Intersection double brackets

Gwénaël Massuyeau (joint work with Vladimir Turaev)

Workshop "Johnson homomorphisms" Tokyo (June 3–7, 2013)

Contents

- Double brackets in algebras
- Pox pairings in Hopf algebras
- 3 The intersection double bracket of a surface
- Tensorial description of the intersection double bracket
- 5 Intersection double brackets in higher dimensions

 \mathbb{K} : a commutative ring (G,\mathfrak{g}) : a group G acting on a Lie algebra \mathfrak{g}

 \mathbb{K} : a commutative ring (G, \mathfrak{g}) : a group G acting on a Lie algebra \mathfrak{g}

Definition

A (G, \mathfrak{g}) -algebra is a commutative algebra \mathcal{A} on which G and \mathfrak{g} act in compatible ways: $\forall v \in \mathfrak{g}, \forall g \in G, \forall a \in \mathcal{A}, (g \cdot v) \cdot a = g \cdot (v \cdot (g^{-1} \cdot a))$.

 \mathbb{K} : a commutative ring (G,\mathfrak{g}) : a group G acting on a Lie algebra \mathfrak{g}

Definition

A (G, \mathfrak{g}) -algebra is a commutative algebra \mathcal{A} on which G and \mathfrak{g} act in compatible ways: $\forall v \in \mathfrak{g}, \forall g \in G, \forall a \in \mathcal{A}, \ (g \cdot v) \cdot a = g \cdot (v \cdot (g^{-1} \cdot a))$.

 $\phi \in \mathfrak{g}^{\otimes 3}$: skew-symmetric and ($\textit{G},\mathfrak{g})\text{-invariant}$

 \mathbb{K} : a commutative ring (G,\mathfrak{g}) : a group G acting on a Lie algebra \mathfrak{g}

Definition

A (G,\mathfrak{g}) -algebra is a commutative algebra \mathcal{A} on which G and \mathfrak{g} act in compatible ways: $\forall v \in \mathfrak{g}, \forall g \in G, \forall a \in \mathcal{A}, \ (g \cdot v) \cdot a = g \cdot (v \cdot (g^{-1} \cdot a))$.

 $\phi \in \mathfrak{g}^{\otimes 3}$: skew-symmetric and (G,\mathfrak{g})-invariant

Definition (~ Alekseev, Kosmann-Schwarzbach & Meinrenken 2002)

A quasi-Poisson bracket is a (G,\mathfrak{g}) -invariant map $\{-,-\}:\mathcal{A}\times\mathcal{A}\to\mathcal{A}$ such that

$${a,b} = -{b,a}, \quad {a,b_1b_2} = b_1{a,b_2} + {a,b_1}b_2$$

and

$${a, {b, c}} + {b, {c, a}} + {c, {a, b}} = \phi \cdot (a \otimes b \otimes c).$$

 \mathbb{K} : a commutative ring (G, \mathfrak{g}) : a group G acting on a Lie algebra \mathfrak{g}

Definition

A (G, \mathfrak{g}) -algebra is a commutative algebra \mathcal{A} on which G and \mathfrak{g} act in compatible ways: $\forall v \in \mathfrak{g}, \forall g \in G, \forall a \in \mathcal{A}, (g \cdot v) \cdot a = g \cdot (v \cdot (g^{-1} \cdot a))$.

 $\phi \in \mathfrak{g}^{\otimes 3}$: skew-symmetric and (G,\mathfrak{g})-invariant

Definition (~ Alekseev, Kosmann-Schwarzbach & Meinrenken 2002)

A quasi-Poisson bracket is a (G,\mathfrak{g}) -invariant map $\{-,-\}:\mathcal{A}\times\mathcal{A}\to\mathcal{A}$ such that

$${a,b} = -{b,a}, \quad {a,b_1b_2} = b_1{a,b_2} + {a,b_1}b_2$$

and

$${a, \{b, c\}} + {b, \{c, a\}} + {c, \{a, b\}} = \phi \cdot (a \otimes b \otimes c).$$

Remark

 $\{-,-\}$ restricts to a Poisson bracket on $\mathcal{A}^{\mathfrak{g}}.$

A: an algebra

 $N \geq 1$: an integer

A: an algebra

 $N \geq 1$: an integer

Definition

$$a_{ij}$$
 for all $a \in A$ and $i, j \in \{1, \dots, N\}$

with relations
$$(ka + lb)_{ij} = ka_{ij} + lb_{ij}$$
, $1_{ij} = \delta_{ij}$, $(ab)_{ij} = \sum_{r=1}^{N} a_{ir} b_{rj}$.

A: an algebra

 $N \geq 1$: an integer

Definition

Let A_N be the commutative algebra generated by

$$a_{ij}$$
 for all $a \in A$ and $i, j \in \{1, \dots, N\}$

with relations
$$(ka+lb)_{ij}=ka_{ij}+lb_{ij},\ 1_{ij}=\delta_{ij},\ (ab)_{ij}=\sum_{r=1}^N a_{ir}b_{rj}.$$

 \forall comm. alg. B, $\operatorname{\mathsf{Hom}}_{\mathcal{CAlg}}(A_N,B) \simeq \operatorname{\mathsf{Hom}}_{\mathcal{Alg}}\left(A,\operatorname{\mathsf{Mat}}_N(B)\right)$

A: an algebra

 $N \geq 1$: an integer

Definition

Let A_N be the commutative algebra generated by

$$a_{ij}$$
 for all $a \in A$ and $i, j \in \{1, \dots, N\}$

with relations
$$(ka+lb)_{ij}=ka_{ij}+lb_{ij},\ 1_{ij}=\delta_{ij},\ (ab)_{ij}=\sum_{r=1}^N a_{ir}b_{rj}.$$

 \forall comm. alg. B, $\operatorname{\mathsf{Hom}}_{\mathcal{CAIg}}(A_N,B) \simeq \operatorname{\mathsf{Hom}}_{\mathcal{AIg}}\left(A,\operatorname{\mathsf{Mat}}_N(B)\right)^{\swarrow} \operatorname{\mathsf{GL}}_N(B)$

