

Quadratic Gröbner bases of block diagonal matching field ideals toric degenerations of Grassmannians

大杉英史

関西学院大学理工学部

東京可換環論セミナー 2020年11月16日

東谷章弘氏との共同研究 (arXiv:2010.07104)

Contents

本日の内容

- 1. Matching field ideal
- 2. 2-block diagonal matching field (先行結果)
- 3. s-block diagonal matching field (主結果と証明の概略)

🥩 1. Matching field ideal

定義. $r, n \in \mathbb{Z}$, $2 \le r < n$, $[n] := \{1, 2, ..., n\}$

K:体

 $Gr(r,n): K^n$ の r次元部分空間全体 Grassmannian

 $\mathbf{I}_{r,n} \coloneqq \{I \subset [n] : |I| = r\}$

 $S = K[P_I: I \in \mathbf{I}_{r,n}] : K 上の \binom{n}{r}$ 変数多項式環

 $X = (x_{ij})_{1 \le i \le r, 1 \le j \le n}$: $r \times n$ 変数行列

 $R = K[x_{ij}: 1 \le i \le r, 1 \le j \le n]: K$ 上の rn 変数多項式環

 $\psi:S \to R$, $P_I \mapsto \det(X_I)$ 環準同型 $(x_I$ は I に対応する X の $r \times r$ 部分行列)

 $I_{r,n} \coloneqq \operatorname{Ker}(\psi)$: Plücker ideal

 $A_{r,n} \coloneqq \operatorname{Im}(\psi)$: Plücker algebra

🥠 1. Matching field ideal

 $X = \begin{pmatrix} x_{11} & x_{12} & x_{13} & x_{14} & x_{15} \\ x_{21} & x_{22} & x_{23} & x_{24} & x_{25} \end{pmatrix}$

このとき, $I_{2,5}$ は以下のような多項式で生成される:

 $P_{\{1,4\}}P_{\{2,3\}} - P_{\{1,3\}}P_{\{2,4\}} + P_{\{1,2\}}P_{\{3,4\}}$

 $P_{\{1,5\}}P_{\{2,3\}} - P_{\{1,3\}}P_{\{2,5\}} + P_{\{1,2\}}P_{\{3,5\}}$

 $P_{\{1,5\}}P_{\{2,4\}}-P_{\{1,4\}}P_{\{2,5\}}+P_{\{1,2\}}P_{\{4,5\}}$

 $P_{\{1,5\}}P_{\{3,4\}}-P_{\{1,4\}}P_{\{3,5\}}+P_{\{1,3\}}P_{\{4,5\}}$ $P_{\{2,5\}}P_{\{3,4\}} - P_{\{2,4\}}P_{\{3,5\}} + P_{\{2,3\}}P_{\{4,5\}}$

Plücker relation

🍑 1. Matching field ideal

定義. $S_r:r$ 次対称群

写像 Λ: $I_{r,n} \to \mathfrak{S}_r$ を $r \times n$ matching field という。

各元 $I = \{i_1, ..., i_r\} \in \mathbf{I}_{r,n} \quad (1 \le i_1 < \cdots < i_r \le n)$ に対して, R の単項式

 $\mathbf{x}_{\Lambda(I)} \coloneqq \mathbf{x}_{\sigma(1)i_1} \cdots \mathbf{x}_{\sigma(r)i_r}$ (ただし, $\sigma = \Lambda(I) \in \mathfrak{S}_r$)

を対応させ,環準同型

 $\psi_{\Lambda}: S \to R, \qquad \psi_{\Lambda}(P_I) = \operatorname{sgn}(\Lambda(I)) x_{\Lambda(I)}$

を定義する。

このとき, $J_{\Lambda} \coloneqq \operatorname{Ker}(\psi_{\Lambda})$ を matching field ideal という。

1. Matching field ideal

定義. $r \times n$ matching field Λ が coherent

 $\Leftrightarrow r \times n$ 実行列 M が存在して,以下をみたす:

 $\forall I \in \mathbf{I}_{r,n}$, $\operatorname{in}_{M}(\det(X_{I})) = \psi_{\Lambda}(P_{I})$ イニシャルフォーム (最小の重み)

 \bullet このとき, J_{Λ} を J_{M} で表す。

例(diagonal matching field $\Lambda(I)=\mathrm{id}\ \big(\forall I\in\mathbf{I}_{r,n}\big)\big)$

$$M = \begin{pmatrix} 0 & \cdots & 0 & 0 & 0 \\ n-1 & \cdots & 2 & 1 & 0 \\ 2(n-1) & \cdots & 4 & 2 & 0 \\ \vdots & \cdots & \vdots & \vdots & \vdots \\ (r-1)n-1 & \cdots & 2(r-1) & r-1 & 0 \end{pmatrix}$$
とすると、

