Uniform positivity of F-signature and F-alpha invariants

Shunsuke Takagi

University of Tokyo

Summer Research Institute 2025 July 17, 2025

Joint work with Tatsuki Yamaguchi (Institute of Science Tokyo)

$oldsymbol{F}$ -signature

Let (A,\mathfrak{m}) be a d-dimensional F-finite local domain of char. p>0 with perfect reside field A/\mathfrak{m} .

Definition (Huneke-Leuschke'02)

$$s(A) := \lim_{e o \infty} rac{\max\{n \geq 0 \mid F^e_*A \cong A^n \oplus M_e\}}{p^{de}}$$
 F-signature

The limit alway exists (Tucker'12)

Basic properties:

- $0 \le s(A) \le 1$
- s(A) > 0 iff A is strongly F-regular (Aberbach-Leuschke'03)

A is SFR iff $\forall c \in A \setminus 0, \exists e \in \mathbb{N} \text{ s.t. } A \to F^e_*A \xrightarrow{\cdot F^e_*c} F^e_*A$ splits as an A-module hom.

Reduction modulo p

Throughout this talk,

$$R := (\mathbb{C}[X_1, \dots, X_n]/(f_1, \dots, f_r))_{(X_1, \dots, X_n)},$$

where $f_i \in \mathbb{Z}[X_1,\ldots,X_n]$.

$$\mathbb{Z}[X_1,\ldots,X_n] woheadrightarrow\mathbb{F}_p[X_1,\ldots,X_n]\quad f_i\mapsto f_i mod p$$

$$R mod p := \left(\mathbb{F}_p[X_1,\ldots,X_n]/(f_i mod p)\right)_{(X_1,\ldots,X_n)}$$

Conjecture (cf. Schwede–Smith'10)

R mod p is SFR for $orall p \gg 0 \iff X := \operatorname{Spec} R$ is of klt type

X is of klt type iff $\exists \Delta \geq 0$ \mathbb{Q} -divisor on X s.t. $K_X + \Delta$ is \mathbb{Q} -Cartier and (X,Δ) is klt.

 (\Leftarrow) is known to hold (T.'04).

 (\Rightarrow) is known if R is \mathbb{Q} -Gorenstein (Hara–Watanabe'02, Smith'97).

$$s(R) := \liminf_{p o \infty} s(R mod p)$$
 F -signature in equal char. 0

Note:

- We don't know whether the limit exists.
- ightharpoonup s(R) = 1 iff R is regular.

Conjecture (Carvajal-Rojas-Schwede-Tucker'18)

If $X = \operatorname{Spec} R$ is of klt type, then s(R) > 0.

Conj SS (\Leftarrow) implies if X is of klt type, then $s(R \bmod p) > 0$ for $\forall p \gg 0$. However, the limit $\liminf_{p \to \infty} s(R \bmod p)$ may be zero!

Known cases

- ightharpoonup dim R=2 (2-dim. klt type sing. are finite quotient sing.)
- ightharpoonup R is (a localization of) a toric ring (Singh'05)
- R is a diagonal hypersurface (Caminata-Shideler-Tucker-Zerman'24)

Main Theorem

A ring extension $R\hookrightarrow S$ is pure iff $\forall R$ -module M, $M\to M\otimes_R S$ is injective. (e.g., R is a direct summand of S)

Theorem (T.-Yamaguchi'25)

Let $R \hookrightarrow S$ be a pure local \mathbb{C} -algebra hom. between local ring ess. of finite type over \mathbb{C} . If $\operatorname{Spec} S$ is of klt type and s(S) > 0, then s(R) > 0.

Remark

- ▶ If Spec S is of klt type, then so is Spec R (Zhuang'23).
- ➤ Schoutens'05 proved the Q-Gorenstein case using different methods (ultraproduct methods).
- Schoutens+Zhuang \Rightarrow the pair case (T.-Yamaguchi'24) i.e., If (Spec S, Δ_S) is of klt type, then so is (Spec R, Δ_R) where Δ_S is the cycle-theoretic pullback of Δ_R

A local ring (R,\mathfrak{m}) essentially of finite type over \mathbb{C} is a reductive quotient singularity if the completion $\widehat{R}\cong \mathbb{C}[[X_1,\ldots,X_n]]^G$, where G is a reductive group acting on $\mathbb{C}[[X_1,\ldots,X_n]]$.

Corollary 1

Conj CRST holds for reductive quotient singularities.

If $X = \operatorname{Spec} R$ is of klt type, by BCHM,

$$ig(igoplus_{i\geq 0} \mathcal{O}_X(-iK_X)ig)_{\mathcal{M}}, \quad ext{where } \mathcal{M} = igoplus_{i\geq 1} \mathcal{O}_X(-iK_X)$$

is essentially of finite type over $\mathbb C$ and Gorenstein. Since $\mathcal O_X=R$ is its pure subring, we have the following corollary.

