DERIVATIONS AND CLOSED POLYNOMIALS IN
POLYNOMIAL RINGS

TAKANORI NAGAMINE

ABSTRACT. In this paper, we study closed polynomials over an in-
tegral domain of characteristic zero and give a criterion for a non-
constant polynomial to be a closed polynomial.

1. INTRODUCTION

Let R be an integral domain with unit and let R[X] := R[z1,...,x,)
be the polynomial ring in n variables over R. We denote by Q(R) the
quotient field of R. A non-constant polynomial f € R[X]\ R is a closed
polynomial if the ring R[f] is integrally closed in R[X]. An R-linear map
D : R[X] — R[X] is an R-derivation on R[X]if D(fg) = fD(g9)+gD(f)
for f,g € R[X]. By using terms of derivations and their kernels, we can
understand closed polynomials. The following result gives us a relation
between closed polynomials and derivations and is a generalization of a
part of [1, Theorem 1].

Theorem 1.1. (cf. [2, Theorem 3.1]) Let R be an integral domain and
K := Q(R). For a non-constant polynomial f € R[X]\ R satisfying
K[f] N R[X] = R|[f], the following conditions are equivalent.

(1) f is a closed polynomial.
(2) There are no polynomials g € K[X] with K[f] C K]lg].

If the characteristic of R equals zero, then the following condition (3) is
equivalent to the condition (1).

(3) There exist an R-derivation D on R[X] such that Ker D = R[f].

Furthermore, closed polynomials relate the Jacobian conjecture as be-
low. Let k be a field of characteristic zero and let k[X] = k[xy, ..., x,] be
the polynomial ring in n variables over k. For polynomials fi,..., f, €
k[X], let F':= (f1,..., fn). Then F defines a k-endomorphism on k[X]
by F(x;) = f; for 1 <i < n. We define the Jacobian matriz of F with
respect to zy,...,x, by
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Now we consider the following two conditions:

(A) F defines a k-automorphism on k[X].

(B) detJ(F') belongs to k \ {0}.
Jacobian conjecture says that the implication “(B) = (A)” holds true. If
n = 1, then this conjecture is true. In the case where n > 2, however, this
conjecture is still open. The following result gives us a relation between
closed polynomials and this conjecture.

Proposition 1.2. Let k be a field of characteristic zero. For polynomials
fi, oo fo € kIX], let F = (f1,..., fn). If detJ(F) € k\ {0}, then these
polynomials f1,..., f are closed polynomials.

In this paper, we give a criterion for a polynomial f € R[X] to be a
closed polynomial, in the case where R is an arbitrary integral domain
of characteristic zero. The main result in this paper is Theorem 2.4. As
a corollary of this theorem, we get Proposition 1.2.

2. CRITERIA FOR CLOSED POLYNOMIALS

Let R be an integral domain and let R[X] = Rxy,...,x,] be the
polynomial ring in n variables over R. For a polynomial f € R[X],

f=ged(for, - fan),
where f,, is the partial derivative of f with respect to z; and we take the
greatest common divisor of f,,,..., fz, as polynomials in Q(R)[X]. Now
we represent f € R[X] as follows:

e S et
ac(Z>o)"

where u, € Rand a = (ay,...,a,) € (Zso)". We define the support set of
f by Supp(f) :=={a € (Z>o)" | ua # 0}. For w = (w1, ..., w,) € (Z>o)",
we define the weighted degree of f with respect to w by the maximal
element of the set {a-w | a € Supp(f)}, where a-w = aqywy +- - -+ a,wy,
and denote by deg, (f). Note that the weighted degree of the zero-
polynomial is —oo. Also, we denote simply deg(f) by the weighted degree
of f with respect to (1,...,1).

Remark 2.1. For any w € (Zx()", the weighted degree of polynomials
with respect to w is a degree function on R[X]. That is, for f, g € R[X],
the following conditions are satisfied.
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(1) deg,,(f) = —oo if and only if f = 0.
(2) degy(fg) = degy(f) + degy(g)-
(3) degy(f + g) < max{deg,(f),deg,(9)}.

Definition 2.2. Let f € R[X]| and w € (Z>()". Assume that deg,,(f) >
2. Then we denote by Ny, (f) the smallest positive prime dividing deg., (f).

