Torelli group versus invariants of homology spheres and beyond

Shigeyuki MORITA

based on jw/w Takuya SAKASAI and Masaaki SUZUKI

May 23, 2017

Contents

- Homology 3-spheres and the Torelli group
- Casson invariant and the first MMM class
- Oifference between two filtrations of the Torelli group
- Finite type invariants and the Torelli group
- Results
- Extending the above picture in a broader context
- Prospect

Homology 3-spheres and the Torelli group (1)

 $\mathfrak{M}(3) = \{ \text{closed oriented } 3\text{-manifold} \}/\text{ori. pres. diffeo.} \\ \cup$

 $\mathfrak{H}(3) = \{ \text{closed oriented homology } 3\text{-sphere} \}/\text{ori. pres. diffeo.}$

Heegaard decomposition:

$$\mathfrak{M}(3)\ni^\forall [M],\ M=H_g\cup_\varphi-H_g\quad (H_g: \mathrm{handlebody}, \varphi\in\mathcal{M}_g)$$

$$\mathcal{M}_g: \mathrm{mapping\ class\ group}$$

$$S^3 = H_g \cup_{\iota_g} -H_g \quad (\iota_g \in \mathcal{M}_g : 90^{\circ}\text{-rotation on each handle})$$

$$\Rightarrow \mathcal{M}_g \ni [\varphi] \longmapsto [M_{\varphi} = H_g \cup_{\varphi} - H_g] \in \mathfrak{M}(3)$$

Homology 3-spheres and the Torelli group (2)

Theorem (Reidemeister-Singer)

$$\left(\coprod_{g}\mathcal{M}_{g}\right)/R.S.$$
 stabilization = $\mathfrak{M}(3)$

restriction to the Torelli group:

$$\mathcal{I}_g = \operatorname{Ker}(\mathcal{M}_g \to \operatorname{Sp}(2g, \mathbb{Z}))$$

Proposition

$$\lim_{g \to \infty} \mathcal{I}_g / \sim = \mathfrak{H}(3)$$
$$(\mathcal{I}_q \ni \varphi \longmapsto W_{\varphi} = H_q \cup_{\iota_q \varphi} -H_q \in \mathfrak{H}(3))$$

Homology 3-spheres and the Torelli group (3)

two filtrations of \mathcal{I}_g :

$$\begin{split} \mathcal{I}_g &= \mathcal{M}_g(1) \supset \mathcal{M}_g(2) \supset \cdots \text{ (Johnson filtration)} \\ \mathcal{I}_g &= \mathcal{I}_g(1) \supset \mathcal{I}_g(2) = [\mathcal{I}_g(1), \mathcal{I}_g(1)] \supset \cdots \text{ (lower central series)} \\ \mathcal{I}_g(k) \subset \mathcal{M}_g(k) \text{ for any } k \\ \mathcal{M}_g(2) &= \operatorname{Ker}(\tau_1 : \mathcal{I}_g \overset{\text{first Johnson hom.}}{\longrightarrow} \wedge^3 H/H) \text{ } (H = H_1(\Sigma_g; \mathbb{Z})) \\ \mathcal{M}_g(k+1) &= \operatorname{Ker}(\tau_k : \mathcal{M}_g(k) \overset{\text{Johnson hom.}}{\longrightarrow} \mathfrak{h}_g(k)) \end{split}$$

Theorem (Johnson)

$$\mathcal{I}_g(2) \overset{\textit{finite index}}{\subset} \mathcal{M}_g(2) = \mathcal{K}_g = \langle \textit{Dehn twists on BSCC} \rangle$$

$$\mathcal{I}_g(1)/\mathcal{I}_g(2) = H_1(\mathcal{I}_g) \cong \wedge^3 H/H \oplus 2\text{-torsion}$$

Casson invariant and the first MMM class (1)

Casson invariant (1985):

$$\lambda:\mathfrak{H}(3)\to\mathbb{Z}$$

- (i) $\lambda \equiv \text{ Rohlin homomorphism}: \mathfrak{H}(3) \to \mathbb{Z}/2 \text{ (mod 2)}$
- (ii) $\lambda = \frac{1}{2}$ "alg. number" of {irred. rep. : $\pi_1 W \to \mathrm{SU}(2)$ }/conj.
- (iii) $\lambda(-W) = -\lambda(W)$, additive w.r.t. connected sum

(iv)
$$W \supset K$$
 (knot) $\Rightarrow \lambda(W_{1/n}(K)) = \lambda(W) + n\frac{1}{2}\bar{\Delta}_K''(1)$

Extensions by Walker (to rational homology 3-spheres) and Lescop (to all 3-manifolds)

Casson invariant and the first MMM class (2)

Consider the mapping

$$\lambda^*: \mathcal{I}_g \to \mathbb{Z} \quad \text{defined by } \lambda^*(\varphi) = \lambda(W_{\varphi})$$

NOT a homomorphism, but its restriction to \mathcal{K}_g

$$\lambda^*:\mathcal{K}_g\to\mathbb{Z}$$

can be shown to be a homomorphism!

