### j-operatrors and naive lifting of dg modules

吉野雄二

岡山大学

2020年12月14日

### References

- S. Nasseh and Y. Yoshino, Weak liftings of DG modules, J. Algebra, 502 (2018), 233–248.
- M. Ono and Y. Yoshino, A lifting problem for DG modules, J. Algebra 566 (2021), 342–360.
- 3 S. Nasseh, M. Ono and Y. Yoshino, *The theory of j-operators with application to (weak) liftings of DG modules*, preprint (arXiv:2011.15032).
- 4 S. Nasseh, M. Ono and Y. Yoshino, Naïve liftings, in preparation.

## strongly commutative dg R-algebra

R= a commutative Noetherian ring (e.g. a complete regular local ring) A= a (non-negatively graded) strongly commutative dg R-algebra (dg = differential graded) , i.e.

- $A = \bigoplus_{n>0} A_n$  is a non-negatively graded R-algebra.
- $d^A\colon A\to A(-1)$  such that  $(d^A)^2=0$  and  $d^A(ab)=d^A(a)b+(-1)^{|a|}ad^A(b)$  for  $a,b\in A$ .
- $ab = (-1)^{|a||b|}ba$  for all  $a, b \in A$ , and  $a^2 = 0$  if |a| is odd.

## strongly commutative dg R-algebra; Examples

- $R = \deg$  algebra concentrated in degree 0,  $d^R = 0$
- [Koszul complex] For  $t \in R$ ,

$$K(t;R) = R + XR,$$

where |X|=1,  $X^2=0$ ,  $d^K(X)=t$ .  $K(t;R)=R\langle X\rangle$  is a free extension of R with X.

• [More generally] For A a strongly comm. dg R-algebra, if |X| is odd (> 0),

$$A\langle X\rangle = A + XA$$

where  $X^2 = 0$ ,  $d^{A\langle X\rangle}(X) = t \in A$ .

# strongly commutative dg R-algebra; Examples

Let A be a strongly comm. dg R-algebra. If |X| is even,

• [Polynomial extension]

$$A[X] = A \oplus XA \oplus X^2A \oplus \cdots,$$

where  $d^{A[X]}(X) = t \in A$ .

Note:  $d^{A[X]}(X^n) = nX^{n-1}t$ .

• [Free extension]

$$A\langle X\rangle = A \oplus XA \oplus X^{(2)}A \oplus X^{(3)}A \oplus \cdots,$$

where  $d(X^{(n)})=X^{(n-1)}t$ ,  $X^{(n)}X^{(m)}=\binom{n+m}{n}X^{(n+m)}$ . On the supposition that  $X^{(n)}=\frac{1}{n!}X^n$ .

•  $\mathbb{Q} \subset R \Rightarrow A\langle X \rangle = A[X]$ 

## dg modules

Let A be a (strongly comm. non-negatively graded) dg R-algebra.  $(M,\partial^M)$  is a dg A-module iff

- M is a graded (right) A-module.
- $\partial^M: M \to M(-1)$  satisfies  $(\partial^M)^2 = 0$  and the Leibniz rule:

$$\partial^{M}(xa) = \partial^{M}(x)a + (-1)^{|x|}xd^{A}(a)$$

D(A) = the derived category of all dg A-modules.

### Tate resolution

R o R/I a ring homomorphism of commutative Noetherian rings. Then there is a free extension of R with at most countably infinite variables  $X_1, X_2, \cdots$  such that the dg R-algebra map

$$R\langle X_1, X_2, \cdots \rangle \to R/I$$

is a quasi-isomorphism.

This is called a Tate resolution of R/I over R.

In general, Keller's theorem says that  $D(A)\cong D(B)$  if  $\exists$  a quasi-isom. dg R-algebra map  $A\to B$ .

In particular,

$$D(R\langle X_1, X_2, \cdots \rangle) \cong D(R/I)$$

### Avramov resolution

R o R/I a ring homomorphism of commutative Noetherian rings. Then there is a polynomial extension of R with at most countably infinite variables  $X_1, X_2, \cdots$  such that the dg R-algebra map

$$R[X_1, X_2, \cdots] \to R/I$$

is a quasi-isomorphism.

