

About modulo *p* representations of *p*-adic reductive

groups of rank 1

Ramla ABDELLATIF

Laboratoire de Mathématiques d'Orsay - UMR 8628

ramla.abdellatif@math.u-psud.fr

Comprendre le monde, construire l'avenir®

• We denote by F a finite extension of \mathbb{Q}_p or a Laurent series field $\mathbb{F}_q((t))$ with residue class field \mathbb{F}_q of cardinality $q = p^f$. We fix a uniformizer ϖ of F and an embedding of \mathbb{F}_q into a fixed algebraic closure $\overline{\mathbb{F}}_p$.

• We denote by \mathcal{G} a connected reductive group which is defined, quasi-split and of rank 1 over F, and we let $G := \mathcal{G}(F)$ be the group of its rational points. We choose a maximal split torus \mathcal{S} of \mathcal{G} , we let \mathcal{T} be its centralizer in \mathcal{G} , and we fix a parabolic subgroup \mathcal{B} (which is a Borel subgroup as \mathcal{G} is quasi-split of rank 1 over F) containing \mathcal{T} as a Levi subgroup. As \mathcal{T} is a torus, any irreducible smooth representation of $T := \mathcal{T}(F)$ over $\overline{\mathbb{F}}_p$ is a character, and any smooth character $B \to \overline{\mathbb{F}}_p^{\times}$ comes from such a character.

Non-supercuspidal representations

An irreducible smooth representation of *G* is called *supercuspidal* if it can't be written (up to isomorphism) as a subquotient of some parabolically induced representation

Supersingularity and supercuspidality for $SL_2(F)$

We now consider the case $\mathcal{G} = SL_2$ and we fix a maximal open compact subgroup *K* of *G*. Up to isomorphism, the

The $SL_2(\mathbb{Q}_p)$ case

A mod p semi-simple Langlands correspondence

of G. We first have to describe all the non-supercuspidal representations of G over $\overline{\mathbb{F}}_p$, what leads to the following theorem.

Theorem 1 ([A3]). Let $\chi : B \to \overline{\mathbb{F}}_p^{\times}$ be a smooth character.

The following statements are equivalent : *i*) Ind^G_B(χ) is an irreducible F_p[G]-module; *ii*) Ind^G_B(χ) is an indecomposable F_p[B]-module; *iii*) the character χ doesn't extend to a smooth character of G over F_p.

 \bullet We have the following non-split short exact sequence of $\overline{\mathbb{F}}_p[G]\text{-modules}$:

 $1 \longrightarrow \mathbf{1} \longrightarrow \operatorname{Ind}_B^G(\mathbf{1}) \longrightarrow St_G \longrightarrow 1$.

• There exists no non-trivial intertwinning between two non-supercuspidal representations of G.

Examples :

• When $\mathcal{G} = SL_2$, our irreducibility criterion reduces to $\chi \neq \mathbf{1}$.

• When $\mathcal{G} = U(2,1)$ is a quasi-split unitary group, our irreducibility criterion reduces to χ *doesn't factor through the determinant map*.

Comparison with the complex theory : We can notice some important differences with the complex theory, as

irreducible smooth representations of K are parametrized by the f-uplets $\vec{r} \in \{0, \dots, p-1\}^f$. If we denote by $\sigma_{\vec{r}}$ the representation attached to the f-uplet $\vec{r} = (r_0, \dots, r_{f-1})$, we have the following description of the associated spherical Hecke algebra.

Theorem 2 ([A2]). There exists an explicit Hecke operator $\tau_{\vec{r}}$ such that

 $\operatorname{End}_{\overline{\mathbb{F}}_p[G]}(\operatorname{ind}_K^G(\sigma_{\vec{r}})) = \overline{\mathbb{F}}_p[\tau_{\vec{r}}] .$

Example : The operator $\tau_{\vec{0}}$ naturally acts on the set of vertices of the Bruhat-Tits tree attached to $SL_2(\mathbb{F}_q)$, as drawn on Figure 1.

As in Barthel-Livné's work [BL94, BL95], this naturally leads to the introduction of the following $\overline{\mathbb{F}}_p[G]$ -modules: for any coefficient $\lambda \in \overline{\mathbb{F}}_p$, we set

$$\pi(\vec{r},\lambda) := \frac{\operatorname{ind}_{K}^{G}(\sigma_{\vec{r}})}{(\tau_{\vec{r}} - \lambda \operatorname{Id}) \left(\operatorname{ind}_{K}^{G}(\sigma_{\vec{r}})\right)}$$

The following theorem explains why understanding these cokernels would provide the expected classification.

