2016 年度 代数学 III 期末試験問題

1月27日(金)13:00-16:00(180分) 斎藤 毅

- ・筆記用具, 計時機能のみの時計 以外もちこめません.
- ・裏面の注意もよく読んでください.

問題 1 F を体,K=F(S) を F 上の 1 変数有理関数体とし,拡大体 L を $L=K[T]/(T^4-S)$ で定める.

- 1. 拡大次数 [L:K] を求めよ.
- 以下,Fとして実数体 \mathbf{R} ,複素数体 \mathbf{C} ,位数が素数pの有限体 \mathbf{F}_p を考える. それぞれについて,次の問に答えよ.
- $2. X^4 1 \in F[X]$ を既約多項式の積に分解せよ.
- $3. T \in L$ の K 上の最小多項式を,L[X] で既約多項式の積に分解せよ.
- 4. K 上の体の射 $L \to L$ の個数 \mathbb{M} or $_K(L,L)$ を求めよ.
- 5. Lが K の分離拡大とならない F をすべて求めよ.
- 6. LがLのK上の共役をすべて含むようなFをすべて求めよ.

問題 $2 L = \mathbf{C}(T)$ を複素数体上の 1 変数有理関数体とする. $S = T^4 + \frac{1}{T^4}$ とおき,L の部分体を $K = \mathbf{C}(S) \subset M = \mathbf{C}(T^4)$ で定める.次の問に答えよ.

- 1. 拡大次数 [L:K] を求めよ.
- $2. T^4$ の K 上の最小多項式を求めよ. T の K 上の最小多項式も求めよ.
- 3. L が K の Galois 拡大であることを示し、T の K 上の共役をすべて求めよ.
- 4.~K と L の中間体 M' で, $M \cap M' = K$ と MM' = L をみたすものを 1 つ求め, $M' = \mathbf{C}(V)$ をみたす元 $V \in M'$ を 1 つ与えよ.V の K 上の最小多項式も求めよ.

以下,Gを Galois 群 $\operatorname{Gal}(L/K)$ とし,H,H' をそれぞれM,M' に対応する部分群とする.

- 5. HとH'の位数を求めよ.
- 6.~Gの自明でない部分群をすべて求め、HとH'の生成元を使って表わせ、
- 7. Gの自明でない部分群それぞれに対し、対応する中間体の \mathbb{C} 上の生成元を 1 つ求めよ、中間体のうち K 上の Galois 拡大となるものをすべて求めよ、

問題 3 $p \neq 7$ を素数とし、位数が素数 p の有限体 \mathbf{F}_p に 1 の原始 7 乗根 ζ_7 を添加して得られる体を $E = \mathbf{F}_p(\zeta_7)$ とする.

- 1. p ごとに拡大次数 $[E: \mathbf{F}_p]$ を求めよ.
- 2. p ごとに $\zeta_7 + \zeta_7^2 + \zeta_7^4$ の \mathbf{F}_p 上の最小多項式を求めよ.
- $3. X^2 + 7 \in \mathbf{F}_p[X]$ が既約であるための p についての条件を, p についての合同式として求めよ.

問題 4~K を体,A を整域とし, $f: K \to A$ を単位元を単位元にうつす可換環の準同形とする. A を f によって K 線形空間と考え,A は K 線形空間として有限次元であるとする.

- 1. *A* は体であることを示せ.
- 2. $a \in A$ とし,K 線形写像 m_a : $A \to A$ を $m_a(x) = ax$ で定める.K[a] = A ならば,K 線形写像 m_a の固有多項式は最小多項式と等しいことを示せ.

注 意

答だけを書くのではなく、どのようにその答をもとめたかも、なるべくくわしく書いて下さい。

答があっていても,説明が不十分なものは減点することがあります。

読みやすく, 読んでわかりやすい答案を作成してください.

- **1**1. S は PIDK[S] の素元だから, $X^4 S \in K[X]$ は既約であり, $1, T, T^2, T^3$ は L の K 上の基 底である. よって [L:K]=4.
- 2. $F = \mathbf{R}$ または $F = \mathbf{F}_p$, $p \equiv 3 \mod 4$ のとき $(X 1)(X + 1)(X^2 + 1)$. $F = \mathbf{C}$ または $F = \mathbf{F}_p$, $p \equiv 1 \mod 4$ のとき $(X-1)(X+1)(X-\sqrt{-1})(X+\sqrt{-1})$. $F = \mathbf{F}_2$ のとき $(X - 1)^4$.
- 3. $F = \mathbf{R}$ または $F = \mathbf{F}_p$, $p \equiv 3 \mod 4$ のとき $X^4 T^4 = (X T)(X + T)(X^2 + T^2)$. $F = \mathbf{C}$ または $F = \mathbf{F}_p$, $p \equiv 1 \mod 4$ のとき $X^4 T^4 = (X T)(X + T)(X \sqrt{-1}T)(X + T)$ $\sqrt{-1}T$).