A: an algebra

 $N \geq 1$: an integer

Definition

$$a_{ij}$$
 for all $a \in A$ and $i, j \in \{1, \dots, N\}$

with relations
$$(ka+lb)_{ij}=ka_{ij}+lb_{ij},\ 1_{ij}=\delta_{ij},\ (ab)_{ij}=\sum_{r=1}^N a_{ir}b_{rj}.$$

$$\forall$$
 comm. alg. B , $\operatorname{\mathsf{Hom}}_{\mathcal{CAIg}}(A_N,B) \simeq \operatorname{\mathsf{Hom}}_{\mathcal{AIg}}\left(A,\operatorname{\mathsf{Mat}}_N(B)\right)$ \subseteq $\operatorname{\mathsf{GL}}_N(B)$

$$A_N$$
 is a (G,\mathfrak{g}) -algebra where $(G,\mathfrak{g}):= \big(\mathsf{GL}_N(\mathbb{K}),\mathsf{Mat}_N(\mathbb{K})\big)$

A: an algebra

 $N \geq 1$: an integer

Definition

$$a_{ij}$$
 for all $a \in A$ and $i, j \in \{1, \dots, N\}$

with relations
$$(ka+lb)_{ij}=ka_{ij}+lb_{ij},\ 1_{ij}=\delta_{ij},\ (ab)_{ij}=\sum_{r=1}^N a_{ir}b_{rj}.$$

$$\forall$$
 comm. alg. B , $\mathsf{Hom}_{\mathcal{CAIg}}(A_N,B) \simeq \mathsf{Hom}_{\mathcal{AIg}}\left(A,\mathsf{Mat}_N(B)\right) \bigcirc \mathsf{GL}_N(B)$

$$A_N$$
 is a (G,\mathfrak{g}) -algebra where $(G,\mathfrak{g}):= \big(\mathsf{GL}_N(\mathbb{K}),\mathsf{Mat}_N(\mathbb{K})\big)$

$$\begin{cases} \mathfrak{g} \times \mathfrak{g} & \xrightarrow{\cdot} & \mathbb{K} \\ (v, w) & \longmapsto & \operatorname{tr}(vw) \end{cases}$$

A: an algebra

N > 1: an integer

Definition

$$a_{ij}$$
 for all $a \in A$ and $i, j \in \{1, \dots, N\}$

with relations
$$(ka+lb)_{ij}=ka_{ij}+lb_{ij},\ 1_{ij}=\delta_{ij},\ (ab)_{ij}=\sum_{r=1}^N a_{ir}b_{rj}.$$

$$\forall$$
 comm. alg. B , $\operatorname{\mathsf{Hom}}_{\mathcal{CAIg}}(A_N,B) \simeq \operatorname{\mathsf{Hom}}_{\mathcal{AIg}}\left(A,\operatorname{\mathsf{Mat}}_N(B)\right)$ \bigcirc $\operatorname{\mathsf{GL}}_N(B)$

$$A_N$$
 is a (G,\mathfrak{g}) -algebra where $(G,\mathfrak{g}):= \big(\mathsf{GL}_N(\mathbb{K}),\mathsf{Mat}_N(\mathbb{K})\big)$

$$\begin{cases} \mathfrak{g} \times \mathfrak{g} & \xrightarrow{\cdot} & \mathbb{K} \\ (v, w) & \longmapsto & \operatorname{tr}(vw) \end{cases}$$

$$\begin{cases} \mathfrak{g} \times \mathfrak{g} & \xrightarrow{\cdot} & \mathbb{K} \\ (v, w) & \longmapsto & \operatorname{tr}(vw) \end{cases} \in \operatorname{Hom}\left(\mathfrak{g}^{\otimes 3}, \mathbb{K}\right) \rightsquigarrow \phi \in \mathfrak{g}^{\otimes 3}$$

A: an algebra

 $N \geq 1$: an integer

Definition

Let A_N be the commutative algebra generated by

$$a_{ii}$$
 for all $a \in A$ and $i, j \in \{1, \dots, N\}$

with relations $(ka + lb)_{ij} = ka_{ij} + lb_{ij}$, $1_{ij} = \delta_{ij}$, $(ab)_{ij} = \sum_{r=1}^{N} a_{ir} b_{rj}$.

$$\forall$$
 comm. alg. B , $\mathsf{Hom}_{\mathcal{CAIg}}(A_N,B) \simeq \mathsf{Hom}_{\mathcal{AIg}}\left(A,\mathsf{Mat}_N(B)\right)^{\swarrow}\mathsf{GL}_N(B)$

$$A_N$$
 is a (G, \mathfrak{g}) -algebra where $(G, \mathfrak{g}) := (\mathsf{GL}_N(\mathbb{K}), \mathsf{Mat}_N(\mathbb{K}))$

$$\begin{cases} \mathfrak{g} \times \mathfrak{g} & \xrightarrow{\cdot} & \mathbb{K} \\ (v, w) & \longmapsto & \operatorname{tr}(vw) \end{cases} \in \operatorname{Hom}\left(\mathfrak{g}^{\otimes 3}, \mathbb{K}\right) \rightsquigarrow \phi \in \mathfrak{g}^{\otimes 3}$$

Problem

Give to the **non-commutative** algebra A enough structure so that the **commutative** algebra A_N inherits a (quasi-)Poisson bracket.

A: an algebra

 $A \otimes A$ has the outer A-bimodule structure: $I \cdot (a \otimes b) \cdot r := Ia \otimes br$

A: an algebra

 $A \otimes A$ has the outer A-bimodule structure: $I \cdot (a \otimes b) \cdot r := Ia \otimes br$

Definition (Van den Bergh 2008)

A double bracket in A is a linear map

$$\{-,-\}\}: A \otimes A \longrightarrow A \otimes A$$

such that

- $\{a, bc\} = b \cdot \{a, c\} + \{a, b\} \cdot c$,
- $\{b,a\} = -\{a,b\}^{op}$.

A: an algebra

 $A \otimes A$ has the outer A-bimodule structure: $I \cdot (a \otimes b) \cdot r := Ia \otimes br$

Definition (Van den Bergh 2008)

A double bracket in A is a linear map

$$\{-,-\}\}: A \otimes A \longrightarrow A \otimes A$$

such that

- $\{a, bc\} = b \cdot \{a, c\} + \{a, b\} \cdot c$,
- $\{\!\{b,a\}\!\} = -\{\!\{a,b\}\!\}^{\mathsf{op}}$.

$$\{\!\{-,-,-\}\!\} := \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\$$

A: an algebra

 $A \otimes A$ has the outer A-bimodule structure: $I \cdot (a \otimes b) \cdot r := Ia \otimes br$

Definition (Van den Bergh 2008)

A double bracket in A is a linear map

$$\{-,-\}\}: A \otimes A \longrightarrow A \otimes A$$

such that

- $\{a, bc\} = b \cdot \{a, c\} + \{a, b\} \cdot c$,
- $\{b,a\} = -\{a,b\}^{op}$.

