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I studied the filtration by upper ramification
groups of Galois groups of a complete discrete
valuation field of residue characteristic p > 0. I
constructed the tangent space of discrete valu-
ation field and proved that the filtration is pre-
served for extensions such that the morphism
on the tangent spaces is dominant. Using this
property, I proved that the graded quotients of
ramification groups are F,-vector spaces by re-
duction to the classical case where the residue
field is perfect. By the same method, the Hasse-
Arf theorem asserting the integrality of the con-
ductor of Galois representations is generalized
to arbitrary residue field case. I gave another
geometric proof of the theorem that the graded
quotients of ramification groups are Fp-vector
spaces. This proof gives an injection from the
character groups of graded quotients to twisted
duals of the tangent space. This construc-
tion defines the characteristic cycle of an ¢-adic
sheaf on a regular scheme of finite type over the
integer ring, on a dense open of each geomet-

ric closed fiber. I am preparing articles on the

results.
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present two proofs of the following theorem of

"Flattening theorem following

The goal of this cours is to

Raynaud-Gruson, the original one and a new

one by Quentin Guignard:

Theorem 1. Let X be a coherent scheme (i.e.,
quasi-compact and quasi-separated), f: Y — X
a morphism of finite presentation, U a quasi-
compact open subset of X and F a quasi-
coherent Oy -module of finite type. Assume that
the restriction of F to Y xx U is a finitely
presented Oy x v-module which is flat over U.
Then, there exists a blow-up ¢: X' — X such
that:

(i) The center of the blow-up ¢ is a finitely pre-
sented closed subscheme of X, disjoint from U.
(ii) If Y’ is the strict transform of the X-
scheme Y along ¢, then the strict transform F'
of F along ¢ is finitely presented over Oy and
flat over X'.

This theorem is intimately related to rigid ge-
ometry. A variant for formal schemes plays a
crucial role for the study of flatness in rigid ge-
ometry, which was Raynaud’s main motivation.
Moreover, Guignard’s new proof unravels im-
portant features of rigid varieties, particularly

their local structure, shedding new lights on the

theory of adic spaces. This course is for stu-
dents who have a basic knowledge in algebraic
geometry. No knowledge of rigid geometry is
required as I will not discuss the formal/rigid
variant of the theorem.
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