Example 2.3. For f = 2° + 25y + 23y* € Z[z,y], we can easily see that
Supp(f) = {(9,0),(6,2),(3,4)}. Then,

(1) for u = (1,1), deg,(f) = deg(f) = 9 and Nu(f) =3,
(2) for v = (0,1), deg,(f) =4 and Ny(f) =2,
(3) for w = (1,2), deg, (f) = 11 and Ny (f) = 11.

In general, for given a polynomial f € R[X]\ R, it is difficult to
understand whether f is a closed polynomial or not. The following gives
a sufficient condition for f to be a closed polynomial and is the main
theorem in this paper.

Theorem 2.4. (cf. [3, Proposition 3.11)) Let R be an integral domain
of characteristic zero and let f € R[X]\ R be a non-constant polynomial

such that Q(R)[f] N R[X] = R[f]. If there exists w € (Zxo)" such that
deg,, (f) =1 or

deg,, (f) > 2 and deg,,(f) <

then f is a closed polynomial.
To show this theorem, we prepare the following lemma.

Lemma 2.5. Let R be an integral domain. Let w € (Zs)" and let
f,9 € RIX]\ R with f € R[g]. Assume that deg,(f) > 0 and f = u(g)
for a polynomial u(t) € R[t] in one variable t of degree m > 1. Then the
following assertions hold true.

(1) deg,, (f) = mdegy(g). In particular, m divides deg,(f).
(2) If the characteristic of R equals zero, then

dege () = L deg,, (f).

Proof. (1) For ug € R\ {0} and uy,...,u, € R,

f=ulg) = g™ +ug" "+ + Upo1g + Un.
Since deg,, (f) > 0, deg,,(g) > 0. This implies that deg, (g') > deg,, (¢?)
if i > j. So,

deg,, (f) = degy (u(g)) = degy, (uog™) = m degy(g)-
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(2) Since f =u(g), fo, = v (9)gs, for 1 < i < n, where u/(t) = du/dt.
This implies that each f,, is divided by u/(g), so u'(g) divides fasa
polynomial defined over Q(R). Therefore deg,, (f) > deg,, (¢/(g)). On the
other hand, since the characteristic of R equals zero, muy # 0. Therefore
deg,, u'(g) = (m — 1) degy(g), so we have

dog () > deg, ((9)) = (m — 1) des, (9) = " dog, ().

Now, we start the proof of Theorem 2.4.

Proof of Theorem 2.4. Set K := Q(R). By Theorem 1.1, we enough to
show that for ¢ € K[X] with K[f] C K[g], K[f] = K|[g].

Let g € K[X] with K[f] C KJg]. Since f € K]g|, there exists u(t) €
K|[t] of degree m such that f = u(g). We write u(t) as

w(t) = upt™ + urt™ - Uy gt A+ Uy,

for some u; € K and uy # 0. By Lemma 2.5 (1), deg,, (f) = mdeg,(g).
We enough to show that m = 1. Indeed, if m = 1, then f = upg + u;.
This implies g € K[f], so K[f] = K|g].

If deg,, (f) = 1, then obviously m = 1. On the other hand, we suppose
that w € (Z>()" satisfies deg,,(f) > 2 and

¢ Nw(f) —1
deg,, (f) < TNG(f)

Since the characteristic of R equals zero, by Lemma 2.5 (2),

degy (f) > 1

degy, (f)-

degy (f)-

By comparing the above two inequalities, we have Ny (f) > m. By using
Lemma 2.5 (1) again, we see that m divides deg,,(f). But the number
Nw(f) is the smallest positive prime dividing deg,,(f), hence m = 1.
Therefore f is a closed polynomial.

U

Next, we prove Proposition 1.2 by using Theorem 2.4.

Proof of Proposition 1.2. Suppose that detJ(F) € k \ {0}, where F =
(fi,-...fn), fi € k[X] and k is a field of characteristic zero. Then there
exist g;; € k[X] such that

0fi 2

8:1:j = gijfi
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for 1 < 4,5 <n. Then we have

detJ(F) = Z sgn(o) Ofh ... 0%

oy 8%0(1) (91;0(”
= Z Sgn(a)glcr( )f gna(n)f
gES,
fl o fn) : Z Sgn(a>gla(1) *Gno(n),
oESy,

where 5, is the symmetric group on n elements. For each permutation
o € Sy, sgn(o) denotes the signature of o. Since detJ(F) € k\ {0},
fi € k\ {0}, so deg(f;) = 0 for 1 < i < n. Therefore f; satisfies the
inequality of Theorem 2.4 for w = (1,...,1) if deg(f;) > 2. Otherwise
deg(f;) = 1. By Theorem 2.4, f; is a closed polynomial for 1 < i < n.