What is it?

Answer: secondary class associated to the fact: the first

MMM-class vanishes in the Torelli group $e_1 = 0 \in H^2(\mathcal{I}_g; \mathbb{Q})$

Casson invariant and the first MMM class (3)

$$e_1 \in H^2(\mathcal{M}_g; \mathbb{Z})$$

geometric meaning: signature of surface bundles over surfaces $\Rightarrow e_1=0\in H^2(\mathcal{I}_g;\mathbb{Q}) \text{ because signature of any fiber bundle}$ $F\to E\to B \text{ vanishes if } \pi_1B \text{ acts on } H_*(F;\mathbb{Q}) \text{ trivially}$ (Chern-Hirzebruch-Serre)

There are two canonical cocycles representing e_1 :

pull back of
$$-3c_1 \in Z^2(\mathrm{Sp}(2g,\mathbb{Z});\mathbb{Q})$$

image of $\wedge^2 (\wedge^3 H_\mathbb{Q}/H_\mathbb{Q})^{\mathrm{Sp}} \cong \mathbb{Q} \to \wedge^2 \tilde{k} \in Z^2(\mathcal{M}_g;\mathbb{Q})$
under $(\tilde{k},\rho_0): \mathcal{M}_g \to \wedge^3 H_\mathbb{Q}/H_\mathbb{Q} \rtimes \mathrm{Sp}(2g,\mathbb{Z})$

Casson invariant and the first MMM class (4)

$$\Rightarrow 3c_1 + \wedge^2 \tilde{k} = d^{\exists} u_1, \quad u_1 \in C^1(\mathcal{M}_g; \mathbb{Q})$$

$$\begin{cases} c_1|_{\mathcal{I}_g} &= 0\\ \wedge^2 \tilde{k}|_{\mathcal{K}_g} &= 0 \end{cases} \Rightarrow d(u_1|_{\mathcal{K}_g}) = 0$$

Theorem (M.)

(i)
$$H^1(\mathcal{K}_g;\mathbb{Q})^{\mathcal{M}_g}\cong\mathbb{Q}\ (g\geq 2)$$
 generated by $d_1:=[u_1|_{\mathcal{K}_g}]$
(ii) $\lambda^*=rac{1}{24}d_1+ar{ au}_2:\ \mathcal{K}_g\to\mathbb{Q}$

$$\bar{\tau}_2 = \mathcal{K}_q \overset{\tau_2}{\to} \mathfrak{h}_q(2) \overset{\text{certain quotient}}{\to} \mathbb{Q}$$

 $\lambda^* = \frac{1}{24}d_1$ on $\mathcal{M}_g(3) \Rightarrow d_1$ is the core of the Casson invariant

Difference between two filtrations of the Torelli group (1)

(recall) two filtrations of \mathcal{I}_g :

$$\begin{split} \mathcal{I}_g &= \mathcal{M}_g(1) \supset \mathcal{M}_g(2) = \mathcal{K}_g \supset \mathcal{M}_g(3) \cdots \text{ (Johnson filtration)} \\ \mathcal{I}_g &= \mathcal{I}_g(1) \supset \mathcal{I}_g(2) = [\mathcal{I}_g(1), \mathcal{I}_g(1)] \supset \mathcal{I}_g(3) \cdots \text{ (lower central series)} \\ \mathcal{I}_g(k) \subset \mathcal{M}_g(k) \text{ for any } k, \qquad \text{Johnson showed} \\ \mathcal{M}_g(2)/\mathcal{I}_g(2) \otimes \mathbb{Q} &= 0 \text{ and asked } [\mathcal{M}_g(k): \mathcal{I}_g(k)] < \infty ? \end{split}$$

Theorem (M. 1988)

The index of
$$\mathcal{I}_g(3) = [[\mathcal{I}_g, \mathcal{I}_g], \mathcal{I}_g]$$
 in $\mathcal{M}_g(3)$ is infinite

This was proved by showing that

$$d_1 \neq 0$$
 on $\mathcal{M}_q(3)$ whereas $d_1 = 0$ on $\mathcal{I}_q(3)$, alternatively:

Difference between two filtrations of the Torelli group (2)

under
$$au_1: \mathcal{I}_g \to \wedge^3 H/H \overset{\text{over } \mathbb{Q}}{\cong} (\mathcal{I}_g/\mathcal{I}_g(2)) \otimes \mathbb{Q}$$

 $au_1^*: H^2(\wedge^3 H_{\mathbb{Q}}/H_{\mathbb{Q}})^{\operatorname{Sp}} \cong \mathbb{Q} \to H^2(\mathcal{I}_g; \mathbb{Q})$

is trivial because the image is \emph{e}_1 which vanishes on $\mathcal{I}_\emph{g}$

Hain determined au_1^* on H^2 completely and by Hodge theory :

Theorem (Hain 1997)

$$\bigoplus_{k=1}^{\infty} \mathfrak{t}_g(k) \cong \textit{Free Lie} \ \langle \wedge^3 H_{\mathbb{Q}}/H_{\mathbb{Q}} \rangle / \textit{quad. relation} \quad (g \geq 6)$$

$$\mathbb{Q}+? \to igoplus_{k=1}^\infty \mathfrak{t}_g(k) \twoheadrightarrow igoplus_{k=1}^\infty \mathfrak{m}_g(k)$$
 (Johnson image)

$$\mathfrak{t}_g(k) := (\mathcal{I}_g(k)/\mathcal{I}_g(k+1)) \otimes \mathbb{Q}, \ \mathfrak{m}_g(k) := (\mathcal{M}_g(k)/\mathcal{M}_g(k+1)) \otimes \mathbb{Q}$$

Finite type invariants and the Torelli group (1)

 \mathbb{Q} : a "manifestation" of the Casson invariant in $\mathcal{I}_g \Rightarrow$ natural to ask whether Ohtsuki's (finite type) invariants:

$$\lambda_k : \mathfrak{H}(3) \to \mathbb{Q} \quad (\lambda_1 = \lambda, k = 1, 2, \ldots)$$

appear in the kernel $\mathbb{Q}+\ref{p}$ or not and more generally it is an important and difficult problem to identify

$$\mathfrak{i}_g = \bigoplus_{k=1}^\infty \mathfrak{i}_g(k) := \operatorname{Ker} \left(\bigoplus_{k=1}^\infty \mathfrak{t}_g(k) \twoheadrightarrow \bigoplus_{k=1}^\infty \mathfrak{m}_g(k) \right) = \mathbb{Q} + ?$$

Ohtsuki filtration based on the LMO-invariant

$$\mathbb{Q}\mathfrak{H}(3) = \mathbb{Q}\mathfrak{H}(3)_{(3)} \supset \mathbb{Q}\mathfrak{H}(3)_{(6)} \supset \mathbb{Q}\mathfrak{H}(3)_{(9)} \supset \cdots$$

Finite type invariants and the Torelli group (2)

Theorem (Garoufalidis-Ohtsuki+Le-Murakami-Ohtsuki)

There exists an isomorphism

$$\operatorname{Gr}_m \mathcal{A}(\emptyset) \cong \mathbb{Q}\mathfrak{H}(3)_{(3m)}/\mathbb{Q}\mathfrak{H}(3)_{(3m+1)}$$

Theorem (Garoufalidis-Levine)

There exists a mapping

$$\mathfrak{t}_g(2m) \to \mathrm{Gr}_m \mathcal{A}^{\mathrm{conn}}(\emptyset)$$

which is surjective for $g \geq 5m + 1$

Finite type invariants and the Torelli group (3)

In particular

$$\mathfrak{t}_g(2m)^{\mathrm{Sp}}\otimes\mathbb{Q}$$

gives rise to invariants for

$$\mathbb{Q}\mathfrak{H}(3)_{(3m)}/\mathbb{Q}\mathfrak{H}(3)_{(3m+1)}$$

The case m=1:

$$Gr_1 \mathcal{A}(\emptyset) \cong \mathbb{Q}\mathfrak{H}(3)_{(3)}/\mathbb{Q}\mathfrak{H}(3)_{(4)} \cong \mathbb{Q}$$
$$\mathfrak{t}_g(2)^{Sp} \otimes \mathbb{Q} \cong Gr_1 \mathcal{A}^{conn}(\emptyset) \cong \mathbb{Q}$$

given by

theta graph, Casson invariant λ and $d_1: \mathcal{K}_g \to \mathbb{Q}$

Results (1)

