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N, = #,4RP? : a closed conn. non-ori. surface of genus g > 1.

M(Ny) := Diff(Ny)/isotopy: the mapping class group of Ny, where
Diff(Ny) := {f : Ny = N, diffeo.}.

Put Zs :=7Z/27.
I'a(Ng) :=ker(M(Ng) — Aut Hi(Ngy;Z3))

: the level 2 mapping class group of N,.
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N, = #,4RP? : a closed conn. non-ori. surface of genus g > 1.

M(Ny) := Diff(Ny)/isotopy: the mapping class group of Ny, where
Diff(Ny) := {f : Ny = N, diffeo.}.

Put Zs :=7Z/27.
I'a(Ng) :=ker(M(Ng) — Aut Hi(Ngy;Z3))

: the level 2 mapping class group of N,.

Theorem (Hirose-Sato (2014))

Forg >4,
o I'y(Ny) is generated by (4) + (3) elements.

o Hi(To(N,);Z) = 2+ ®),

~» They used the mod 2 Johnson homomorphism to determine the
abelianization of I'y(Ng)!!
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Definition

c: a simple closed curve on N.
o c: one-sided <5 a neighborhood of ¢ in N, is a Mébius band.

. def . . .
o c: two-sided <= a neighborhood of ¢ in Ny is an annulus.
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Definition
c: a simple closed curve on N.

o c: one-sided <5 a neighborhood of ¢ in N, is a Mébius band.

. def . . .
o c: two-sided <= a neighborhood of ¢ in Ny is an annulus.

For a two-sided simple closed curve c on N;, we can define the Dehn twist
t !

We also need to take an orientation of the neighborhood of ¢ to define ..
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T(Ng) := ({tc | c: a two-sided simple closed curve on Ng}) << M(N,)
. the twist subgroup of M(Ny).

Theorem (Lickorish (1965))
T(Ng) C M(Ny): an index 2 subgroup.
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T(Ng) := ({tc | c: a two-sided simple closed curve on Ng}) << M(N,)
. the twist subgroup of M(Ny).

Theorem (Lickorish (1965))
T(Ng) C M(Ny): an index 2 subgroup.

To(Ng) :=T2(Ng) NT(Ng): the level 2 twist subgroup of M(Ny).

o To(N2) = T2(MNn) = {1}.
o T2(N3) 2 ker(SL(2;Z) — SL(2;Za)).
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T(Ng) := ({tc | c: a two-sided simple closed curve on Ng}) << M(N,)
. the twist subgroup of M(Ny).

Theorem (Lickorish (1965))
T(Ng) C M(Ny): an index 2 subgroup.

To(Ng) :=T2(Ng) NT(Ng): the level 2 twist subgroup of M(Ny).

o To(N2) = T2(MNn) = {1}.
o T2(N3) 2 ker(SL(2;Z) — SL(2;Za)).

Today's talk

e A finite generating set for T2(Ny),

@ The first homology group of 73(Vy).
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Crosscap pushing map
p: a one-sided s.c.c. on Ny, a: as.c.c. on Ny w/ [pNal =1,
Yia:

1
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Crosscap pushing map
p: a one-sided s.c.c. on Ny, a: as.c.c. on Ny w/ [pNal =1,
Yia:
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Crosscap pushing map
p: a one-sided s.c.c. on Ny, a: as.c.c. on Ny w/ [pNal =1,
Yia:

%
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Qi) ig,..in ¢ the s.c.c. on Ny for distinct iy, i9,...,i, € {1,...,9},
Brij: thes.cc.on Ny fork <i<j, j<k<i,ori<j<k.

n:jzkzl = tai

Gkl
Yij =Y 0, the Y-homeomorphism,
ki = Yakﬂi,j,kv

bk;lﬂj = Yoy B i

k<i<j ﬁk::i.j
; .
® Tk € Ta(Ng).
@ Qkiij, bk;i,j € 7—2(Ng) >
i j
o Vi; € I'a(Ny), but Vi ; & To(Ny). j<];f<i
* Y4 <7 G-
s S . ¥ i
i<j<
-@r® L
i j A
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Theorem (R. Kobayashi-O.)

For g > 3, T2(INy) is generated by the following elements:
(1) @ksiit1, Oksiit1, Qhh—1k+1, Oksh—1 b1 1<k <g 1<i<g—1,
{ 7& k— 17 k),
(i) Y2, 2<j<g)
(iii) TE, oy (wheng>4,2<j<k<Il<g)

Outline of the proof
Pa(Ng)/Ta(Ng) = T2(Ng)/(T2(Ng) NT(Ng)) = (T2(Ng) T (Ng))/T(Ng)
= M(Ng)/T(Ng)
= Zo[Y1,2).
We use the Reidemeister-Schreier method for 72(Ng) < I'a(Ng) I O
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Theorem (R. Kobayashi-O.)

