/K′ equals eL/K/gcd(eL/K , eK′/K).

2. Assume that E is a purely inseparable extension of F and let m be a divisor prime to
p of the ramification index eL/K. Then, there exists a unique totally ramified subextension
K ′ ⊂ L of degree m over K. Further, there exists a uniformizer x of K ′ such that xm is
a uniformizer of K.

Proof. Existence in 2. Let t ∈ K be a uniformizer, let x ∈ L be an element of valuation
ordKx = 1/m and define a unit u ∈ O×

L by t = uxm. By the assumption that E is a purely
inseparable extension, the quotient group E×/F× is p-power torsion and is an Z(p)-module.
Since m is prime to p, there exist units v ∈ O×

L and w ∈ O×
K such that u ≡ vm/w mod mL.

Since OL is henselian and m is prime to p, we may assume that u = vm/w by Hensel’s
lemma. Hence replacing x by vx and t by wt, we may assume that u = 1. Then L contains
an m-th root x of t and a totally ramified subextension K[X]/(Xm − t) of degree m as a
subfield.

1. By Proposition 1.5.3 and Corollary 1.5.4.2, after replacing K by the maximum
unramified extension Mu in L and K ′ by MuK ′ ⊂ L′, we may assume that L is a totally
ramified extension of K of degree m prime to p.

First assume that m = eL/K divides eK′/K . By the existence in 2 proved above, there
exists a uniformizer t ∈ K and an isomorphism OK [X]/(Xm−t)→ OL. By the assumption
m | eK′/K , there exist y ∈ OK′ and v ∈ O×

K′ such that t = vym. Then, the normalization
of OL ⊗OK OK′ = OK′ [X]/(Xm − vym) is a ring OK′ [Z]/(Zm − v) étale over OK′ . Since
OL[Z]/(Zm − v) is further finite over OK′ , the tensor product OK′ [Z]/(Zm − v) ⊗OK′ K

′

is a product of finitely many unramified extensions of K ′ by Proposition 1.1.7.2 (1)⇒(2)
and Lemma 1.5.2.1 in this case.

Thus by the decomposition m = dm′ where d = (m, eK′/K), it is reduced to showing
the case where m is prime to eK′/K . Since m = eL/K divides eL′/K = eL′/K′eK′/K and is
prime to eK′/K , it follows that m divides eL′/K′ " [L′ : K ′] " [L : K] = m. Hence L′ is a
totally ramified extension of degree m of K ′ in this case.

Uniqueness in 2. Assume that K ′′ ⊂ L is another totally ramified subextension of
degree m. Then the composition K ′K ′′ ⊂ L is an unramified extension of K ′ by 1. Since
E is a purely inseparable extension of F , we haveK ′K ′′ = K ′ and the assertion follows.
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Corollary 1.5.6. Let K be a henselian discrete valuation field and L be a finite extension
of K.

1. There exists a largest subextension Mt ⊂ L tamely ramified over K. The exten-
sion Mt is a totally ramified extension of the maximum unramified extension Mu and the
ramification index eMt/Mu is the prime-to-p part of eL/K.

The degree [L : Mt] is a power of p.
2. Let K ′ ⊂ L be a subextension. Then K ′Mt is the largest tamely ramified extension

of K ′ in L.

We call Mt the maximum tamely ramified extension of K in L.

Proof. 1. Let Mu ⊂ L be the maximum unramified extension and let m be the prime-to-p
part of eL/K . By Proposition 1.5.5.2, there exists a totally ramified extension K ′ ⊂ L ofMu

of ramification index m. If K ′′ ⊂ L is another tamely ramified extension, the composition
K ′K ′′ ⊂ L is an unramified ramified extension of K ′ by Proposition 1.5.5.1. Since E is a
purely inseparable extension of the residue field F ′ of K ′, we have K ′′ ⊂ K ′K ′′ = K ′ as in
the proof of Corollary 1.5.4.1. Hence K ′ is the largest tamely ramified extension in L.

The ramification index of L over Mt is a power of p and the residue field E is a purely
inseparable extension of the residue field of Mt. The separable closure Ms ⊂ L of K is a
finite separable extension of Mt of ramification index a power of p and the residue field
extension is purely inseparable. Hence [Ms : Mt] is a power of p by Proposition 1.4.2.
Since L is a purely inseparable extension of Ms, the degree [L : Ms] is also a power of p
and the assertion follows.

2. Since the residue field E is a purely inseparable extension of F ′, it is a purely
inseparable extension of the residue field of K ′Mt. Further since the degree [L : Mt] is
a power of p, the degree [L : K ′Mt] is a power of p. Since K ′Mt is a tamely ramified
extension of K ′ by Proposition 1.5.5.1, the assertion follows.

Definition 1.5.7. Let K be a henselian discrete valuation field and let L be a finite Galois
extension of K of Galois group G = Gal(L/K). Let Mu ⊂ Mt ⊂ L be the maximum
unramified extension and the maximum tamely ramified extension respectively. We call
the corresponding subgroups I ⊃ P of G the inertia subgroup and the wild inertia subgroup
respectively.

Since the extensions Mu and Mt are stable under the action of G, the subgroups I and
P are normal subgroups. If the residue field F is of characteristic p > 0, the wild inertia
group P is a unique p-Sylow subgroup of I. If the residue field F is of characteristic 0,
the wild inertia group P is trivial.

Proposition 1.5.8. Let K be a henselian discrete valuation field and let L be a finite
Galois extension of K of Galois group G = Gal(L/K). Let I ⊃ P be the inertia subgroup
and the wild inertia subgroup of G corresponding to the maximum unramified extension
and the maximum tamely ramified extension Mu ⊂Mt ⊂ L respectively.

1. The residue field F ′ of Mu is a Galois extension of F and the action of G on F ′

defines an isomorphism G/I → Gal(F ′/F ).
2. The action of I on mMt/m

2
Mt

defines an injection

(1.8) I/P → F ′×.

and the quotient I/P is a cyclic group of order m = [Mt : Mu]
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If the residue field F is of characteristic p > 0, then the index m = [I : P ] is prime to
p and the subgroup P ⊂ I is a unique p-Sylow subgroup.

The ramification groups Gi ⊂ G defined in the next section will be essentially a filtra-
tion on the wild inertia subgroup P = G1.

