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K : a commutative ring
(G,g) : a group G acting on a Lie algebra g
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Quasi-Poisson algebras

K : a commutative ring

(G,g) : a group G acting on a Lie algebra g

Definition

A (G, g)-algebra is a commutative algebra A on which G and g act in
compatible ways: Vveg,VgeG,Vac A, (g-v)-a=g-(v-(g ' a)).
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such that
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and
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Remark

{—, —} restricts to a Poisson bracket on .A°.




A an algebra
N >1: an integer
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The representation algebra Ay

A an algebra
N > 1: an integer
Definition
Let Ay be the commutative algebra generated by
aj forallac Aandi,je{l,...,N}

with relations (ka aF Ib),J = ka,-j + /b,J, 1,‘j = (Sij, (ab),J = Zﬁl=1 a,-,b,j.
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The representation algebra Ay

A an algebra

N > 1: an integer

Definition

Let Ay be the commutative algebra generated by

aj forallac Aandi,je{l,...,N}
with relations (ka+ Ib); = kaj + Ibj, 1; = d;, (ab)yj = S°N., aiby.

Vcomm. alg. B, Hom¢ 4is(An, B) >~ HomA,g A Maty (B QGLN
An is a (G, g)-algebra where (G, g) := (GLy(K), Maty(K))

f ¥

gxg — K 6Hom(g®3,K)w¢eg®3
(v,w) — tr(vw) ()
Problem

Give to the non-commutative algebra A enough structure so that the
commutative algebra Ay inherits a (quasi-)Poisson bracket.




A an algebra
A ® A has the outer A-bimodule structure: [-(a® b)-r:=la® br
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Double brackets

A an algebra
A ® A has the outer A-bimodule structure: [-(a® b)-r:=la® br
Definition (Van den Bergh 2008)
A double bracket in A is a linear map
) AA—ARA

such that

o fa,bc} =b-{a,c}+ {a b} c

o {b,a} = —{a, b}
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Double brackets

A an algebra
A ® A has the outer A-bimodule structure: [-(a® b)-r:=la® br
Definition (Van den Bergh 2008)
A double bracket in A is a linear map
) AA—ARA

such that

o {a,bc} =b-{a,c}+{a b} c

o {b,a} = —{a, b}

{——} is Poisson if {a,b,c} =0, and {——} is quasi-Poisson if

{a,b,c} = a®l®bc+1l®abRc+ca®b®1l+c®a®b
—-1®a®bc—a®bRc—caxklRb—cRxabR 1.

555= {{—,—la == | =]

AR A3
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From double brackets to usual brackets

Theorem (Van den Bergh 2008)

Let {——}} be a Poisson (resp. quasi-Poisson) double bracket in A.

o {——} induces a Poisson (resp. quasi-Poisson) bracket {——} on Ay
defined by

{aih b} = {a, b}:y’ {a, b}:/v :
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Let {——} be a Poisson (resp. quasi-Poisson) double bracket in A.

o {——} induces a Poisson (resp. quasi-Poisson) bracket {——} on Ay
defined by
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Al := (subalgebra of Ay generated by tr(A)) C (Ay)®



From double brackets to usual brackets

Theorem (Van den Bergh 2008)
Let {——} be a Poisson (resp. quasi-Poisson) double bracket in A.

o {——} induces a Poisson (resp. quasi-Poisson) bracket {——} on Ay

defined by
{aij7 bu} = {a, b}}i;j {a, b}}:lv :
. A
o {——} induces a Lie bracket (——) on A:= A A defined by
(a,b) := {a, b} {a,b}".
AL>A/\/7 a}—>ZII-V:1 aji
| <
7
o tr
,VA/ Al := (subalgebra of Ay generated by tr(A)) C (Ay)®

Corollary (Van den Bergh 2008)

{——} restricts to a Poisson bracket on A%, and tr: A — Ay preserves
the brackets.
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Example: the tensor alg. of a symplectic vector space

(H,w) : a symplectic vector space of dimension 2g
T:=

T(H) : tensor algebra over H
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Remark

For any quiver Q, Van den Bergh constructs a Poisson double bracket on the
path algebra of the double of Q, which generalizes the necklace Lie algebra.




Example: the tensor alg. of a symplectic vector space

(H,w) : a symplectic vector space of dimension 2g
T:=

T(H) : tensor algebra over H
Themap {—,—Jyg : T®T — T®T defined by
{hy - By ki knBugn
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i=1 j=1
is a Poisson double bracket.

h4 h3 h2 1 .
f=T/T,T] > hs{(&hl %g
h hg

6h7

N

(T,{(—,—)vaB) = ag, one of the three Kontsevich's Lie alg.

For any quiver Q, Van den Bergh constructs a Poisson double bracket on the

Remark
path algebra of the double of Q, which generalizes the necklace Lie algebra. J
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Fox pairings in augmented algebras

A= (A ¢) : an augmented algebra

Definition

A Fox pairing is a bilinear map p: A x A — A such that
° p(ab,—) = ap(b,—) + p(a, —)z(b),
® p(—,ab) =e(a)p(—, b) + p(—, a) b.