 $F = \mathbf{F}_2$ のとき $X^4 - T^4 = (X - T)^4$.

- 4. $F = \mathbf{R}$ または $F = \mathbf{F}_p$, $p \equiv 3 \mod 4$ のとき $\sharp \operatorname{Mor}_K(L, L) = 2$. $F = \mathbf{C}$ または $F = \mathbf{F}_p, p \equiv 1 \mod 4$ のとき $\sharp \operatorname{Mor}_K(L, L) = 4$. $F = \mathbf{F}_2$ のとき $\sharp \operatorname{Mor}_K(L, L) = 1$.
- 5. $F = \mathbf{F}_2$.
- 6. $F = \mathbb{C} \ \geq p \equiv 1 \mod 4$ のときの $F = \mathbb{F}_p$ および \mathbb{F}_2 .
- **2** 1. $[L:K] = [L:M][M:K] = 4 \cdot 2 = 8$.
- $2. T^4$ の最小多項式は根と係数の関係より X^2-SX+1 . よってTの最小多項式は X^8-SX^4+1 .
- 3. $T \circ K$ 上の共役は $\pm T$, $\pm iT$, $\pm iT^{-1}$, $\pm iT^{-1} \in L \circ 8$ つあるから L は $K \circ Galois$ 拡大.
- 4. $T & \frac{1}{T}$ にうつす元 $\sigma \in G$ は位数 2. T & iT にうつす元 $\tau \in G$ は位数 4. $H = \langle \sigma \rangle$, $N = \langle \tau \rangle$ とおけば,G = HN, $H \cap N = 1$.N に対応する中間体は M だから,H に対応する中間体を M' とすれば $MM'=L,\ M\cap M'=K.\ T+\frac{1}{T}\in M'$ で、L は $\mathbf{C}(T+\frac{1}{T})$ の 2 次拡大だから

 $M'=\mathbf{C}(T+rac{1}{T}).$ $V=T+rac{1}{T}$ とおけば $V^4=S+4V^2-2$ だから,最小多項式は $X^4-4X^2-S+2.$

- 5. |H| = 2, |N| = 4.
- 6. $G = H \ltimes N$ だから, $G = \langle \sigma, \tau | \sigma^2 = \tau^4 = 1, \sigma \tau \sigma = \tau^{-1} \rangle$. 位数 2: $\langle \sigma \rangle$, $\langle \sigma \tau \rangle$, $\langle \sigma \tau^2 \rangle$, $\langle \sigma \tau^3 \rangle$, $\langle \tau^2 \rangle$ の 5 つ. 位数 4: $\langle \sigma, \tau^2 \rangle$, $\langle \sigma \tau, \tau^2 \rangle$, $\langle \tau \rangle$ の 3 つ.
- 7. 順に $M' = \mathbf{C}(T + \frac{1}{T}), \ \mathbf{C}(T + \frac{i}{T}), \ \mathbf{C}(T \frac{1}{T}), \ \mathbf{C}(T \frac{i}{T}), \ \mathbf{C}(T^2),$ $\mathbf{C}(T^2 + \frac{1}{T^2}), \ \mathbf{C}(T^2 - \frac{1}{T^2}), \ M = \mathbf{C}(T^4).$ Galois 拡大は $\mathbf{C}(T^2)$, $\mathbf{C}(T^2 + \frac{1}{T^2})$, $\mathbf{C}(T^2 - \frac{1}{T^2})$, $M = \mathbf{C}(T^4)$.
- 3 1. $p \equiv 1 \bmod 7$ のとき: $[E: \mathbf{F}_p] = 1$, $p \equiv 6 \bmod 7$ のとき: $[E: \mathbf{F}_p] = 2$, $p \equiv 2, 4 \mod 7$ のとき: $[E : \mathbf{F}_p] = 3, p \equiv 3, 5 \mod 7$ のとき: $[E : \mathbf{F}_p] = 6$.
- 2. $p \equiv 1, 2, 4 \mod 7$ のとき: $X (\zeta_7 + \zeta_7^2 + \zeta_7^4)$, $p \equiv 3, 5, 6 \mod 7$ のとき: $(X - (\zeta_7 + \zeta_7^2 + \zeta_7^4))(X - (\zeta_7^3 + \zeta_7^5 + \zeta_7^6)) = X^2 + X + 2$.
- 3. $X^2+X+2=\frac{1}{4}((2X+1)^2+7)$ だから, X^2+X+2 が既約であることと $X^2+7\in \mathbf{F}_p[X]$ が既約であることは同値. したがって求める条件は $p\equiv 3,5,6 \bmod 7$.