Corollary 2

Conj CRST can be reduced to the case when R is Gorenstein.

Local F-alpha invariants

Key ingredients in the proof of Main Thm

- A local version of Pande's F-alpha invariants
- ▶ Ultra *F*-regularity originally introduced by Schoutens

Let (A, \mathfrak{m}) be an F-finite local domain.

Definition (T.-Yamaguchi'25, cf. Pande'23)

$$lpha_F(A) = \inf_{0
eq f \in \mathfrak{m}} \operatorname{fpt}(f) \overline{\operatorname{ord}}_{\mathfrak{m}}(f)$$
 local $\emph{\emph{F}}$ -alpha invariant

$$egin{aligned} \overline{\operatorname{ord}}_{\mathfrak{m}}(f) &:= \max\{n \geq 0 \mid f \in \overline{\mathfrak{m}^n}\} \ \operatorname{fpt}(f) &:= \sup\{t \geq 0 \mid (A, t \cdot \operatorname{div}(f)) \text{ is SFR}\} \ &= \sup\{t \geq 0 \mid orall c \in A \setminus \{0\}, \exists e \in \mathbb{N} \text{ s.t. } A o F^e_*A \ & x \mapsto F^e_*(cf^{\lceil t(p^e-1)
ceil} x^{p^e}) \text{ splits}\} \end{aligned}$$

$$R=\left(\mathbb{C}[X_1,\ldots,X_n]/(f_1,\ldots,f_r)\right)_{(X_1,\ldots,X_n)}$$

$$lpha_F(R) := \liminf_{p o \infty} lpha_F(R mod p)$$

Basic properties:

- $0 < \alpha_F(R) < 1$.
- $\alpha_F(R) = 1$ if R is regular.

e.g.(Pande'23)

$$\overline{X} = (x^3 + y^3 + z^3 + w^3 = 0) \subseteq \mathbb{P}^3$$
 and

R is the localization of the homogeneous coordinate ring

$$\Rightarrow lpha_F(R) = 1/2$$
 but $lpha(X) = 2/3$.

Proposition (cf. Pande'23)

$$s(R) > 0 \iff \alpha_F(R) > 0$$

Ultraproducts

Let $\mathcal P$ be the set of all primes. Let $(A_p)_{p\in\mathcal P}$ be a family of rings.

Definition (ultraproducts)

$$\displaystyle \operatorname{ulim}_p A_p := \prod_{p \in \mathcal{P}} A_p / \sim$$

where $(a_p)_{p\in\mathcal{P}}\sim (b_p)_{p\in\mathcal{P}}$ iff $a_p=b_p$ for "almost all p".

 $\underset{p}{\text{ulim}_p} A_p$ is a ring. If A_p is an (algebraically closed) field for almost all p, then so is $\underset{p}{\text{ulim}_p} A_p$.

Proposition

 $\exists \ \operatorname{non-canonical} \ \operatorname{isomorphism} \ \ \underset{p}{\operatorname{ulim}} \ \overline{\mathbb{F}_p} \cong \mathbb{C}$

From now on, we fix this isom.

$$R = \left(\mathbb{C}[X_1, \dots, X_n]/(f_1, \dots, f_r)\right)_{(X_1, \dots, X_n)}$$

We've fixed the isom. $\mathbb{C} \cong \operatorname{ulim}_p \overline{\mathbb{F}_p}$.

 $R \leadsto R_p$ local ring essentially of finite type over $\overline{\mathbb{F}_p}$

Similarly, $x \in R \leadsto x_p \in R_p$

Note:

- lacktriangledown If $m{R}$ is regular (resp. normal, CM, Gorenstein), so is $m{R}_p$ for almost all $m{p}$.
- ② R_p is the "base change" of R mod p over $\overline{\mathbb{F}_p}$ for almost all p.

 $R_{\infty} := \operatorname{ulim}_p R_p$ (non-Noetherian) \mathbb{C} -algebra

Definition (Ultra-Frobenii)

$$\epsilon = \operatorname{ulim}_p e_p \in {}^*\mathbb{N} := \operatorname{ulim}_p \mathbb{N}$$

$$F^{\epsilon}: R \to R_{\infty} \quad x \mapsto \lim_{p} x_{p}^{p^{e_{p}}}$$

Ultra- $oldsymbol{F}$ -regularity

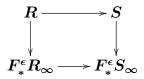
Definition (T.-Yamaguchi'25, cf. Schoutens'05)

$$0
eq f = \operatorname{ulim}_p f_p \in R_\infty, \ t = \operatorname{ulim}_p t_p \in {}^*\mathbb{R}_{\geq 0} := \operatorname{ulim}_p \mathbb{R}_{\geq 0} \ (R, f^t) \ \text{is ultra-} F$$
-regular iff $\forall \operatorname{ulim}_p c_p \in R_\infty, \exists \epsilon = \operatorname{ulim}_p e_p \in {}^*\mathbb{N}$

$$R o F_*^\epsilon R_\infty$$
 $x\mapsto F_*^\epsilon(\lim_p c_p f_p^{\lceil t_p(p^{e_p}-1)
ceil} x_p^{p^{e_p}})$ is pure.

