Castelnuovo-Mumford 正則量とシジジーに関連する 話題について(代数学シンポジウム講演の拡大版)

宮崎誓(熊本大学大学院先端科学研究部)

東京可換環論セミナー 2022 年1月25日

Outline

- 1 Castelnuovo-Mumford 正則量の導入
- ② Gruson-Lazarsfeld-Peskine の論文
- ③ Lazarsfeld の構成法と Generic Projection Method
- ④ Noma, Kwak-Park による O_X-regularity 予想の解決
- ⑤ Castelnuovo-Mumford 正則量の漸近的性質
- 6 Buchsbaum 環の手法からのアプローチと射影多様体の分類
- McCullough-Peeva による Eisenbud-Goto 予想の否定的解決と Rees-like Algebra
- 8 Castelnuovo-Mumford 正則量と Horrocks の判定法
- Hoa 予想から Standard Buchsbaum へ

Notation

```
k: an algebraically closed field S = k[x_0, \dots, x_n]: the polynomial ring over k \mathfrak{m} = S_+ = (x_0, \dots, x_n) \mathbb{P}^n = \operatorname{Proj} S
```

Definition and Proposition (Mumford)

 \mathcal{F} : a coherent sheaf on \mathbb{P}^n , $m \in \mathbb{Z}$

$$\mathcal{F}$$
 is m-regular \iff $\mathrm{H}^i(\mathbb{P}^n,\mathcal{F}(m-i))=0,\ i\geq 1$

$$\iff$$
 $\mathrm{H}^i(\mathbb{P}^n,\mathcal{F}(j))=0,\ i\geq 1,\ i+j\geq m\ \Rightarrow \mathcal{F}(m)$ is generated by global sections

- $\operatorname{reg} \mathcal{F} := \min \{ m \in \mathbb{Z} \mid \mathcal{F} \text{ is } m\text{-regular } \}$
- $X \subseteq \mathbb{P}^n$: a projective scheme $\operatorname{reg} X := \operatorname{reg} \mathcal{I}_X$: Castelnuovo-Mumford regularity

Definition and Proposition (Continued)

If \mathcal{F} is *m*-regular on \mathbb{P}^n , then we have

- (1) \mathcal{F} is (m+1)-regular, and
- (2) $\Gamma(\mathcal{F}(m)) \otimes \Gamma(\mathcal{O}_{\mathbb{P}^n}(1)) \to \Gamma(\mathcal{F}(m+1))$ is surjective.

Since $\Gamma(\mathcal{F}(\ell)) \otimes \mathcal{O}_{\mathbb{P}^n} \to \mathcal{F}(\ell)$ is surjective for $\ell \gg 0$, we have $\Gamma(\mathcal{F}(m)) \otimes \mathcal{O}_{\mathbb{P}^n} \to \mathcal{F}(\ell)$ $\mathcal{F}(m)$ is surjective.

Remark

In order to extend the definitions of Castelnuovo-Mumford regularity, say multigraded, weighted, Grassmaniann, or globally generated ample line bundle, we shoul keep in mind whether the properties above work or not.

- D. Maclagan and G. Smith, Multigraded Castelnuovo-Mumford regularity,
 - J. Reine. Angew. Math. 571 (2004).

Definition

M: a finitely generated graded S-module

$$a_i(M) = \max\{\ell \in \mathbb{Z} | [\mathrm{H}^i_\mathfrak{m}(M)]_\ell \neq 0\}, \ i = 0, \cdots, n+1$$

 $\operatorname{reg} M = \max\{a_i + i | i = 0, \cdots, n+1\}$: Castelnuovo-Mumford regularity

d(M): the maximal degree of the minimal generators of M

Notation

 $X \subseteq \mathbb{P}^n$: a projective scheme

$$I:=\Gamma_*\mathcal{I}_X=\oplus_{\ell\in\mathbb{Z}}\Gamma(\mathbb{P}^N,\mathcal{I}_X(\ell))$$
: the defining ideal of X

R := S/I: the coordinate ring of X

Remark

$$d(I) \le \operatorname{reg} I$$

 $\operatorname{reg} X = \operatorname{reg} I_X = \operatorname{reg} R + 1 = \operatorname{reg} I$

Let us take a minimal free resolution of *I* as graded *S*-module. The Syzygy Theorem gives the finiteness.

$$0 \rightarrow F_s \rightarrow \cdots \rightarrow F_1 \rightarrow F_0 \rightarrow I \rightarrow 0$$

where, $F_i = \bigoplus_j S(-\alpha_{i,j})$ is a graded free S-module.

Each map $F_{i+1} \to F_i$ is written as a matrix which components are homogeneous polynomials.

Theorem (cf. Eisenbud-Goto, Bayer-Mumford)

$$\operatorname{reg} X = \max_{i,j} \{ \alpha_{i,j} - i \}$$

The Castelnuovo-Mumford regularity measures the complexity of the defining ideals of the projective varieties.

Proposition (Eisenbud-Goto)

A graded S-module is m-regular if and only if $M_{\geq m} := \bigoplus_{\ell \geq m} M_{\ell}$ has an m-linear resolution, that is, the minimal free resolution of $M_{\geq m}$:

$$0 \to F_s \to \cdots \to F_1 \to F_0 \to M_{\geq m} \to 0,$$

where $F_i = \oplus S(-m-i)$ is a graded free S-module for $i = 0, \dots, s$.

Proof

From an exact sequence $0 \to M_{\geq m} \to M \to M/M_{\geq m} \to 0$, we have an exact sequence

$$0 \to \mathrm{H}^0_\mathfrak{m}(M_{\geq m}) \to \mathrm{H}^0_\mathfrak{m}(M) \to M/M_{\geq m} \to \mathrm{H}^1_\mathfrak{m}(M_{\geq m}) \to \mathrm{H}^1_\mathfrak{m}(M) \to 0$$

and an isomorphisim $\mathrm{H}^i_\mathfrak{m}(M_{\geq m})\cong \mathrm{H}^i_\mathfrak{m}(M)$, $i\geq 2$.

Thus we have $M_{\geq m}$ is m-regular, which gives the minimal free resolution as desired.

Remark

From Lazarsfeld's book, they have an exact sequence

$$0 o \mathcal{F}_1 o \Gamma(\mathcal{F}(m)) \otimes \mathcal{O}_{\mathbb{P}^n}(-m) o \mathcal{F}(m) o 0,$$

where \mathcal{F}_1 is (m+1)-regular. By repeating this process we have a linear resolution:

$$\cdots \to \cdots \to \oplus \mathcal{O}_{\mathbb{P}^n}(-m-2) \to \oplus \mathcal{O}_{\mathbb{P}^n}(-m-1) \to \oplus \mathcal{O}_{\mathbb{P}^n}(-m) \to \mathcal{F} \to 0.$$

Definition

Let M be a finitely generated graded S-module.

Let \mathbf{F}_{ullet} be the minimal free resolution, where $F_i=\oplus_j S(-j)^{eta_{ij}}$ and

$$\beta_{ij} = \dim_k [\operatorname{Tor}_i^{\mathcal{S}}(M,k)]_j.$$

 $\beta_{i,j}$ is called as Betti number, and Betti table is described $\beta_{i,i+j}$ in position (i,j).

Remark

- $\operatorname{proj.dim}_{S} M = \max\{i | \beta_{ij} \neq 0\}$
- $\operatorname{reg} M = \max\{j | \beta_{i,i+j} \neq 0\}$
- Poincaré series of M is $P(M,t) = \sum_i h_M(i)t^i = \frac{\sum_i (-1)^i \beta_{ij} t^j}{(1-t)^{n+1}}$

Example

 $X \subseteq \mathbb{P}^N$: a complete intersection of type (d_1, \cdots, d_r)

$$0 \to S(-d_1 - \cdots - d_r) \to \cdots \to \oplus_{j=1,\cdots,r} S(-d_j) \to S \to S/I \to 0$$

The Koszul complex arising from the defining equations gives the minimal free resolution of the defining ideal I.

$$\operatorname{reg} X = d_1 + \cdots + d_r - r + 1$$

Example

C: a rational normal curve

$$\mathbb{P}^1 \ni (s:t) \longrightarrow (s^3:s^2t:st^2:t^3) \in \mathbb{P}^3$$

The defining ideal I of C is an ideal generated by 2×2 -minors of the matrix $\begin{bmatrix} x & y & z \end{bmatrix}$.

$$A = \left[\begin{array}{ccc} x & y & z \\ y & z & w \end{array} \right] \text{ in } S = k[x, y, z, w].$$

Let
$$f = yw - z^2$$
, $g = yz - xw$, $h = xz - y^2$.

Then the minimal free resolution of I = (f, g, h) is

$$0 \to S(-3) \oplus S(-3) \overset{\iota_{A}}{\to} S(-2) \oplus S(-2) \oplus S(-2) \overset{[f \ g \ h]}{\to} S \to S/I \to 0$$

In this case we have reg C = 2

Example

(1) In case a (2,3)-complete intersection X in \mathbb{P}^4 , $\operatorname{reg} C=4$ from the Betti table.

	0	1	2	
0	1	-	-	
0 1 2 3	-	-	-	
2	-	1	-	
3	-	1	-	
4	-	-	1	

(2) In case a twisted cubic curve C in \mathbb{P}^3 , $\operatorname{reg} C = 2$ from Betti table.

	0	1	2
0	1	-	-
1	-	-	-
2	-	3	2

General References

Reference

- D. Bayer and D. Mumford, What can be computed in Algebraic Geometry? Computational algebraic geometry and commutative algebra, CUP 1993. https://arxiv.org/abs/alg-geom/9304003
- D. Eisenbud, The geometry of Syzygies, Springer GTM 229, 2005
- R. Lazarsfeld, Positivity I, Chaper 1, Section 8, Springer, 2004.
- E. Miller and D. Perkinson, Eight Lectures on Monomial Ideals by B. Sturmfels, CoCoA Summer School 1999.
 https://services.math.duke.edu/~ezra/Queens/cocoa.pdf
- D. Eisenbud and S. Goto, Linear free resolutions and minimal multiplicity. J. Algebra 88 (1984).

Regulariy Conjecture

Remark

- (1) $\operatorname{reg} X \geq 1$
- (2) If $X \subseteq \mathbb{P}^n$ is nondegenerate, that is, X is not contained in any hyperplane of \mathbb{P}^n , then $\operatorname{reg} X \geq 2$.

Conjecture (Regularity Conjecture by Eisenbud-Goto)

X: a nondegenerate projective variety $\Rightarrow \operatorname{reg} X \leq \operatorname{deg} X - \operatorname{codim} X + 1$?

Remark

'Irreducible' and 'Reduced' are necessary.