各 $I \in \mathbf{I}_{r,n}$ に対して, $\mathrm{in}_{M}(\det(X_{I}))$ は主対角になる。

🥩 1. Matching field ideal

例. r = 2, n = 5 (diagonal matching)

$$\Lambda(I) = id \ (\forall I \in \mathbf{I}_{2,5})$$

$$M = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 4 & 3 & 2 & 1 & 0 \end{pmatrix}$$

 $X_{\{1,2\}} = x_{11}x_{22} - x_{12}x_{21}, \quad X_{\{1,3\}} = x_{11}x_{23} - x_{13}x_{21}, \quad \dots$

このとき、 J_{Λ} は以下のような多項式で生成される:

$$P_{\{1,4\}}P_{\{2,3\}}-P_{\{1,3\}}P_{\{2,4\}}$$

$$P_{\{1,5\}}P_{\{2,3\}} - P_{\{1,3\}}P_{\{2,5\}}$$

$$P_{\{1,5\}}P_{\{2,4\}} - P_{\{1,4\}}P_{\{2,5\}}$$

$$P_{\{1,5\}}P_{\{3,4\}} - P_{\{1,4\}}P_{\{3,5\}}$$

$$P_{\{2,5\}}P_{\{3,4\}} - P_{\{2,4\}}P_{\{3,5\}}$$

1. Matching field ideal

定義. イデアル $I \subset K[y_1,...,y_m]$ と重み $w \in \mathbb{R}^m$ に対して, w に関するイニシャル退化がトーリック

 \Leftrightarrow $\mathrm{in}_{\mathbf{w}}(I)$ が2項式で生成される素イデアル $\mathrm{def}_{A \subset \mathbb{P}^{\mathrm{NL}} \cup A \to \mathbb{P}^{\mathrm{NL}}}$

$$\begin{split} I_{2,5} & \overbrace{P_{\{1,4\}}P_{\{2,3\}} - P_{\{1,3\}}P_{\{2,4\}}} + P_{\{1,2\}}P_{\{3,4\}} \\ & P_{\{1,5\}}P_{\{2,3\}} - P_{\{1,3\}}P_{\{2,5\}} + P_{\{1,2\}}P_{\{3,5\}} \\ & P_{\{1,5\}}P_{\{2,4\}} - P_{\{1,4\}}P_{\{2,5\}} + P_{\{1,2\}}P_{\{4,5\}} \\ & P_{\{1,5\}}P_{\{3,4\}} - P_{\{1,4\}}P_{\{3,5\}} + P_{\{1,3\}}P_{\{4,5\}} \\ & P_{\{2,5\}}P_{\{3,4\}} - P_{\{2,4\}}P_{\{3,5\}} + P_{\{2,3\}}P_{\{4,5\}} \end{split}$$

 J_{Λ} (Λ は diagonal m.f.)

🥩 2. 2-block diagonal(先行結果)

定義. $\mathbf{a} = (a_1, ..., a_s) \in \mathbb{Z}_{>0}^s$ が $\sum_{i=1}^s a_i = n$ をみたすとする。 k = 1, 2, ..., s (2001),

$$I_k = \{\alpha_{k-1} + 1, \alpha_{k-1} + 2, \dots, \alpha_k\} = [\alpha_k] \setminus [\alpha_{k-1}]$$

(ただし, $\alpha_0 = 0$, $\alpha_k = \sum_{i=1}^k a_i$) とおく。

このとき, a に付随する s-block diagonal matching field Λ_a を

ま、
$$m{a}$$
 に対題 $9 \otimes S$ -block diagonal matching held $\Lambda_a(I) = egin{cases} (1 & 2) & |I \cap I_q| = 1, q = \min\{t: I_t \cap I \neq \emptyset\} \\ & \text{id} \end{cases}$

で定義する。

🥩 2. 2-block diagonal(先行結果)

注意. s-block diagonal matching field Λ_a は coherent.