Proof. 1. By Proposition 1.5.3, the canonical morphism G/I = Gal(Mu/K)→ AutFF ′ is
an isomorphism. Hence #AutFF ′ = [F ′ : F ] and F ′ is a Galois extension of F . Further
the morphism G/I → Gal(F ′/F ) is an isomorphism

2. Since the action of I on F ′ is trivial, its action on an F ′-vector space mMt/m
2
Mt

of
dimension 1 defines a character I → F ′×. By Proposition 1.5.5.2, there exist uniformizers
t ∈ Mu and x ∈ Mt satisfying xm = t. Since m is invertible in F ′, the reduction {ζ ∈
M×

u | ζm = 1} → {ζ ∈ F ′× | ζm = 1} defines an isomorphism by Hensel’s lemma. Since
Mt = Mu(x) is generated by an m-th root x of t, the character I → F ′× induces an
isomorphism I/P = Gal(Mt/Mu)→ µm = {ζ ∈ F ′× | ζm = 1}.

The index m equals eMt/Mu and is prime to p. Since the normal subgroup P =
Gal(L/Mt) of I is a p-group by Corollary 1.5.6 and is of index [I : P ] = m prime to
p, it is a unique p-Sylow subgroup of I.

For a separable closure Ks of a henselian discrete valuation field K, the maximum un-
ramified extension and the maximum tamely ramified extension Ku ⊂ Kt ⊂ Ks are defined
to be the unions of finite unramified extensions and finite tamely ramified extensions.

Corollary 1.5.9. Let K be a henselian discrete valuation field and Ku ⊂ Kt ⊂ Ks be the
maximum unramified extension and the maximum tamely ramified extension in a separable
closure of K. Let the inertia group I ⊂ G = Gal(Ks/K) and P ⊂ I be the corresponding
subgroups. Then, the quotient G/I is identified with the absolute Galois group Gal(Fs/F )
of the residue field F and I/P is identified with the projective limit lim←−p!m µm. The subgroup

P ⊂ I is a unique pro-p Sylow subgroup and the quotient G/P is isomorphic to the semi-
direct product G/I " I/P .

Proof. By taking the limit of finite subextensions in Ks, we obtainKu ⊂ Kt ⊂ Ks and P ⊂
I ⊂ G. The residue field of Ku is a separable closure Fs of F by Proposition 1.5.3 and we
obtain isomorphisms G/I → Gal(Ku/K) → Gal(Fs/F ) = GF . Since Kt is the composite
extension Ku · K(s1/m, p ! m) for a uniformizer s ∈ K, we obtain isomorphisms I/P →
Gal(Kt/Ku)→ lim←−p!m µm and G/P → Gal(Kt/K)→ Gal(Ku/K)"Gal(Kt/Ku)→ GF "
I/P . Since P is a pro-p group and I/P is prime to p, P is the unique pro-p Sylow subgroup
of I.

Exercise 1.5. Let p be a prime number and n ! 1 be an integer. Assume that n = mpe

is the product of an integer m ! 1 prime to p and a power pe > 1 of p.
1. Find the maximum unramified extension and the maximum tamely ramified exten-

sion of Qp in Qp(ζn).
2. Determine the Galois group G = Gal(Qp(ζn)/Qp) and the inertia group and the

wild inertia group P ⊂ I ⊂ G as subgroups of (Z/nZ)× = (Z/mZ)× × (Z/peZ)×.

Solution. 1. Since Xm − 1 ∈ Fp[X] is a separable polynomial, the extension Qp(ζm) of
Qp is an unramified extension and Zp[ζm] is the ring of integers. Since Qp(ζpe) is a totally
ramified extension of Qp and Zp[ζpe ] is the ring of integers by Exercise 1.4, the morphisms
Qp(ζm)⊗Qp Qp(ζpe) → Qp(ζn) and Zp]ζm]⊗Zp Zp[ζpe ] → Zp[ζn] are isomorphisms. Hence
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Qp(ζm) ⊂ Qp(ζn) is the maximum unramified extension. Since eQp(ζp)/Qp = p− 1 is prime
to p and eQp(ζpe )/Qp(ζp) = pe−1, the composite extension Qp(ζm, ζp) = Qp(ζmp) is the
maximum tamely ramified extension.

2. By 1, we have G = 〈p〉×(Z/peZ)× ⊂ (Z/mZ)××(Z/peZ)× and I ⊃ P are identified
with (Z/peZ)× ⊃ (1 + pZ)/(1 + peZ).

1.6 Lower ramification subgroups

We define the filtration by lower ramification groups on the Galois group of a Galois
extension of henselian discrete valuation fields.

Definition 1.6.1. Let K be a henselian discrete valuation field and let L be a finite Galois
extension of K of Galois group G = Gal(L/K).

1. For an integer i ! 1, we define a normal subgroup Gi ⊂ G by

(1.9) Gi = Ker(G→ Aut(L×/(1 +mi
L)))

and call Gi the i-th ramification group. We set G0 to be the kernel Ker(G→ AutOL/mL).
2. For σ ∈ G0 {1}, let iG(σ) be the largest integer i ! 0 such that σ ∈ Gi. We set

iG(1) =∞.

There is another filtration called the non-logarithmic ramification groups defined by
G′

i = Ker(G → Aut(OL/mi
L)). We compare this with that in Definition 1.6.1 in Propo-

sition 1.6.5. For a subgroup H ⊂ G corresponding to a subextension M ⊂ L, we have
Hi = Gi ∩H for every i ! 0.

Proposition 1.6.2. Let L be a finite Galois extension of a henselian discrete valuation
field K. Let F and F ′ ⊂ E be the residue fields of K and of the maximum unramified
extension Mu ⊂ L and let q = eL/Mt be the ramification index for the maximum tamely
ramified extension Mt ⊂ L.

1. The subgroup G0 ⊂ G equals the inertia subgroup I ⊂ G corresponding to Mu. The
action of G on the residue field E of L defines an isomorphism G/G0 → Aut(E/F ).

2. The subgroup G1 ⊂ G equals the wild inertia subgroup P ⊂ G corresponding to Mt.
The character I/P → F ′× (1.8) equals the q-th power of the character

(1.10) G0 → E×

defined by the action on an E-vector space mL/m2
L of dimension 1.

Proof. 1. Since E is a purely inseparable extension of the separable closure F ′ ⊂ E of F ,
the restriction defines an injection Aut(E/F ) → Gal(F ′/F ). Hence we have G0 = I and
the morphism G/G0 → Aut(E/F ) is an isomorphism.