We call this an Avramov's polynomial resolution of R/I over R.

$$D(R[X_1, X_2, \cdots]) \cong D(R/I)$$

### Original j-operators

In the case |X| is odd,  $A\langle X\rangle=A+XA$ , and

$$j_X : A\langle X \rangle \to A\langle X \rangle (-|X|); \quad a_0 + Xa_1 \mapsto a_1 = \frac{d}{dX}(a_0 + Xa_1)$$

is a dg  $A\operatorname{-module}$  homo. whose image is  $A(-\vert X\vert),$  hence an exact sequence

$$0 \longrightarrow A \longrightarrow A\langle X \rangle \xrightarrow{j_X} A(-|X|) \longrightarrow 0$$

In the case |X| is even,

$$j_X: A\langle X\rangle \to A\langle X\rangle(-|X|);$$

where

$$j_X(a_0 + Xa_1 + X^{(2)}a_2 + \cdots) = a_1 + Xa_2 + \cdots = \frac{d}{dX}(a_0 + Xa_1 + X^{(2)}a_2 + \cdots)$$
$$0 \longrightarrow A \longrightarrow A\langle X \rangle \xrightarrow{j_X} A\langle X \rangle (-|X|) \longrightarrow 0$$

### Generalization of j-operators

A = a (strongly comm. non-negatively graded) dg R-algebra,

X= a variable of |X|>0

$$B = A\langle X \rangle$$

N= a graded free (right) B-module, bounded below (not a dg module)

$$\mathcal{E} := \operatorname{End}_B^*(N) = \bigoplus_{n \in \mathbb{Z}} \operatorname{Hom}_{\mathsf{graded}\ B\text{-}\mathsf{mod}}(N,N(n)) \ \subset \operatorname{End}_R^*(N)$$

$$\mathrm{Diff}_B(N) := \{ \delta : N \to N(-1) | \delta(xb) = \delta(x)b + (-1)^{|x|} x db$$
 
$$(x \in N, b \in B) \}$$

#### Definition

$$\mathcal{D} = \mathcal{E} + \mathcal{E} \circ \mathrm{Diff}_B(N)$$

#### Lemma

 $\mathcal{D} = \mathcal{E} + \operatorname{Diff}_B(N) \circ \mathcal{E}$  and it is a subring of  $\operatorname{End}_B^*(N)$ .

## Generalization of j-operators

 $\mathcal{B}=\{e_{\lambda}\}_{\lambda}:=$  a free basis of the graded free B-module Matrix representation

$$\delta \in \mathcal{E} \cup \mathrm{Diff}_{B}(N) \Rightarrow \delta(e_{\lambda}) = \sum_{e_{\mu}} e_{\mu} b_{\mu\lambda} \ (b_{\mu\lambda} \in B)$$
$$\delta \leftrightarrow (b_{\mu\lambda})$$

Define  $j_X^{\mathcal{B}}$  by

$$\mathcal{E} \cup \mathrm{Diff}_B(N) \ni \delta \mapsto \mathsf{the}\ B$$
-linear map defined by the matrix  $(\frac{db_{\mu\lambda}}{dX}) \in \mathcal{E}$ 

### Theorem (Nasseh-Ono-Yoshino)

 $j_X^{\mathcal{B}}$  extends to the map  $\mathcal{D} o \mathcal{D}$  that satisfies the Leibniz rule:

$$j_X^{\mathcal{B}}(\alpha\beta) = j_X^{\mathcal{B}}(\alpha)\beta + (-1)^{|\alpha|}\alpha j_X^{\mathcal{B}}(\beta) \quad (\alpha, \beta \in \mathcal{D})$$