- (1) Skew lines in \mathbb{P}^3 , $I = (x, y) \cap (z, w) \subset k[x, y, z, w]$
- (2) A double line in \mathbb{P}^3 , $I = (xw yz, x^2, xy, y^2) \subset k[x, y, z, w]$

 $\operatorname{reg} I = \operatorname{deg} S/I = \operatorname{ht} I = 2.$

Regularity Conjecture

Fact

- (1) $\dim X = 1$: Gruson-Lazarsfeld-Peskine, 1983
- (2) $\dim X = 2$, smooth, $\operatorname{char} k = 0$: Lazarsfeld, 1987
- (3) $\dim X = 3$, smooth, char k = 0, $\operatorname{reg} X \leq \operatorname{deg} X \operatorname{codim} X + 2$: Kwak, 1998
- (4) $\dim X \le 14$, smooth, char k = 0, $n = \dim X$, $\operatorname{reg} X \le \deg X \operatorname{codim} X + 1 + (n-1)(n-2)/2$: Chiantini-Chiarli-Greco, 2000
- (5) $\dim X \ge 3$, singular, Conterexamples : McCullough-Peeva, 2018
- (6) Toric variety with $\operatorname{codim} X = 2$: Peeva-Sturmfels, 1998

Theorem

Let $C \subseteq \mathbb{P}^n$ be a nondegenerate projective curve of degree d. Then $\operatorname{reg} C \le d+2-n$. The equality holds if and only if

- (1) d = n, that is, a rational normal curve
- (2) d = n + 1
- (3) d > n + 1, and C has a (d + 2 n)-secant line.

Theorem

Let $C \subseteq \mathbb{P}^n$ be a nondegenerate projective curve of degree d. If $g = p_g(C) \ge 1$, then $\operatorname{reg} C \le d + 1 - n$ unless C is an elliptic normal curve.

Reference

L. Gruson, C. Peskine and R. Lazarsfeld, On a theorem of Castelnuovo, and the equations defining space curves, Invent. Math. 72(1983)

Lemma

Let $p:\widetilde{C}\to C\subseteq \mathbb{P}^n$ be the normalization of C. Let $\mathcal{M}=p^*\Omega_{\mathbb{P}^n}(1)$. Assume $H^1(\widetilde{C},\wedge^2\mathcal{M}\otimes\mathcal{A})=0$ for some $\mathcal{A}\in \mathrm{Pic}\ \widetilde{C}$. Then $\mathrm{reg}\ C\le \mathrm{h}^0(\mathcal{A})$.

Lemma

Let $p:\widetilde{C}\to C\subseteq\mathbb{P}^n$. Let $d=\deg p^*\mathcal{O}_{\mathbb{P}^n}(1)$. Then there exists an ample line bundle \mathcal{A} such that $\mathrm{h}^0(\mathcal{A})=d+2-n$ and $\mathrm{h}^1(\wedge^2\mathcal{M}\otimes\mathcal{A})=0$.

Sketch of Proof

Let $\mathcal{O}_{\widetilde{C}}(1) = p^*\mathcal{O}_{\mathbb{P}^n}(1)$ and $V = \mathrm{H}^0(\mathcal{O}_{\mathbb{P}^n}(1)) \subseteq \mathrm{H}^0(\mathcal{O}_{\widetilde{C}}(1))$.

Let $\pi: \widetilde{C} \times \mathbb{P}^n \to \widetilde{C}$ and $f: \widetilde{C} \times \mathbb{P}^n \to \mathbb{P}^n$ be the projections.

Let Γ be the graph of $p: C \to \mathbb{P}^n$.

The graph $\Gamma(\subseteq \widetilde{C} \times \mathbb{P}^n)$ is defined by $\pi^* \mathcal{M} \to f^* \mathcal{O}_C(1)$.

Then we have the exact sequence

$$\pi^*\mathcal{M}\otimes f^*\mathcal{O}_{\mathbb{P}^n}(-1) o \mathcal{O}_{\widetilde{\mathsf{C}}_{ imes}\mathbb{P}^n} o \mathcal{O}_{\mathsf{\Gamma}} o 0.$$

After tensoring with π^*A , we take the Koszul resolution

$$\pi^*(\wedge^2\mathcal{M}\otimes\mathcal{A})\otimes f^*\mathcal{O}_{\mathbb{P}^n}(-2)\to \pi^*(\mathcal{M}\otimes\mathcal{A})\otimes f^*\mathcal{O}_{\mathbb{P}^n}(-1)\to \pi^*\mathcal{A}\to\mathcal{O}_\Gamma\otimes\pi^*\mathcal{A}\to 0.$$

Sketch of Proof

Then we have an exact sequence

$$\mathrm{H}^0(\mathcal{M}\otimes\mathcal{A})\otimes\mathcal{O}_{\mathbb{P}^n}(-1)\overset{u}{
ightarrow}\mathrm{H}^0(\mathcal{A})\otimes\mathcal{O}_{\mathbb{P}^n}
ightarrow p_*\mathcal{A}
ightarrow 0.$$

Let $\mathcal{J}(\subseteq \mathcal{O}_{\mathbb{P}^n})$ be the Fitting ideal of $p_*\mathcal{A}$, that is, $\mathcal{J}=\mathrm{Im}\ \wedge^{n_0} u$, $n_0=\mathrm{h}^0(\mathcal{A})$.

Note that Supp $p_*A = C$.

Then we have the Eagon-Northcott complex of u

$$\cdots \to \mathcal{O}_{\mathbb{P}^n}(-n_0-2)^{\oplus} \to \mathcal{O}_{\mathbb{P}^n}(-n_0-1)^{\oplus} \to \mathcal{O}_{\mathbb{P}^n}(-n_0)^{\oplus} \stackrel{\varepsilon}{\to} \mathcal{J} \to 0$$

such that ε is surjective and the complex is exact away from C, which gives $\mathcal J$ is n_0 -regular, that is, $\mathcal I_X$ is n_0 -regular,

Proposition

Let \mathcal{E} and \mathcal{F} be locally free sheaves of rank $\mathcal{E} = e$ and rank $\mathcal{F} = f$ on a scheme X. Let $u: \mathcal{E} \to \mathcal{F}$. Then there is a complex

$$0 \to \wedge^e \mathcal{E} \otimes S^{e-f}(\mathcal{F}^*) \to \cdots \to \wedge^{f+1} \mathcal{E} \otimes S^1(\mathcal{F}^*) \to \wedge^f \mathcal{E} \to \wedge^f \mathcal{F} \to 0,$$

which is called as the Eagon-Northcott complex. If $u: \mathcal{E} \to \mathcal{F}$ is surjective, then the complex is exact.

Reference

H. Clemens, J. Kollár and S. Mori, Higher Dimensional Complex Geometry, Asterisque 166, SMF, 1088,

Lecture 24: A Theorem of Gruson-Lazarsfeld-Peskine and a Lemma of Lazarsfeld by L. Ein.

Theorem

Let X be a nondegenerate smooth projective variety of $\mathbb{P}^N_{\mathbb{C}}$. If $n = \dim X \leq 14$, then $\operatorname{reg} X \leq \operatorname{deg} X - \operatorname{codim} X + 1 + (n-2)(n-1)/2$.

Setup

Let $p: X(\subseteq \mathbb{P}^N_{\mathbb{C}}) \to \mathbb{P}^{n+1}_{\mathbb{C}}$ be a generic projection.

Take a coordinate $(x_0 : \cdots : x_{n+1} : x_{n+2} : \cdots , x_N) \rightarrow (x_0 : \cdots : x_{n+1})$, we have the canonical maps:

- ullet $\psi_0: \mathcal{O}_{\mathbb{P}^n} o p_*\mathcal{O}_X$: a canonical map
- $\psi_1 = \sum_{n+2 < j < N} \phi_{x_j} : \mathcal{O}_{\mathbb{P}^n}(-1)^{\oplus} \to p_*\mathcal{O}_X$, where $\phi_{x_j} : \mathcal{O}_{\mathbb{P}^n}(-1) \stackrel{x_j}{\to} p_*\mathcal{O}_X$
- $\bullet \ \ \psi_2 = \sum_{0 \leq i \leq i \leq N} \phi_{x_i x_j} : \mathcal{O}_{\mathbb{P}^n}(-2)^{\oplus} \to p_* \mathcal{O}_X, \text{ where } \phi_{x_i x_j} : \mathcal{O}_{\mathbb{P}^n}(-2) \overset{x_i x_j}{\to} p_* \mathcal{O}_X$

Setup

Take $w = \psi_0 + \psi_1 + \psi_2 : \mathcal{G} = \mathcal{O}_{\mathbb{P}^n} \oplus \mathcal{O}_{\mathbb{P}^n} (-1)^{\oplus} \oplus \mathcal{O}_{\mathbb{P}^n} (-2)^{\oplus} \to p_* \mathcal{O}_X.$

Lemma

Let $\mathcal{F} = \mathcal{G} \oplus \mathcal{O}_{\mathbb{P}^{n+1}_{\mathbb{C}}}(-3) \oplus \cdots \oplus \mathcal{O}_{\mathbb{P}^{n+1}_{\mathbb{C}}}(-n)$.

If there is a surjective morphism $v: \mathcal{F} \to p_* \mathcal{O}_X$ such that $v|_{\mathcal{G}} = w$,

then $\operatorname{reg} X \leq d - N + n + 1 + (n-1)(n-2)/2$.

Lemma

If $p: X(\subseteq \mathbb{P}^N_{\mathbb{C}}) \to \mathbb{P}^{n+1}_{\mathbb{C}}$ is 'good', there exists a surjective morphism $\mathcal{F} \to p_*\mathcal{O}_X$.

Definition and Theorem

Let $p: X(\subseteq \mathbb{P}^N_{\mathbb{C}}) \to \mathbb{P}^{n+1}_{\mathbb{C}}$ be a projection. Let $S_j = \{z \in \mathbb{P}^{n+1}_{\mathbb{C}} | \deg p^{-1}(z) = j\}$. The projection p is said to be good if dim $S_j \leq \max\{-1, n-j+1\}$ for all j.

(Mather's Theory) If $n = \dim X \le 14$, then p is good.

Reference

- R. Lazarsfeld, A sharp Castelnuovo bound for smooth surfaces, Duke Math.
 J. 55(1987)
- S. Kwak, Castelnuovo regularity for smooth subvarieties of dimensions 3 and
 J. Algebraic Geom. 7 (1998)
- L.. Chiantini, N. Chiarli and S. Greco, Bounding Castelnuovo-Mumford regularity for varieties with good general projections, J. Pure Appl. Algebra 152(2000)

Example (Behesti-Eisenbud 2010)

Lazarsfeld has shown that the fibers $p^{-1}(z)$ of a generic projection $p: X \subseteq \mathbb{P}^N \cap \mathbb{P}^n$ of a generic projection $p: X \subseteq \mathbb{P}^N \cap \mathbb{P}^n$

Generic Projection Method seems not to work for higher dimensional cases of Eisenbud-Goto conjecture.

Reference

- R. Behesti and D. Eisenbud, Fibers of generic projections, Compositio Math., 146(2010).
- J. Mather, Generic projections. Ann. of Math. 98(1973)

\mathcal{O}_X -regularity

Remark

Let $X \subset \mathbb{P}^N$ be a nondegenerate projective variety. Let $m(\geq 2)$ be an integer. Then $\operatorname{reg} X \leq m$ if and only if the following conditions are satisfied:

- (1) $X \subset \mathbb{P}^N$ is (m-1)-normal, that is, $\Gamma(\mathcal{O}_{\mathbb{P}^N}(m-1)) \to \Gamma(\mathcal{O}_X(m-1))$ is surjective.
- (2) $\operatorname{reg} \mathcal{O}_X \leq m-1$.

Theorem (Noma, Kwak-Park)

Let X be a nondegenerate smooth projective variety in \mathbb{P}^N over an algebraically closed field k of $\operatorname{char} k = 0$. Then \mathcal{O}_X is $(\operatorname{deg} X - \operatorname{codim} X)$ -regular.