2. We have an exact sequence 0→ E× → L×/(1 +mL)→ Z→ 0 of G-modules. Since
G0 = I = Ker(G → AutE) = Ker(G → AutE×) by 1, the exact sequence defines the
character (1.10) and its kernel equals G1.

To show the last assertion, we may assume that F is of characteristic p > 0 and that
q|[L : Mt] is a power of p by Corollary 1.5.6. By the canonical isomorphisms mMt/m

2
Mt
⊗Fs

E → mq
L/m

q+1
L ← (mL/m2

L)
⊗q, the character (1.8) equals the q-th power of the character

(1.10). Since the character (1.10) is of order prime to p, the kernel G1 of (1.10) equals the
kernel P of the character (1.8).
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In the following, we assume that the residue field F is of characteristic p > 0. We
study the graded quotients GriG = Gi/Gi+1 for i ! 1.

Proposition 1.6.3. Assume that the residue field F is of characteristic p > 0. Let i ! 1
be an integer.

1. The action of Gi on (1 +mL)/(1 +mi+1
L ) is trivial.

2. The action of Gi on L×/(1 +mi+1
L ) defines a morphism

(1.11) δ : Gi → Hom(L×/(1 +mL),m
i
L/m

i+1
L )

such that the kernel equals Gi+1. The image of σ ∈ Gi is induced by the morphism
δσ : L× → mi

L/m
i+1
L sending b to σ(b)/b− 1 mod mi+1

L .

Proof. 1. For σ ∈ Gi and b ∈ mL {0}, we have
σ(1 + b)

1 + b
= 1 +

σ(b)− b

1 + b
= 1 +

b

1 + b
(
σ(b)

b
− 1) ∈ 1 +mi+1

K .

2. The subgroups (1+mi
L)/(1+mi+1

L ) ⊂ (1+mL)/(1+mi+1
L ) of L×/(1+mi+1

L ) are stable
by the action ofG and the actions ofGi on L×/(1+mi

L) and on (1+mL)/(1+mi+1
L ) are trivial

by 1. Hence, we obtain an injection Gi/Gi+1 → Hom(L×/(1 +mL), (1 +mi
L)/(1 +mi+1

L )).
By identifying (1 + mi

L)/(1 +mi+1
L ) with mi

L/m
i+1
L , we obtain (1.11).

Corollary 1.6.4. Let i ! 1 be an integer.
1. The morphism (1.11) induces an injection

(1.12) GriG→ Hom(L×/(1 +mL),m
i
L/m

i+1
L )

compatible with the actions of G. The graded quotient GriG = Gi/Gi+1 is an Fp-vector
space.

2. We have [P,Gi] ⊂ Gi+1. The injection (1.12) is compatible with the conjugate action
of I/P on GriG and the actions I/P on L×/(1+mL) and on the E-vector space mi

L/m
i+1
L

by the i-th power of the character I/P → E× (1.10).

Proof. 1. Since the kernel of (1.11) is Gi+1, we obtain an injection (1.12). For σ ∈ Gi,
τ ∈ G and b ∈ L×, we have

δτστ−1b ≡ τστ−1(b)

b
− 1 = τ

(σ(τ−1b)

τ−1b
− 1
)
= τ(δστ−1b) = τ(δσ(τ

−1b)).

Hence the injection (1.12) is compatible with the actions of G. Since mi
L/m

i+1
L is an

E-vector space, the graded quotient GriG is an Fp-vector space.
2. Since the action of P on the target of the injection (1.12) is trivial, the conjugate

action of P on Gi/Gi+1 is trivial. This means [P,Gi] ⊂ Gi+1. The compatibility on the
injection (1.12) follows from 1.

We compare the two definitions of filtrations.

Proposition 1.6.5. For an integer i ! 1, define G′
i ⊂ G by G′

i = Ker(G→ Aut(OL/mi
L)).

Let t ∈ L be a uniformizer.
1. Let i ! 1. Then, we have G′

i = Ker(G→ Aut(OL/mi
L)

×) and

(1.13) G′
i+1 ⊂ Gi = {σ ∈ G′

i | σ(t)/t ≡ 1 mod mi
L} ⊂ G′

i.
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2. Assume that the residue field E is a separable extension of F . Then, for i ! 1, we
have Gi = G′

i+1 and the morphism (1.12) induces an injection

(1.14) δ : GriG→ mi
L/m

i+1
L .

For σ ∈ G0, we have
i(σ) = ordL(σ(t)− t)− 1.

3. Assume eL/K = 1. Then, for i ! 1, we have Gi = G′
i and the morphism (1.12)

induces an injection

(1.15) δ : GriG→ Hom(E×,mi
L/m

i+1
L ).

Further if OL = OK [u], for σ ∈ G0, we have

i(σ) = ordL(σ(u)− u).

Proof. 1. The inclusion G′
i ⊂ Ker(G → Aut(OL/mi

L)
×) is clear. Since the action of σ

on OL/mi
L (OL/mi

L)
× = mL/mi

L is trivial if and only if that on (1 + mL)/(1 + mi
L) ⊂

(OL/mi
L)

× is trivial, we have the other inclusion.
We have Gi ⊂ Ker(G→ Aut(OL/mi

L)
×) = G′

i since (OL/mi
L)

× ⊂ L×/(1+mi
L). By the

exact sequence 0→ (OL/mi
L)

× → L×/(1 +mi
L)→ Z→ 0, we have the equality in (1.13).

For σ ∈ G′
i+1, we have σ(t) ≡ t mod mi+1

L . Hence the equality in (1.13) implies G′
i+1 ⊂ Gi.

2. Since G0 = G′
1, by replacing G by I = G0, we may assume G = I. Then, we have

E = F and L is totally ramified over K. Since OL = OK [t], we have G′
i+1 = {σ ∈ G′

i |
σ(t) ≡ t mod mi+1

L }. This equals Gi by the equality in (1.13).
For σ ∈ Gi = G′

i+1, its image δσ : L×/(1 + mL) → mi
L/m

i+1
L by the injection (1.12)

annihilates E× ⊂ L×/(1 + mL) and defines an element Hom(Z,mi
L/m

i+1
L ) = mi

L/m
i+1
L .

Thus we obtain an injection (1.14).
Since Gi = G′

i+1 = {σ ∈ G0 | σ(t) − t ∈ mi+1
K }, for σ ∈ G0, the condition σ ∈ Gi is

equivalent to ordL(σ(t)− t) ! i+ 1.
3. Since eL/K = 1, we may take t ∈ OK and then the equality in (1.13) shows Gi = G′

i.
For σ ∈ Gi = G′

i, its image δσ : L×/(1+mL)→ mi
L/m

i+1
L by the injection (1.12) annihilates

the subgroup generated by a uniformizer t ∈ K and defines an element Hom(E×,mi
L/m

i+1
L ).