 $\{-,-\}$ is Poisson if $\{a,b,c\}=0$,

$$\{\!\{-,-,-\!\}\!\} := \begin{array}{c} \\ \\ \\ \\ \\ \end{array} + \begin{array}{c} \\ \\ \\ \\ \end{array}$$

A: an algebra

 $A \otimes A$ has the outer A-bimodule structure: $I \cdot (a \otimes b) \cdot r := Ia \otimes br$

Definition (Van den Bergh 2008)

A double bracket in A is a linear map

$$\{-,-\}:A\otimes A\longrightarrow A\otimes A$$

such that

•
$$\{a, bc\} = b \cdot \{a, c\} + \{a, b\} \cdot c$$
,

•
$$\{b,a\} = -\{a,b\}^{op}$$
.

 $\{\!\{-,-\}\!\}$ is Poisson if $\{\!\{a,b,c\}\!\}=0$, and $\{\!\{-,-\}\!\}$ is quasi-Poisson if

$$\{\!\{a,b,c\}\!\} = a \otimes 1 \otimes bc + 1 \otimes ab \otimes c + ca \otimes b \otimes 1 + c \otimes a \otimes b$$

$$-1 \otimes a \otimes bc - a \otimes b \otimes c - ca \otimes 1 \otimes b - c \otimes ab \otimes 1.$$

Theorem (Van den Bergh 2008)

Let $\{-,-\}$ be a Poisson (resp. quasi-Poisson) double bracket in A.

• $\{\!\{-,-\}\!\}$ induces a Poisson (resp. quasi-Poisson) bracket $\{-,-\}$ on A_N defined by

$${a_{ij},b_{uv}} := {a,b}'_{uj} {a,b}''_{iv}.$$

Theorem (Van den Bergh 2008)

Let $\{-,-\}$ be a Poisson (resp. quasi-Poisson) double bracket in A.

• $\{\!\{-,-\}\!\}$ induces a Poisson (resp. quasi-Poisson) bracket $\{-,-\}$ on A_N defined by

$${a_{ij},b_{uv}} := {a,b}'_{uj} {a,b}''_{iv}.$$

• $\{\!\{-,-\}\!\}$ induces a Lie bracket $\langle -,-\rangle$ on $\check{A}:=\frac{A}{[A,A]}$ defined by $\langle a,b\rangle:=\{\!\{a,b\}\!\}'\{\!\{a,b\}\!\}''.$

Theorem (Van den Bergh 2008)

Let $\{-,-\}$ be a Poisson (resp. quasi-Poisson) double bracket in A.

• $\{-,-\}$ induces a Poisson (resp. quasi-Poisson) bracket $\{-,-\}$ on A_N defined by

$${a_{ij},b_{uv}} := {a,b}'_{uj} {a,b}''_{iv}.$$

• $\{\!\{-,-\}\!\}$ induces a Lie bracket $\langle-,-\rangle$ on $\check{A}:=\frac{A}{[A,A]}$ defined by $\langle a,b\rangle:=\{\!\{a,b\}\!\}''\{\!\{a,b\}\!\}''$.

$$\begin{array}{cccc}
A & \xrightarrow{\operatorname{tr}} A_{N}, & a & \longmapsto \sum_{i=1}^{N} a_{ii} \\
\downarrow & & \downarrow & & \downarrow \\
\downarrow & & \downarrow & & \downarrow \\
\check{A} & & & & \downarrow
\end{array}$$

Theorem (Van den Bergh 2008)

Let $\{-,-\}$ be a Poisson (resp. quasi-Poisson) double bracket in A.

• $\{-,-\}$ induces a Poisson (resp. quasi-Poisson) bracket $\{-,-\}$ on A_N defined by

$${a_{ij},b_{uv}} := {a,b}'_{uj} {a,b}''_{iv}.$$

• $\{\!\{-,-\}\!\}$ induces a Lie bracket $\langle-,-\rangle$ on $\check{A}:=\frac{A}{[A,A]}$ defined by $\langle a,b\rangle:=\{\!\{a,b\}\!\}''\{\!\{a,b\}\!\}''$.

$$A \xrightarrow{\operatorname{tr}} A_N, \quad a \longmapsto \sum_{i=1}^N a_{ii}$$
 $A_N^t := (\operatorname{subalgebra} \operatorname{of} A_N \operatorname{generated} \operatorname{by} \operatorname{tr}(A)) \subset (A_N)^{\mathfrak{g}}$

Theorem (Van den Bergh 2008)

Let $\{-,-\}$ be a Poisson (resp. quasi-Poisson) double bracket in A.

• {{-,-}} induces a Poisson (resp. quasi-Poisson) bracket {-,-} on A_N defined by

$$\{a_{ij},b_{uv}\} := \{\!\{a,b\}\!\}'_{uj} \, \{\!\{a,b\}\!\}''_{iv} \,.$$

• $\{\!\{-,-\}\!\}$ induces a Lie bracket $\langle -,-\rangle$ on $\check{A}:=\frac{A}{[A,A]}$ defined by $\langle a,b\rangle:=\{\!\{a,b\}\!\}'\{\!\{a,b\}\!\}''.$

$$A \xrightarrow{\operatorname{tr}} A_N, \quad a \longmapsto \sum_{i=1}^N a_{ii}$$
 $A_N^t := (\operatorname{subalgebra} \operatorname{of} A_N \operatorname{generated} \operatorname{by} \operatorname{tr}(A)) \subset (A_N)^{\mathfrak{g}}$

Corollary (Van den Bergh 2008)

 $\{-,-\}$ restricts to a Poisson bracket on A_N^t and $\operatorname{tr}: \check{A} \longrightarrow A_N$ preserves the brackets.