In other words, $H^i(\mathcal{I}_X(m-i)) = 0$ for $i \geq 2$, where $m = \deg X - \operatorname{codim} X + 1$.

\mathcal{O}_X -regularity

Sketch of Proof

Let us put $n = \dim X$, $d = \deg X$, and $c = \operatorname{codim} X = N - n$. Let us consider a generic inner projection $p: X(\subset \mathbb{P}^N) \cdots \longrightarrow \bar{X}(\subset \mathbb{P}^{n+1})$. Note that $\deg \bar{X} = d - c + 1$. Let us define the double point divisor from the inner projection (cf. Bayer-Mumford Technical Appendix Section 3, 4):

$$D_{\mathrm{inn}} = -K_X + (d - n - c - 1)H.$$

Then D_{inn} is semiample and by Kodaira Vanishing, we have $\mathrm{reg}\,\mathcal{O}_X \leq d-c$.

Reference

- A. Noma, Generic inner projections of projective varieties and an application to the positivity of double point divisors., Trans. AMS, 366 (2014)
- Sijong Kwak and Jinhyung Park, A bound for Castelnuovo-Mumford regularity by double point divisors, Adv. Math. 364 (2020)

4 D > 4 A > 4 B > 4 B >

Asymptotic property of Castelnuovo-Mumford regularity

Theorem (Bertram-Ein-Lazarsfeld 1991)

Let V be a smooth projective variety of $\mathbb{P}^n_{\mathcal{C}}$ scheme-theoretically defined by hypersurfaces of degrees $d_1 \geq \cdots \geq d_r$. Then $\mathrm{H}^i(\mathbb{P}^n,\mathcal{I}_{\nu}^q(\ell)) = 0$ for $\ell \geq$ $d_1q + d_2 + \cdots + d_r - n$.

Remark

The proof is difficult and obtained from the Kawamata-Viehweg vanishing theorem. The result means $\operatorname{reg} I^m < d_1 m + b$ for some b if a polynomial ideal I defines a smooth projective variety over \mathbb{C} .

Reference

• A. Bertram, L. Ein and R. Lazarsfeld, Vanishing theorems, a theorem of Severi, and the equations defining projective varieties, J. Amer. Math. Soc. 4 (1991), 587 - 602.

Asymptotical Linearity of Regularity

The asymptotical linearity of the regularity had been believed to be true.

- K. Chandler, Regularity of the powers of an ideal, Comm. Algebra, 25 (1997), 3773 - 3776.
- I. Swanson, Powers of ideals: Primary decompositions, Artin-Rees lemma and regularity, Math. Ann. 307 (1997), 299 – 313.

Theorem (Cutkosky-Herzog-Trung 1999, Kodiyalam 2000)

Let I be a homogeneous ideal of the polynomial ring $S = k[x_1, \dots, x_n]$. Then the regularity of I^m is asymptotically linear function, that is, there are integers d, b, s such that $\operatorname{reg} I^m = dm + b$ for any m > s.

Remark

The striking theorem are proved independently by Cutkosky-Herzog-Trung and Kodiyalam. Later, there are several attempts to obtain d and b, and s.

Asymptotical Linearity of Regularity

Reference

- S. D. Cutkosky, J. Herzog and N. V. Trung, Asymptotic behaviour of the Castelnuovo-Mumford regularity, Compositio Math. 118 (1999), 243 – 261.
- V. Kodiyalam, Asymptotic behavior of Castelnuovo-Mumford regularity, Proc. Amer. Math. Soc. 128 (2000), 407 –411.

Remark

We describe a proof of the Cutkosky-Herzog-Trung, Kodiyalam theorem.

The proof has 3 steps,

Step 1 surprisingly incledes the Bertram-Ein-Lazarsfeld theorem.

Step 3 is the most complicated, depending on the method of Kodiyalam.

Asymptotical Linearity of Regularity

Sketch of Proof

STEP I. To prove reg $I^m < Am + B$, $m \gg 0$ for some constant A, B.

Suppose I is minimally generated by f_1, \dots, f_r with deg $f_i = d_i$. Let R = $k[X_1, \dots, X_n, T_1, \dots, T_r]$ with bigrading deg $X_i = (1, 0)$, deg $T_i = (d_i, 1)$.

For a bigraded R-module $M = \bigoplus M_{(d,\ell)}$, $M^{(m)}$ is defined as $\bigoplus_d M_{(d,m)}$.

A bigraded *R*-algebra R(I) = S[It] by $X_i \to x_i$, $T_i \to f_i t_i$ has $S[It]^{(m)} \cong I^m$.

$$R(-a,-b)^{(m)} \cong R^{(m-b)}(-a) \cong \bigoplus_{\ell_1+\cdots+\ell_r=m-b} S(-\ell_1 d_1 - \cdots - \ell_r d_r - a).$$

By Hilbert syzygy theorem, a graded R-modules S[It] has a grade free resolution $0 \to F_u \to \cdots \to F_0 \to S[It] \to 0$, where $F_i = \bigoplus_{i=1}^{t_i} R(-a_{ij}, -b_{ij})$.

By taking $(-)^{(m)}$, we have the free resolution $0 \to F_{\mu}^{(m)} \to \cdots F_{0}^{(m)} \to I^{m} \to 0$.

Here $F_i^{(m)} \cong \bigoplus_{i=1}^{t_i} \bigoplus_{\ell_1 + \cdots \ell_s = m - b_{ii}} S(-\ell_1 d_1 - \cdots - \ell_s d_s - a_{ij}).$

Thus we have $\operatorname{reg} I^m \leq Am + B$, where $A = \max d_i$ and $B = \max\{a_{ij} - Ab_{ij} - i\}$.

Asymptotic Linearity of Regularity

Sketch of Proof

STEP II. Let J be a reduction of I, that is, $I^q = JI^{q-1}$ for some q. As in **STEP I**, through the surjective map $R \to S[Jt]$, the Rees algebra S[It] is a finitely generated R-module. Then $\operatorname{reg} I^m \le d(J)m + b$ for $m \gg 0$ from **STEP I**

Let d be the minimum of d(J) such that J is a reduction of I. We want to show

$$dm \leq \operatorname{reg} I^m \leq dm + b, m \gg 0.$$

There exists $f \in I$ of (the largest) degree p such that $f^m \notin \mathfrak{m}I^m$ for all $m \ge 1$, which implies $d(I^m) \ge pm$.

So, we have only to show $p \geq d$, that is, there exists a reduction J of I with $d(J) \leq p$. In fact, let us take a minimal generator $f_1, \dots, f_r, \dots, f_t$ of I with $\deg f_1 \leq \dots \leq \deg f_r = p$ and otherwise $\deg f_i > p$. Since $I^n = JI^{n-1} + (f_{r+1} + \dots + f_t)^n \subset JI + \mathfrak{m}I^n$ for $n \gg 0$, J is a reduction of I

Since $I'' = JI^{n-1} + (f_{r+1} + \cdots + f_t)^n \subset JI + \mathfrak{m}I^n$ for $n \gg 0$, J is a reduction of I by Nakayama's lemma, and $\operatorname{reg} I^m \geq d(I^m) \geq dm$.

Asymptotic Linearity of Regularity

Sketch of Proof

STEP III. From **STEP I** and **STEP II**, we have $\operatorname{reg} I^m = dm + b_n$ for $m \gg 0$. We will show that b_m is constant for $m \geq 0$.

Take a reduction $J = (f_1, \dots, f_r)$ as in **STEP II**.

Let $R = k[X_1, \dots, X_n, T_1, \dots, T_r]$ and consider $S[Jt] \subset S[It]$. Take the Koszul complex of the bigraded R-module S[It] with respect to T_1, \dots, T_r .

Since the homology modules are annihilated by a power of (T_1, \dots, T_r) , by taking $(-)^{(m)}$ for $m \gg 0$, we have

$$0 \to I^{m-r}(-d_1 - \cdots - d_r) \to \cdots \to I^{m-1}(-d_1) \oplus \cdots \oplus I^{m-1}(-d_r) \to I^m \to 0,$$

which implies $\operatorname{reg} I^m \le \max\{\operatorname{reg} I^{m-1} + \max\{d_i\}, \operatorname{reg} I^{m-2} + \max\{d_i + d_j\} + \dots + \operatorname{reg} I^{m-r} + (d_1 + \dots + d_r)\}.$

Asymptotic Linearity of Regularity

Sketch of Proof

Since $\operatorname{reg} I^k \leq dk + b_k$ and $d_{i_1} + \cdots + d_{i_s} \leq sd$, we have

$$\operatorname{reg} I^{m} = dm + b_{m} \\ \leq \max\{d(m-1) + b_{m-1} + d, d(m-2) + b_{m-2} + 2d - 1, \\ \cdots, d(m-r) + b_{m-r} + (m-r)d - (m-r-1)\}$$

Thus we have $b_m \leq \max\{b_{m-1}, b_{m-2}-1, \cdots, b_{m-r}-(r-1)\}$. Hence b_m is nonincreasing for $m \gg 0$, and b_m is constant for $m \gg 0$.

Asymptotic property and Geometry

Remark

Contrary to the ideal case, $\lim_{m \to \infty} \operatorname{reg} \frac{\mathcal{I}_{\chi}^m}{m}$ can be taken an irrational number.

• S. D. Cutkosky, L. Ein and R. Lazarsfeld. Positivity and complexity of ideal sheves, Math. Ann. 321 (2001), 213 –234.

Theorem (Eisenbud-Harris 2010)

Let $\varphi: X \to \mathbb{P}^n$ be a linear projection whose center does not meet X, defined by a linear subspace V. Let $I \subset S$ be the ideal generated by V.

$$\max\{\operatorname{reg}\varphi^{-1}(x)|x\in\mathbb{P}^n\}=b+1,$$

where b is the least integer $\mathfrak{m}^{t+b} \subseteq I^t$ for $t \gg 0$.

 D. Eisenbud and J. Harris, Power of ideals and fibers of morphisms, Math. Res. Lett. 17 (2010), 269 – 275.

Asymptotic property and Geometry

Lemma

Let $\varphi:X\to\mathbb{P}^n$ be a finite morphism. Set $\mathcal{L}=\varphi^*\mathcal{O}_{\mathbb{P}^n}(1)$ amd $V=\varphi^*(\Gamma(\mathcal{O}_{\mathbb{P}^n}(1))\subset\Gamma(\mathcal{L})$. Let \mathcal{M} be a coherent sheaf on X and $W\subset\Gamma(\mathcal{M})$. The following are equivalent:

- (1) For $t \gg 0$, the map $\operatorname{Sym}_t(V) \otimes W \to \Gamma(\mathcal{L}^t \otimes \mathcal{M})$ is surjective.
- (2) For every closed point $x \in \mathbb{P}^n$, the restriction map $W \to \Gamma(\mathcal{M}|_{\varphi^{-1}(x)})$ is surjective.

Sketch of Proof

- (1) and (2) are equivalent to (3) $\mu: W \otimes \mathcal{O}_{\mathbb{P}^n} \to \varphi_* \mathcal{M}$ is surjective.
- Indeed, (3) means that $W \otimes \operatorname{Sym}_t(V) \to \Gamma(\varphi_* \mathcal{M}(t))$ is surjective for $t \gg 0$. Also, $\Gamma(\varphi_* \mathcal{M}(t)) = \Gamma(\mathcal{M} \otimes \mathcal{L}^t)$, so (3) is equivalent to (1).

