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preliminary notes (Sep. 19, 2007)

1. Finiteness and uniformization

Th. 1 (Gabber) : f : X → Y of f. t., Y noetherian, qe, Λ = Z/nZ, n invertible on Y ,
then Rf∗ sends Db

c(X, Λ) to Db
c(Y, Λ).

quasi-excellent (qe) : noetherian, formal fibers geom. regular ; openness of Reg
history : (i) f proper : [SGA 4 XIV] : no qe necessary, n not needed to be invertible

(needed in the non proper case)
(ii) Y/Q : [SGA 4 XIX]
(iii) f : X → Y , Y ft/ regular of dim ≤ 1 : Deligne [SGA 4 1/2]

Basic reduction : by (i) enough to show Rj∗F ∈ Db
c for any open dense immersion

j : U → X with X of ft /Y , F constructible on U . If X regular, Z = X − U = support of
a sncd (strict normal crossings divisor), F = ΛU , OK by absolute purity :

Th. 0 (Gabber) : In this case, with Z =
∑

Di (Di regular),

Rqj∗Λ = Λq(⊕ΛDi
(−1)).

Basic strategy : reduce to th. 0 by using resolution. Here’s a typical example. Consider
:

(dJ) weak de Jong : for any open dense immersion j : U → X with X of ft /Y , there
exists a proper surjective p : X ′ → X with X ′ regular and X ′ − U ′ (where U ′ = p−1(U))
the complement of a sncd.

(Note : (i) “weak” because p not assumed generically finite ; (ii) by de Jong (dJ) is
available for Y of finite type over a regular scheme of dimension ≤ 1.)

Then (dJ) + absolute purity + proper cohomological descent implies that Rf∗ sends
Db

c to D+
c .

Leaves the issue : to Db
c ?

It Y of finite (Krull) dimension, then Rf∗ is of finite cohomological dimension, hence
Db

c goes to Db
c. The finiteness of the cohomological dimension follows, by reduction to the

case of an open immersion, from :

Prop. 1 (Gabber). X noetherian, strictly local henselian, of dimension d > 0, ℓ
invertible on X , then for any open U in X , one has cdℓ(U) ≤ 2d − 1.

Gabber shows it’s equivalent to proving cdℓ(η) ≤ 2d − 1 for X integral with generic
point η, then does it by using the Zariski-Riemann space Z of X (= proj. lim. of proper
birational X ′ → X) and the Leray spectral sequence of η → Z. (In the qe case, could also
use Gabber’s affine Lefschetz th. (proved independently of th. 1 !), see §3.)
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However, there are bad Y ’s which are of infinite dimension (Nagata’s excellent patholo-
gies ...). For such Y ’s, (dJ) is insufficient. Can show that Hironaka would suffice (i. e.
variant of (dJ) with p birational (for X integral of f. t. /Y )). Gabber shows that in fact a
weaker, local variant of Hironaka suffices. This is his refined uniformization theorem :

Th. 2 (Gabber) : Let X be noetherian, qe, with the prime ℓ invertible on X , and let
j : U → X be a dense open immersion. Then there exists a finite family of maps of finite
type (pi : X ′

i → X) with the following properties :
(a) X ′

i is regular connected and the inverse image U ′

i of U in X ′

i is the complement of
the support of a strict dnc (convention : the empty space = the sum of an empty family
of divisors is considered as a sncd)

(b) the image by pi of the maximal point of X ′

i is a maximal point of X , p =
∐

pi :∐
X ′

i → X is generically finite, and, up to thickenings, is dominated by a composition
of maps of the following types : modification, finite flat surjective of degree prime to ℓ,
Nisnevich covers (i. e. étale covers Vi → V with the property that for each point x in V
there exists a point y in a Vj above x with [k(y) : k(x)] = 1).

Topological reformulation : S noetherian, (gf/S) = category of S-schemes X of finite
type with the property that each maximal point x of X maps to a maximal point s
of S with finite fiber at s (gf : “generically finite), define the ℓ′-topology on (gf/S) as
the topology generated by thickenings, Nisnevich covers and ℓ′-alterations (i. e. proper,
surjective, generically finite maps sending each maximal point to a maximal point with
generic degree prime to ℓ). Then the factorization assertion in (b) is equivalent to saying
that p is surjective for the ℓ′-topology (on (gf/X)) (use Gruson-Raynaud’s flattening
theorem).