recall:
$$0 \to \mathfrak{i}_g \to \mathfrak{t}_g \to \mathfrak{m}_g \to 0$$

$$\mathfrak{i}_g = \bigoplus_{k=1}^\infty \mathfrak{i}_g(k), \ \mathfrak{t}_g = \bigoplus_{k=1}^\infty \mathfrak{t}_g(k), \ \mathfrak{m}_g = \bigoplus_{k=1}^\infty \mathfrak{m}_g(k)$$

$$\mathfrak{t}_g(k) = (\mathcal{I}_g(k)/\mathcal{I}_g(k+1)) \otimes \mathbb{Q}, \quad \mathfrak{m}_g(k) = (\mathcal{M}_g(k)/\mathcal{M}_g(k+1)) \otimes \mathbb{Q}$$

$$\mathfrak{t}_g(k) = \mathfrak{i}_g(k) \oplus \mathfrak{m}_g(k), \quad \mathfrak{i}_g(1) = 0, \ \mathfrak{i}_g(2) = \mathbb{Q}$$

Problem

Determine $i_g(k)$ for k = 3, 4, ...

Theorem (M. 1999)

$$\mathfrak{i}_q(3)=0$$
 and hence $\mathfrak{t}_q(3)\cong\mathfrak{m}_q(3)$

Results (2)

Theorem (Sakasai-Suzuki-M.)

$$\mathfrak{i}_g(4)=0$$
 and hence $\mathfrak{t}_g(4)\cong\mathfrak{m}_g(4)$

$$\mathfrak{i}_g(5)=0$$
 and hence $\mathfrak{t}_g(5)\cong\mathfrak{m}_g(5)$

Corollary

Any finite type invariant of degree 2, including Ohtsuki's λ_2 , can be expressed by:

 d_1 and (lifts of) Johnson homomorphisms $ilde{ au}_2 \sim (au_2, au_3)$

Proposition (Levine)

$$\lambda_k: \mathcal{I}_q(k+1)/\mathcal{I}_q(2k+1) \to \mathbb{Q}$$

is a homomorphism

Results (3)

sketch of proof

$$0 \to \mathfrak{i}_g \to \mathfrak{t}_g \to \mathfrak{m}_g \to 0$$

$$H_2(\mathfrak{t}_g) \stackrel{\mathsf{Hain}}{=} H_2(\mathfrak{t}_g)_2 \to H_2(\mathfrak{m}_g) \to H_1(\mathfrak{i}_g)_{\mathfrak{m}_g} \to H_1(\mathfrak{t}_g) \stackrel{\cong}{\to} H_1(\mathfrak{m}_g)$$

$$\Rightarrow$$

Proposition

$$0 \to H_2(\mathfrak{t}_g)_2 \to H_2(\mathfrak{m}_g)_2 \to (H_1(\mathfrak{i}_g)_{\mathfrak{m}_g})_2 = \mathbb{Z} \to 0$$

and for any $w \geq 3$

$$H_2(\mathfrak{m}_q)_w \cong (H_1(\mathfrak{i}_q)_{\mathfrak{m}_q})_w$$

Results (4)

Corollary

$$\mathfrak{i}_g(3) \cong H_2(\mathfrak{m}_g)_3 = 0, \quad \mathfrak{i}_g(4) \cong H_2(\mathfrak{m}_g)_4$$

and for any $w \geq 4$, we have

$$0 \to \bigoplus_{k=3}^{w-1} \left[\mathfrak{i}_g(k),\mathfrak{t}_g(w-k)\right] \to \mathfrak{i}_g(w) \to H_2(\mathfrak{m}_g)_w \to 0 \quad \textit{(exact)}$$

In general, we have the following

Proposition

Assume
$$\mathfrak{i}_g(k)=0$$
 for $k=3,4,\ldots,m-1$ $(m\geq 4)$, then we have $\mathfrak{i}_g(m)\cong H_2(\mathfrak{m}_g)_m$

Results (5)

proof of $H_2(\mathfrak{m}_g)_4=0$:

2-cycles Z_2 and 2-boundaries B_2 of weight 4 of \mathfrak{m}_g

exact:

$$B_2 := \operatorname{Im} \left(\wedge^2 \mathfrak{m}_g(1) \otimes \mathfrak{m}_g(2) \to (\mathfrak{m}_g(1) \otimes \mathfrak{m}_g(3)) \oplus \wedge^2 \mathfrak{m}_g(2) \right) \to$$

$$Z_2 := \operatorname{Ker} \left((\mathfrak{m}_g(1) \otimes \mathfrak{m}_g(3)) \oplus \wedge^2 \mathfrak{m}_g(2) \to \mathfrak{m}_g(4) \right) \twoheadrightarrow H_2(\mathfrak{m}_g)_4$$

$$\wedge^2 \mathfrak{m}_g(1) \otimes \mathfrak{m}_g(2) \ni (u \wedge v) \otimes w \overset{\text{boundary}}{\longmapsto}$$

$$(u \otimes [v, w] - v \otimes [u, w], -[u, v] \wedge w) \in (\mathfrak{m}_g(1) \otimes \mathfrak{m}_g(3)) \oplus \wedge^2 \mathfrak{m}_g(2)$$