On the other hand, (2) \Leftrightarrow (3) follows from the restriction of μ at $x \in \mathbb{P}^n$ and the finiteness of φ .

Asymptotic property and Geometry

Sketch of Proof (Eisenbud-Harris Theorem)

Let us take $\mathcal{M}=\mathcal{O}_{\mathbb{P}^n}(e)$ and $W=\Gamma(\mathcal{O}_{\mathbb{P}^n}(e))$ in Lemma.

- (1) means there is an integer q such that $\operatorname{Sym}_t(V) \otimes \Gamma(\mathcal{O}_{\mathbb{P}^n}(e)) \to \Gamma(\mathcal{O}_{\mathbb{P}^n}(t+e))$ is surjective for $t \geq q$, in other words, $\mathfrak{m}^{t+e} \subset I^t$.
- (2) means $\Gamma(\mathcal{O}_{\mathbb{P}^n}(e)) \to \Gamma(\mathcal{O}_{\mathbb{P}^n}(e)|_{\varphi^{-1}(x)})$ is surjective, equivalently $\mathrm{H}^1(\mathcal{I}_{\varphi^{-1}(x)}(e)) = 0$, that is, $\operatorname{reg} \varphi^{-1}(x) \leq e+1$.

Example

Let $\varphi: \mathbb{P}^1 = \operatorname{Proj} k[x,y] \to \mathbb{P}^n$ be a finite morphism by a linear system $V \subset \Gamma(\mathcal{O}_{\mathbb{P}^1}(d))$.

Let I be an ideal of k[x, y] generated by V.

Then $\operatorname{reg} I^m = dm + r - 1$ for $q \gg 0$, where r is the number of the fibers.

Asymptotic property and Geometry

Mather's generic projection theorem means the following in commutative algebra.

Proposition

Let R be a standard graded algebra with $\dim R = n+1$ over \mathbb{C} , and $\operatorname{Proj} R$ is smooth. If $I = (f_1, \dots, f_{n+2})$ is an ideal generated n+2 generic forms of degree d, and $n \leq 14$, then $\mathfrak{m}^{t+n} \subset I^t$ for all $t \gg 0$.

Conjecture (Beheshti-Eisenbud 2008)

The regularity of a every fiber of a generic projection of a smooth projective variety X to \mathbb{P}^{n+c} , $c \geq 1$ is bounded by 1 + n/c, where dim X = n. Let R be the coordinate ring of X. This conjecture is equivalent to $\mathfrak{m}^{t+\lceil n/c \rceil} \subset I^t$ for $t \gg 0$ for an ideal I generated by n+1+c general linear forms.

Reference

• Z. Ran, Unobstructedness of filling secants and the Gruson-Peskine general projection theorem. Duke Math. J. 164 (2015), 697722.

References

Reference

- H. T. Hà, Asymptotic linearity of regularity and a*-invariant of powers of ideals. Math. Res. Lett. 18 (2011), 1 – 9.
- D. Eisenbud and B. Ulrich, Notes on regularity stabilization. Proc. Amer. Math. Soc. 140 (2012), no. 4, 1221 – 1232.
- M. Chardin, Regularity stabilization for the powers of graded m-primary ideals. Proc. Amer. Math. Soc. 143 (2015), 3343 – 3349.
- M. Chardin, Power of ideals and the cohomology of stalks and fibers of morphisms, Algebra Number Theory, 7 (2013), 1 – 18.
- S. Bisui, H. T. Hà and A. C. Thomas, Fiber invariants of projective morphisms and regularity of powers of ideals. Acta Math. Vietnam. 45 (2020), 183 – 198.

Regularity Bounds for Buchsbaum Variety

Definition

Let $X \subset \mathbb{P}^n$ be a projective scheme, where $\mathbb{P}^n = \operatorname{Proj} S$ and S is a polynomial ring with maximal ideal \mathfrak{m} .

- (1) X is ACM if $H^i(\mathcal{I}_X(\ell)) = 0$ for $1 \le i \le \dim X$ and ℓ .
- (2) X is Buchsbaum if for all r-planes L (successive hyperplane sections) with $\dim X \cap L = \dim X \operatorname{codim} L$, $\operatorname{mH}^i_*(\mathcal{I}_{X \cap L}) = 0$ for $1 < i < \dim X \cap L$.

Theorem (Eisenbud-Goto 1984; Stückrad-Vogel 1988)

- (1) Assume X is an ACM variety, i.e., R is Cohen-Macaulay, then $\operatorname{reg} X \leq \operatorname{deg} X \operatorname{codim} X + 1$.
- (2) Assume X is a Buchsbaum variety, i.e., R is Buchsbaum, then $\operatorname{reg} X \leq \lceil (\operatorname{deg} X 1) / \operatorname{codim} X \rceil + 1$

Regularity Bounds for Buchsbaum Variety

Theorem (Trung-Valla 1988, Nagel 1995; Yanagawa 1997, Nagel 1999; Miyazaki 2011)

- (1) An ACM variety X with $\deg X \gg 0$ and $\operatorname{reg} X = \lceil (\deg X 1)/\operatorname{codim} X \rceil + 1$ is a divisor on a variety of minimal degree.
- (2) A Buchsbaum variety X with $\deg X \gg 0$ and $\operatorname{reg} X = \lceil (\deg X 1)/\operatorname{codim} X \rceil + 1$ is a divisor on a variety of minimal degree.
- (3) A Buchsbaum variety X with $\deg X \gg 0$ and $\operatorname{reg} X = \lceil (\deg X 1)/\operatorname{codim} X \rceil$ is a divisor either on a variety of minimal degree or on a Del Pezzo variety.

Regularity Bounds for Buchsbaum Variety

Remark

If $X \subseteq \mathbb{P}^n$ is a variety of minimal degree, that is, $\deg X = \operatorname{codim} X + 1$, then X is either (a) a quadric hypersurface, (b) the Veronese surface in \mathbb{P}^5 , (c) a rational normal scroll or (d) their cone.

Definition (from Fujita's Book)

 $X \subseteq \mathbb{P}^n$ is called a Del Pezzo variety if

- \bullet deg $X = \operatorname{codim} X + 2$
- $X \cap L$ is an elliptic normal curve for a generic $(\operatorname{codim} X + 1)$ -plane L
- ullet only Gorenstein singularities, $\omega_X\cong \mathcal{O}_X(1-n)$
- $\mathrm{H}^q(X,\mathcal{O}_X(\ell))=0$ for all ℓ and $1\leq q\leq \dim X-1$

Classification in terms of Regularity Bound

Reference

- Stückrad and W. Vogel, Castelnuovo bounds for locally Cohen-Macaulay schemes. Math. Nachr. 136 (1988)
- L. T. Hoa and C. Miyazaki, Bounds on Castelnuovo-Mumford regularity for generalized Cohen-Macaulay graded rings. Math. Ann. 301 (1995).
- U. Nagel and P. Schenzel, Degree bounds for generators of cohomology modules and Castelnuovo-Mumford regularity. Nagoya Math. J. 152 (1998)
- C. Miyazaki, Buchsbaum varieties with next to sharp bounds on Castelnuovo-Mumford regularity. Proc. AMS 139 (2011).

Regularity Bound

Sketch of Proof

```
V \subset \mathbb{P}^{n+\dim V}: a Buchsbaum variety
C = V \cap H_1 \cap \cdots \cap H_{\dim V - 1}: a successive generic hyperplane section
X = C \cap H \subseteq H \cong \mathbb{P}^n: a generic hyperplane section.
```

$$\operatorname{reg} V = \operatorname{reg} C = \operatorname{reg} X$$

$$\operatorname{reg} X = \min\{m \mid \operatorname{H}^{1}(\mathcal{I}_{X}(m-1)) = 0\}$$
$$= \min\{t \mid \Gamma(\mathcal{O}_{\mathbb{P}^{N}}(t)) \twoheadrightarrow \Gamma(\mathcal{O}_{X}(t))\} + 1$$

X is in uniform position in char k = 0 (linear semi-uniform position in char k > 0). Take a union of hyperplanes F such that $F \cap X = X \setminus \{P\}$ for any $P \in X$ in $\operatorname{char} k = 0$

Uniform Position Principle

Proposition

$$\operatorname{reg} X \leq \lceil (d-1)/n \rceil + 1$$

Sketch of Proof

In case $\operatorname{char} k = 0$, X is in uniform position. Castelnuovo's method

$$P \in X$$
, $\ell = \lceil (d-1)/n \rceil$

Devide the points $X \setminus \{P\}$ into ℓ groups.

$$X \setminus \{P\} = \{P_1, \dots, P_n | P_{n+1}, \dots, P_{2n} | \dots | P_{(\ell-1)n+1}, \dots, P_{d-1}\}$$

Take ℓ hyperplanes: $H_i = \langle P_{n(i-1)+1}, \cdots, P_{ni} \rangle \not\ni P$, $1 \le i \le \ell$.

Let us take a union of hyperplanes $F = H_1 \cup \cdots \cup H_\ell$.

Then we have $F \cap X = X \setminus \{P\}$ and $\Gamma(\mathcal{O}_H(\ell)) \to \Gamma(\mathcal{O}_X(\ell))$ is surjective.

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

Generic Hyperplane Section of Projective Curve

Sketch of Proof

In case $\operatorname{char} k > 0$, X is not necessarily in uniform position.

R: the the coordinate ring of X

$$\underline{h} = (h_0, \dots, h_s)$$
 be the h-vector of R

$$h_i = \dim_k[R]_i - \dim_k[R]_{i-1}$$
, where s is the largest integer such that $h_s \neq 0$.

$$h_0 = 1$$
, $h_1 = (n+1) - 1 = n$, $\deg X = h_0 + \dots + h_s = d$ and $s = \operatorname{reg} X - 1$.

Lemma (Uniform Position Lemma(Griffiths-Harris, Ballico))

- $\operatorname{char} k = 0, \ h_i \geq h_1, \ i = 1, \dots, s-1$
- $\operatorname{char} k > 0$, $h_1 + \cdots + h_i \ge ih_1$, $i = 1, \cdots, s-1$

Reference

E. Ballico, On singular curves in the case of positive characteristic. Math. Nachr. 141 (1989)

Generic Hyperplane Section of Projective Curve

Proposition

- (1) $\operatorname{reg} X \le d n + 1 (= \operatorname{deg} X \operatorname{codim} X + 1)$
- (2) $reg X < \lceil (d-1)/n \rceil + 1$

Sketch of Proof

(1) Since $h_i \ge 1$ for $0 \le i \le s$ and $h_1 = n$, we have

$$\operatorname{reg} X = s + 1 \le h_0 + h_1 + \dots + h_s - n + 1 = d - n + 1.$$

(2) Since $h_0 + \cdots + h_s = d$ and $h_1 + \cdots + h_{s-1} \ge (s-1)h_1$,

$$\operatorname{reg} X - 2 + h_s/h_1 = (s-1) + h_s/h_1 \le (h_1 + \dots + h_{s-1})/h_1 + h_s/h_1 = (d-1)/n.$$

Thus we have $reg X - 1 \le \lceil (d-1)/n \rceil$ as desired.

Castelnuovo, Eisenbud-Harris

Lemma (Castelnuovo, Eisenbud-Harris)

Let $X \subset \mathbb{P}^n$ be a generic hyperplane section of a curve.