Sketch of proof of Th. 2 ⇒ Th. 1. WMA n = ℓr. For each x ∈ X , c(x) = dimOX,x is
finite. It may be the case that the function x 7→ c(x) is unbounded, we don’t care. Indeed,
Gabber observes that, because c(x) is finite, by quasi-compactness it suffices to show that
for any X of finite type over Y , any dense open j : U → X , any constructible Λ-module F
on U and any integer c ≥ 0, the following property holds :

P (j, F, c) : there exists a closed subset T of X of codimension > c such that
(Rj∗F )|X − T is in Db

c.

This can be proven by induction on c. The property is trivial for c = 0. Assuming
P (−,−, c − 1), to prove P (−,−, c) a little dévissage using ZMT shows that it is even
enough to prove P (−, Λ, c). Take p : X ′ → X as in th. 2 and a factorization

X ′

p

��
X1

h

==
|

|
|

|
|

|
|

| g
// X

,

where g is a composition of thickenings, modifications, finite flat maps of degree prime to ℓ
and Nisnevich covers. Denote by j′ : U ′ → X ′, j1 : U1 → X1 the corresponding pull-backs
of j. By the induction assumption choose T in X of codimension c such that Rj∗Λ|X − T
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is in Db
c . Then try to shrink T , i. e. remove a dense open of it such that the remaining

part, of codimension > c, does the job. May assume T irreducible, work generically on T
and modulo Db

c. By the induction assumption again, plus shrinking, may choose T1 in X1

of codimension c, lying above T , such that Rj1∗Λ|X1 − T1 is in Db
c. Reduce to the case

where T1 is quasi-finite over T . Consider the natural map

a : Rj∗Λ|T → R(g|T1)∗(Rj1∗Λ|T1).

One shows that generically on T and modulo Db
c

(a) a has a left inverse
(b) a = 0.
This will formally imply that Rj∗Λ|T is generically in Db

c. It is enough to show (a) and
(b) for g of one of the types : (i) finite flat surjective of degree prime to ℓ, (ii) modification,
(iii) Nisnevich cover.

For (b), use the factorization of a through X ′ :

Rj∗Λ|T → R(g|T1)∗((Rj′
∗
Λ)|T1) → R(g|T1)∗((Rj1∗Λ)|T1).

By absolute purity (th. 0), Rj′
∗
Λ|T1 is in Db

c. This implies the result for types (i) and (ii).
For type (iii), g is not proper, but there is a component V of X1, whose restriction over T
is generically sent isomorphically onto its image by g|T1, and one can replace X1 by V .

For (a) : in case (i), use trace map ; in case (iii), argue as above ; in case (iii), a is in
fact an isomorphism (generically on T and mod Db

c) (apply induction assumption to the
cone of Λ → Rg∗Λ, which is concentrated on a closed subset Σ of codimension ≥ 1, and
the inclusion Σ ∩ U ⊂ Σ).

Gabber also proved a variant of th. 2, where no prime ℓ is assumed to be invertible on
X :

Th. 3 (Gabber) (weak uniformization). Same data as in th. 2, except that ℓ is not
assumed to be invertible on X . Then there exists a family (pi) as in th. 2, satisfying (a)
and the variant (b’) of (b) with the condition of degree prime to ℓ removed, and Nisnevich
cover replaced by Zariski cover.

Reformulation : h-topology on (schemes of finite type / noetherian S) (Voevodsky) =
generated by Zariski covers and proper surjective maps. Finer than étale. Any surjective
family for the h-topology is dominated by a composition as in th. 3 (b’). Hence : (b’) is
equivalent to saying that p is surjective for the h-topology.

Th. 3 + “oriented” cohomological descent (Gabber) ⇒ Rf∗ sends Db
c to D+

c (hence Th.
3 ⇒ Th. 1 if Y of finite dimension). Won’t be discussed here.

2. Glimpses on the proof of the uniformization theorems

The proofs of th. 2 and th. 3 are similar. There are 3 main steps :
(1) Use of Artin-Popescu’s approximation th. and new techniques of approximatton

due to Gabber to reduce to the complete local case.
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(2) In the local complete case, a partial algebraization (or fibration) th. enabling a
proof by induction on the local dimension.