 (H,ω) : a symplectic vector space of dimension 2g

 $\mathsf{T} := \mathsf{T}(H)$: tensor algebra over H

$$(H,\omega)$$
: a symplectic vector space of dimension $2g$ $T:=T(H)$: tensor algebra over H The map $\{\!\{-,-\}\!\}_{VdB}:T\otimes T\longrightarrow T\otimes T$ defined by
$$\{\!\{h_1\cdots h_m,k_1\cdots k_n\}\!\}_{VdB}$$
 $:=\sum_{i=1}^m\sum_{j=1}^n\omega(h_i,k_j)\;k_1\cdots k_{j-1}h_{i+1}\cdots h_m\otimes h_1\cdots h_{i-1}k_{j+1}\cdots k_n$ is a Poisson double bracket.

$$(H, \omega)$$
: a symplectic vector space of dimension $2g$
 $T := T(H)$: tensor algebra over H

The map
$$\{\!\{-,-\}\!\}_{VdB}: T\otimes T\longrightarrow T\otimes T$$
 defined by

$$\begin{aligned}
& \{\{h_1 \cdots h_m, k_1 \cdots k_n\}\}_{\text{VdB}} \\
&:= \sum_{i=1}^m \sum_{j=1}^n \omega(h_i, k_j) \ k_1 \cdots k_{j-1} h_{i+1} \cdots h_m \otimes h_1 \cdots h_{i-1} k_{j+1} \cdots k_n
\end{aligned}$$

is a Poisson double bracket.

$$\check{\mathsf{T}} = \mathsf{T}/[\mathsf{T},\mathsf{T}] \quad \ni \overset{h_4}{\underset{h_5}{\longleftarrow}} \overset{n_3}{\underset{h_6}{\longleftarrow}} \overset{h_2}{\underset{h_7}{\longleftarrow}}$$

 (H,ω) : a symplectic vector space of dimension 2g

T := T(H): tensor algebra over H

The map $\{\!\{-,-\}\!\}_{VdB}: T\otimes T\longrightarrow T\otimes T$ defined by

$$\{\{h_1 \cdots h_m, k_1 \cdots k_n\}\}_{VdB}$$

$$:= \sum_{i=1}^m \sum_{i=1}^n \omega(h_i, k_j) \ k_1 \cdots k_{j-1} h_{i+1} \cdots h_m \otimes h_1 \cdots h_{i-1} k_{j+1} \cdots k_n$$

is a Poisson double bracket.

$$\check{\mathsf{T}} = \mathsf{T} / [\mathsf{T}, \mathsf{T}] \quad \ni \overset{h_4}{\underset{h_5}{\longleftarrow}} \overset{h_3}{\underset{h_5}{\longleftarrow}} \overset{h_2}{\underset{h_6}{\longleftarrow}}$$

 $(\check{\mathsf{T}}, \langle -, - \rangle_{\mathsf{VdB}}) \simeq \mathfrak{a}_g$, one of the three Kontsevich's Lie alg.

 (H,ω) : a symplectic vector space of dimension 2g

 $\mathsf{T} := \mathsf{T}(H)$: tensor algebra over H

The map $\{\!\{-,-\}\!\}_{VdB}: T\otimes T\longrightarrow T\otimes T$ defined by

$$\begin{aligned}
& \{\{h_1 \cdots h_m, k_1 \cdots k_n\}\}_{\text{VdB}} \\
&:= \sum_{i=1}^m \sum_{i=1}^n \omega(h_i, k_j) \ k_1 \cdots k_{j-1} h_{i+1} \cdots h_m \otimes h_1 \cdots h_{i-1} k_{j+1} \cdots k_n
\end{aligned}$$

is a Poisson double bracket.

$$\check{\mathsf{T}} = \mathsf{T} / [\mathsf{T}, \mathsf{T}] \quad \ni \overset{h_4}{\underset{h_5}{\longleftarrow}} \overset{h_3}{\underset{h_7}{\longleftarrow}} \overset{h_2}{\underset{h_8}{\longleftarrow}}$$

 $(\check{\mathsf{T}}, \langle -, - \rangle_{\mathsf{VdB}}) \simeq \mathfrak{a}_g$, one of the three Kontsevich's Lie alg.

Remark

For any quiver Q, Van den Bergh constructs a Poisson double bracket on the path algebra of the double of Q, which generalizes the necklace Lie algebra.

 (H,ω) : a symplectic vector space of dimension 2g

 $\mathsf{T} := \mathsf{T}(H)$: tensor algebra over H

The map $\{\!\{-,-\}\!\}_{VdB}: T\otimes T\longrightarrow T\otimes T$ defined by

$$\{\{h_1 \cdots h_m, k_1 \cdots k_n\}\}_{VdB}$$

$$:= \sum_{i=1}^m \sum_{j=1}^n \omega(h_i, k_j) \ k_1 \cdots k_{j-1} h_{i+1} \cdots h_m \otimes h_1 \cdots h_{i-1} k_{j+1} \cdots k_n$$

is a Poisson double bracket.

$$\check{\mathsf{T}} = \mathsf{T} \, / [\mathsf{T}, \mathsf{T}] \quad \ni \overset{h_4}{\underset{h_5}{\longleftarrow}} \overset{h_3}{\underset{h_7}{\longleftarrow}} \overset{h_2}{\underset{h_8}{\longleftarrow}}$$

 $\left(\, \check{\mathsf{T}}, \langle -, - \rangle_{\mathsf{VdB}} \right) \simeq \mathfrak{a}_{\mathsf{g}},$ one of the three Kontsevich's Lie alg.

Remark

For any quiver Q, Van den Bergh constructs a Poisson double bracket on the path algebra of the double of Q, which generalizes the necklace Lie algebra.

Contents

- Double brackets in algebras
- Fox pairings in Hopf algebras
- 3 The intersection double bracket of a surface
- Tensorial description of the intersection double bracket
- 5 Intersection double brackets in higher dimensions

Fox pairings in augmented algebras

 $A = (A, \varepsilon)$: an augmented algebra

Fox pairings in augmented algebras

$$A=(A,arepsilon)$$
 : an augmented algebra

Definition

A Fox pairing is a bilinear map $\rho: A \times A \longrightarrow A$ such that

•
$$\rho(ab, -) = a \rho(b, -) + \rho(a, -)\varepsilon(b)$$
,

•
$$\rho(-,ab) = \varepsilon(a)\rho(-,b) + \rho(-,a)b$$
.

Fox pairings in augmented algebras

A=(A,arepsilon) : an augmented algebra

Definition

A Fox pairing is a bilinear map $\rho: A \times A \longrightarrow A$ such that

- $\rho(-,ab) = \varepsilon(a)\rho(-,b) + \rho(-,a)b$.

Example

Any $e \in A$ induces an inner Fox pairing ρ_e defined by

$$\rho_e(a,b) := (a - \varepsilon(a)1) e(b - \varepsilon(b)1).$$

Fox pairings in augmented algebras

A=(A,arepsilon) : an augmented algebra

Definition

A Fox pairing is a bilinear map $\rho: A \times A \longrightarrow A$ such that

- $\rho(ab, -) = a \rho(b, -) + \rho(a, -)\varepsilon(b)$,
- $\rho(-,ab) = \varepsilon(a)\rho(-,b) + \rho(-,a)b$.