- (1) If $\deg X \ge 2n+1$ and $h_2 = h_1$, then X lies on a rational normal curve.
- (2) If $\deg X \ge 2n + 3$ and $h_2 = h_1 + 1$, then X lies on an elliptic normal curve.

Lemma (char k = 0 for simplicity)

- (1) $\deg X \ge n^2 + 2n + 2$ and $\operatorname{reg} X = \lceil (\deg X 1)/n \rceil + 1$ $\Rightarrow X$ lies on a rational normal curve.
- (2) $\deg X \ge n^2 + 4n + 2$ and $\operatorname{reg} X = \lceil (\deg X 1)/n \rceil$ $\Rightarrow X$ lies on an elliptic normal curve.

Castelnuovo, Eisenbud-Harris

Conjecture (Harris)

For $1 \le m \le n-1$, if $\deg X \ge 2n+2m-1$ and $h_2 = h_1+m-1$, X lies on a curve of degree at most n+m-1.

Remark

What should we do in positive characteristic case?

$$C \subseteq \mathbb{P}^{n+1}$$

$$X = C \cap H \subseteq H \cong \mathbb{P}^n$$
: a generic hyperplane section

If X is not in uniform position (it may happen only if $\operatorname{char} k = p > 0$) and $\operatorname{deg} X \gg 0$, then $\operatorname{reg} X \ll \lceil (d-1)/N \rceil + 1$?

Sketch of the Proofs

Sketch of Proof

In case Z is generated by quadratic equations.

$$X = C \cap H \subset Z \subset H(\cong \mathbb{P}^n)$$

$$C$$
 \subset \mathbb{P}^{n+1}

We have to show

- (1) $\Gamma(\mathcal{I}_{Z/H}(2)) \cong \Gamma(\mathcal{I}_{X/H}(2))$.
- (2) $\Gamma(\mathcal{I}_{C/\mathbb{P}^{n+1}}(2)) \to \Gamma(\mathcal{I}_{X/H}(2))$ is surjective.

Keypoints

- Uniform Position Lemma, Castelnuovo's Lemma, Eienbud-Harris' Lemma
- Socle Lemma

401491451451 5 0

Socle Lemma

Theorem (Socle Lemma(Huneke-Ulrich J. Alg. Geom. 1993))

Let $S = k[x_0, \dots, x_n]$ be the polynomial ring over a field k, char k = 0. Let M be a finitely generated graded S-module.

For a generic element $h \in [S]_1$,

$$0 \to \operatorname{Ker} \varphi \to M(-1) \stackrel{\varphi}{\to} M \to \operatorname{Coker} \varphi \to 0$$

where $\varphi = \cdot h$.

If $\operatorname{Ker} \varphi \neq 0$, then $a_{-}(\operatorname{Ker} \varphi) > a_{-}(\operatorname{Soc}(\operatorname{Coker} \varphi))$, where $\operatorname{Soc}(N) = [0 : \mathfrak{m}]_{N}$ and $a_{-}(N) = \min\{i | [N]_{i} \neq 0\}$ for a finitely generated graded S-module N.

A Small Theorem

Definition

C: a projective curve in \mathbb{P}^n

 $M(\mathcal{C}) = \mathrm{H}^1{}_*\mathcal{I}_{\mathcal{C}} = \oplus_{\ell \in \mathbb{Z}} \mathrm{H}^1(\mathcal{I}_{\mathcal{C}}(\ell))$: Hartshorne-Rao module

 $k(C) = \min\{v \ge 0 \mid \mathfrak{m}^v M(C) = 0\}$

Proposition

Let C be a nondegenerate non-ACM space curve in \mathbb{P}^3 over an algebraically closed field of characterstic 0. Then $\operatorname{reg} C \leq \lceil (\operatorname{deg} C - 1) / \operatorname{codim} C \rceil + k(C)$.

If deg $C \ge 10$ and $\operatorname{reg} C = \lceil (\operatorname{deg} C - 1)/\operatorname{codim} C \rceil + k(C)$, then C is a divisor of either (a, a+2) or (a, a+3) on a smooth quaric surface $\mathbb{P}^1 \times \mathbb{P}^1$.

Theorem (McCullough-Peeva)

Over any field k the Castelnuovo-Mumford regularity of nondegenerate homogeneous prime ideals is not bounded by any polynomial function of the mulplicity.

Corollary

There is a nondegenerate projective variety X in \mathbb{P}^n such that $\operatorname{reg} X > \operatorname{deg} X - \operatorname{codim} X + 1$.

Reference

- J. McCullough and I. Peeva, Counterexamples to the Eisenbud-Goto regularity conjecture, J. Amer. Math. Soc. 31 (2018)
- J. McCullough and I. Peeva, The regularity conjecture for prime ideals in polynomial rings, EMS Survey Math. Sci. 7 (2020).

Construction Method

- (1) Take a bad ideal, that is, I is a homogeneous ideal of the standard polynomial ring S such that $reg I \gg deg S/I$, but I not prime.
- (2) By using Rees-like algebra (or Rees algebra), take a homogeneous prime ideal P of the non-standard (weighted) polynomial ring T with reg P and deg T/P computable from reg I and deg S/I.
- (3) By step-by-step homogenization (or prime standardization), take a homogeneous prime ideal P' = PT' of the standard polynomial ring T' with $\operatorname{reg} P' = \operatorname{reg} P$ and $\operatorname{deg} T'/P' = \operatorname{deg} T/P$.

Proposition (cf. Bayer-Mumford)

Let I be a homogenous ideal of $k[x_0, \dots, x_n]$. Then we have

- (1) char k = 0, reg $l \le (2 \max \deg(l))^{2^{n-1}}$
- (2) char k > 0, reg $I \leq (2 \operatorname{maxdeg}(I))^{n!}$

Example (Mayr-Meyer 1984)

There is an ideal l of $k[x_0, \dots, x_n]$ with $\operatorname{maxdeg}(l) = 4$ and $\operatorname{reg} l \ge 2^{2^n} - 1$.

Example (Jee Koh 1998)

In the polynomial ring $k[x_1, \cdots, x_{22r-1}]$, there is an ideal I_r generated by 23 quadrics and one linear form such that $\max \deg(Syz_1(I_r)) \ge 2^{2^{r-1}}$.

Rees Algebra

Definition

Let $I = (f_1, \dots, f_r)$ be an ideal of the polynomial ring $S = k[x_1, \dots, x_n]$.

The Rees algebra of I is defined as $R(I) = S[It] (= \bigoplus_{d \geq 0} I^d) \subset S[t]$. $\operatorname{Proj} R(I)$ is the blowing up of \mathbb{A}^n along I. The defining ideal P is the kernel of $\varphi : S[y_1, \dots, y_r] \to S[It]$ by $\varphi(y_i) = f_i t$.

P is, in general, difficult to compute.

Example (McCullough-Peeva)

Let $I=(u^6,v^6,u^2w^4+v^2x^4+uvwy^3+uvxz^3)$ be an ideal of S=k[u,v,w,x,y,z]. Let us take a defining prime ideal P of $T=S[w_1,w_2,w_3]$ of the Rees algebra S[It]. By Bertini Theorem, we have a singular 3-fold X in \mathbb{P}^5 with $\deg X=31$ and $\operatorname{reg} X\geq 38$ by computation with Macaulay2.

Rees-like Algebra

Definition

Let $I = (f_1, \dots, f_r)$ be an ideal of the polynomial ring $S = k[x_1, \dots, x_n]$.

The Rees-like algebra of I is defined as $\mathcal{R}L(I) = S[It,t^2] \subset S[t]$. The defining ideal Q is the kernel of $\psi: T = S[y_1,\cdots,y_r,z] \to S[It,t^2]$ by $\psi(y_i) = f_i t$ and $\psi(z) = t^2$, where $\deg y_i = \deg f_i + 1$ and $\deg t = 2$.

NOT standard graded!

Example

Let I = (x) be an ideal of k[x]. Then $\mathcal{R}L(I) = k[x, xt, t^2]$ and $P = (y^2 - x^2z)$ in k[x, y, z].

Rees-like Algebra

Theorem

- (1) reg $T/Q = \text{reg } S/I + 2 + \sum_{i=1}^{r} \text{deg } f_i$
- (2) $\deg T/Q = 2 \prod_{i=1}^{r} (\deg f_i + 1)$
- (3) ht Q = r

Sketch of Proof

The prime ideal Q of $T = k[x_1, \dots, x_n, y_1, \dots, y_r, z]$ is minimally generated by

$$\{y_{\alpha}y_{\beta}-zf_{\alpha}f_{\beta}|1\leq \alpha, \beta\leq r\}$$
 and $\{\sum c_{ij}y_{i}|\sum c_{ij}f_{i}=0\}$,

where the minimal free resolution of P as a graded S-module is

$$F_1 \xrightarrow{(c_{ij})} F_0 \xrightarrow{(f_i)} P \to 0.$$

Rees-like Algebra

Sketch of Proof

Since Q is homogeneous prime, z is a nonzerodivisor of T/Q.

Let $\bar{T} = T/(z)$ and $\bar{Q} = Q\bar{T}$.

Then the graded Betti numbers of T/Q and $\overline{T}/\overline{Q}$ is the same!

Now we have a homogeneous prime ideal \bar{Q} in $\bar{T}=k[x_1,\cdots,x_n,y_1,\cdots,y_r]$. The prime ideal \bar{Q} is generated by $M=(\{\sum_i c_{ij}y_i\})$ and $N=(\{y_iy_j\})=(y_1,\cdots,y_r)^2$.

The minimal free resolution of \bar{T}/\bar{Q} is constructed as the mapping cone of that of $(M+N)/N \to \bar{T}/N$, which is explicitly described.

In fact , the minimal \bar{T} -free resolution of $M+N/N(\cong M/M\cap N)$ comes from the minimal S-free resolution of $\operatorname{Syz}_1^S I$.

The minimal free resolution of \bar{T}/\bar{Q} is the Eagon-Northcott resolution.

Homogenization

Definition and Proposition (Step-by-step homogenization)

Let $T=k[y_1,\cdots,y_p]$ be the polynomial ring with $\deg y_i>1$ for $i\leq q$ and $\deg y_i=1$ for i>q. Let $T'=k[y_1,\cdots,y_p,v_1,\cdots,v_q]$ be the standard polynomial ring. Let $\nu:T\to T'$ be a graded homomorphism by $\nu(y_i)=y_iv_i^{\deg y_i-1}$ for $i\leq q$ and $\nu(y_i)=y_i$ for i>q.

Let P be a homogeneous prime ideal of T. Then PT' is a homogeneous prime ideal of T', and the graded Betti numbers of T/P and T'/P' is the same.

Remark

There is another homogenization preserving the graded Betti numbers. Mantero-McCullough-Miller use the Prime Standization by the Ananyan-Hochster theory (homogeneous prime sequence) to controll the singular locus.

Homogenization

Example (Affine Monomial Curve)

Let $P = (x^2 - y, xy - z)$ in S = k[x, y, z], which is the kernel of $\varphi : S \to k[t]$ by $\varphi(x) = t$, $\varphi(y) = t^2$ and $\varphi(z) = t^3$.