# Liftability

- By definition,  $\delta \in \mathcal{E} \cup \mathrm{Diff}_B(N)$  is liftable to A iff  $j_X^{\mathcal{B}}(\delta) = 0$  for  $\exists \mathcal{B}$ .
- A dg B-module  $(N,\partial)$   $(\partial \in \mathrm{Diff}_B(N), \partial^2 = 0)$  is said to be liftable to A if  $\partial$  is liftable to A.
- By Leibniz rule,

$$0 = j_X^{\mathcal{B}}(\partial^2) = j_X^{\mathcal{B}}(\partial)\partial + (-1)^{|X|}\partial j_X^{\mathcal{B}}(\partial),$$

hence  $j_X^{\mathcal{B}}(\partial)$  is a cycle in  $\operatorname{Hom}_B(N, N(-|X|-1))$ 

- $[j_X^{\mathcal{B}}(\partial)] \in \operatorname{Ext}_B^{|X|+1}(N,N)$  is defined.
- If  $(N, \partial)$  is liftable, then  $[j_X^{\mathcal{B}}(\partial)] = 0$ .

## Liftability Theorem

#### **Theorem**

- The class  $[j_X^{\mathcal{B}}(\partial)] \in \operatorname{Ext}_B^{|X|+1}(N,N)$  is independent of  $\mathcal{B}$ .
- (Ono-Yoshino) If |X| is even, then  $[j_X(\partial)] = 0 \Leftrightarrow (N, \partial)$  is liftable.
- (Nasseh-Yoshino) If |X| is odd, then  $[j_X(\partial)] = 0 \Leftrightarrow (N,\partial) \oplus (N(-|X|),-\partial)$  is liftable.

**INTERMISSION** 

# Naïve lifting

Let  $A \to B$  be a free extension or a polynomial extension of dg R-algebra, and  $(N,\partial)$  a semi-free dg B-module, e.g. bounded below and free as an underlying graded B-module.

Restrict the action to A, and we get a dg A-module  $(N|_A, \partial)$ .  $\pi_N: N|_A \otimes_A B \to N; \ x \otimes b \mapsto xb$  is a (right) dg B-module

homomorphism.

#### Definition

We say N is naı̈vely liftable to A if  $\pi_N$  splits, i.e.  $\pi_N$  has a right inverse as a dg B-module homomorphism.

## Naïve lifting for simple extensions

### Theorem (Nasseh-Ono-Yoshino)

Let  $B = A\langle X \rangle$ , and  $(N, \partial)$  a dg B-module that is free and bounded below as an underlying graded B-module. Then TFAE:

- $oldsymbol{0}$   $(N,\partial)$  is naïvely liftable to A.
- 2 If |X| is even then  $(N,\partial)$  is liftable to A. If |X| is odd then  $(N,\partial) \oplus (N(-|X|),-\partial)$  is liftable to A.
- 3  $[j_X(\partial)] = 0 \in \operatorname{Ext}_B^{|X|+1}(N, N)$

# Naïve lifting for extensions with finite variables

Let  $B = A\langle X_1, \dots, X_n \rangle$  be a free extension, or  $B = A[X_1, \dots, X_n]$  be a polynomial extension with finite number of variables.

 $(N,\partial)={\rm a}\ {\rm dg}\ B\text{-module}$  that is free and bounded below as an underlying graded B-module.

Theorem (Nasseh-Ono-Yoshino)

If  $\operatorname{Ext}_B^i(N,N)=0$  for all i>0, then N is naïvely liftable to A.

## Diagonal ideal

Let  $A \rightarrow B$  be a dg R-algebra homomorphism.

Let  $\pi_B: B^e = B^o \otimes_A B \to B$  be multiplication map and define the diagonal ideal J of  $B^e$  by the exact sequence

$$0 \longrightarrow J \longrightarrow B^e \xrightarrow{\pi_B} B \longrightarrow 0$$

Take the tensor product  $N \otimes_B -$  and we have

$$0 \longrightarrow N \otimes_B J \longrightarrow N \otimes_B B^e \xrightarrow[N \otimes_B \pi_B]{} N \otimes_B B \longrightarrow 0$$

$$\parallel \qquad \qquad \parallel$$

$$N|_A \otimes_A B \xrightarrow[]{} \pi_N \qquad N$$

#### **Proposition**

 $\operatorname{Ext}^1_B(N,N\otimes_B J)=0 \ \Rightarrow N$  is naïvely liftable to A.