Fox pairings in augmented algebras

A= (A,e) : an augmented algebra

Definition

A Fox pairing is a bilinear map p: A x A — A such that
o p(ab,—) = ap(b,—) + p(a, —)e(b),
e p(_7 ab) = E(a)p(_a b) + p(_7 a) b.

Example

Any e € A induces an inner Fox pairing p. defined by
pe(a, b) == (a—e(a)l) e (b—e(b)1).




Fox pairings in augmented algebras

A= (A, ¢): an augmented algebra

Definition

A Fox pairing is a bilinear map p: A x A — A such that
° p(ab,—) = ap(b,—) + p(a, —)z(b),
® p(—,ab) =e(a)p(—, b) + p(—, a) b.

Example

Any e € A induces an inner Fox pairing p. defined by
pe(a, b) == (a—e(a)l) e (b—e(b)1).

Example

(H,w) : symplectic vector space

There is a Fox pairing x: T(H) x T(H) — T(H) defined by
r(a,b) ;= (a—e(a)l) <wcggi%i35x> (b—e(b)1).




From Fox pairings to double brackets

A= (A,A,¢,S): a Hopf algebra such that S? = id,



From Fox pairings to double brackets

A= (A,A,¢,S): a Hopf algebra such that S? = id,

Lemma

Let p: AXA—> A be a skew-symmetric Fox pairing:
p(a, b) = —Sp(S(b), S(a))




From Fox pairings to double brackets

A= (A A e, S): aHopf algebra such that S? = id,

Lemma

Let p: AXA—> A be a skew-symmetric Fox pairing:

p(a, b) = —Sp(S(b), 5(3))
Then

ARA—ARA

ol
@@Htg_

is a double bracket in A.




From Fox pairings to double brackets

A= (A A e, S): aHopf algebra such that S? = id,

Lemma

Let p:AXA— A bea skew—symmetric Fox pairing:

,b) = =5p(S(b), 5(a))

p(S
Then i} |
(a)
'/
& AGA—ARA
®

is a double bracket in A.

Example
=-3vag: T(H)®@T(H) — T(H) ® T(H) is induced by the Fox pairing «.




Summary

Fox pairings in A

A:

involutive Hopf

skew-symmetric

’ double brackets in A ‘

brackets on Ay

i}

Ler
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© The intersection double bracket of a surface
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@ Intersection double brackets in higher dimensions
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Y : an oriented surface with boundary
m=m (X, %) where x € 0¥
A :=K]r]
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Intersection of curves

> : an oriented surface with boundary ‘f\P’."

m:=m(X,*) where x € 9%

A= K[r] \// \//

Definition (Papakyriakopoulos 1975; Turaev 1979)
The homotopy intersection form of ¥ is the bilinear mapn: Ax A— A

defined by o« B
O>< EP(a) ﬂ) = -
n(a, b) := Z ep(0, B) [TreQepBpx] where B a

peang O>< ep(a, B) = +1

for any a, b € 7 represented by « rh .




Intersection of curves

> : an oriented surface with boundary ‘f\P’."

m:=m(X,*) where x € 9%

A= K[r] \// \//

Definition (Papakyriakopoulos 1975; Turaev 1979)
The homotopy intersection form of ¥ is the bilinear mapn: Ax A— A

defined by o« B
O>< EP(a) ﬂ) = -
n(a, b) := Z ep(0, B) [TreQepBpx] where B a

peang O>< ep(a, B) = +1

for any a, b € 7 represented by « rh .

Lemma
n is a Fox pairing and 1° :=2n+ p1 is skew-symmetric.
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The intersection double bracket {—, —}

{—, -3 :={—,—}" is a double bracket in A= K[].
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Almost the same operation has been considered by Kawazumi & Kuno (2011).

Remark J
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A=A/J[A Al ~ K% where % := {free homotopy classes of loops in ¥}



The intersection double bracket {—, —}

{—, -3 :={—,—}" is a double bracket in A= K[].

{a, b} =2 ng(aa5)[ﬂ*p0‘p'y'*]®[v*'a"’ﬁp*] P

peanp

+l@ab+ba®l—awb—bwoa Ma \//ﬁ

Remark

Almost the same operation has been considered by Kawazumi & Kuno (2011).

J
|

The double bracket {—, —} is quasi-Poisson.

A=A/J[A Al ~ K% where % := {free homotopy classes of loops in ¥}

(a,b) = 2 Z ep(a, B) [apBp]

peanf

.. this is 2x Goldman’s Lie bracket. \ a \ B
g\\\{//%/ \\\\V//ﬁ/
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Assume that ¥ is compact.

Take K=R and G = GLy(R).