Let us take a non-standard grading deg x = 1, deg y = 2 and deg z = 3. Then it is graded, and reg P = 4 since the minimal free resolution is:

$$0 \rightarrow S(-5) \rightarrow S(-2) \oplus S(-3) \rightarrow S \rightarrow S/P \rightarrow 0.$$

- (1) Traditional homogenization gives $P' = (x^2 yw, xy zw, xz y^2)$ in S' = k[x, y, z, w], which is a twisted cubic curve, and reg P' = 2.
- (2) Step-by-step homogenization gives $Q = (x^2 yu, wyu zu^2)$ in T = k[x, y, z, u, w], which is a complete intersection, and reg Q = 4.

Sketch of Proof (McCullough-Peeva Theorem)

From Jee Koh's example we have homogeneous prime ideals P_r of the standard polynomial ring R_r such that

- $\deg R_r/P_r \le 4 \cdot 3^{22r-3} < 2^{50r}$
- $\operatorname{reg} P_r \ge \operatorname{maxdeg}(P_r) \ge 2^{2^{r-1}} + 1 > 2^{2^{r-1}}$,

which yields the assertion of the McCullough-Peeva theorem.

Horrocks Criterion

Theorem (Horrocks 1964)

Let \mathcal{E} be a vector bundle on \mathbb{P}^n of rank r.

Assume that $\mathcal E$ is ACM, that is, $\mathrm H^i_*(\mathcal E)=\oplus_{\ell\in\mathbb Z}\mathrm H^i(\mathbb P^n,\mathcal E(\ell))=0$ for $1\leq i\leq n-1$. Then $\mathcal E$ is isomorphic to a direct sum of line bundles.

Remark

There are several proofs for Horrocks Theorem.

- Horrocks' original proof
- Induction on the dimension of projective space (cf. Okonek-Schneider-Spindler)
- Auslander-Buchsbaum Theorem(cf. Matsumura)
- Use the Castelnuovo-Mumford regularity

Horrocks Criterion

Proof (cf. Okonek-Schneider-Spindler)

We will prove by induction on n. n = 1 is the Grothendieck Theorem.

For $n \geq 2$, let us take $\mathcal{F} = \bigoplus_{i=1}^r \mathcal{O}_{\mathbb{P}^n}(a_i)$ from an isomorphism $\mathcal{E}|_H \cong \bigoplus_{i=1}^r \mathcal{O}_H(a_i)$.

Then we have only to take a section of $\Gamma(\mathcal{F}^{\vee} \otimes \mathcal{E})$ by using the hypothesis of induction.

Proof (Auslander-Buchsbaum Theorem 1958)

Let (R, \mathfrak{m}, k) be a Noetherian local ring.

Let M be a finitely generated R-module with $\operatorname{proj dim} M < \infty$.

Then depth $M + \operatorname{proj dim} M = \operatorname{depth} R$.

Horrocks Criterion

Proof (Horrocks Criteiron using Castelnuovo-Mumford Regularity)

Let \mathcal{E} be an ACM vector bundle on \mathbb{P}^n .

Assume that \mathcal{E} is *m*-regular but not (m-1)-regular.

Then we have a surjective map $\varphi: \mathcal{O}_{\mathbb{P}^n}^{\oplus} \to \mathcal{E}(m)$.

Since \mathcal{E} is ACM, we have $H^n(\mathcal{E}(m-1-n)) \neq 0$, and $H^0(\mathcal{E}^{\vee}(-m)) \neq 0$ by Serre duality.

Thus we have a nonzero map $\psi: \mathcal{E}(m) o \mathcal{O}_{\mathbb{P}^n}$.

Since $\psi \circ \varphi$ is nonzero, it splits.

Hence $\mathcal{O}_{\mathbb{P}^n}$ is a direct summand of $\mathcal{E}(m)$.

Theorem (Horrocks, Walter, Malaspina-Rao)

Let $\underline{\mathbf{VB}}$ be the category of vector bundles on \mathbb{P}^n modulo stable equivalence. Here vector bundles \mathcal{E} and \mathcal{F} on \mathbb{P}^n are stable equivalent if there are direct sums of line bundles \mathcal{L} and \mathcal{M} such that $\mathcal{E} \oplus \mathcal{L} \cong \mathcal{F} \oplus \mathcal{M}$.

Let us write **FinL** for the full subcategory of $C^{\bullet} \in Ob(D^{\flat}(S-\mathbf{Mod}))$ such that $H^{i}(C^{\bullet})$ is a finite over S for 0 < i < n and $H^{i}(C^{\bullet}) = 0$ for all other i.

Then we have the following Horrocks correspondence:

A functor $\tau_{>0}\tau_{< n}\mathbb{R}\Gamma_*: \underline{VB} \to \mathbf{FinL}$ gives an equivalence of the categories.

Sketch of Proof (Walter, Malaspina-Rao)

Let \mathcal{E} be a vector bundle on $\mathbb{P}^n = \operatorname{Proj} S = \operatorname{Proj} k[x_0, \dots, x_n]$. Let us put $E = \Gamma_* \mathcal{E}$.

A graded S^{\vee} -module E^{\vee} is (negatively graded, but) E^{\vee} is finitely generated with finite projective dimension.

Sketch of Proof (Walter, Malaspina-Rao)

Note that depth $E^{\vee} \geq 2$ since $E^{\vee\vee\vee} = E^{\vee}$.

By Auslander-Buchsbaum theorem, we have an exact sequence:

$$0 \to P^{n-1\vee} \to \cdots \to P^{0\vee} \to E^{\vee} \to 0,$$

where $P^{i\vee}$ is a dual of a graded free S-modules.

By taking dual, we have a complex of graded S-modules:

$$0 \to E \to P^0 \to \cdots \to P^{n-1} \to 0$$

Thus we have an exact sequence of sheaves on \mathbb{P}^n .

$$0 \to \mathcal{E} \to \mathcal{P}^0 \to \cdots \to \mathcal{P}^{n-1} \to 0$$

Sketch of Proof (Walter, Malaspina-Rao)

A complex $P^{\bullet}: 0 \to P^0 \to \cdots P^{n-1} \to 0$ have $\mathrm{H}^i_*(\mathcal{E}) \cong \mathrm{H}^i(P^{\bullet})$, $1 \leq i \leq n-1$, precisely, $\tau_{< n} \mathbb{R} \Gamma_* \mathcal{E} \cong P^{\bullet}$.

Then a complex $0 \to E \to P^0 \to \cdots \to P^{n-1} \to 0$ and the minimal free resolution of E, $0 \to P^{-n} \to \cdots \to P^{-1} \to E \to 0$, give a complex of graded S-mudules

$$P^{\bullet}: 0 \to P^{-n} \to \cdots \to P^0 \to \cdots \to P^{n-1} \to 0.$$

Here we remark that $\mathrm{H}^i(P^\bullet)$ has a finite length, especially $\mathrm{H}^i(P^\bullet)=0,\ i\not\in\{1,\cdots,n-1\}.$

Corollary

From the Horrocks correspondence, the vanishing of the intermediate cohomologies of a vector bundle $\mathcal E$ on $\mathbb P^n$, that is, $\tau_{>0}\tau_{< n}\mathbb R\Gamma_*(\mathcal E)=0$ implies that $\mathcal E$ is isomorphic to a direct sum of line bundles, which is the original Horrocks theorem.

Buchsbaum Bundle

Definition

A vector bundle $\mathcal E$ on $\mathbb P^n$ is called a Buchsbaum bundle if $(x_0,\ldots,x_n)\mathrm{H}^i_*(\mathbb P^n,\mathcal E|_L)=0,\ 1\leq i\leq r-1$ for any r-plane $L(\subseteq\mathbb P^n)$, $r=1,\cdots,n$.

Definition and Proposition (Stückrad-Vogel, Schenzel)

Let $S=k[x_0,\cdots,x_n]$ be the polynomial ring over a field k with $\mathfrak{m}=(x_0,\cdots,x_n)$. A graded S-module M with $\dim M=d$ is called as a Buchsbaum module it the following equivalent conditions are satisfied.

- (i) $\ell(M/\mathfrak{q}M) e(\mathfrak{q}; M)$ does not depend on the choice of any homogeneous parameter ideal $\mathfrak{q} = (y_1, \dots, y_d)$.
- (ii) For any homogeneous system $y_1, \dots, y_d, 0 \le i \le d$ of parameters $\mathfrak{mH}^j_{\mathfrak{m}}(M/(y_1, \dots, y_i)M) = 0, \quad 0 \le j \le d i 1$ holds.
- (iii) $\tau_{< d} \mathbb{R} \Gamma_{\mathfrak{m}}(M)$ is isomorphic to a complex of k-vector spaces in $D^{\flat}(\mathsf{S}-\mathbf{Mod})$.

Buchsbaum Bundle

Theorem (Goto-Chang)

A Buchsbaum bundle $\mathcal E$ on $\mathbb P^n$ is isomorphic to a direct sum of sheaves of differential form, that is, $\mathcal E\cong\oplus\Omega^{k_i}_{\mathbb P^n}(\ell_i)$.

Remark

There are several proofs for the structure theorem of Buchsbaum bundles on \mathbb{P}^n ..

- S. Goto, Maximal Buchsbaum modules over regular local rings and a structure theorem for generalized Cohen-Macaulay modules, ASPM 11(1987)
- M. C. Chang, Characterization of arithmetically Buchsbaum subschemes of codimension 2 in \mathbb{P}^n , J. Differential Geom. 31 (1990), 323–341.
- Horrocks Correspondence (Schenzel, Yoshino)
- Syzygy Theoretic Proof

Question

Are there any criteria?

- Null-Correlation bundle on \mathbb{P}^n , *n* odd?
- Horrocks-Mumford bundle on P⁴?

Reference (Horrocks Correspondence)

- F. Malaspina and A. P. Rao, Horrocks correspondence on arithmetically Cohen-Macaulay varieties, Algebra Number Theory 9(2015).
- C. H. Walter, Pfaffian subschemes, J. Algebraic Geom. 5(1996).
- Y. Yoshino, Maximal Buchsbaum modules of finite projective dimension,
 J. Algebra 159(1993).
- F. Malaspina and C. Miyazaki, Cohomological property of vector bundles on biprojective spaces, Ric. mat. 67(2018).

Key Lemma of Goto-Chang's Proof

Lemma (Goto (3.5.2), Chang (1.3))

Let $\mathcal E$ be a vector bundle on $\mathbb P^n$ with $\mathrm H^1_*(\mathcal E)=0$. Assume that there is an exact sequence $0\to\mathcal E\to\mathcal L\to\mathcal F\to 0$, where $\mathcal L$ is a direct sum of line bundles not being any summand of $\mathcal E$, and $\mathcal F=\oplus_{p_i>1}\Omega^{p_j}(k_j)$. Then we have $\mathcal E\cong\oplus_{p_i>1}\Omega^{p_j+1}(k_j)$.

Goto's Proof

Sketch of Proof

Set $M = \Gamma_*(\mathcal{E})$ and $\mathbb{P}^n = \operatorname{Proj} S$, where $S = k[x_0, \dots, x_n]$. We have only to consider the case M is not Cohen-Macaulay.

STEP I. Let us take a short exact sequence $0 \to N \to F \to M \to 0$, where F is graded free. Since N is Buchsbaum and depth $N \ge \operatorname{depth} M + 1$, N is isomorphic to a direct sum of syzygy modules $E_i(k)$ by induction. By taking the dual sequence $0 \to M^* \to F^* \to N^* \stackrel{\partial}{\to} \operatorname{Ext}^1_S(M,S) \to 0$, we have short exact sequences $0 \to M^* \to F^* \to W \to 0$ and $0 \to W \to N^* \stackrel{\partial}{\to} \operatorname{Ext}^1_S(M,S) \to 0$.