Results (6)

Sp-irreducible decompositions:

$$\begin{split} H_2(\mathfrak{m}_g)_4 &\cong \operatorname{Coker} \left(\wedge^2 [1^3] \otimes [2^2] \to \\ & [42^2][421^2][32^21][41^4][321^3][31^5] \\ & [41^2]2[321][31^3][2^21^2][21^4] \quad [4][31][2^2][21^2] \quad \oplus \\ & [431][32^21] \quad [42][321][31^3][2^3] \quad [31][21^2] \quad [2]) \end{split}$$

we checked that all the 2-cycles (24-types of Young diagrams) are boundaries

Results (7)

proof of $H_2(\mathfrak{m}_g)_5=0$:

2-cycles \mathbb{Z}_2 and 2-boundaries \mathbb{B}_2 of weight \mathbb{S} of \mathfrak{m}_g

exact:

$$\begin{split} B_2 := & \mathrm{Im}((\wedge^2 \mathfrak{m}_g(1) \otimes \mathfrak{m}_g(3)) \oplus (\mathfrak{m}_g(1) \otimes \wedge^2 \mathfrak{m}_g(2)) \to \\ & (\mathfrak{m}_g(1) \otimes \mathfrak{m}_g(4)) \oplus (\mathfrak{m}_g(2) \otimes \mathfrak{m}_g(3))) \to \\ Z_2 := & \mathrm{Ker}\left((\mathfrak{m}_g(1) \otimes \mathfrak{m}_g(4)) \oplus (\mathfrak{m}_g(2) \otimes \mathfrak{m}_g(3)) \to \mathfrak{m}_g(5)\right) \twoheadrightarrow H_2(\mathfrak{m}_g)_5 \end{split}$$

Results (8)

Sp-irreducible decompositions:

$$\begin{split} &H_2(\mathfrak{m}_g)_5 \cong \operatorname{Coker}\left((\wedge^2[1^3] \otimes [31^2]) \oplus ([1^3] \otimes \wedge^2[2^2]\right) \to \\ &\mathbf{2}[\mathbf{5}\mathbf{3}\mathbf{1}]\mathbf{2}[\mathbf{5}\mathbf{2}\mathbf{1}^2][4\mathbf{3}\mathbf{2}]\mathbf{2}[4\mathbf{3}\mathbf{1}^2]\mathbf{2}[4\mathbf{2}^2\mathbf{1}]\mathbf{3}[4\mathbf{2}\mathbf{1}^3][4\mathbf{1}^5]\mathbf{2}[\mathbf{3}^3]\mathbf{2}[\mathbf{3}^2\mathbf{2}\mathbf{1}][\mathbf{3}\mathbf{2}^3] \\ &\mathbf{3}[\mathbf{3}\mathbf{2}^2\mathbf{1}^2][\mathbf{3}\mathbf{2}\mathbf{1}^4][\mathbf{3}\mathbf{1}^6][\mathbf{2}^3\mathbf{1}^3] \quad \mathbf{2}[\mathbf{5}\mathbf{2}][\mathbf{5}\mathbf{1}^2]\mathbf{2}[4\mathbf{3}]\mathbf{6}[4\mathbf{2}\mathbf{1}]\mathbf{5}[4\mathbf{1}^3]\mathbf{3}[\mathbf{3}^2\mathbf{1}]\mathbf{4}[\mathbf{3}\mathbf{2}^2] \\ &\mathbf{7}[\mathbf{3}\mathbf{2}\mathbf{1}^2]\mathbf{4}[\mathbf{3}\mathbf{1}^4]\mathbf{3}[\mathbf{2}^3\mathbf{1}][\mathbf{2}^2\mathbf{1}^3][\mathbf{2}\mathbf{1}^5] \quad \mathbf{4}[\mathbf{4}\mathbf{1}]\mathbf{4}[\mathbf{3}\mathbf{2}]\mathbf{10}[\mathbf{3}\mathbf{1}^2]\mathbf{4}[\mathbf{2}^2\mathbf{1}]\mathbf{5}[\mathbf{2}\mathbf{1}^3] \\ &\mathbf{3}[\mathbf{3}]\mathbf{4}[\mathbf{2}\mathbf{1}]\mathbf{2}[\mathbf{1}^3]\right) \end{split}$$

we checked that all the 2-cycles (34-types of Young diagrams) are boundaries

we are now computing $H_2(\mathfrak{m}_g)_6$

already proved $H_2(\mathfrak{m}_g)_6[0][2][1^2]\cdots[1^6]\cdots=0$ for 27 among 67 types