H := Hom(w, G) ~ Hom (A, Maty(R)) C G
M := mapping class group of (X, x)

Theorem

Intersection of curves in ¥ induces a M-invariant quasi-Poisson bracket
on C>(H), which refines the usual Poisson bracket on R[H]C.
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The representation manifold of m = 7 (X, %)

Assume that ¥ is compact.

Take K=R and G = GLy(R).

H := Hom(w, G) ~ Hom (A, Maty(R)) C G
M := mapping class group of (X, *)

Theorem

Intersection of curves in ¥ induces a M-invariant quasi-Poisson bracket
on C>(H), which refines the usual Poisson bracket on R[H]C.

Proof.
The {——} in A induces a quasi-Poisson bracket {—,—} on Ay such that

tr: R#% — Ay, (2x Goldman bracket) — {—, —}.

{—,—} is M-invariant = {—, -} is M-invariant.

PEl-er {_’ _} el { aj — (r > (i,j)-th entry of r(a)).

O




Remarks

(1) This quasi-Poisson structure on H = Hom(w, G) coincides with that
of Alekseev, Kosmann-Schwarzbach & Meinrenken (2002):



(1) This quasi-Poisson structure on H = Hom(, G) coincides with that
of Alekseev, Kosmann-Schwarzbach & Meinrenken (2002):

H=(GxG)E xG"
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Remarks

(1) This quasi-Poisson structure on H = Hom(w, G) coincides with that
of Alekseev, Kosmann-Schwarzbach & Meinrenken (2002):

@ G has a canonical quasi-Poisson structure {—, —} .;
® G X G has a preferred quasi-Poisson structure {—, =} ¢;

fusion

° (M17{_7_}1) & (M2’{_7_}2) ~ (Ml X M27{_7_}1®{_7_}2)
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Remarks

(1) This quasi-Poisson structure on H = Hom(w, G) coincides with that
of Alekseev, Kosmann-Schwarzbach & Meinrenken (2002):

@ G has a canonical quasi-Poisson structure {—, —} .;
® G X G has a preferred quasi-Poisson structure {—, =} ¢;

fusion

° (M17{_7_}1) & (M2’{_7_}2) ~ (Ml X M27{_7_}1®{_7_}2)

{= —tam = e ® @ {Tdac®@Tde® @ {5,

g times m times

(2) Li-Bland & Severa (2012) and Nie (2013) have generalized this intrinsic
description of {—, =}k to any Lie group G.  ~» Fock & Rosly (1999)
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K:=Q

Y : a compact oriented surface with connected boundary
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Symplectic expansions

K:=Q

Y : a compact oriented surface with connected boundary

A : I-adic completion of A := Q[r] where 7 := (X, ) and | := Ker(e)



Symplectic expansions

K:=Q

Y : a compact oriented surface with connected boundary

o

: I-adic completion of A := Q[r] where 7 := m1(X,*) and | := Ker(e)

—>

: degree-completion of T := T(H) where H := H;(X; Q)



Symplectic expansions

K:=Q
Y : a compact oriented surface with connected boundary
A : I-adic completion of A := Q[r] where 7 := (X, ) and | := Ker(e)
T : degree-completion of T := T(H) where H := Hy(X; Q)
Definition
An expansion of Tisamap 0 : 71 — T such that
Q 0(xy) = 0(x)0(y),
Q A(4(x)) = 0(x) ®0(x),
@ 0(x) =1+ [x] + (deg > 2).
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Definition
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Q 0(xy) = 0(x)0(y),
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Such a € induces an iso. of complete Hopf algebras 6:A= T,
v:=[0%]en
w e N2H C H®? : dual of the intersection form H x H == Q

Definition

—w

An expansion 6 : 1 — T is symplectic if O(v)=e
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Theorem (Kawazumi & Kuno 2010)
Any symplectic expansion 6 of w induces (... after completions ...) an iso.
from Goldman's Lie algebra Q7 to Kontsevich's Lie algebra ag.

1 1,1 _z 4,2 2 .
U(Z)-—e—z—1+z+2_ 12t 720 — 30080 T

u(w)eT ~ inner Fox pair. Pu(w) ~> double bracket {{—,—}}”(w) inT

Theorem

For any symplectic expansion 6 of 7, we have:
ARG {-.-% ARG
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Remark

1
This tensorial description of {—, —} can be generalized Q-
to any surface ¥ of genus g with m + 1 boundary comp. =~ 1 g
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A, = H, (Q(M,*)): loop algebra of M where x € OM

Theorem

Intersection of “family of paths” induces a Gerstenhaber double bracket
{— -} A RA — A, QA

which has degree (2 — n).

About the proof.

Adapt the ideas of Chas & Sullivan (1999) using a homology theory based
on manifolds with corners to deal with the transversality issue. O

v

Corollary

The graded commutative algebra representing the functor
B, — HomA/g* (A*, MatN(B*))

has a canonical structure of Gerstenhaber algebra of degree (2 — n).
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