If OL = OK [u], the condition σ ∈ G′
i is equivalent to ordL(σ(u)− u) ! i.

In the case where the ring of integers of the extension is generated by a single element,
a relation with the filtration on quotient groups is given as follows.

Proposition 1.6.6. Let L be a finite Galois extension of K of Galois group G. Let N ⊂ G
be a normal subgroup, G = G/N be the quotient group and let M be the corresponding
extension. Let F ⊂ FM ⊂ E be the residue fields of K ⊂ M ⊂ L. Assume that either of
the following conditions is satisfied:

(1) E is a separable extension of FM .
(2) The ramification index eL/M is 1 and E is generated by a single element over FM .

Then, for σ ∈ G, != 1, we have

(1.16) eL/M · iG(σ) "
∑

τ∈σ
iG(τ)

and the equality holds if either of the following conditions is satisfied:
(1K) E is a separable extension of F .
(2K) The ramification index eL/K is 1 and E is generated by a single element over F .
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Proof. Since G1 = P is the image of G1 = P , by replacing K by the maximum unramified
extension K ′ ⊂ L, we may assume that either of the following conditions is satisfied:

(1′) L is a totally ramified extension of M .
(2′) The ramification index eL/M is 1 and E is a purely inseparable extension of FM

generated by a single element.
If L is a totally ramified extension of M , let t be a uniformizer of L. In the other case,
let t be a generator of OL over OM . Let Q = Xm + b1Xm−1 + · · · + bm ∈ OM [X] be the
minimal polynomial of t and set s = bm for m = [L : M ]. Then, s is a uniformizer of M if
L is totally ramified and s is a unit of OM in the other case. Further in the case (2K), s

is a generator of OM over OK . Hence, we have iG(σ) " ordM(
σ(s)

s
− 1) and the equality

holds if (1K) or (2K) is satisfied.
Since s = ±NL/M t, we have

(1.17)
∑

τ∈σ
iG(τ) = ordL

1

s

∏

τ∈σ
(t− τ(t)).

Since σQ = Xm + σ(b1)Xm−1 + · · ·+ σ(bm) ∈M [X] is the minimal polynomial of τ(t) for
τ ∈ σ ⊂ G, we have σQ =

∏
τ∈σ(X − τ(t)) and (σQ)(t) =

∏
τ∈σ(t− τ(t)). Since Q(t) = 0,

we have (σQ)(t) = (σQ−Q)(t) =
∑m

i=1(σ(bi)− bi) · tm−i. Hence we obtain

(1.18)
1

s

∏

τ∈σ
(t− τ(t)) =

(σ(s)
s
− 1
)
+

m−1∑

i=1

bi
s

(σ(bi)
bi
− 1
)
· tm−i ∈ m

eL/M ·iG(σ)

L .

In the case (1′), Q is an Eisenstein polynomial and bi/s ∈ OM and tm−i ∈ mL for i =
1, . . . ,m− 1. In the case (2′), we have bi ∈ mM for i = 1, . . . ,m− 1. Hence we have (1.16)
and a congruence

(1.19)
1

s

∏

τ∈σ
(t− τ(t)) ≡ σ(s)

s
− 1 mod m

eL/M ·iG(σ)+1

L .

Thus the equality iG(σ) = ordM(
σ(s)

s
− 1) implies the equality in (1.16).

Corollary 1.6.7. Let L be a purely wildly ramified cyclic extension of degree p2 and let M
be the unique subextension. Let G = Gal(L/K) and G = Gal(M/K) be the Galois groups
and let mL/K and mM/K be the largest integers satisfying Gm != 1 or Gm′ != 1 respectively.
Then, we have

(1.20) fL/M ·mL/K > mM/K .

Proof. Let l " 1 be the largest integer such that Gl = G. Then, since GrlG is annihilated
by p by Corollary 1.6.4.1, we have l < mL/K . Since [L : M ] = p, one of (1) and (2) in
Proposition 1.6.6 is satisfied and we have an inequality eL/M · mM/K " p · l by (1.16).
Hence we obtain (1.20).

Exercise 1.6. Let p be a prime number and n ! 1 be an integer. Identify the Galois
group G = Gal(Qp(ζpn)/Qp) with (Z/pnZ)×. Compute the lower numbering filtration Gi.

Solution. For 1 < a < pn prime to p, let σa ∈ G be the element corresponding to
a ∈ (Z/pnZ)×. Then, for 0 " m = ordp(a − 1) < n, we have iG(σa) = ord(ζapn − ζpn) =
ord(ζa−1

pn − 1) = ord(ζp
m

pn − 1) = pm. Hence Gi = 1+(pm) ⊂ (Z/pnZ)× = Gal(Qp(ζpn)/Qp)
for pm−1 " i < pm for 1 " m < n, Gi = 1 for i ! pn−1 and G = G0.
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1.7 Different

We study the morphism TrL/K for finite extensions L of a henselian discrete valuation field
K.

Proposition 1.7.1. Let L be a finite separable extension of a henselian discrete valuation
field K.

1. We have TrL/K(OL) ⊂ OK, TrL/K(mL) ⊂ mK and the diagram

(1.21)

OL −−−→ E

TrL/K

1
1eL/K ·TrE/F

OK −−−→ F

is commutative. The OL-modules HomOK (mL,mK) = m−1
L mK ·HomOK (OL,OK) ⊂ HomOK (OL,OK)

are free of rank 1.
2. The following conditions are equivalent:
(1) L is tamely ramified over K.
(2) TrL/K is a basis of the free OL-module HomOK (mL,mK).
(3) The morphism TrL/K : OL → OK is a surjection.
3. The following conditions are equivalent:
(1) L is unramified over K.
(2) TrL/K is a basis of the free OL-module HomOK (OL,OK).

Proof. 1. Since TrL/K is the base change of TrOL/OK
: OL → OK , we have TrL/K(OL) ⊂

OK . Since OL/mKOL is a successive extension of mi
L/m

i+1
L for i = 0, . . . , e−1, the diagram

(1.21) is commutative. The inclusion TrL/K(mL) ⊂ mK follows from the commutative
diagram (1.21).