Extending the above picture in a broader context (1)

$$H^2(\mathcal{M}_g; \mathbb{Q}) \ni e_1 \mapsto 0 \in H^2(\mathcal{I}_g; \mathbb{Q}) \quad \Rightarrow \quad \lambda : \mathfrak{H}(3) \to \mathbb{Z}$$

More precisely

$$\mathcal{K}_g \to \mathcal{M}_g \to \mathcal{M}_g / \mathcal{K}_g \stackrel{\mathbb{Q}}{\cong} U_{\mathbb{Q}} \rtimes \operatorname{Sp}(2g, \mathbb{Z}) \quad (U = \wedge^3 H / H)$$

$$H^{1}(\mathcal{M}_{g}; \mathbb{Q}) = 0 \to H^{1}(\mathcal{K}_{g}; \mathbb{Q})^{\mathcal{M}_{g}} \cong \mathbb{Q} \to$$

$$H^{2}(U_{\mathbb{Q}} \times \operatorname{Sp}(2g, \mathbb{Z}); \mathbb{Q}) \cong \mathbb{Q}^{2} \to H^{2}(\mathcal{M}_{g}; \mathbb{Q}) \cong \mathbb{Q}$$

the difference of two natural cocycles for $e_1 \Rightarrow$

$$H^1(\mathcal{K}_q;\mathbb{Q})^{\mathcal{M}_g} \cong \mathbb{Q} \quad \Rightarrow \quad \text{Casson invariant}$$

Extending the above picture in a broader context (2)

extending $\mathcal{M}_g \Rightarrow \mathcal{H}_{g,1}$ and $e_1 \Rightarrow \tilde{t}_{2k+1}$, ultimate goal:

$$H^2(\mathcal{H}_{q,1}^{\text{top}}; \mathbb{Q}) \ni \tilde{t}_{2k+1} \mapsto 0 \in H^2(\mathcal{H}_{q,1}^{\text{smooth}}; \mathbb{Q}) \Rightarrow \nu_k : \mathbf{\Theta}^3 \to \mathbb{Q}$$

Garoufalidis-Levine (based on Goussarov and Habiro)

$$\mathcal{H}_{g,1}^{\mathrm{smooth}} = \{ \mathsf{homology} \ \mathsf{cylinder} \ \mathsf{over} \ \Sigma_{g,1} \} / \mathsf{smooth} \ \mathsf{H\text{-}cobordism}$$

$$\mathcal{H}_{0,1}^{\mathrm{smooth}} = \mathbf{\Theta}^3 = \mathfrak{H}(3)/\mathrm{smooth} \,\, \mathrm{H\text{-}cobordism} \,\, \stackrel{\mathrm{central}}{\subset} \,\, \mathcal{H}_{g,1}^{\mathrm{smooth}}$$

$$m{\Theta}^3
ightarrow \mathcal{H}_{g,1}^{\mathrm{smooth}}
ightarrow \overline{\mathcal{H}}_{g,1} = \mathcal{H}_{g,1}^{\mathrm{smooth}} / m{\Theta}^3 \quad ext{(central extension)}$$

Extending the above picture in a broader context (3)

exact sequence:

$$\begin{split} 0 &\to H^1(\overline{\mathcal{H}}_{g,1};\mathbb{Q}) \to H^1(\mathcal{H}_{g,1}^{\mathrm{smooth}};\mathbb{Q}) \to H^1(\mathbf{\Theta}^3;\mathbb{Q}) \\ & \cong \mathrm{Hom}(\mathbf{\Theta}^3,\mathbb{Q}) \cong \mathbb{Q}^{\mathbb{N}} \to H^2(\overline{\mathcal{H}}_{g,1};\mathbb{Q}) \to H^2(\mathcal{H}_{g,1}^{\mathrm{smooth}};\mathbb{Q}) \end{split}$$

Theorem (Furuta, Fintushel-Stern)