For g > 3, T2(INy) is generated by the following elements:
(1) @ksiit1, Oksiit1, Qhh—1k+1, Oksh—1 b1 1<k <g 1<i<g—1,
{ 7é k— 17 k),
(i) Y7 (2<5<g)
(iii) TE, oy (wheng>4,2<j<k<Il<g)

Outline of the proof

Pa(Ng)/Ta(Ng) = T2(Ng)/(T2(Ng) NT(Ng)) = (T2(Ng) T (Ng))/T(Ng)
= M(Ng)/T(Ng)
= Zo[Y1,2).

We use the Reidemeister-Schreier method for 72(Ng) < I'a(Ng) I O

Theorem (R. Kobayashi-O.)
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o |{generators of 72(N3) in the thm.}| = dimg, H1(72(N3);Z).
@ For g > 5,
|{generators of T2(NNg) in the thm.}| — dimgz, Hi(72(Ny); Z)
= 5(9° +69* =79 —12) = ((§) + (§) - 1
=g2—g—1.
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o |{generators of 72(N3) in the thm.}| = dimg, H1(72(N3);Z).
@ For g > 5,
|{generators of T2(Ng) in the thm.}| — dimz, H1(72(Ny); Z)
= 5(9° +69* =79 —12) = ((§) + (§) - 1
= gF —g—1,

Key theorem for the abelianization:

Theorem (R. Kobayashi-O.)

@ Forg=3o0rg>5,
T2(Ng) is normally generated by ai.23 in M(Ny).

@ T2(Ny4) is normally generated by ay.2 3 and T12727374 in M(Ny).
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The abelianization of T3(N,) for g > 5

Put Hy(T2(Ny)) := H1(T2(Ny); Z).
We have the exact sequence

1— ’TZ(Ng) — FQ(Ng) — ZQ[YLQ] — 0.
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The abelianization of T3(N,) for g > 5

Put Hy(T2(Ny)) := H1(T2(Ny); Z).
We have the exact sequence

1 — ’TZ(Ng) — FQ(Ng) — ZQ[YLQ] — 0.

By the five term exact sequence, we have the exact sequence
Hy(Z2) — Hi(T2(Ng))z, — H1(T2(Ng)) — H1(Z2) — O,

where

Hy(T2(Ng))z, = Hi(Ta(Ng))/(f -m —m | m € Hi(T2(Ny)), f € Z2).
: the co-invariant part, where

Zo =T5(N,)/To(Ny) ~ Hi(T2(Ny)) = T2(N,)?°: conjugations.

Genki Omori (Tokyo Tech.) Generating the level 2 twist subgroup May 22, 2017 9/12



The abelianization of T3(N,) for g > 5

Put Hy(T2(Ny)) := H1(T2(Ny); Z).
We have the exact sequence

1— ’TZ(Ng) — FQ(Ng) — ZQ[YLQ] — 0.
By the five term exact sequence, we have the exact sequence

0— Hl(’B(Ng))ZQ — Hl(FQ(Ng)) — Hl(Zg) — 0,

where

Hy(T2(Ng))z, = Hi(Ta(Ng))/(f -m —m | m € Hi(T2(Ny)), f € Z2).
: the co-invariant part, where

Zo =T2(N,)/Ta(Ny) ~ Hi(T2(N,)) = T2(N,)?: conjugations.
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The abelianization of T3(N,) for g > 5

Put Hy(T2(Ny)) := H1(T2(Ny); Z).
We have the exact sequence

1— ’TZ(Ng) — FQ(Ng) — ZQ[YLQ] — 0.
By the five term exact sequence, we have the exact sequence

00— Hl(E(Ng))ZQ — Hl(FQ(Ng)) — Zg — 0,

where

Hy(T2(Ng))z, = Hi(Ta(Ng))/(f -m —m | m € Hi(T2(Ny)), f € Z2).
: the co-invariant part, where

Zo =T2(N,)/T2(Ny) ~ Hi(T2(N,)) = T2(N,)?: conjugations.
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The abelianization of T3(N,) for g > 5

Put Hy(T2(Ny)) := H1(T2(Ny); Z).
We have the exact sequence

1— ’TZ(Ng) — FQ(Ng) — ZQ[YLQ] — 0.

By the five term exact sequence, we have the exact sequence

0 — Hi(T2(Ng))z, — zgg”(g) — Zoy — 0,

where

Hy(T2(Ng))z, = Hi(Ta(Ng))/(f -m —m | m € Hi(T2(Ny)), f € Za).