Since HomOK (OL,OK) is a free OK-module of rank [L : K], it is a free OL-module of
rank 1. Hence HomOK (mL,mK) = m−1

L mK · HomOK (OL,OK) is also a free OL-module of
rank 1.

2. (1)⇔(3): By the commutative diagram (1.21) and by Nakayama’s lemma, the
surjectivity of TrL/K : OL → OK is equivalent to the surjectivity of eL/K · TrE/F : E → F .
The latter condition is equivalent to that E is a separable extension of F and that eL/K
is invertible in F .

(2)⇔(3): Since HomOK (mL,mK) = m−1
L HomOK (OL,mK), we obtain an exact sequence

0 → HomOK (OL,mK) → HomOK (mL,mK) → HomF (E,F ) → 0 where the second arrow
maps f ∈ HomOK (mL,mK) ⊂ HomOK (OL,OK) to the induced morphism f : E → F .
Hence the equivalence follows from Nakayama’s lemma.

3. Since HomOK (mL,mK) = m−1
L mK · HomOK (OL,OK) ⊂ HomOK (OL,OK) and the

equality holds if and only if eL/K = 1, the assertion follows from 2 (1)⇔(2).

We define the different and its logarithmic variant for a finite separable extension of
discrete valuation fields.

Definition 1.7.2. Let L be a finite separable extension of a henselian discrete valuation
field K. Define the different and the logarithmic different DL/K ⊂ Dlog

L/K ⊂ OL to be the
ideals satisfying

OL · TrL/K = DL/K · HomOK (OL,OK) = Dlog
L/K · HomOK (mL,mK).
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Since HomOK (mL,mK) = m−1
L mK · HomOK (OL,OK), we have DL/K = m−1

L mK ·Dlog
L/K .

Lemma 1.7.3. Let L be a finite separable extension of a henselian discrete valuation field
K.

1. We have TrL/KD
log−1
L/K = OK and TrL/K(mLD

log−1
L/K ) = mK. There exists a generator

b of Dlog−1
L/K satisfying TrL/Kb = 1.

2. Let M ⊂ L be a subextension over K. Then, we have

DL/K = DM/K ·DL/M ,(1.22)

Dlog
L/K = Dlog

M/K ·Dlog
L/M .(1.23)

The equalities (1.22) and (1.23) are called the chain rules.

Proof. 1. Since TrL/K is a generator ofDlog
L/K ·HomOK (mL,mK), we have TrL/K(mLD

log−1
L/K ) ⊂

mK and TrL/K(D
log−1
L/K ) !⊂ mK . Since TrL/K(mKD

log−1
L/K ) ⊂ TrL/K(mLD

log−1
L/K ), the first in-

clusion implies TrL/K(D
log−1
L/K ) ⊂ OK . Hence we obtain the equalities.

By TrL/K(D
log−1
L/K ) = OK , there exists an element b ∈ Dlog−1

L/K satisfying TrL/Kb =

1. Since TrL/K(mLD
log−1
L/K ) = mK , the element b is not contained in mLD

log−1
L/K and is a

generator of Dlog−1
L/K

2. The equality (1.22) follows from the canonical isomorphism HomOK (OM ,OK)⊗OM

HomOM (OL,OM) → HomOK (OL,OK) and TrM/K ◦ TrL/M = TrL/K . The second equality
(1.23) follows from the first equality (1.22).

We state a criterion in terms of the different for the extension to be unramified or
tamely ramified.

Lemma 1.7.4. Let L be a finite separable extension of a henselian discrete valuation field
K.

1. The following conditions are equivalent:
(1) L is tamely ramified over K.
(2) We have Dlog

L/K = OL.
2. The following conditions are equivalent:
(1) L is unramified over K.
(2) We have DL/K = OL.

Proof. They follow from Proposition 1.7.1.2 and 3 respectively.

We compute the different assuming that the ring of integers is generated by a single
element over OK .

Proposition 1.7.5. Let K be a henselian discrete valuation field and let L be a finite
separable extension of degree n of K.

1. Assume that OL is generated by b ∈ OL over OK and let P ∈ OK [X] be the minimal
polynomial of b. Then, the different DL/K is generated by P ′(b).

2. Assume that L is a Galois extension of Galois group G. Assume that either of the
following conditions is satisfied:

(1) E is a separable extension of F .
(2) The ramification index eL/K is 1 and E is generated by a single element over F .
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Then, we have

(1.24) ordLD
log
L/K =

∑

σ∈G,σ (=1

iG(σ).

The relation between the different and the lower ramification groups proved in Propo-
sition 1.7.5.2 is called the conductor–discriminant formula.

Proof. 1. By Proposition 1.2.2, we have OL · TrL/K = P ′(b) · HomOK (OL,OK).
2. By replacing K by the maximum unramified extension M ⊂ L, we may assume

that either of the following conditions is satisfied:
(1′) L is a totally ramified extension of K.
(2′) The ramification index eL/K is 1 and E is a purely inseparable extension of F

generated by a single element.
If L is a totally ramified extension of K, let t be a uniformizer. In the other case, let t
be a generator of OL over OK . By Proposition 1.6.3.2, we have iG(σ) = ordL(σ(t)− t)/t.
Let P ∈ OK [T ] be the minimal polynomial of t. Then, by 1, we have ordLD

log
L/K =

ordLP ′(t)/tn−1 for n = [L : K]. Hence, the equality follows from P ′(t) =
∏

σ∈G(t −
σ(t)).

Corollary 1.7.6. Let N ⊂ G = Gal(L/K) be a normal subgroup and identify the Galois
group G = Gal(L/M) of the corresponding extension M ⊂ L with the quotient group G/N .
Then, we have

eL/M · ordMDlog
M/K = ordLD

log
L/K −

∑

τ∈N {1}

iG(τ).

Proof. By the chain rule Lemma 1.7.3.2, we have eL/M ·ordMDlog
M/K+ordLD

log
L/M = ordLD

log
L/K .

Thus the equality follows from Proposition 1.7.5.2.

Exercise 1.7. Let p be a prime number and n ! 1 be an integer.
1. Find a generator of the different DQp(ζpn )/Qp .

2. Find a generator b of the inverse (Dlog
Qp(ζpn )/Qp

)−1 of the logarithmic different such
that TrQp(ζpn )/Qpb = 1.