 Θ^3 has infinite rank

- $\Rightarrow \Theta^3/\text{torsion} \subset \mathbb{Q}^{\infty}$ (because Θ^3 is countable)
- $\Rightarrow \operatorname{Hom}(\boldsymbol{\Theta}^3,\mathbb{Q}) \cong \mathbb{Q}^{\mathbb{N}} \text{ (direct product of countably many } \mathbb{Q})$

so there exist (uncountably) many homomorphisms

$$\mathbf{\Theta}^3 \to \mathbb{Q}$$

but explicitly known one(s): Frøyshov and Ozsváth-Szabó

Extending the above picture in a broader context (4)

Problem

How is the huge group $H^1(\mathbf{\Theta}^3; \mathbb{Q}) \cong \mathbb{Q}^{\mathbb{N}}$ divided into

$$\begin{array}{ll} \operatorname{Coker}\left(H^1(\overline{\mathcal{H}}_{g,1};\mathbb{Q}) \to H^1(\mathcal{H}_{g,1}^{\operatorname{smooth}};\mathbb{Q})\right) & \text{and} \\ \operatorname{Ker}\left(H^2(\overline{\mathcal{H}}_{g,1};\mathbb{Q}) \to H^2(\mathcal{H}_{g,1}^{\operatorname{smooth}};\mathbb{Q})\right)? \end{array}$$

Coker is non-trivial ⇔

 $^{\exists} \text{ homomorphism } \Theta^3 \to \mathbb{Q} \ (\neq 0) \text{ which extends to } \mathcal{H}^{\mathrm{smooth}}_{g,1} \to \mathbb{Q}$

many works on $\mathcal{H}_{g,1}$ by

Sakasai, Habiro, Massuyeau, Cha-Friedl-Kim,...

Extending the above picture in a broader context (5)

Mal'cev completion of $\pi_1\Sigma_{g,1}: \cdots \to N_d \to \cdots \to N_1 = H_{\mathbb{Q}}$

Theorem (Garoufalidis-Levine)

$$\stackrel{\exists}{\rho_{\infty}}: \mathcal{H}^{\mathrm{smooth}}_{g,1} \to \varprojlim_{d \to \infty} \operatorname{Aut}_{0} N_{d} \quad (\textit{symplectic auto. groups})$$
 each factor $\tilde{\rho}_{d}: \mathcal{H}^{\mathrm{smooth}}_{g,1} \to \operatorname{Aut}_{0} N_{d} \text{ is surjective over } \mathbb{Z}$

candidates for Ker: constructed a homomorphism

$$\tilde{\rho}: \overline{\mathcal{H}}_{g,1} \to \left(\wedge^3 H_{\mathbb{Q}} \oplus \prod_{k=1}^{\infty} S^{2k+1} H_{\mathbb{Q}} \right) \rtimes \operatorname{Sp}(2g, \mathbb{Z})$$

and defined

$$(\wedge^2 S^{2k+1} H_{\mathbb{Q}})^{\operatorname{Sp}} \cong \mathbb{Q} \ni 1 \mapsto \tilde{\mathbf{t}}_{2k+1} \in H^2(\overline{\mathcal{H}}_{g,1}; \mathbb{Q})$$

Extending the above picture in a broader context (6)

replacing $\overline{\mathcal{H}}_{g,1}$ with more geometric object (2008, after a comment by Orr):

 $\mathcal{H}_{g,1}^{\mathrm{top}} = \{ \mathsf{homology} \ \mathsf{cylinder} \ \mathsf{over} \ \Sigma_{g,1} \} / \mathsf{topological} \ \mathsf{H} ext{-cobordism}$

Theorem (Freedman)

Any homology 3-sphere bounds a contractible topological 4-mfd

It follows that $\; \mathcal{H}^{\mathrm{smooth}}_{g,1} \; o \; \mathcal{H}^{\mathrm{top}}_{g,1} \;$ factors through $\overline{\mathcal{H}}_{g,1}$

$$\Theta^3 \to \mathcal{H}_{g,1}^{\text{smooth}} \to \overline{\mathcal{H}}_{g,1} \to \mathcal{H}_{g,1}^{\text{top}}$$

and the homomorphisms $ilde{
ho}_{\infty}, ilde{
ho}$ are actually defined on $\mathcal{H}_{g,1}^{\mathrm{top}}$

$$\Rightarrow \tilde{\mathbf{t}}_{2k+1} \in H^2(\mathcal{H}_{q,1}^{\mathrm{top}}; \mathbb{Q})$$

Extending the above picture in a broader context (7)

how about Coker?