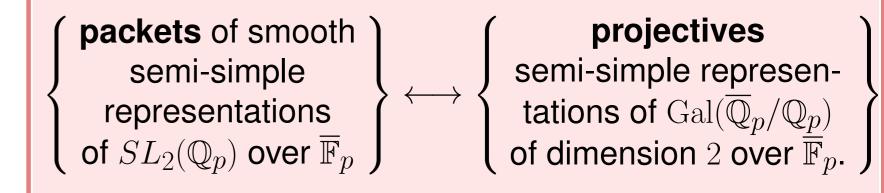
Theorem 3 ([A2]). • Any irreducible admissible smooth representation of *G* over $\overline{\mathbb{F}}_p$ is a quotient of some cokernel $\pi(\vec{r}, \lambda)$.

• If $(\vec{r}, \lambda) \in \{0, \dots, p-1\}^f \times \overline{\mathbb{F}}_p^{\times}$ is different from $(\vec{0}, 1)$, then $\pi(\vec{r}, \lambda)$ is isomorphic to a parabolically

When $F = \mathbb{Q}_p$, we choose $\varpi = p$ and keep the previous notations. We used Breuil's work [Br] about $GL_2(\mathbb{Q}_p)$ to get an explicit description of the supersingular representations of G.

Theorem 6 ([A2]). • Any supersingular representation of $SL_2(\mathbb{Q}_p)$ is isomorphic to a representation π_r , for a unique parameter $r \in \{0, \ldots, p-1\}$. • Let π be a supersingular representation of $GL_2(\mathbb{Q}_p)$. There exists a (non-unique) parameter $r \in \{0, \ldots, p-1\}$ such that $\pi|_{SL_2(\mathbb{Q}_p)} \simeq \pi_r \oplus \pi_{p-1-r}$. • For any $r \in \{0, \ldots, p-1\}$, we have $\pi_r^{\alpha} \simeq \pi_{p-1-r}$.

By comparison with what exists for $GL_2(\mathbb{Q}_p)$ [Br], this necessarily leads to a mod p semi-simple Langlands correspondence for $SL_2(\mathbb{Q}_p)$ of the following form :

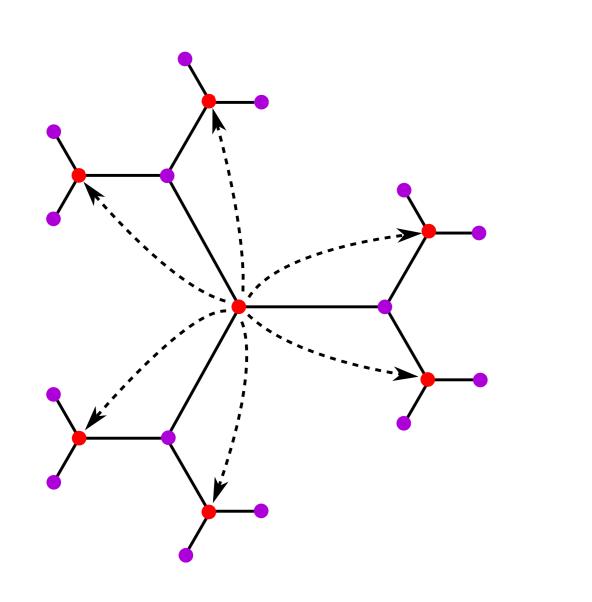


Relation to the Hecke-Iwahori modules

The compact Frobenius reciprocity motivates the study of the simple right modules over some Hecke-Iwahori algebras. In this setting, we get the following result.

Theorem 7 ([A1]). Let I(1) be the standard pro-plwahori of G and $\mathcal{H}^1_S := \operatorname{End}_{\overline{\mathbb{F}}_p[G]}(\operatorname{ind}^G_{I(1)}(\mathbf{1})).$

- for example :
- the length of the $\overline{\mathbb{F}}_p[B]$ -modules defined by the nonsupercuspidal representations (no case of length 3);
- the size of the intertwinning spaces (no non-trivial isomorphism);
- the lack of equivalence between cuspidality and supercuspidality (see the Steinberg representation).



----> Action of $\tau_{\vec{0}}$ on the set of vertices:

 $\tau_{\vec{0}}(v) = \sum_{d(w,v)=2} w$

- induced representation. In particular, it has a unique (up to isomorphism) irreducible quotient.
- \bullet We have the following non-split short exact sequence of $\overline{\mathbb{F}}_p[G]\text{-modules}$:

$1 \longrightarrow St_G \longrightarrow \pi(\vec{0}, 1) \longrightarrow \mathbf{1} \longrightarrow 1 \ .$

In contrast, we say that an irreducible admissible smooth representation is *supersingular* when it is isomorphic to a quotient of some $\pi(\vec{r}, 0)$. This definition is justified by the following theorem, which underlines its importance in our study.