Example

Any $e \in A$ induces an inner Fox pairing ρ_e defined by

$$\rho_e(a,b) := (a - \varepsilon(a)1) e(b - \varepsilon(b)1).$$

Example

 (H, ω) : symplectic vector space

There is a Fox pairing $\kappa : T(H) \times T(H) \longrightarrow T(H)$ defined by

$$\kappa(a,b) := (a - \varepsilon(a)1) \stackrel{\text{contraction}}{\longleftrightarrow} (b - \varepsilon(b)1).$$

$$A=(A,\Delta,arepsilon,S)$$
 : a Hopf algebra such that $S^2=\operatorname{id}_A$

$$A = (A, \Delta, \varepsilon, S)$$
: a Hopf algebra such that $S^2 = \mathrm{id}_A$

Lemma

Let $\rho: A \times A \longrightarrow A$ be a skew-symmetric Fox pairing:

$$\rho(a,b) = -S\rho(S(b),S(a))$$

$$A = (A, \Delta, \varepsilon, S)$$
: a Hopf algebra such that $S^2 = \mathrm{id}_A$

Lemma

Let $\rho: A \times A \longrightarrow A$ be a skew-symmetric Fox pairing:

$$\rho(a,b) = -S\rho(S(b),S(a))$$

Then

is a double bracket in A.

$$A=(A,\Delta,arepsilon,S)$$
 : a Hopf algebra such that $S^2=\operatorname{id}_A$

Lemma

Let $\rho: A \times A \longrightarrow A$ be a skew-symmetric Fox pairing:

$$\rho(a,b) = -S\rho(S(b),S(a))$$

Then

is a double bracket in A.

Example

 $\{-,-\}_{VdB}: T(H) \otimes T(H) \to T(H) \otimes T(H)$ is induced by the Fox pairing κ .

Summary

Contents

- Double brackets in algebras
- Pox pairings in Hopf algebras
- 3 The intersection double bracket of a surface
- Tensorial description of the intersection double bracket
- 5 Intersection double brackets in higher dimensions

Intersection of curves

 $\boldsymbol{\Sigma}$: an oriented surface with boundary

$$\pi := \pi_1(\Sigma, \star) \text{ where } \star \in \partial \Sigma$$

$$A := \mathbb{K}[\pi]$$

Intersection of curves

 Σ : an oriented surface with boundary

$$\pi := \pi_1(\Sigma, \star)$$
 where $\star \in \partial \Sigma$

$$A := \mathbb{K}[\pi]$$

Definition (Papakyriakopoulos 1975; Turaev 1979)

The homotopy intersection form of Σ is the bilinear map $\eta: A \times A \longrightarrow A$ defined by

$$\eta(a,b) := \sum_{p \in \alpha \cap \beta} \varepsilon_p(\alpha,\beta) \left[\overline{\nu}_{\star \bullet} \alpha_{\bullet p} \beta_{p \star} \right] \qquad \text{where} \qquad \begin{cases} \alpha & \beta \\ \circ \swarrow & \varepsilon_p(\alpha,\beta) = -1 \\ \beta & \alpha \\ \circ \swarrow & \varepsilon_p(\alpha,\beta) = +1 \end{cases}$$

for any $a, b \in \pi$ represented by $\alpha \cap \beta$.

Intersection of curves

 Σ : an oriented surface with boundary

$$\pi := \pi_1(\Sigma, \star)$$
 where $\star \in \partial \Sigma$

 $A := \mathbb{K}[\pi]$

Definition (Papakyriakopoulos 1975; Turaev 1979)

The homotopy intersection form of Σ is the bilinear map $\eta: A \times A \longrightarrow A$ defined by

$$\eta(a,b) := \sum_{p \in \alpha \cap \beta} \varepsilon_p(\alpha,\beta) \left[\overline{\nu}_{\star \bullet} \alpha_{\bullet p} \beta_{p \star} \right] \qquad \text{where} \qquad \begin{cases} \alpha & \beta \\ \circ \swarrow \varepsilon_p(\alpha,\beta) = -1 \\ \beta & \alpha \\ \circ \swarrow \varepsilon_p(\alpha,\beta) = +1 \end{cases}$$

for any $a, b \in \pi$ represented by $\alpha \pitchfork \beta$.

Lemma

 η is a Fox pairing and $\eta^s := 2\eta + \rho_1$ is skew-symmetric.

The intersection double bracket $\{\!\{-,-\}\!\}$

$$\{\!\{-,-\}\!\} := \{\!\{-,-\}\!\}^{\eta^s} \text{ is a double bracket in } A = \mathbb{K}[\pi].$$

$$\{\!\!\{-,-\}\!\!\}:=\{\!\!\{-,-\}\!\!\}^{\eta^s} \text{ is a double bracket in } A=\mathbb{K}[\pi].$$

$$\{\!\{-,-\}\!\}:=\{\!\{-,-\}\!\}^{\eta^s}$$
 is a double bracket in $A=\mathbb{K}[\pi]$.

$$\{\{a,b\}\} = 2\sum_{p \in \alpha \cap \beta} \varepsilon_p(\alpha,\beta) [\beta_{\star p} \alpha_{p \bullet} \nu_{\bullet \star}] \otimes [\overline{\nu}_{\star \bullet} \alpha_{\bullet p} \beta_{p \star}]$$

$$+1 \otimes ab + ba \otimes 1 - a \otimes b - b \otimes a$$

Remark

Almost the same operation has been considered by Kawazumi & Kuno (2011).

$$\{\!\{-,-\}\!\}:=\{\!\{-,-\}\!\}^{\eta^s}$$
 is a double bracket in $A=\mathbb{K}[\pi]$.

$$\{\{a,b\}\} = 2\sum_{\boldsymbol{\rho}\in\alpha\cap\beta} \varepsilon_{\boldsymbol{\rho}}(\alpha,\beta) [\beta_{\star\boldsymbol{\rho}}\alpha_{\boldsymbol{\rho}\bullet}\nu_{\bullet\star}] \otimes [\overline{\nu}_{\star\bullet}\alpha_{\bullet\boldsymbol{\rho}}\beta_{\boldsymbol{\rho}\star}]$$
$$+1\otimes ab + ba\otimes 1 - a\otimes b - b\otimes a$$

Remark

Almost the same operation has been considered by Kawazumi & Kuno (2011).