 $\mathfrak{h}_{g,1}=\text{symplectic derivation Lie algebra of }\mathcal{L}(H_{\mathbb{Q}})$ extremely rich and mysterious structure

Theorem (Massuyeau-Sakasai)

- (i) $\mathcal{H}_{g,1} \stackrel{\text{homo.}}{\to} \hat{H}_1(\mathfrak{h}_{g,1}^+) \rtimes \operatorname{Sp}(2g,\mathbb{Z})$ with dense image
- (ii) $H_1(\mathcal{H}_{g,1};\mathbb{Q}) \supset \mathbb{Q}$ (sharp contrast: \mathcal{M}_g is perfect $(g \geq 3)$)

$$\Rightarrow \hat{H}^1_c(\hat{\mathfrak{h}}_{g,1}) \subset H^1(\mathcal{H}^{\mathrm{smooth}}_{g,1};\mathbb{Q})$$
 but this part comes from $H^1(\mathcal{H}^{\mathrm{top}}_{g,1};\mathbb{Q})$ so that it vanishes in the Coker

At present, there is no information about

$$\operatorname{\underline{\mathbf{Coker}}}\left(H^1(\overline{\mathcal{H}}_{g,1};\mathbb{Q})\to H^1(\mathcal{H}_{g,1}^{\operatorname{smooth}};\mathbb{Q})\right)$$

Extending the above picture in a broader context (8)

back to Ker

Theorem (Sakasai-Suzuki-M.)

$$\exists \ \tilde{\rho}_{\infty}^* : H_c^*(\hat{\mathfrak{h}}_{\infty,1}^+)^{\operatorname{Sp}} \otimes H^*(\operatorname{Sp}(2\infty,\mathbb{Z})) \to H^*(\mathcal{H}_{a,1}^{\operatorname{top}};\mathbb{Q})$$

$$\Rightarrow \ H^2_c(\widehat{\mathfrak{h}}_{\infty,1}) \to H^2(\mathcal{H}^{\text{top}}_{g,1};\mathbb{Q}) \to H^2(\overline{\mathcal{H}}_{g,1};\mathbb{Q})$$

$$H^2_c(\hat{\mathfrak{h}}_{\infty,1})\ni \mathbf{t}_{2k+1}$$
 (Lie algebra version) $\mapsto \tilde{\mathbf{t}}_{2k+1}\in H^2(\overline{\mathcal{H}}_{g,1};\mathbb{Q})$

Conant-Kassabov-Vogtmann defined more classes on the LHS, but, at present, only ${\bf t}_3, {\bf t}_5, {\bf t}_7$ are known to be non-trivial...

Prospect (1)

only known homomorphism(s) (Frøyshov and Ozsváth-Szabó)

$$\mathbf{\Theta}^3 \to \mathbb{Z}$$

candidate: Neumann-Siebenmann, Fukumoto-Furuta-Ue, Saveliev

$$u := \sum_{i=0}^7 (-1)^{rac{i(i+1)}{2}} \mathrm{rank}\ HF^i$$
 (instanton Floer homology)

recall:

Theorem (Taubes)

$$\sum_{i=0}^{7} (-1)^i \operatorname{rank} HF^i = 2\lambda$$
 (Casson invariant)

Theorem (Manolescu)

The Rohlin homomorphism $\Theta^3 \to \mathbb{Z}/2$ does not split

Prospect (2)

geometric meaning of the classes $\tilde{\mathbf{t}}_{2k+1} \in H^2(\mathcal{H}^{\text{top}}_{g,1};\mathbb{Q})$:

Intersection numbers of higher and higher Massey products (using works of Kitano, Garoufalidis-Levine)

Conjecture

The homomorphism $H^1(\Theta^3;\mathbb{Q})\cong \mathbb{Q}^\mathbb{N}\to H^2(\overline{\mathcal{H}}_{g,1};\mathbb{Q})$ induced by

$$0 \to \mathbf{\Theta}^3 \to \mathcal{H}_{g,1}^{\mathrm{smooth}} \to \overline{\mathcal{H}}_{g,1} \to 1$$

is highly non-trivial (possibly injective) and its image contains the classes $\tilde{\mathbf{t}}_{2k+1} \in H^2(\overline{\mathcal{H}}_{g,1};\mathbb{Q}) \Rightarrow$

$$\tilde{\mathbf{t}}_{2k+1} \neq 0 \in H^2(\mathcal{H}^{\mathbf{top}}_{g,1}; \mathbb{Q})$$
 and $\tilde{\mathbf{t}}_{2k+1} = 0 \in H^2(\mathcal{H}^{\mathbf{smooth}}_{g,1}; \mathbb{Q})$

Prospect (3)

If Conjecture is true ⇒ obtain homomorphisms

$$\nu_k: \mathbf{\Theta}^3 \to \mathbb{Q} \quad (k=1,2,\ldots)$$

homology cobordism invariants