$$M = \begin{pmatrix} 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ \alpha_1 & \alpha_1 - 1 & \cdots & 1 & \alpha_2 & \cdots & \alpha_1 + 1 \\ n\beta & (n-1)\beta & \cdots & & & & & \\ \vdots & \vdots & & & & & \\ n\beta^{r-2} & (n-1)\beta^{r-2} & \cdots & & & & \\ \end{pmatrix} \begin{pmatrix} \cdots & \alpha_s & \cdots & \alpha_s + 2 & \alpha_s + 1 \\ \cdots & \alpha_s & \cdots & \alpha_s + 2 & \alpha_s + 2 \\ \cdots & \alpha_s & \cdots & \alpha_s + 2 & \alpha_s + 2 \\ \cdots & \alpha_s & \cdots & \alpha_s + 2 & \alpha_s + 2 \\ \cdots & \alpha_s & \cdots & \alpha_s + 2 & \alpha_s + 2 \\ \cdots & \alpha_s & \cdots & \alpha_s + 2 & \alpha_s + 2 \\ \cdots & \alpha_s & \cdots & \alpha_s + 2 & \alpha_s + 2 \\ \cdots & \alpha_s & \cdots & \alpha_s + 2 & \alpha_s + 2 \\ \cdots & \alpha_s & \cdots & \alpha_$$

例 $r = 3, n = 9, \mathbf{a} = (2,2,2,3)$

$$M = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2 & 1 & 4 & 3 & 6 & 5 & 9 & 8 & 7 \\ 900 & 800 & 700 & 600 & 500 & 400 & 300 & 200 & 100 \end{pmatrix}$$

🥩 2. 2-block diagonal(先行結果)

定理 (Mohammadi-Shaw 2019) $r \times n$ matching field Λ に対して Λ がトーリック退化を与える \Rightarrow Λ は "non-hexagonal" さらに, r=3 かつ J_{Λ} が 2 次生成ならば,

 Λ がトーリック退化を与える \Leftrightarrow Λ は "non-hexagonal"

定理(Mohammadi-Shaw 2019)3×n の任意の 2-block diagonal matching field Λ に対して, J_{Λ} は2次生成である。

定理(Clarke-Mohammadi 2020) $r \times n$ の任意の 2-block diagonal matching field Λ に対して, J_{Λ} は2次生成であり, Λ はトーリック退化を与える。

3. s-block diagonal (主結果)

定理(Higashitani-O. 2020) $\boldsymbol{a}=(a_1,...,a_s)\in\mathbb{Z}^s_{>0}$ $(s\geq 2)$ が

$$\sum_{i=1}^{s} a_{i} = n, \quad a_{i} \in \{1,2\} \ (1 < i < s) \quad \cdots \star$$

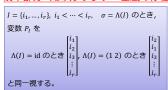
をみたすとすると, s-block diagonal matching field Λ_a に対して J_{Λ_a} は 2 次のグレブナー基底を持ち, Λ_a はトーリック退化を与える。

注意 s=2 の場合は、 \star は常に成立する。

- この定理は Clarke-Mohammadi の結果を完全に含んでいる。
- 2次生成よりも強い主張で,証明も先行研究より簡潔である。

3. s-block diagonal (主結果)

前半部分(2次グレブナー基底の存在)の証明の流れ



- 1. ある逆辞書式順序 < を準備する。
- 2. 2部グラフの edge ring の結果を使って, s=2 の場合に, < に関して 2 次GBを持つことを証明する。
- 3. 一般の s の場合に、グレブナー基底をなす 2 項式を列挙し、 上の 2 の結果も用いて、グレブナー基底であることを証明する。

13

3. s-block diagonal (主結果)

定義 G:有限単純2部グラフ

- ・ つまり, G の頂点集合が $V(G) = U \sqcup V$ と分割され, G の辺集合が $E(G) \subset U \times V$ をみたすとする。
- ・ $U=\{u_1,...,u_m\}, V=\{v_1,...,v_n\}$ のとき,環準同型 $\pi_G\colon K\big[x_{ij}\colon \{i,j\}\in E(G)\big]\to K\big[s_1,...,s_m,t_1,...,t_n\big], \qquad x_{ij}\mapsto s_i\,t_j$

について, $I_G := \text{Ker}(\pi_G)$ を G のトーリックイデアル,

 $K[G] \coloneqq \operatorname{Im}(\pi_G)$ を G の edge ring という。

14

3. s-block diagonal (主結果)

命題(Villarreal 1995) G: 2部グラフ

 I_G の任意の被約グレブナー基底は以下のような 2 項式からなる:

$$x_{i_1j_1}x_{i_2j_2}\cdots x_{i_qj_q}-x_{i_1j_q}x_{i_2j_1}\cdots x_{i_qj_{q-1}}$$

ただし, $(u_{i_1}, v_{j_1}, u_{i_2}, v_{j_2}, ..., u_{i_q}, v_{j_q})$ は G のサイクル。

命題(O.-Hibi 1999) 2部グラフ G に対して, 以下は同値

- I_G は2次生成,
- ② I_G は 2 次グレブナー基底を持つ,
- ③ G の長さが6以上のサイクルは弦を持つ。

3. s-block diagonal (主結果)