(3) Arguments of log geometry starting from de Jong’s th. on nodal curves.

The 3 steps contain intermediate results which are of independent interest. For lack
of time, I’ll skip step (1), be brief on step (2) and concentrate on step (3) in the refined
uniformization case (th. 2).

Main result in (2) :

Th. 4 (Gabber) (partial algebraization). (a) X complete noetherian local, reduced,
dim d > 0, equichar. p, Z ⊂ X closed subscheme. Then there exists Y regular complete
noetherian local, equichar. p, dim(Y ) < d, X ′ = Y -scheme of f. t., Z ′ ⊂ X ′ closed
subscheme, x ∈ X ′ a closed point above the closed point of Y , such that (X, Z) is the
completion of (X ′, Z ′) at x :

Z //

��

Z ′

��
X // X ′

��
Y

(b) X complete noetherian local, normal, mixed char. (0, p), dim d ≥ 2, ℓ invertible on
X , Z ⊂ X a closed subscheme. Then there exists X1 complete noetherian local, normal,
finite over X , with generic degree prime to ℓ, Y regular complete noetherian local, mixed
char. (0, p), dim(Y ) < d, X ′ = Y -scheme of f. t., Z ′ ⊂ X ′ closed subscheme, x ∈ X ′ a
closed point above the closed point of Y , such that (X1, Z1) (where Z1 = X1 ×X Z) is the
completion of (X ′, Z ′) at x :

Z

��

Z1
oo //

��

Z ′

��
X X1

//oo X ′

��
Y

Outline of proof given in Orgogozo’s talk (note : only weaker form (no ℓ) needed for
Gabber-Orgogozo’s th. on p-dimension of fields). Relies on Elkik’s algebraization th. for
finite gen. étale maps, Epp’s potential reducedness th., using the following refinement of
Cohen structure th.

Lemma 1 (Cohen-Gabber). A complete noetherian local, reduced, equichar., residue
field k = A/m, G a finite group acting on A, with |G| invertible in A. Then there exists a
G-equivariant map h : k[[t1, ..., td]] → A, with k → A lifting Idk, G acting trivially on the
ti’s, and h finite and generically étale.

4



Refines [EGA 0IV 19.8.8 (ii)] in several respects : action of G, “reduced” instead of
“integral” in the hypotheses, and “generically étale” in the conclusion.

(3) Outline of proof of th. 2 (using (1) and th. 4)
Using induction on dimension, we assume uniformization OK in dim < d. By step (1)

and th. 4, as X1 → X in th. 4 is covering for the ℓ′-topology, WMA the pair (X, Z)
with X normal integral (and Z ⊂ X closed, nowhere dense), equipped with a morphism
f : X → Y , with Y qe normal integral of dim. < d, and the generic fiber of f a curve. We
have a closed point x in Z and we want to show that locally around x for the ℓ′-topology we
can uniformize (X, Z). WMA X and Y affine, so that compactifying f (and normalizing
and changing notations) WMA Y affine and f projective. From now on we forget about x
and try to find (globally) a covering family (Xi → X) for the ℓ′-topology which uniformizes
(X, Z). Replacing X by some blow-up (and Z by its inverse image), WMA Z is a divisor.

Starting point : Apply de Jong’s th. on nodal curves [dJ, 2.4] to (f : X → Y, Z) : get
• a finite group G and a commutative square (non necessarily cartesian) of G-schemes,

with projective map :

(∗) X ′
a //

f ′

��

X

f

��
Y ′

b // Y

,

together with
• a divisor D in X ′

• a G-stable closed and nowehere dense subset T ′ ⊂ Y ′

satisfying the following properties :
- G acts trivially on X , Y , faithfully on X ′, Y ′, and freely on Y ′ − T ′

- a, b are alterations and X ′/G → X , Y ′/G → Y generically radicial
- f ′ is a nodal curve, smooth outside T ′

- D is étale over Y and contained in the smooth locus of f
- Z ′ := a−1(Z) is contained in D ∪ f ′−1(T ′)

Goal : (i) using the induction assumption on a suitable quotient of Y ′, make the pair
(X ′, Z ′) log regular

(ii) get rid of the ℓ-part of a, i. e. ensure that the quotient (X1, Z1) of (X ′, Z ′) by an
ℓ-Sylow of G is still log regular.