Advantages of UFR

lacksquare If $R\hookrightarrow S$ is pure and (S,f^t) is UFR, then (R,f^t) is UFR.



② UFR ensures SFR of pairs for almost all p at once.

Proposition

Suppose $\bigoplus_{i\geq 0} \mathcal{O}_X(-iK_X)$ is finitely generated $(X=\operatorname{Spec} R)$. (R,f^t) is UFR $\iff (R,t_p\cdot\operatorname{div}(f_p))$ is SFR for almost all p.

 $R mod p = (\mathbb{F}_p[X_1,\ldots,X_n]/(f_i mod p))_{(X_1,\ldots,X_n)}$ mmod p is the maximal ideal of R mod p.

Main Lemma

Let $R \hookrightarrow S$ be a pure local \mathbb{C} -algebra hom. between klt type sing. Suppose f_p is any nonzero element of $\mathfrak{m} \mod p$ for all p. Then

$$\operatorname{fpt}(R mod p, f_p) \geq \operatorname{fpt}(S mod p, f_p)$$

for all but finitely many p.

Note: Purity is not preserved under reduction modulo p, i.e., $R \mod p \hookrightarrow S \mod p$ is not pure in general.

Global F-alpha invarinats

Let Z be a normal projective variety over a perfect field of char. p, $B\geq 0$ be a $\mathbb Q$ -divisor and Γ be an ample $\mathbb Q$ -divisor on Z.

Definition (Schwede–Smith'10)

(Z,B) is globally F-regular iff $\forall D \geq 0$ Cartier divisor on Z, $\exists e \in \mathbb{N} \text{ s.t. } \mathcal{O}_Z o F^e_* \mathcal{O}_Z o F^e_* \mathcal{O}_Z (\lceil (p^e-1)B \rceil + D) \text{ splits.}$

Definition (Global F-split thresholds, F-alpha invariants)

Suppose (Z,B) is a GFR pair and $D\geq 0$ is a \mathbb{Q} -divisor on Z .

- $oldsymbol{\circ} lpha_F((Z,B);\Gamma) := \inf_{0 \leq E \sim_0 \Gamma} \operatorname{gfst}((Z,B);E)$

Note: fpt \neq gfst. If $D=(x^3+y^3+z^3+w^3=0)\subseteq \mathbb{P}^3$ and p=2, then fpt(D)=1 but gfst(D)=1/2.

Let (X, Δ) be a log Fano pair over \mathbb{C} , i.e., X is projective and normal, $\Gamma := -(K_X + \Delta)$ is ample \mathbb{Q} -Cartier and (X, Δ) is klt.

Proposition (Schwede-Smith'10)

The pair $(X \bmod p, \Delta \bmod p)$, in particular $X \bmod p$, is GFR for $\forall p \gg 0$.

$$lpha_F((X,\Delta);\Gamma) := \liminf_{p o \infty} lpha_F((X mod p, \Delta mod p);\Gamma mod p)$$

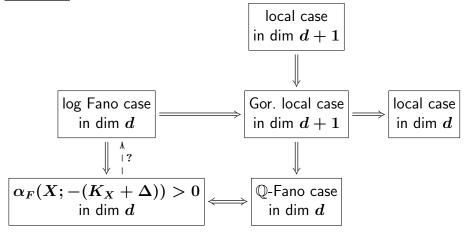
We define $\alpha_F(X; -\Gamma)$ similarly.

A projective variety Y is \mathbb{Q} -Fano iff (Y,0) is log Fano.

Theorem (T.–Yamaguchi'25)

- If $\alpha_F((X, \Delta); -(K_X + \Delta)) > 0$ for all log Fano pairs (X, Δ) over \mathbb{C} , then Conj CRST holds.
- ② If $\alpha_F(Y; -K_Y) > 0$ for all \mathbb{Q} -Fano varieties Y over \mathbb{C} , then $\alpha_F(X; -(K_X + \Delta)) > 0$ for all log Fano pairs (X, Δ) over \mathbb{C} .

Summary:



A key difficulty in $(--\rightarrow)$ is that the F-split region

$$\operatorname{cl}(\{(s,t)\in\mathbb{R}^2_{\geq 0}\mid (Z,sB+tD) ext{ is GFR}\})$$

is not a polytope (unlike lc region).