Theorem 4 ([A2]). An irreducible admissible smooth representation of G over $\overline{\mathbb{F}}_p$ is supersingular if, and only if, it is supercuspidal.

Unfortunately, these cokernels $\pi(\vec{r}, 0)$ are in general very mysterious. The only general statement we have is the following one, where we set $\alpha := \begin{pmatrix} 1 & 0 \\ 0 & \varpi \end{pmatrix}$.

Theorem 5 ([A2]). Let $\vec{r} \in \{0, \ldots, p-1\}^f$ be a parameter. There exists a representation $\pi_{\vec{r}}$ of G over $\overline{\mathbb{F}}_p$ such that we have the following non-split short exact sequence of $\overline{\mathbb{F}}_p[G]$ -modules :

 $1 \longrightarrow \pi^{\alpha}_{\vec{r}} \longrightarrow \pi(\vec{r}, 0) \longrightarrow \pi_{\vec{r}} \longrightarrow 1 .$

A few remarks :

• This theory doesn't depend on the choice of the maximal open compact subgroup *K*.

- The map sending a smooth non-zero representation of G over $\overline{\mathbb{F}}_p$ on the space of its I(1)-invariants vectors defines a bijection between the isomorphism classes of non-supersingular irreducible smooth representations of $SL_2(F)$ over $\overline{\mathbb{F}}_p$ and the isomorphism classes of non-supersingular simple right \mathcal{H}_S^1 -modules.
- This bijection extends to supersingular objets when $F = \mathbb{Q}_p$.

Description of the socle filtration (joint work with S. Morra)

The comparison of our results with Morra's work in the $GL_2(\mathbb{Q}_p)$ case highlighted striking similarities and motivated a common work in which we proved the following result.

 $\begin{array}{l} \text{Theorem 8 (with S. Morra, [AM]). Assume $p \neq 2$ and $fix a pair $(r, \lambda) \in \{0, \ldots, p-1\} \times \overline{\mathbb{F}}_p^{\times}$.} \\ \bullet \text{The K-socle filtration of $\operatorname{Ind}_B^G(\mu_\lambda \omega^{p-1-r})$ is given by } \end{array}$

- Socfil(Ind_I^K(χ_r^s))-Socfil(Ind_I^K(χ_{r-2}^s))-Socfil(Ind_I^K(χ_{r-4}^s))-...
- The *K*-socle filtration of the Steinberg representation is given by

 $\operatorname{Sym}^{p-1}(\overline{\mathbb{F}}_p^2)$ — $\operatorname{Socfil}(\operatorname{Ind}_I^K(\mathfrak{a}))$ — $\operatorname{Socfil}(\operatorname{Ind}_I^K(\mathfrak{a}^2))$ — \ldots

• The *K*-socle filtration of the supersingular representation π_r is given by

Figure 1: Action of the Hecke operator $\tau_{\vec{0}}$ on the set of vertices of the Bruhat-Tits tree attached to $SL_2(\mathbb{F}_q)$

• We proved similar statements for the quasi-split (but non-split!) unramified unitary group $\mathcal{G} = U(2, 1)$ [A1].

 $\operatorname{Sym}^{r}(\overline{\mathbb{F}}_{p}^{2})$ — $\operatorname{Socfil}(\operatorname{Ind}_{I}^{K}(\chi_{-r-2}^{s}))$ — $\operatorname{Socfil}(\operatorname{Ind}_{I}^{K}(\chi_{-r-4}^{s}))$ —...

References

[A1] R. Abdellatif, Autour des représentations modulo p des groupes réductifs p-adiques de rang 1, thèse de doctorat de l'Université Paris-Sud 11 (2011).

[A2] R. Abdellatif, *Classification des représentations modulo* p *de* SL(2, F), preprint (2012).

[A3] R. Abdellatif, *Induction parabolique modulo p pour les groupes réductifs p-adiques de rang* 1, preprint (2012).

[AM] R. Abdellatif, S. Morra, *Structure interne des représentations modulo* p *de* $SL_2(\mathbb{Q}_p)$, preprint (2012).

[Br] Ch. Breuil, Sur quelques représentations modulaires et p-adiques de $GL_2(\mathbb{Q}_p)$, l, Compositio Math. 138, no. 2 (2003), 165–188.

[BL94] L. Barthel, R. Livné, Irreducible modular representations of GL(2) of a local field, Duke Math. J. 75, no. 2 (1994), 261–292.

[BL95] L. Barthel, R. Livné, Modular representations of GL(2) of a local field : the ordinary, unramified case, J. Number Theory 55 (1995), 1–27.