Lemma

The double bracket $\{-, -\}$ is quasi-Poisson.

$$\{\!\{-,-\}\!\}:=\{\!\{-,-\}\!\}^{\eta^s}$$
 is a double bracket in $A=\mathbb{K}[\pi].$

$$\begin{aligned}
\{ \{a,b \} \} &= 2 \sum_{p \in \alpha \cap \beta} \varepsilon_p(\alpha,\beta) [\beta_{\star p} \alpha_{p \bullet} \nu_{\bullet \star}] \otimes [\overline{\nu}_{\star \bullet} \alpha_{\bullet p} \beta_{p \star}] \\
&+ 1 \otimes ab + ba \otimes 1 - a \otimes b - b \otimes a
\end{aligned}$$

Remark

Almost the same operation has been considered by Kawazumi & Kuno (2011).

Lemma

The double bracket $\{-, -\}$ is quasi-Poisson.

$$\check{A} = A/[A,A]$$

$$\{\!\{-,-\}\!\}:=\{\!\{-,-\}\!\}^{\eta^s}$$
 is a double bracket in $A=\mathbb{K}[\pi]$.

$$\begin{aligned} \{\!\{a,b\}\!\} &= 2 \sum_{p \in \alpha \cap \beta} \varepsilon_p(\alpha,\beta) [\beta_{\star p} \alpha_{p \bullet} \nu_{\bullet \star}] \otimes [\overline{\nu}_{\star \bullet} \alpha_{\bullet p} \beta_{p \star}] \\ &+ 1 \otimes ab + ba \otimes 1 - a \otimes b - b \otimes a \end{aligned}$$

Remark

Almost the same operation has been considered by Kawazumi & Kuno (2011).

Lemma

The double bracket $\{-, -\}$ is quasi-Poisson.

$$\check{A} = A/[A,A] \simeq \mathbb{K}\, \check{\pi} \ \text{ where } \check{\pi} := \{\text{free homotopy classes of loops in } \Sigma\}$$

$$\{\!\{-,-\}\!\}:=\{\!\{-,-\}\!\}^{\eta^s}$$
 is a double bracket in $A=\mathbb{K}[\pi]$.

$$\{ \{a,b\} \} = 2 \sum_{p \in \alpha \cap \beta} \varepsilon_p(\alpha,\beta) [\beta_{\star p} \alpha_{p \bullet} \nu_{\bullet \star}] \otimes [\overline{\nu}_{\star \bullet} \alpha_{\bullet p} \beta_{p \star}]$$

$$+1 \otimes ab + ba \otimes 1 - a \otimes b - b \otimes a$$

Remark

Almost the same operation has been considered by Kawazumi & Kuno (2011).

Lemma

The double bracket $\{-,-\}$ is quasi-Poisson.

$$\check{A} = A/[A,A] \simeq \mathbb{K}\, \check{\pi} \ \text{ where } \check{\pi} := \{\text{free homotopy classes of loops in } \Sigma\}$$

$$\langle a, b \rangle = 2 \sum_{\mathbf{p} \in \alpha \cap \beta} \varepsilon_{\mathbf{p}}(\alpha, \beta) [\alpha_{\mathbf{p}} \beta_{\mathbf{p}}]$$

... this is $2 \times$ Goldman's Lie bracket.

Assume that Σ is compact.

Take $\mathbb{K} = \mathbb{R}$ and $G = GL_N(\mathbb{R})$.

Assume that Σ is compact.

Take
$$\mathbb{K} = \mathbb{R}$$
 and $G = GL_N(\mathbb{R})$.

Assume that Σ is compact.

Take $\mathbb{K} = \mathbb{R}$ and $G = GL_N(\mathbb{R})$.

 $\mathcal{H} := \mathsf{Hom}(\pi, \mathcal{G}) \simeq \mathsf{Hom}\left(A, \mathsf{Mat}_{\mathcal{N}}(\mathbb{R})\right) \stackrel{\checkmark}{\smile} \mathcal{G}$

 $\mathcal{M}:=\mathsf{mapping}\;\mathsf{class}\;\mathsf{group}\;\mathsf{of}\;(\Sigma,\star)$

Theorem

Intersection of curves in Σ induces a \mathcal{M} -invariant quasi-Poisson bracket on $C^{\infty}(\mathcal{H})$, which refines the usual Poisson bracket on $\mathbb{R}[\mathcal{H}]^G$.

Assume that Σ is compact.

Take $\mathbb{K} = \mathbb{R}$ and $G = GL_N(\mathbb{R})$.

 $\mathcal{M}:=\mathsf{mapping}\;\mathsf{class}\;\mathsf{group}\;\mathsf{of}\;(\Sigma,\star)$

Theorem

Intersection of curves in Σ induces a \mathcal{M} -invariant quasi-Poisson bracket on $C^{\infty}(\mathcal{H})$, which refines the usual Poisson bracket on $\mathbb{R}[\mathcal{H}]^G$.

Proof.

The $\{\!\{-,-\}\!\}$ in A induces a quasi-Poisson bracket $\{-,-\}$ on A_N such that

$$\operatorname{\mathsf{tr}}: \mathbb{R} \, \check{\pi} \longrightarrow \mathsf{A}_{\mathsf{N}}, \ (2 \times \operatorname{\mathsf{Goldman}} \operatorname{\mathsf{bracket}}) \longmapsto \{-, -\} \, .$$

Assume that Σ is compact.

Take $\mathbb{K} = \mathbb{R}$ and $G = GL_N(\mathbb{R})$.

 $\mathcal{M}:=\mathsf{mapping}\;\mathsf{class}\;\mathsf{group}\;\mathsf{of}\;(\Sigma,\star)$

Theorem

Intersection of curves in Σ induces a \mathcal{M} -invariant quasi-Poisson bracket on $C^{\infty}(\mathcal{H})$, which refines the usual Poisson bracket on $\mathbb{R}[\mathcal{H}]^G$.

Proof.

The $\{\!\{-,-\}\!\}$ in A induces a quasi-Poisson bracket $\{-,-\}$ on A_N such that

$$\mathsf{tr}: \mathbb{R}\, \check{\pi} \longrightarrow A_N, \ (2 \times \mathsf{Goldman} \ \mathsf{bracket}) \longmapsto \{-,-\}\,.$$

$$\{-,-\}$$
 is \mathcal{M} -invariant $\implies \{-,-\}$ is \mathcal{M} -invariant.

Assume that Σ is compact.