 Λ_M : 以下の重み行列に付随する $2 \times n$ coherent matching

$$M = \begin{pmatrix} 0 & 0 & \cdots & 0 & 0 \\ w_1 & w_2 & \cdots & w_{n-1} & w_n \end{pmatrix} \qquad w_i \neq w_j \text{ for } i \neq 0$$

 G_M :以下の頂点集合と辺集合を持つグラフ

$$V(G_M) = \{u_1, \ldots, u_n\} \sqcup \{v_1, \ldots, v_n\}$$

$$E(G_M) = \left\{ \{u_i, v_j\} : w_i > w_j \right\}$$

このとき, $J_{\Lambda_M} = I_{G_M}$ が成り立つ。

16

3. s-block diagonal (主結果)

また,

$$M_{\text{diag}} = \begin{pmatrix} 0 & 0 & \cdots & 0 & 0 \\ n & n-1 & \cdots & 2 & 1 \end{pmatrix}$$

とおけば, $M_{
m diag}$ は diagonal matching の重み行列であり,

- $J_{M_{ ext{diag}}}$ はある逆辞書式順序に関して2次グレブナー基底を持つ。
- G_M と G_{diag} はグラフとして同型なので, $J_M = J_{M_{ ext{diag}}}$

命題. $2 \times n$ の任意の coherent matching field Λ に対して, J_{Λ} はある逆辞書式順序に関して 2 次グレブナー基底を持つ。

3. s-block diagonal (主結果)

命題(HO) $2 \times n$ の s-matching field Λ_a が \star をみたすとき,

で定義される逆辞書式順序に関して

$$\left\{ \begin{bmatrix} i \\ \ell \end{bmatrix} \begin{bmatrix} k \\ j \end{bmatrix} - \begin{bmatrix} i \\ j \end{bmatrix} \begin{bmatrix} k \\ \ell \end{bmatrix} \in S : i < k \text{ and } j < \ell \right\}$$

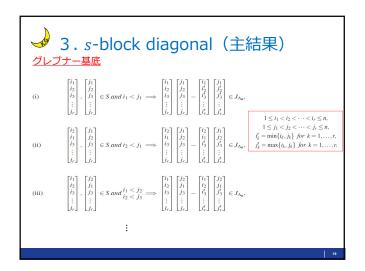
は J_{Λ_a} のグレブナー基底である。

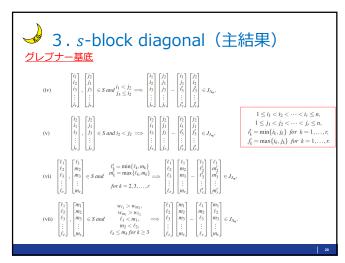
 $r \times n$ の場合に、以下で定義される逆辞書式順序を考える:

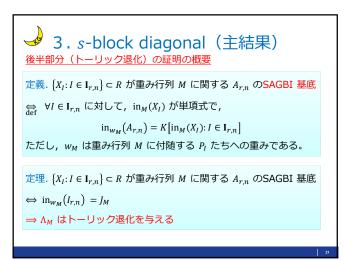
$$\begin{bmatrix} i_1 \\ \vdots \\ i_r \end{bmatrix} > \begin{bmatrix} j_1 \\ \vdots \\ j_r \end{bmatrix} \Longleftrightarrow i_k = j_k \text{ for } k = 1, \dots, t-1 \text{ and } i_t < j_t$$

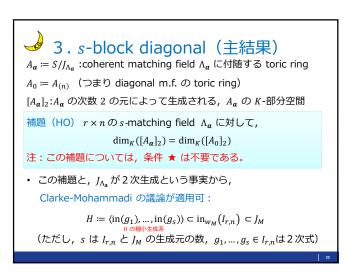
18

3









参老文献

- O. Clarke and F. Mohammadi, Toric degenerations of Grassmannians and Schubert varieties from matching field tableaux, *J. Algebra* 559 (2020), 646-678.
- A. Higashitani and H. Ohsugi, Quadratic Gröbner bases of block diagonal matching field ideals and toric degenerations of Grassmannians. arXiv:2010.07104.
- F. Mohammadi and K. Shaw, Toric degenerations of Grassmannians from matching fields, Algebraic Combinatorics 2 (2019) 1109-1124.
- B. Sturmfels and A. Zelevinsky, Maximal minors and their leading terms, Adv. Math. 98 (1993), 65-112.

ご清聴ありがとうございました!