U

Proposition 2.6. Let k be a field of characteristic zero. For a non-
constant polynomial f € k[X]\ k, the following conditions are equivalent.
(1) deg(f) = deg(f) — 1.
(2) There exist ry,...,ry, € k with (ry,...,7,) # (0,...,0) such that
f € klma + - +rpzy).

Proof. (1) = (2) There exist 1, ...,7, € k[X] such that f,, = r;f for
1 <4 < n. We may assume that f,, # 0. Then

d—1=deg(f) < deg(f,) <d—1,

so we have deg(f,,) = d —1 = deg(f) and r; € k\ {0}. For 1 <i <n
with f,, # 0, using the same argument, we have r; € k\ {0}. On
the other hand, for 1 < ¢ < n with f,, = 0, we have r, = 0. So
r; is either a non-zero constant polynomial or 0 for 1 < ¢ < m. Set
g :=rix1+---+ryx,. By Theorem 2.4, g is a closed polynomial because
deg(g) = 1. Therefore, by Theorem 1.1, there exists a k-derivation D on
k[X] such that Ker D = k[g]. Then

D(a:l)'rlf + -4 D(xn)rnf
=D(g)-f =0.

Therefore f € Ker D = k[g].

(2) = (1) Set g := rizy + -+ + rpx,. Since f € k[g|, there exists
u(t) € k[t] of degree deg(f) with f = wu(g). Then f,, = ru/(g) for
1 < i < n, where v/ (t) = du(t)/dt. Then deg(u'(g)) = deg(f) — 1 and
u'(g) divides f. So we have
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deg(u/(g)) < deg(f) < deg(f) - 1.
Therefore deg(f) = deg(f) — 1. d

Remark 2.7. In the proof of Proposition 2.6, we use a fundamental
result on derivations. For an integral domain R, let D be an R-derivation
on R[X]. The we can represent D as the following form:

0 0
D = D(x1>8_901 +---+ D(xn)a—xn

Corollary 2.8. Let k be a field of characteristic zero. For a non-constant
polynomial f € k[X] \ k of degree prime, the following conditions are
equivalent.

(1) f is a closed polynomial.

~

(2) deg(f) < deg(f) — 1.

Proof. (1) = (2) Suppose that deg(f) = deg(f) — 1. By Proposition
2.6, there exist ry,...,r, € k with (r,...,7,) # (0,...,0) such that
f € k[g], where g := ryzy + -+ 4+ rpx,. Since deg(f) is prime, especially
deg(f) > 2, k[f] € klg]. By Theorem 1.1, f is not a closed polynomial.

(2) = (1) Suppose that deg(f) < deg(f) — 1. Since deg(f) is prime,
Nw(f) = deg(f), where w = (1,...,1). Then

L dest) = B destr) = () - 1.
Therefore we have
degtf) < deglf) ~ 1 = 5= degt )

By Theorem 2.4, f is a closed polynomial.
OJ

From this, when you want to check the closedness of polynomial of
degree prime, we only have to calculate f.

REFERENCES

[1] I. V. Arzhantsev and A. P. Petravchuk, Closed polynomials and saturated sub-
algebras of polynomial algebras, Ukrainian Math. J., 59 (2007), 1783-1790.

[2] H. Kojima and T. Nagamine, Closed polynomials in polynomial rings over inte-
gral domains, J. Pure Appl. Algebra, 219 (2015), 5493-5499.

[3] T. Nagamine, Derivations having divergence zero and closed polynomials over
domains, J. Algebra, 462 (2016), 67-76.

(T. Nagamine) GRADUATE SCHOOL OF SCIENCE AND TECHNOLOGY, NIIGATA
UNIVERSITY, 8050 IKARASHININOCHO, NISHI-KU, NIIGATA 950-2181, JAPAN
E-mail address: t.nagaminel4@m.sc.niigata-u.ac. jp