Solution. 1. The cyclotomic polynomial Φpn is the minimal polynomial of ζpn . Since
Φ′

p = ((Xp − 1)/(X − 1))′ = (pXp−1(X − 1) − (Xp − 1))/(X − 1)2, we have Φ′
p(ζp) =

p/(ζp(ζp − 1)). Since Φpn = Φp(Xpn−1
), we have Φ′

pn = Φ′
p(X

pn−1
) · pn−1Xpn−1−1 and

Φ′
pn(ζpn) = Φ′

p(ζp) · pn−1ζp/ζpn = pn/(ζpn(ζp − 1)). Hence by Proposition 1.7.5.1, the
different DQp(ζpn )/Qp is generated by pn/(ζp − 1).

2. By the solution of 1, b = −ζpn(ζp − 1)/pn · p/(ζpn − 1) = −
∑pn−1

i=1 ζ ipn/p
n−1 is a

generator of (Dlog
Qp(ζpn )/Qp

)−1. Since TrQp(ζpn )/Qp(ζp)ζ
i
pn = 0 for i = 1, . . . , pn−1 − 1, we have

TrQp(ζpn )/Qpb = −pn−1TrQp(ζp)/Qpζp/p
n−1 = 1.

1.8 Norm

Let L be a finite extension of a henselian discrete valuation field K and let NL/K : L× → K×

be the norm mapping. We consider the filtration of L× defined by 1 + mi
L for integers

i ! 1 and study the images NL/K(1 +mi
L) ⊂ K×.
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Lemma 1.8.1. Let L be a finite extension of K.
1. Let n = [L : K] and eL/K be the ramification index. Then, the diagram

(1.25)

L× ordL−−−→ Z

NL/K

1
1×n/eL/K

K× ordK−−−→ Z

is commutative.
2. For any integer i ! 0, we have

NL/K(1 +mi+1
K OL) ⊂ NL/K(1 +mi

KmL) ⊂ 1 +mi+1
K .

For i ! 1 and x ∈ mi
KOL, we have

(1.26) NL/K(1 + x) ≡ 1 + TrL/Kx mod mi+1
K .

Proof. 1. Since NL/KO×
L ⊂ O×

K , there exists a unique integer f such that the multipli-
cation by f on the right vertical arrow makes the diagram (1.25) commutative. Since
ordKNL/Kt = n and ordLt = eL/K for a uniformizer t ∈ K×, we have f = n/eL/K .

2. Let b ∈ L and NL/K(X + b) = Xn + a1Xn−1 + · · ·+ an ∈ K[X] be the characteristic
polynomial of −b. Then, we have a1 = TrL/Kb, an = NL/Kb and

(1.27) NL/K(1 + xb) = 1 + a1x+ a2x
2 + · · ·+ anx

n

for x ∈ K. If b ∈ mL, the multiplication by b on the F -vector space OL/mKOL is nilpotent
and we have a1, . . . , an ∈ mK . Thus, we have the second inclusion by (1.27). The first
inclusion follows from mKOL ⊂ mL

If b ∈ OL, we have a1, . . . , an ∈ OK . Hence the congruence (1.26) follows from (1.27)
for x ∈ mi

K and a1 = TrL/Kb.

We show an inclusion in the opposite direction.

Lemma 1.8.2. Let L be a finite separable extension of K of degree n. Let c ∈ mL be
an non-zero element, j = ordLc and and let NL/K(X + c) = Xn + a1Xn−1 + · · · + an be
the characteristic polynomial of −c. Assume TrL/Kc = a1 != 0 and let i = ordKa1 ! 1.
Assume further that ordKaq > i for every q = 2, . . . , n = [L : K]. Then, we have

(1.28) 1 +mi
K ⊂ NL/K(1 +mj

L).

Proof. The polynomial

P =
1

a1
· (NL/K(1 + cX)− 1) = X +

n∑

q=2

aq
a1

Xq

has coefficients in mK except for degree 1 by the assumption ordKaq > i for every q =
2, . . . , n. Let z = a1w be any element of mi

K . Since OK is henselian and P (w) ≡ w,
P ′(w) ≡ 1 mod mK , there exists x ∈ OK such that P (x) = w by Hensel’s lemma. Since
NL/K(1 + cx) = 1 + a1P (x) = 1 + z, we obtain the inclusion (1.28).

We have a characterization of tamely ramified extensions.
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Proposition 1.8.3. Let L be a finite separable extension of a henselian discrete valuation
field K.

1. Let dL/K be the valuation of logarithmic different Dlog
L/K, eL/K the ramification index

and let i ! 1 be an integer satisfying eL/K · i > dL/K. Then, we have

(1.29) 1 +m2i
K ⊂ NL/K(1 +mi

KmL) ⊂ NL/K(1 +mL).

2. The following conditions are equivalent:
(1) L is a tamely ramified extension of K.
(2) We have NL/K(1 +mi

KOL) = 1 +mi
K for every i ! 1.

(3) We have NL/K(1 +mKOL) = 1 +mK.
If these equivalent conditions hold, we have NL/K(1 +mi

KmL) = 1 +mi+1
K for every i ! 0.

Proof. 1. Let a ∈ mi
K be an element with valuation ordKa = i and let b ∈ (Dlog

L/K)
−1 be a

generator satisfying TrL/Kb = 1 as in Lemma 1.7.3.1. Let NL/K(X + b) = Xn + Xn−1 +
a2Xn−2 + · · · + an be the characteristic polynomial of −b. Then, by eL/K · i > dL/K , we
have ab ∈ mL and hence aqaq ∈ mK for q ! 2. For c = a2b ∈ mi

KmL, the coefficients of
NL/K(X + c) = Xn + a2Xn−1 + a4a2Xn−2 + · · · + a2nan satisfy 2i = ordKa2 < ordKa2qaq
for q = 2, . . . , n. Hence we have (1.29) by Lemma 1.8.2.

2. (1)⇒(2): Assume that L is a tamely ramified extension and i ! 1. By Lemma
1.8.1.2, we have NL/K(1 + mi

KOL) ⊂ 1 + mi
K . Since Dlog

L/K = OL by Lemma 1.7.4.1

(1)⇒(2), there exists a unit b ∈ O×
L satisfying TrL/Kb = 1 by Lemma 1.7.3.1. Let a ∈ mi

K

be a generator. Then, for a generator c = ab of mi
KOL, we have TrL/Kc = aTrL/Kb = a

and NL/K(X + c) ≡ Xn + aXn−1 mod m2i
K . Hence we have the other inclusion by Lemma

1.8.2.
(2)⇒(3) is trivial.
(3)⇒(1): Assume NL/K(1+mKOL) = 1+mK . For x ∈ mKOL, we have NL/K(1+x) ≡

1 + TrL/Kx mod m2
K by (1.26). Hence, TrL/K induces a surjection mKOL → mK/m2

K . By
Nakayama’s lemma, TrL/K : mKOL → mK is a surjection. Hence the assertion follows from
Proposition 1.7.1.2 (3)⇒(1).