Once (i) and (ii) are achieved, Kato-Niziol’s desingularization of (X1, Z1) completes the
proof.

Recall (Kato) : An fs noetherian log scheme X is called log regular if at each
geom. pt x → x ∈ X , SpecOX,x/Ix is regular, where Ix = α(Mx − O∗

X,x), and

dimOX,x/Ix + rkM
gp

x = dimOX,x (NB. M := M/O∗ ; Ix defines the stratum at x of

the stratification of X by the rank of M
gp

). A pair (X, Z) (Z closed in X) is called
log regular if X is log regular and Z is the complement of the open subset j : U → X
of triviality of the log structure ; in this case, MX = OX ∩ j∗O

∗

U . Log regular ⇒ toric
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singularities. Log smooth over log regular ⇒ log regular. (X, Z) log regular and X regular
(as a scheme) ⇒ Z = dnc.

The goal is achieved in 2 main steps :

Step 1 : Extracting the ℓ-part and making (X ′, Z ′) log regular
As X ′/G → X is covering for the ℓ′-topology, WMA Y = Y ′/G, X = X ′/G. Fix an

ℓ-Sylow H of G. Consider the factorization

X ′
a1 //

f ′

��

X ′/H

��

a2 // X

f

��
Y ′

b1 // Y ′/H
b2 // Y

.

As a2 is covering for the ℓ′-topology, we may replace X by X ′/H and Z by its inverse
image in X ′/H, Y by Y ′/H, and then G by H, so that we may assume that G is an
ℓ-group.

Apply induction assumption to (Y, T := T ′/G). Get a family (Yi, Ti) uniformizing (Y, T )
((Yi → Y ) covering for the ℓ′-topology, Yi regular connected, Ti = sncd). Take “normalized
pull-back” by b, i. e. let Y ′

i = normalization of a component of Y ′ ×Y Yi,. Replace Y by
Yi, Y ′ by Y ′

i , G by the decomposition group Gi of Y ′

i , and take pull-back of the other data
by Yi → Y , Y ′

i → Y ′. Working separately over each Yi, and changing notation, WMA
that in diagram (*), Y = Y ′/G is regular connected, T = T ′/G is a sncd, X = X ′/G. As
Y ′ is normal integral, and G acts freely on Y ′ − T ′ and is an ℓ-group, and T = T ′/G is a
sncd, Y ′ admits a unique log structure which makes Y ′ → Y a finite Kummer étale cover
of (Y, T ) of group G. In particular, (Y ′, T ′) is log regular. Then, the local structure of
nodal curves implies that (X ′, f ′−1(T ′)∪D) is log smooth over (Y ′, T ′) (with open subset
of triviality in X ′ contained in f ′−1(Y ′−T ′)), and in particular log regular. For simplicity
we will assume that Z ′ = f ′−1(T ′) ∪ D (the general case follows easily from this special
one).

Step 2 : making the action of G very tame.
As G is an ℓ-group, G acts tamely on X ′, i. e. the inertia group at each x in X ′ is

of order invertible in k(x). If the quotient (X = X ′/G, Z = Z ′/G) was log regular, then,
by Kato-Niziol’s log desingularization, we would be home. However, the tameness of the
action of G is not enough to ensure that (X, Z) is log regular. For example, if k is alg.
closed of char. 6= 2, V a vector space of dim. 2 over k, with trivial log structure, and
G = Z/2Z = {1, τ} acting by τ(v) = −v, then V/G is singular (a quadratic cone).

To overcome this Gabber introduces the following notion :

Def 1 X noetherian, separated, fs log regular, with G finite, acting admissibly on X .
Action of G called very tame if :

• ∀x ∈ X , |Gx| is invertible in k(x), where Gx = inertia group at x,
• G acts generically freely,
• For all geom. pt x 7→ x ∈ X , Gx acts trivially on Mx and on the connected stratum

of the stratification by rkM
gp

containing x.
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Lemma 2. Suppose G acts very tamely on a (noetherian, separated, fs) log regular
(X, Z). Then G acts freely on X − Z, (X/G, Z/G) is log regular, and X → X/G is a
Kummer étale cover of group G (ramified along Z/G).