STEP II. W is isomorphic to a direct sum of some copies of $E_j(\ell)$'s. Indeed, we see that $\partial(E_j)=0$, $j=1,\cdots,n$ and $\mathfrak{m}\mathrm{Ext}^1_S(M,S)=0$ from the Buchsbaumness of M and the property of Koszul complex.

STEP III. Hence \widetilde{M}^* is isomorphic to a direct sum of sheaves of differential p-forms with some twist by Lemma, and so is \mathcal{E} .

Chang's Proof

Sketch of Proof

STEP I. Let \mathcal{E} be a Buchsbaum vector bundle on \mathbb{P}^n . If $H^1_*(\mathcal{E}) \neq 0$, there is a short exact sequence $0 \to \mathcal{E} \to \mathcal{F} \to \mathcal{L} \to 0$, where $H^1_*(\mathcal{F})$ and \mathcal{L} is a direct sum of line bundles.

STEP II. The minimal generator of $\Gamma_*(\mathcal{F}^\vee)$ give a short exact sequence $0 \to \mathcal{F} \to \mathcal{L} \to \mathcal{K} \to 0$, where \mathcal{L} is a sum of line bundles. Then \mathcal{K} is Buchsbaum with $i(\mathcal{K}) = i(\mathcal{E}) - 1$, where $i(\mathcal{E})$ is defined as the minimal i such that $\mathrm{H}^p_*(\mathcal{E}) = 0$ for $i+1 \le p \le n-1$. Thus we have \mathcal{K} is isomorphic to a direct sum of $\Omega^{p_j}(k_j)$'s, and so is \mathcal{F} by Lemma.

STEP III. A short exact sequence $0 \to \mathcal{E} \to \mathcal{F} \to \mathcal{L} \to 0$ gives the assertion by using STEP II and the Buchsbaum property of \mathcal{E} .

Null-Correlation Bundle

Definition

Let n be an odd number. Let $\mathbb{P}^n = \operatorname{Proj} k[x_0, \cdots, x_n]$. From the Euler sequence, we see that $\Gamma(\Omega(2))$ is the kernel of $\Gamma(\mathcal{O}_{\mathbb{P}^n}(1))^{\oplus n+1} \to \Gamma(\mathcal{O}_{\mathbb{P}^n}(2))$.

Then $(x_1, -x_0, x_3, -x_2, \cdots, x_n, -x_{n-1}) \in \Gamma(\Omega(2))$ gives a map $\mathcal{O}_{\mathbb{P}^n} \to \Omega(2)$, which defines, by taking dual, a surjective morphism $\varphi : \mathcal{T}_{\mathbb{P}^n}(-1) \to \mathcal{O}_{\mathbb{P}^n}(1)$.

A null-correlation bundle ${\mathcal N}$ is defined as ${\rm Ker}\, \varphi$, that is, gives a short exact sequence

$$0 o \mathcal{N} o \mathcal{T}_{\mathbb{P}^n}(-1)(\cong \Omega^{n-1}(n)) o \mathcal{O}_{\mathbb{P}^n}(1) o 0.$$

Remark

A null-correlation bundle ${\mathcal N}$ is quasi-Buchsbaum but not Buchsbaum.

In fact, the intermediate cohomologies appear only in $H^1(\mathcal{N}(-1))(\cong k)$ and $H^{n-1}(\mathcal{N}(-n))(\cong k)$.

Null-Correlation Bundle

Proposition

Let $\mathcal E$ be a vector bundle on $\mathbb P^n$ with n odd. Assume $\mathrm H^1_*(\mathcal E)\cong\mathrm H^{n-1}_*(\mathcal E)\cong k$ and $\mathrm H^i_*(\mathcal E)=0$, $2\leq i\leq n-2$. Then $\mathcal E$ is isomorphic to either a null-correlation bundle or a direct sum of a differential 1-form and (n-1)-form with some twist, modulo stable equivalence.

Remark

For a null-correlation bundle \mathcal{E} , which is quasi-Buchsbaum not Buchabaum, how about Goto-Chang's proof?

- (1) In STEP II of Goto's proof, $\partial(E_i)$ is not necessarily zero because $\operatorname{Ext}_S^n(k,M) \to \operatorname{H}_{\mathfrak{m}}^n(M)$ is zero for an S-module M corresponding to a null-correlation bundle.
- (2) In Chang's proof, \mathcal{F} must be a direct sum of differential (n-1)-form with some twist, and then \mathcal{E} is seen to be a null-correlation bundle.

Horrocks-Mumford bundle

Definition

A Horrocks-Mumford bundle ${\mathcal E}$ is defined by a monad from the following complex:

$$0 \to \mathcal{O}_{\mathbb{P}^4}(-1)^{\oplus 5} \stackrel{\varphi}{\to} \Omega^2_{\mathbb{P}^4}(2)^{\oplus 2} \stackrel{\psi}{\to} \mathcal{O}_{\mathbb{P}^4}^{\oplus 5} \to 0$$

given by $\varphi(a_0, \dots, a_4) = (a_0e_2 \wedge e_3 + \dots + a_4e_1 \wedge e_2, a_0e_1 \wedge e_4 + \dots + a_4e_0 \wedge e_3)$, and ψ given by dual of φ .

Remark

Horrocks-Mumford bundle

Remark

From the previous observation we have

- $\mathrm{H}^1_*(\mathcal{E}) \cong \mathrm{Coker} (\Omega^2_{\mathsf{S}}(2)^{\oplus 2} \stackrel{\psi}{\to} S^{\oplus 5})$
- $\bullet \ \mathrm{H}^2_*(\mathcal{E}) \cong \mathrm{H}^2_*(\Omega^2_{\mathbb{P}^4}(2)^{\oplus 2}) \cong k^{\oplus 2}$
- $H^3_*(\mathcal{E})$ is isomorphic to the dual of $H^1_*(\mathcal{E})$.

Here is a cohomology table of $H^i(\mathcal{E}(\ell))$.

										3			
3	0	2	10	10	5	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	2	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	5	10	10	2	0

Question

Find criteria for Horrocks-Mumford bundle in terms of commutative algebra.

Syzygy Theoretic Method

Proposition

Let \mathcal{E} be a vector bundle on \mathbb{P}^n with $H^p(\mathcal{E}) \neq 0$, where $1 \leq p \leq n-1$. If a vector bundle \mathcal{E} has the following condition:

- (a) $H^{i}(\mathcal{E}(p-i+1)) = 0$ for $1 \le i \le p$.
- (b) $H^{i}(\mathcal{E}(p-i-1)) = 0$ for $p \le i \le n-1$,

then $\Omega^{p}_{\mathbb{P}^{n}}$ is a direct summand of \mathcal{E} .

Sketch of Proof

By an exact sequence arising from the Koszul complex:

$$0 o \mathcal{O}_{\mathbb{P}^n} o \mathcal{O}_{\mathbb{P}^n}^\oplus(1) o \cdots o \mathcal{O}_{\mathbb{P}^n}^\oplus(
ho) o \Omega_{\mathbb{P}^n}^{
hoee} o 0,$$

we have a surjective map $\varphi: H^0(\mathcal{E} \otimes \Omega^{p\vee}_{\mathbb{P}^n}) \to H^p(\mathcal{E})$ from the cohomological condition (a).

Syzygy Theoretic Method

Sketch of Proof

By an exact sequence arising from the Koszul complex:

$$0 \to \mathcal{O}_{\mathbb{P}^n}(-n-1) \to \mathcal{O}_{\mathbb{P}^n}^{\oplus}(-n) \to \cdots \to \mathcal{O}_{\mathbb{P}^n}^{\oplus}(-p-1) \to \Omega_{\mathbb{P}^n}^p \to 0,$$

we have a surjective map $\psi: H^0(\mathcal{E}^{\vee} \otimes \Omega^{\rho}_{\mathbb{P}^n}) \to H^{\rho}(\mathcal{E}^{\vee}(-n-1))$ from the cohomological condition (b).

$$\exists f \in \mathrm{H}^0(\mathcal{E} \otimes \Omega^{p\vee}_{\mathbb{P}^n}) \text{ such that } \varphi(f) = s(\neq 0) \in \mathrm{H}^p(\mathcal{E}).$$

$$\exists s^* \in \mathrm{H}^{n-p}(\mathcal{E}^{\vee}(-n-1))$$
 corresponding to $s \in \mathrm{H}^m(\mathcal{E})$.

$$\exists g \in \mathrm{H}^0(\mathcal{E}^ee \otimes \Omega^p_{\mathbb{P}^n})$$
 such that $\psi(g) = s^* (
eq 0) \in \mathrm{H}^{n-p}(\mathcal{E}^ee (-n-1)).$

Now f and g are regarded as elements of $\operatorname{Hom}(\Omega^p_{\mathbb{P}^n},\mathcal{E})$ and $\operatorname{Hom}(\mathcal{E},\Omega^p_{\mathbb{P}^n})$.

Syzygy Theoretic Method

Proof

From a commutative diagram:

$$\begin{array}{ccccc} f \otimes g & \in & \mathrm{H}^0(\mathcal{E} \otimes \Omega^{p\vee}_{\mathbb{P}^n}) \otimes \mathrm{H}^0(\mathcal{E}^\vee \otimes \Omega^p_{\mathbb{P}^n}) & \to & \mathrm{H}^0(\mathcal{O}_{\mathbb{P}^n}) \\ & \downarrow & & \downarrow \\ s \otimes s^* & \in & \mathrm{H}^p(\mathcal{E}) \otimes \mathrm{H}^{n-p}(\mathcal{E}^\vee(-n-1)) & \to & \mathrm{H}^n(\mathcal{O}_{\mathbb{P}^n}(-n-1)), \end{array}$$

a natural map $\mathrm{H}^0(\mathcal{E}\otimes\Omega^{p\vee}_{\mathbb{P}^n})\otimes\mathrm{H}^0(\mathcal{E}^\vee\otimes\Omega^p_{\mathbb{P}^n})\to\mathrm{H}^0(\mathcal{O}_{\mathbb{P}^n})$ yields that $g\circ f$ is an isomorphism, which implies $\Omega^p_{\mathbb{P}^n}$ is a direct summand of \mathcal{E} .

Multigraded Regularity, Syzygy Theoretic Method

Exercise

There are no vector bundles \mathcal{E} on $X = \mathbb{P}^m \times \mathbb{P}^n$ such that $\mathrm{H}^i(\mathcal{E}(\ell_1, \ell_2)) = 0$ for all $\ell_1, \ell_2 \in \mathbb{Z}$ and $1 \leq i \leq m+n-1$.

Theorem (Costa-Miró Roig 2005,2008; Malaspina-Miyazaki 2018)

Let \mathcal{E} be a vector bundle on $\mathbb{P}^m \times \mathbb{P}^n$ with $H^{p+q}(\mathcal{E}) \neq 0$, where $1 \leq p \leq m-1$ and $1 \leq q \leq n-1$.