The equality NL/K(1 + mi+1
K OL) = 1 + mi+1

K implies NL/K(1 + mi
KmL) = 1 + mi+1

K by
Lemma 1.8.1.2.

We compute the norm mapping for cyclic extension of degree p. This will be used both
in the first case and in the induction step of the proof of Theorem 4.4.4.

Lemma 1.8.4. Let L be a cyclic extension of degree p of K of Galois group G. Let dL/K
be the valuation of logarithmic different Dlog

L/K, eL/K the ramification index and fL/K =

[E : F ]. For x ∈ L, let Xp + a1(x)Xp−1 + · · · + ap(x) ∈ K[X] be the characteristic
polynomial of −x and TrL/Kx = a1(x), NL/Kx = ap(x). Let i and j be integers satisfying
j − 1 ! eL/K · (i− 1) −dL/K.

1. For any x ∈ mj
L, we have

(1.30) TrL/Kx ∈ mi
K , NL/Kx ∈ m

fL/K ·j
K , aq(x) ∈ mi

K for 2 " q " p− 1.

2. Further if 2j − 1 ! eL/K · i− dL/K, we may replace mi
K by mi+1

K for 2 " q " p− 1.

Proof. 1. Since TrL/K(m
−(dL/K+eL/K−1)

L ) = TrL/K(D
log
L/K) ⊂ OK by Lemma 1.7.3.1, the

inequality j + dL/K + eL/K − 1 ! eL/K · i implies TrL/K(m
j
L) ⊂ mi

K .
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By Lemma 1.8.1.1, the condition x ∈ mj
L implies NL/Kx ∈ m[E:F ]·j

K .
Let 2 " q " p− 1. Let Sq denote the set of subsets of G = Gal(L/K) with q elements.

Then, we have aq(x) =
∑

A∈Sq

∏
σ∈A σ(x). The group G acts on Sq without fixed point.

Let Tq ⊂ Sq be a complete set of representatives with respect to the action of G. Then,
the right hand side equals

∑
A∈Tq

TrL/K(
∏

σ∈A σ(x)). Since
∏

σ∈A σ(x) ∈ m2j
L ⊂ mj

L, we

have TrL/K(
∏

σ∈A σ(x)) ∈ mi
K .

2. If 2j + dL/K + eL/K − 1 ! eL/K · (i + 1), further we have TrL/K(
∏

σ∈A σ(x)) ∈
TrL/K(m

2j
L ) ⊂ mi+1

K .

Proposition 1.8.5. Let K be a henselian discrete valuation field and let L be a wildly
ramified cyclic extension of K of degree p of Galois group G. Let dL/K, eL/K denote the
valuation of the logarithmic different and the ramification index and let mL/K ! 1 denote
the largest integer such that Gm != 1.

1. Let j > mL/K be an integer such that eL/K | j + dL/K = eL/K · i. Then, we have

NL/K(1 +mj
L) = 1 +mi

K , NL/K(1 +mj+1
L ) = 1 +mi+1

K ,(1.31)

TrL/K(1 +mj
L) = 1 +mi

K , TrL/K(1 +mj+1
L ) = 1 +mi+1

K

and the diagram

(1.32)

mj
L/m

j+1
L −−−→ 1 +mj

L/1 +mj+1
L

TrL/K

1
1NL/K

mi
K/m

i+1
K −−−→ 1 +mi

K/1 +mi+1
K

is commutative.
2. Let 1 " j " mL/K be an integer and set 1 " i = fL/K · j " fL/K ·mL/K. Then, we

have NL/K(1 +mj
L) ⊂ 1 +mi

K, NL/K(1 +mj+1
L ) ⊂ 1 +mi+1

K and the diagram

(1.33)

mj
L/m

j+1
L −−−→ (1 +mj

L)/(1 +mj+1
L )

1
1NL/K

mi
K/m

i+1
K −−−→ (1 +mi

K)/(1 +mi+1
K )

where the left vertical arrow is TrL/K + NL/K if j = mL/K and is NL/K if 1 " j < mL/K

is commutative.

Proof. 1. Let j > mL/K be an integer not necessarily satisfying eL/K | j + dL/K and let
i > fL/K ·mL/K be the smallest integer satisfying j " eL/K · i− dL/K . In the notation of
Lemma 1.8.4, for x ∈ mj

L, we have

(1.34) NL/K(1 + x) = 1 + a1(x) + a2(x) + · · ·+ ap(x).

We have aq(x) ∈ mi
K for q = 1, . . . , p by j − 1 ! eL/K · (i − 1) − dL/K , fL/K · j ! i and

Lemma 1.8.4.1. Hence by (1.34), we have an inclusion NL/K(1 +mj
L) ⊂ 1 +mi

K in (1.31).

We show the other inclusion assuming eL/K | j + dL/K = eL/K · i. Let b ∈ Dlog−1
L/K

be a generator such that TrL/Kb = 1 as in Lemma 1.7.3.1. The integer j = eL/K · i −
(p − 1) · mL/K ! eL/K + mL/K satisfies 2j − 1 ! eL/K · i − (p − 1) · mL/K + eL/K +
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mL/K − 1 ! eL/K · (i + 1) − (p − 1) · mL/K . Hence for a ∈ mi
K , c = ab ∈ mj

L and
for q = 2, . . . , p − 1, we have aq(c) ∈ mi+1

K by Lemma 1.8.4.1. For q = p, we have
ordKap(c) = ordKNL/Kc ! fL/K · j > i since j > mL/K . Thus by Lemma 1.8.2, we obtain
the other inclusion NL/K(1 + mj

L) ⊃ 1 + mi
K . Thus, the first equality of (1.31) is proved.

The inclusion NL/K(1+mj+1
L ) ⊂ 1+mi+1

K is already proved and the other inclusion follows

from NL/K(1 +m
j+eL/K

L ) = 1 +mi+1
K .