Take $\mathbb{K} = \mathbb{R}$ and $G = GL_N(\mathbb{R})$.

$$\mathcal{H} := \mathsf{Hom}(\pi, G) \simeq \mathsf{Hom}\left(A, \mathsf{Mat}_{N}(\mathbb{R})\right) \stackrel{\checkmark}{\smile} G$$

 $\mathcal{M}:=\mathsf{mapping}\;\mathsf{class}\;\mathsf{group}\;\mathsf{of}\;(\Sigma,\star)$

Theorem

Intersection of curves in Σ induces a \mathcal{M} -invariant quasi-Poisson bracket on $C^{\infty}(\mathcal{H})$, which refines the usual Poisson bracket on $\mathbb{R}[\mathcal{H}]^G$.

Proof.

The $\{\!\{-,-\}\!\}$ in A induces a quasi-Poisson bracket $\{-,-\}$ on A_N such that

$$\operatorname{\mathsf{tr}}: \mathbb{R} \, \check{\pi} \longrightarrow A_{N}, \ (2 \times \operatorname{\mathsf{Goldman}} \operatorname{\mathsf{bracket}}) \longmapsto \{-, -\} \, .$$

$$\{\!\{-,-\}\!\}$$
 is \mathcal{M} -invariant $\implies \{-,-\}$ is \mathcal{M} -invariant.

"Push-out"
$$\{-,-\}$$
 along $\left\{ egin{aligned} A_N & \longrightarrow & C^\infty(\mathcal{H}) \\ a_{ij} & \longmapsto & \left(r \mapsto (i,j) \text{-th entry of } r(a) \right). \end{aligned} \right.$

(1) This quasi-Poisson structure on $\mathcal{H} = \mathsf{Hom}(\pi, G)$ coincides with that of Alekseev, Kosmann-Schwarzbach & Meinrenken (2002):

(1) This quasi-Poisson structure on $\mathcal{H}=\mathsf{Hom}(\pi,G)$ coincides with that of Alekseev, Kosmann-Schwarzbach & Meinrenken (2002):

(1) This quasi-Poisson structure on $\mathcal{H} = \mathsf{Hom}(\pi, G)$ coincides with that of Alekseev, Kosmann-Schwarzbach & Meinrenken (2002):

- G has a canonical quasi-Poisson structure $\{-,-\}_G$;
- $G \times G$ has a preferred quasi-Poisson structure $\{-,-\}_{G \times G}$;
- $(M_1, \{-, -\}_1)$ & $(M_2, \{-, -\}_2)$ $\stackrel{\text{fusion}}{\leadsto} (M_1 \times M_2, \{-, -\}_1 \otimes \{-, -\}_2)$

(1) This quasi-Poisson structure on $\mathcal{H}=\mathsf{Hom}(\pi,G)$ coincides with that of Alekseev, Kosmann-Schwarzbach & Meinrenken (2002):

- G has a canonical quasi-Poisson structure $\{-, -\}_G$;
- $G \times G$ has a preferred quasi-Poisson structure $\{-,-\}_{G \times G}$;

$$\bullet \left(M_1, \{-, -\}_1 \right) \& \left(M_2, \{-, -\}_2 \right) \stackrel{\text{fusion}}{\leadsto} \left(M_1 \times M_2, \{-, -\}_1 \circledast \{-, -\}_2 \right)$$

$$\left\{ -, - \right\}_{\mathsf{AKsM}} := \underbrace{ \left\{ -, - \right\}_{\mathsf{G} \times \mathsf{G}} \circledast \cdots \circledast \left\{ -, - \right\}_{\mathsf{G} \times \mathsf{G}} }_{\mathsf{g times}} \circledast \underbrace{ \left\{ -, - \right\}_{\mathsf{G}} \circledast \cdots \circledast \left\{ -, - \right\}_{\mathsf{G}} }_{\mathsf{m times}}$$

(1) This quasi-Poisson structure on $\mathcal{H}=\mathsf{Hom}(\pi,G)$ coincides with that of Alekseev, Kosmann-Schwarzbach & Meinrenken (2002):

- G has a canonical quasi-Poisson structure $\{-, -\}_G$;
- $G \times G$ has a preferred quasi-Poisson structure $\{-,-\}_{G \times G}$;

$$\bullet \left(M_1, \{-, -\}_1 \right) \& \left(M_2, \{-, -\}_2 \right) \stackrel{\text{fusion}}{\leadsto} \left(M_1 \times M_2, \{-, -\}_1 \circledast \{-, -\}_2 \right)$$

$$\left\{ -, - \right\}_{\mathsf{AKsM}} := \underbrace{ \left\{ -, - \right\}_{\mathsf{G} \times \mathsf{G}} \circledast \cdots \circledast \left\{ -, - \right\}_{\mathsf{G} \times \mathsf{G}} }_{\mathsf{g times}} \circledast \underbrace{ \left\{ -, - \right\}_{\mathsf{G}} \circledast \cdots \circledast \left\{ -, - \right\}_{\mathsf{G}} }_{\mathsf{m times}}$$

(2) Li-Bland & Ševera (2012) and Nie (2013) have generalized this intrinsic description of $\{-,-\}_{AKsM}$ to any Lie group $G. \longrightarrow Fock \& Rosly$ (1999)

Contents

- Double brackets in algebras
- Pox pairings in Hopf algebras
- 3 The intersection double bracket of a surface
- Tensorial description of the intersection double bracket
- 5 Intersection double brackets in higher dimensions

 $\mathbb{K} := \mathbb{Q}$

 $\boldsymbol{\Sigma}$: a compact oriented surface with connected boundary

 $\mathbb{K} := \mathbb{Q}$

 Σ : a compact oriented surface with connected boundary

 $\hat{A}: I$ -adic completion of $A:=\mathbb{Q}[\pi]$ where $\pi:=\pi_1(\Sigma,\star)$ and $I:=\mathsf{Ker}(arepsilon)$

```
\mathbb{K} := \mathbb{Q}
```

 Σ : a compact oriented surface with connected boundary

 $\hat{A}:$ *I*-adic completion of $A:=\mathbb{Q}[\pi]$ where $\pi:=\pi_1(\Sigma,\star)$ and $I:=\mathsf{Ker}(arepsilon)$

 \hat{T} : degree-completion of $T:=T(\mathcal{H})$ where $\mathcal{H}:=\mathcal{H}_1(\Sigma;\mathbb{Q})$

$$\mathbb{K} := \mathbb{Q}$$

 $\boldsymbol{\Sigma}$: a compact oriented surface with connected boundary

 $\hat{A}:$ *I*-adic completion of $A:=\mathbb{Q}[\pi]$ where $\pi:=\pi_1(\Sigma,\star)$ and $I:=\mathsf{Ker}(arepsilon)$