: the co-invariant part, where

Zo = T'9(Ny)/Ta(Ny) ~ Hi(T2(N,)) = T2(Ny)2: conjugations.
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The abelianization of T3(N,) for g > 5

Put Hy(T2(Ny)) := H1(T2(Ny); Z).
We have the exact sequence

1— ’TZ(Ng) — FQ(Ng) — ZQ[YL2] — 0.

By the five term exact sequence, we have the exact sequence

0 — Hi(T2(Ng))z, — Z§§)+<g) — Zoy — 0,

where

H1\(T2(Ng))z, = Hi(T2(Ng))/{f -m —m | m € HI(T2(Ny)), [ € Za).
: the co-invariant part, where

Zo = T'9(Ny)/Ta(Ny) ~ Hi(T2(N,)) = T2(Ny)2: conjugations.

Proposition (by using the normal generating set for 75(1V,))
For g > 5, the action Zo ~ H1(T2(Ng)) is trivial.
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The abelianization of T3(N,) for g > 5

Put Hy(T2(Ny)) := H1(T2(Ny); Z).
We have the exact sequence

1— ’TZ(Ng) — FQ(Ng) — ZQ[YL2] — 0.

By the five term exact sequence, we have the exact sequence

0 — Hi(T2(Ng)) — Z§§)+® — Zos — 0,

where

H\(T2(Ng))z, = Hi(T2(Ng))/{f -m —m | m € HI(T2(Ny)), [ € Za).
: the co-invariant part, where

Zo =T'9(Ny)/Ta(Ny) ~ Hi(T2(N,)) = T2(Ny)2: conjugations.

Proposition (by using the normal generating set for 75(1V,))
For g > 5, the action Zo ~ H1(T2(Ng)) is trivial.

Genki Omori (Tokyo Tech.) Generating the level 2 twist subgroup May 22, 2017 9/12



An observation for the abelianization of 75(V,)

Remark (by a private communication with B. Szepietowski)

@ The conjugate action Zz ~ Hi(T2(Ny)) is not trivial.
o [T7534] € Hi(T2(N4)) has infinite order.

Proposition

G: the subgroup of T2(Ng4) which is normally generated by a1.23 in
M(Ng).
For g > 4, G is generated by involutions.

Theorem (R. Kobayashi-O. (again))

@ Forg=3org>5, T2(Ny) is normally generated by ai.23 in M(N).
@ T2(Ny4) is normally generated by ai.2 3 and T12,2’3,4 in M(Ny).

~> T2(Ny) is not normally generated by aj,23 in M(Ny).
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Hirose-Sato defined the mod 2 Johnson homomorphism
71 : To(INg*) — A* for some Zs-vector space A*.

Theorem (R. Kobayashi-O. (again))

T2(N4) is generated by the following elements:
(') 41,23, 1;3,4, 42;1,3, A2:3.4, A3:1,2, A3;2,4, A4;1,2, 04;2,3,
b1,2,3, b1;3,4, b2;1,3, b2:34, b3;12, b3:2.4, ba:12, a2 1, Yfg, Yfg, Y1274,
(i) TPoz4-
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Hirose-Sato defined the mod 2 Johnson homomorphism
71 : I'9(INg) — A for some Zy-vector space A.

Theorem (R. Kobayashi-O. (again))

T2(N4) is generated by the following elements:
(') 41,23, 1;3,4, 42;1,3, A2:3.4, A3:1,2, A3;2,4, A4;1,2, 04;2,3,
b1,2,3, b1;3,4, b2;1,3, b2:34, b3;12, b3:2.4, ba:12, a2 1, Yfg, Yfg, Y1274,
(i) TPoz4-
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Hirose-Sato defined the mod 2 Johnson homomorphism
71 : I'9(INg) — A for some Zy-vector space A.

Theorem (R. Kobayashi-O. (again))

T2(N4) is generated by the following 9 elements:
(i) @123, a1,34, a2;13, az12, a3,24,
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Hirose-Sato defined the mod 2 Johnson homomorphism
71 : I'9(INg) — A for some Zy-vector space A.

Theorem (R. Kobayashi-O. (again))

T2(N4) is generated by the following 9 elements:
(i) a123, a1;34, a2,1,3, @312, 3,24,
Yoo Yii Yia,
(i) TP254-

Observations: for g = 4,
o [T7534] € Hi(T2(N4)) has infinite order,
® [aki ;| € Hi(T2(N4)) has order n < 2 (" G is generated by
involutions),
° Y2 € G (= (V7] € Hi(T2(Ny)) also has order n < 2),
o 7i(a;, ;) # 0 and 7"1(}/%) =0in A,

~ 8>3d > 1st. Hi(T2(Ny)) =2 Z3 & Z[TEy 5 ).
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Thank you for your attention !
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