The second line is just for the record and follows from Lemma 1.7.3.1. The commutative
diagram (1.32) follows from (1.34) and (1.30) with mi

K replaced by mi+1
K for q = 2, . . . , p−1

in Lemma 1.8.4.2.
2. By j " mL/K , we have dL/K ! (p − 1)j and j − 1 ! eL/K(fL/K · j − 1) − dL/K =

eL/K ·(i−1)−dL/K . Since fL/K ·j = i, similarly as in the proof of 1, we have NL/K(1+mj
L) ⊂

1 +mi
K by Lemma 1.8.4.1. From this and 1, we have NL/K(1 +mj+1

L ) ⊂ 1 +mi+1
K .

We have 2j − 1 ! j ! p · j − dL/K = eL/K · i − dL/K for j " mL/K and j − 1 >
eL/K · (i − 1) − dL/K for j < mL/K . Hence the commutative diagram (1.33) follows from
(1.30) with mi

K replaced by mi+1
K for q = 2, . . . , p− 1 in Lemma 1.8.4.2 similarly as in the

proof of 1.

Corollary 1.8.6. Let K be a henselian discrete valuation field and let L be a wildly
ramified cyclic extension of K of Galois group G. Let dL/K, eL/K denote the valuation of
the logarithmic different and the ramification index and let mL/K ! 1 denote the largest
integer such that Gm != 1. Then, for an integer j > mL/K such that eL/K | j + dL/K =
eL/K · i, we have

NL/K(1 +mj
L) = 1 +mi

K , NL/K(1 +mj+1
L ) = 1 +mi+1

K ,(1.35)

TrL/K(1 +mj
L) = 1 +mi

K , TrL/K(1 +mj+1
L ) = 1 +mi+1

K

and the diagram

(1.36)

mj
L/m

j+1
L −−−→ 1 +mj

L/1 +mj+1
L

TrL/K

1
1NL/K

mi
K/m

i+1
K −−−→ 1 +mi

K/1 +mi+1
K

is commutative.

Proof. By Proposition 1.8.3.2, we may replace K by the maximum tamely ramified ex-
tension K ′ in L, we may assume that L is purely wildly ramified and [L : K] is a power
of p. The case [L : K] = p is Proposition 1.8.5.1. We show the case [L : K] = pe by
induction on e. Assume e ! 2 and let M be the subextension such that [L : M ] = p. Since
dL/K = dL/M + eL/M · dM/K , the assumption eL/K | j + dL/K = j + dL/M + eL/M · dM/K

implies that eL/M | j + dL/M = eL/M · j′. Hence by Proposition 1.8.5.1, we have

NL/M(1 +mj
L) = 1 +mj′

M , NL/M(1 +mj+1
L ) = 1 +mj′+1

M

and the corresponding diagram (1.36) is commutative.
Since j > mL/M and dL/M +mL/K = p ·mL/K by (1.24), the inequalty fL/M ·mL/K >

mM/K (1.20) implies eL/M · j′ = j+dL/M > mL/K +dL/M = p ·mL/K = eL/MfL/M ·mL/K >
eL/M ·mM/K . Hence by the induction hypothesis, we have

NM/K(1 +mj′

M) = 1 +mi
K , NM/K(1 +mj′+1

M ) = 1 +mi+1
K
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and the corresponding diagram (1.36) is commutative.

Corollary 1.8.7. Let K be a henselian discrete valuation field and assume that the residue
field F is algebraically closed. Let L be a finite separable extension of K. Then, the norm
mapping NL/K : L× → K× is a surjection.

Proof. By replacing L by its Galois closure over K, we may assume that L is a Galois
extension. Set n = [L : K] = eL/K . Since the norm mapping induces the identity on
Z = L×/O×

L → Z = K×/O×
K and the n-th power mapping on E× → F×, it suffices

to show that 1 + mL → 1 + mK is a surjection. If L is tamely ramified, the assertion
follows from Proposition 1.8.3.2 (1)⇒(3). Hence, by replacing K by the maximum tamely
ramified extension in L, we may assume that the Galois group G = Gal(L/K) is a p-group.
Since a p-group G is nilpotent, by induction on the order #G, we may assume that L is
a totally ramified cyclic extension of degree p = charF > 0.

Let mL/K be the largest integer i such that Gi = G as in Proposition 1.8.5. Then, by

Proposition 1.8.5.2, we have NL/K(1 + m
mL/K+1

L ) = 1 + m
mL/K+1

K . For i = j = mL/K , the
diagram

(1.37)

mi
L/m

i+1
L −−−→ (1 +mi

L)/(1 +mi+1
L )

1
1NL/K

mj
K/m

j+1
K −−−→ (1 +mj

K)/(1 +mj+1
K )

is commutative if we define the left vertical arrow by TrL/K + NL/K . For 1 " i = j <
mL/K , the diagram (1.37) is commutative if we define the left vertical arrow by NL/K .
Since TrL/K is an isomorphism and NL/K is the p-th power mapping, the left vertical
arrows are surjections by the assumption that F is algebraically closed. Hence we have
NL/K(1 +mL) = 1 +mK as required.

Exercise 1.8. Let p be a prime number and n ! 1 be an integer. Show the inclusion
NQp(ζpn )/QpQp(ζ

×
pn) ⊃ 〈p〉 · (1 + pnZp).

(We will see in Exercise 2.2 that the inclusion is in fact an equality.)

Solution. We have [Qp(ζ
×
pn) : Qp] = #(Zp/pnZp)× = (p − 1)pn−1. If p != 2, we have

1 + pnZp = Ker(Z×
p → (Zp/pnZp)×) ⊂ Q×(p−1)pn−1

p ⊂ NQp(ζpn )/QpQp(ζpn)×. If p = 2, since

NQ2(ζ4)/Q2(1+2ζ4) = 5, we have 1+2nZ2 = 〈(1 + 5)2n−2〉 ⊂ NQ2(ζ4)/Q2Q2(ζ4)×[Q2(ζ2n ):Q2(ζ4)] ⊂
NQ2(ζ2n )/Q2Q2(ζ2n)×. Since NQp(ζpn )/Qp(ζp − 1) = p, we have the inclusion.

Historical notes

The definition of the lower ramification subgroups is given in [65, Chapitre IV §1 Propo-
sition 1]. The shift of numbering by 1 is explained by Proposition 1.6.5.2.

The characterization by the different of tamely ramified extensions given in Lemma
1.7.4.1 is proved in [65, Chapitre III §7 Proposition 13] under the assumption that OL is
generated by a single element. The proof of the general case given here is taken from [1,
Proposition A.3]. The equality (1.4) is attributed to Euler in [65, Chapitre III §6 Lemme
2].
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