### Proof of Theorem

### Enough to prove;

### Proposition

$$\operatorname{Ext}_B^i(N,N) = 0 \ (i > 0) \ \Rightarrow \operatorname{Ext}_B^1(N,N \otimes_B J) = 0$$

We show how to prove this in the case  $B = A[X_1, \dots, X_n]$  is a polynomial extension of A.

Then J is an ideal of  $B^e$  generated by

 $\{\xi_i=X_i\otimes 1-1\otimes X_i\mid i=1,2,\ldots,n\}$  which is something like a regular sequence, i.e.

 $J^m/J^{m+1}$  is a finitely generated free B-module for any m>0.

$$J^m/J^{m+1} \cong \bigoplus_{\text{finite}} B(-a) \ (a > 0)$$

e.g. In the case that |X| is odd,  $A[X]\otimes_A A[X]\cong A[X',X'']/({X'}^2,{X''}^2)\supset J=(X'-X''),$ 

where 
$$J^2 = ((X' - X'')^2) = (X'^2 - X'X'' - X''X' + X''^2) = (0), J/J^2 = J \cong A[X](-|X|)$$

### Proof of Theorem

### Proposition

$$\operatorname{Ext}_B^i(N,N) = 0 \ (i > 0) \ \Rightarrow \operatorname{Ext}_B^1(N,N \otimes_B J) = 0$$

$$\begin{split} \operatorname{Ext}_B^i(N,N\otimes_B J^m/J^{m+1}) &= \operatorname{Ext}_B^i(N,N\otimes_B \bigoplus_{\mathsf{finite}} B(-a)) \\ &= \operatorname{Ext}_B^i(N,\bigoplus_{\mathsf{finite}} N(-a)) \\ &= \bigoplus_{\mathsf{finite}} \operatorname{Ext}_B^i(N,N(-a)) \\ &= \bigoplus_{\mathsf{finite}} \operatorname{Ext}_B^{i+a}(N,N) = 0 \text{ for } m>0, \ i \geqq 0 \end{split}$$

 $\Rightarrow \operatorname{Ext}_{R}^{i}(N, N \otimes_{R} J/J^{m+1}) = 0 \ (m > 0, \ i \geq 0)$ 

### Proof of Theorem

### Proposition

$$\operatorname{Ext}_B^i(N,N) = 0 \ (i > 0) \ \Rightarrow \operatorname{Ext}_B^1(N,N \otimes_B J) = 0$$

$$\Rightarrow \operatorname{Ext}_{B}^{i}(N, N \otimes_{B} J/J^{m+1}) = 0 \ (m > 0, \ i \geq 0)$$

$$\Rightarrow \operatorname{Hom}_{K(B)}(N, N \otimes_{B} J/J^{m+1}(-i)) = 0 \ (m > 0, \ i \geq 0)$$

$$\Rightarrow \operatorname{Hom}_{K(B)}(N, \operatorname{holim}(N \otimes_{B} J/J^{m+1})(-i)) = 0 \ (i \geq 0)$$

 $\operatorname{Ext}_{P}^{i}(N, N \otimes_{R} J^{m}/J^{m+1}) \ (m > 0, \ i \geq 0)$ 

$$\Rightarrow \operatorname{Hom}_{K(B)}(N, N \otimes_B J)(-i) = 0 \ (i > 0)$$

$$\Rightarrow \operatorname{Ext}_{B}^{i}(N, N \otimes_{B} J) = 0 \ (i > 0) \quad \Box$$

<sup>\*</sup>We can prove  $\operatorname{holim}(N \otimes_B J^{m+1}) = 0$  in D(B).

# The Conjecture

Let  $A \to B$  be a dg R-algebra homomorphism that is a free extension or a polynomial extension, and

N be a dg B-module that is bounded below.

We conjecture the following:

### Conjecture

If  $\operatorname{Ext}_B^i(N,N)=\operatorname{Ext}_B^i(N,B)=0$  for all i>0, then N is naïvely liftable to A.

If this conjecture is true, then Auslander-Reiten conjecture is true for any finitely generated modules over any commutative Noetherian rings.

### Note