If a vector bundle \mathcal{E} has the following condition:

- (a) $H^{i}(\mathcal{E}(a,b)) = 0$ for $1 \le i \le p+q$, $0 \le a \le p$, $0 \le b \le q$ with i+a+b=p+q+1.
- (b) $H^{i}(\mathcal{E}(a,b)) = 0$ for $p+q \le i \le m+n-1$, $p-m \le a \le 0$, $q-n \le b \le 0$ with i+a+b=p+q-1,

then $\Omega^p_{\mathbb{P}^m} \boxtimes \Omega^q_{\mathbb{P}^n}$ is a direct summand of \mathcal{E} .

Multigraded Regularity, Syzygy Theoretic Method

Example

Let $\mathcal E$ be an indecomposable vector bundle on $\mathbb P^2 \times \mathbb P^2$. Then the following conditions are equivalent:

- (a) $\mathcal{E} \cong \Omega_{\mathbb{P}^2} \boxtimes \Omega_{\mathbb{P}^2}$.
- (b) $H^2(\mathcal{E}) \neq 0$ and $H^1(\mathcal{E}(1,1)) = H^2(\mathcal{E}(0,1)) = H^2(\mathcal{E}(1,0)) = H^2(\mathcal{E}(-1,0)) = H^2(\mathcal{E}(0,-1)) = H^3(\mathcal{E}(-1,-1)) = 0.$

Example

- (1) $\mathcal{E} = \mathcal{O}_{\mathbb{P}^1} \boxtimes \mathcal{O}_{\mathbb{P}^1}(2) \boxtimes \mathcal{O}_{\mathbb{P}^1}(4)$ on $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$ is not Buchsbaum (but quasi-Buchsbaum). In this case $\mathrm{H}^1(\mathcal{E}(-2)) \neq 0$ and $\mathrm{H}^2(\mathcal{E}(-4)) \neq 0$.
- (2) $\mathcal{E}=\Omega_{\mathbb{P}^2}\boxtimes\Omega_{\mathbb{P}^2}(3)$ on $\mathbb{P}^2\times\mathbb{P}^2$ is Buchsbaum, but $H^1(\mathcal{E})\neq 0$ and $H^3(\mathcal{E}(-3))\neq 0$.

◆ロト→部ト→きト→き → の

v-Buchsbaum

Definition

 $S = k[x_0, \dots, x_n]$: the polynomial ring over k

$$\mathfrak{m}=S_+=(x_0,\cdots,x_n)$$

M: a finitely generated graded S-module of $\dim M = d + 1$

 $v(\geq 1) \in \mathbb{Z}$: a positive integer

$$M$$
 is v -Buchsbaum $\iff \mathfrak{m}^v \mathrm{H}^i_{\mathfrak{m}}(M) = 0, \ 1 \leq i \leq d$

M is strongly v-Buchsbaum \iff for all homogeneous system of parameters $\{f_1,\cdots,f_{d+1}\}$, $M/(f_1,\cdots,f_j)M$ is v-Buchsbaum for $j=0,\cdots d$

Question (Hoa)

If a nondegenerate projective variety X is "strongly v-Buchsbaum", then $\operatorname{reg} X \leq \lceil (\operatorname{deg} X - 1)/\operatorname{codim} X \rceil + v$?

v-Buchsbaum

Definition

 $X \subseteq \mathbb{P}^n$: a projective scheme I: the defining ideal of X

R: the coordinate ring of X v: a positive integer

- X is v-Buchsbaum $\iff R$ is v-Buchsbaum
- X is strongly v-Buchsbaum $\iff R$ is strongly v-Buchsbaum

Remark

- X is strongly v-Buchsbaum $\Rightarrow X$ is v-Buchsbaum.
- X is Buchsbaum $\iff X$ is strongly 1-Buchsbaum.
- X is v-Buchsbaum $\Rightarrow X \cap H$ is 2v-Buchsbaum.
- (Chang, Nagel) There is a projective scheme X such that X is not v-Buchsbaum but $X \cap H$ is v-Buchsbaum for a generic hyperplane H.

Theorem (Nagel-Schenzel 1998)

Let X be a nondegenerate projective variety in \mathbb{P}^n . Assume that X is v-Buchsbaum with $v \geq 1$. Then

 $\operatorname{reg} X \leq \lceil (\operatorname{deg} X - 1) / \operatorname{codim} X \rceil + v \operatorname{dim} X.$

Theorem (Miyazaki-Vogel 1996)

Let X be a nondegenerate projective variety in \mathbb{P}^n . Assume that X is strongly v-Buchsbaum with $v \geq 1$. Then

 $\operatorname{reg} X \leq \lceil (\operatorname{deg} X - 1) / \operatorname{codim} X \rceil + (\nu - 1) \operatorname{dim} X + 1.$

Remark

In case $v \ge 2$, if the equality holds for $\deg X \gg 0$, then X is a curve.

Notation

 $S = k[x_0, \dots, x_n]$: the polynomial ring

M: a finitely generated graded S-module with dim $M=d+1\geq 1$, equidimentional, $M_{\mathfrak{p}}$ is Cohen-Macaulay for $\mathfrak{p}\neq\mathfrak{m}$.

Definition

$$a_i(M) = \max\{\ell | [\mathrm{H}^i_\mathfrak{m}(M)]_\ell \neq 0\}, \ i \geq 0 \ a(M) = a_{d+1}(M): \ a\text{-invariant of } M \ \mathrm{reg} \ M = \max\{a_i(M) + i | 0 \leq i \leq d+1\}$$

Remark

 $X(\subseteq \mathbb{P}^n)$: a projective scheme, R: the coodinate ring of X

$$\operatorname{reg} X = \operatorname{reg} R + 1$$

Proposition (Nagel-Schenzel, Hoa-Miyazaki, Miyazaki-Vogel)

- (1) If M is v-Buchsbaum, then $a_i(M) \le a(M) + d + 1 + v(d+1-i)$, $0 \le i \le d$.
- (2) If M is strongly v-Buchsbaum, then $a_i(M) + i \le a(M) + d + 1 + (v 1)(d + 1 i) + 1$, $0 \le i \le d$.

Example

Let $Y = \mathbb{P}^1 \times \cdots \times \mathbb{P}^1 \subset \mathbb{P}^{2^{d+1}-1}$.

Let X be a divisor corresponding to $\mathcal{O}_Y(n_0, \dots, n_d)$, where $n_j = 1 + (v+1)j$.

Let R be the coordinate ring of X.

Then *R* is *v*-Buchsbaum,
$$a_i(R) = (v+1)(d-i+1)-1$$
, $1 \le i \le d$, $a(R) = -1$ and $reg R = (v+1)d$.

Standard System of Parameters

Definition

Let M be a graded S-module of dim $M=d+1\geq 1$. A system of parameters $\{x_0,\cdots,x_d\}$ for M is called standard if

$$(x_0,\cdots,x_d)\mathrm{H}^i_{\mathfrak{m}}(M/(x_0,\cdots,x_j)M)=0, i+j\leq d.$$

Definition

An \mathfrak{m} -primary ideal \mathfrak{q} is M-standard if any system of parameters contained in \mathfrak{q} is standard.

Standard System of Parameters

Definition

Let r be a positive integer. A part of a system of parameters $\{y_1,\cdots,y_s\}$ is called r-standard if for any $0 \le j \le r$ and any choice y_{k_1},\cdots,y_{k_j} , $(y_1,\cdots,y_s)\mathrm{H}^i_\mathfrak{m}(M/(y_{k_1},\cdots,y_{k_j})M)=0, i+j \le d.$

Theorem (Hoa-Miyazaki 1995)

Let R = S/I be a coordinate ring with dim R = d+1 of a projective scheme. Assume that \mathfrak{m}^{ν} is a standard ideal of the graded ring R. Then $\operatorname{reg} R \leq a(R) + d + 1 + (\nu - 1)(d + 1 - \operatorname{depth} R) + 1$.

Theorem (Miyazaki 2019)

Let y_0, \dots, y_d be a standard system of parameters for the graded S-module M. Put $e_i = \deg y_i$ and $v + d = \sum e_i$. Then $a_i(M) + i \leq a(M) + d + 1 + v$.

Standard Buchsbaum

Definition

 $S = k[x_0, \dots, x_n]$: the polynomial ring

M: a finitely generated graded S-module with dim $M=d+1\geq 1$, equidimentional, $M_{\mathfrak{p}}$ is Cohen-Macaulay for $\mathfrak{p}\neq\mathfrak{m}$.

Then we define $v(M)(\geq 1)$ as the minimal integer such that there exists a standard homogeneous system of parameters f_1, \dots, f_{d+1} of a graded S-module M with $\sum_{i=1}^{d+1} \deg f_i = d + v$.

Definition

 \mathcal{F} : a coherent sheaf on \mathbb{P}^n satisfying \mathcal{F}_x is Cohen-Macaulay for all $x \in \mathbb{P}^n$ Then $v(\mathcal{F})$ is defined as $v(\Gamma_*(\mathcal{F}))$.

For a locally Cohen-Macaulay subscheme $V \subseteq \mathbb{P}^n$, we define $v(V) = v(\mathcal{I}_V)$.

Proposition (Miyazaki in preparation)

Let V be a nondegenerate projective variety of \mathbb{P}^n . Then we have $\operatorname{reg} V \leq \lceil (\operatorname{deg} V - 1) / \operatorname{codim} V \rceil + \nu(V)$.

Assume that deg $V \gg 0$.

- (1) If $\operatorname{reg} V = \lceil (\operatorname{deg} V 1) / \operatorname{codim} V \rceil + v(V)$, then V is a divisor on a variety of minimal degree.
- (2) If $\operatorname{reg} V = \lceil (\operatorname{deg} V 1) / \operatorname{codim} V \rceil + v(V) 1$, then V is a divisor either on a variety of minimal degree or on a del Pezzo variety.

Standard Buchsbaum

Definition

 $S = k[x_0, \dots, x_n]$: the polynomial ring

M: a finitely generated graded S-module with dim $M=d+1\geq 1$, equidimentional, M_n is Cohen-Macaulay for $\mathfrak{p}\neq\mathfrak{m}$.

A graded S-module M is standard Buchsbaum if any homogeneous system of parameters f_1, \cdots, f_{d+1} of M with $\sum_{i=1}^{d+1} \deg f_i \geq d+2$ is standard.

For a vector bundle \mathcal{F} on \mathbb{P}^n and a locally Cohen-Macaulay subscheme $V\subseteq \mathbb{P}^n$, 'Standard Buchsbaum' is similarly defined.

Remark

- For a fixed integer $v \geq 2$, assume that any homogeneous system of parameters f_1, \dots, f_{d+1} of a graded S-module M with $\sum_{i=1}^{d+1} \deg f_i \geq d+v$ is standard. Then M is standard Buchsbaum.
- Buchsbaum ⇒ Standard Buchsbaum ⇒ quasi-Buchsbaum

◆ロト ◆団ト ◆草ト ◆草ト 草 ・釣り

Standard Buchsbaum

Example

- A Null correlation bundle on \mathbb{P}^n , n odd, is standard Buchsbaum, not Buchsbaum, which is clearly characterized by commutative algebra.
- A Horrocks-Mumford bundle on \mathbb{P}^4 is quasi-Buchsbaum, not standard Buchsbaum from the explicit monad construction.

Remark

For a nondegenerate standard Buchsbaum variety V of \mathbb{P}^n . we have $\operatorname{reg} V \leq \lceil (\operatorname{deg} V - 1)/\operatorname{codim} V \rceil + 2$. The extremal cases are similarly classified.

THANK YOU VERY MUCH