Back to Step 2. To complete it we need the following th. :

Th. 5 (Gabber). Let G act tamely and generically freely on a (noetherian, separated,
fs) log regular (Y, T ). Then there exists a G-equivariant modification p : Y ′ → Y , with a
log regular str. (Y ′, T ′) (acted on by G) such that Y ′ − T ′ ⊂ p−1(Y − T ), and G acts very
tamely on (Y ′, T ′).

Apply th. 5 to the action of G on (X ′, Z ′) = (Y, T ). Get a commutative diagram

(X ′′, Z ′′) //

p

��

(X ′′/G, Z ′′/G)

q

��
(X ′, Z ′) // (X, Z) = (X ′/G, Z ′/G)

,

where (X ′′/G, Z ′′/G) is log regular (by Lemma 2) and q is a modification. Finally
apply Kato-Niziol’s desingularization to (X ′′/G, Z ′′/G) : find log blow-up (X ′′′, Z ′′′) →
(X ′′/G, Z ′′/G) with X ′′′ regular and Z ′′′ a sncd in X ′′′.

About the proof of th. 5. Use Bierstone-Milman “functorial” desingularization in char.
0 to get a G-equivariant map of log schemes p1 : (Y1, T1) → (Y, T ) with Y1 regular, T1

a sncd, and p1 projective, birational. So WMA Y regular, T a sncd in Y . To make the
action very tame, several pbs must be fixed :

(a) Replacing Y by suitable blow-ups of intersections of components of T (and T by the
corresponding inverse images) make the actions of the inertia groups Gx trivial on Mx.

(b) There may be some fixed points loci of G (or of nontrivial subgroups of G) in Y −T .
By blowing them up and enlarging T accordingly, one makes G act freely on Y − T .

(c) It remains to make the inertia groups act trivially on the strata. This requires a
delicate argument using canonical desingularizations again.

Gabber proves the following important :

Complement to Th. 5 : if (Y, T ) is log smooth over some base S with trivial G-action,
then one can ensure that (Y ′, T ′) and (Y ′/G, T ′/G) are log smooth over S. Combined with
de Jong, this has the following consequences :

Cor. 1. Let X be separated and of finite type over a field k, Z ⊂ X a nowhere dense
closed subset, ℓ a prime 6= char(k). Then there exists a finite extension k′ of k of order
prime to ℓ and an ℓ′-alteration p : X ′ → X over Spec k′ → Spec k with X ′ smooth over k′

and p−1(Z) the support of a sncd in X ′.

(See comment after th. 2 for the definition of an ℓ′-alteration.)

Cor. 2. Let S be a trait, X separated and of finite type over S, ℓ a prime invertible
on S, Z ⊂ X a nowhere dense closed subset. Then there exists a finite extension S′/S of
degree prime to ℓ and an ℓ′-alteration p : X ′ → X over S′ → S, such that X ′ is regular,
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T ′ the support of a sncd, Z ′ = p−1(Z) a subdivisor of T ′, with (X ′, T ′) iog smooth over
S′ (with its standard log structure).

(Idea : use [dJ, 5.16] to get plurinodal fibrations, then use Gabber-Vidal [Vi 4.4.4 +
rem] to get equivariant semistable model. Then divide by ℓ-Sylow, using th. 5.)

3. Other applications of uniformization to étale cohomology

3.1. New proof of absolute purity. First part of old proof reduces to proving punctual
purity for regular schemes of finite type over an excellent trait. Then, instead of K-theoretic
arguments, use refined uniformizaton, namely Cor. 2 above to reduce to X regular and log
smooth over S. In this case, punctual purity follows from ΛX = Rjket

∗
ΛXη

[I, 2.3].

3.2. Affine Lefschetz. Key case :
X local henselian excellent, dim(X) = d, U open affine in X , ℓ invertible on X . Then :

cdℓ(U) ≤ d + cdℓ(k) (k the residue field).
Implies : for X integral, field of fractions K, cdℓ(K) = d+cdℓ(k). (M. Artin’s conjecture

[SGA 4 X 3.1]).
See Orgogozo’s talk for variants à la Kato for p-dimension.
Uses only weak uniformization.

3.3. Dualizing complexes. Exist over any excellent noetherian X having a dimension
function, stable under f !, ΛX dualizing if X regular (Λ = Z/nZ, n invertible on X).

Uses absolute purity, a theory (Gabber) of Gysin maps for globally smoothable locally
complete intersection morphisms, and ths. 1 and 4.
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