 $\hat{\mathsf{T}}$: degree-completion of $\mathsf{T} := \mathsf{T}(H)$ where $H := H_1(\Sigma;\mathbb{Q})$

Definition

An expansion of π is a map $\theta:\pi\longrightarrow \hat{\mathsf{T}}$ such that

- $\hat{\Delta}(\theta(x)) = \theta(x) \, \hat{\otimes} \, \theta(x),$
- 3 $\theta(x) = 1 + [x] + (\text{deg} \ge 2)$.

$$\mathbb{K} := \mathbb{Q}$$

 Σ : a compact oriented surface with connected boundary

 $\hat{A}: I$ -adic completion of $A:=\mathbb{Q}[\pi]$ where $\pi:=\pi_1(\Sigma,\star)$ and $I:=\mathsf{Ker}(arepsilon)$

 \hat{T} : degree-completion of T := T(H) where $H := H_1(\Sigma; \mathbb{Q})$

Definition

An expansion of π is a map $\theta:\pi\longrightarrow \hat{\mathsf{T}}$ such that

- $\hat{\Delta}(\theta(x)) = \theta(x) \, \hat{\otimes} \, \theta(x),$

Such a θ induces an iso. of complete Hopf algebras $\hat{\theta}: \hat{A} \xrightarrow{\simeq} \hat{T}$.

Symplectic expansions

 $\mathbb{K} := \mathbb{Q}$

 $\boldsymbol{\Sigma}$: a compact oriented surface with connected boundary

 \hat{A} : \emph{I} -adic completion of $A:=\mathbb{Q}[\pi]$ where $\pi:=\pi_1(\Sigma,\star)$ and $\emph{I}:=\mathsf{Ker}(arepsilon)$

 $\hat{\mathsf{T}}$: degree-completion of $\mathsf{T} := \mathsf{T}(H)$ where $H := H_1(\Sigma;\mathbb{Q})$

Definition

An expansion of π is a map $\theta:\pi\longrightarrow \hat{\mathsf{T}}$ such that

- $\hat{\Delta}(\theta(x)) = \theta(x) \, \hat{\otimes} \, \theta(x),$

Such a θ induces an iso. of complete Hopf algebras $\hat{\theta}: \hat{A} \stackrel{\simeq}{\longrightarrow} \hat{T}$.

$$\nu:=[\partial\Sigma]\in\pi$$

Symplectic expansions

 $\mathbb{K} := \mathbb{Q}$

 $\boldsymbol{\Sigma}$: a compact oriented surface with connected boundary

 $\hat{A}:$ I-adic completion of $A:=\mathbb{Q}[\pi]$ where $\pi:=\pi_1(\Sigma,\star)$ and $I:=\mathsf{Ker}(arepsilon)$

 $\hat{\mathsf{T}}$: degree-completion of $\mathsf{T} := \mathsf{T}(H)$ where $H := \mathit{H}_1(\Sigma;\mathbb{Q})$

Definition

An expansion of π is a map $\theta:\pi\longrightarrow \hat{\mathsf{T}}$ such that

- $\hat{\Delta}(\theta(x)) = \theta(x) \, \hat{\otimes} \, \theta(x),$

Such a θ induces an iso. of complete Hopf algebras $\hat{\theta}: \hat{A} \xrightarrow{\simeq} \hat{T}$.

$$\nu := [\partial \Sigma] \in \pi$$

 $\omega\in \Lambda^2 H\subset H^{\otimes 2}$: dual of the intersection form $H\times H\stackrel{\omega}{\longrightarrow} \mathbb{Q}$

Symplectic expansions

 $\mathbb{K} := \mathbb{Q}$

 $\boldsymbol{\Sigma}$: a compact oriented surface with connected boundary

 \hat{A} : *I*-adic completion of $A:=\mathbb{Q}[\pi]$ where $\pi:=\pi_1(\Sigma,\star)$ and $I:=\mathsf{Ker}(arepsilon)$

 $\hat{\mathsf{T}}$: degree-completion of $\mathsf{T} := \mathsf{T}(H)$ where $H := H_1(\Sigma; \mathbb{Q})$

Definition

An expansion of π is a map $\theta: \pi \longrightarrow \hat{T}$ such that

- $\hat{\Delta}(\theta(x)) = \theta(x) \, \hat{\otimes} \, \theta(x),$

Such a θ induces an iso. of complete Hopf algebras $\hat{\theta}: \hat{A} \xrightarrow{\simeq} \hat{T}$.

$$\nu := [\partial \Sigma] \in \pi$$

$$\omega \in \Lambda^2 H \subset H^{\otimes 2}$$
: dual of the intersection form $H \times H \xrightarrow{\omega} \mathbb{Q}$

Definition

An expansion $\theta: \pi \longrightarrow \hat{T}$ is symplectic if $\theta(\nu) = e^{-\omega}$.

Theorem (Kawazumi & Kuno 2010)

Any symplectic expansion θ of π induces (...after completions ...) an iso. from Goldman's Lie algebra $\mathbb{Q} \, \check{\pi} \,$ to Kontsevich's Lie algebra \mathfrak{a}_g .

Theorem (Kawazumi & Kuno 2010)

Any symplectic expansion θ of π induces (...after completions ...) an iso. from Goldman's Lie algebra $\mathbb{Q} \, \check{\pi} \,$ to Kontsevich's Lie algebra \mathfrak{a}_g .

$$u(z) := \frac{1}{e^{-z} - 1} + \frac{1}{z} + \frac{1}{2} = -\frac{z}{12} + \frac{z^3}{720} - \frac{z^5}{30240} + \cdots$$

Theorem (Kawazumi & Kuno 2010)

Any symplectic expansion θ of π induces (...after completions ...) an iso. from Goldman's Lie algebra $\mathbb{Q} \check{\pi}$ to Kontsevich's Lie algebra \mathfrak{a}_g .

$$\begin{split} u(z) &:= \tfrac{1}{\mathrm{e}^{-z}-1} + \tfrac{1}{z} + \tfrac{1}{2} = -\tfrac{z}{12} + \tfrac{z^3}{720} - \tfrac{z^5}{30240} + \cdots \\ u(\omega) &\in \hat{\mathsf{T}} \quad \leadsto \quad \mathsf{inner} \; \mathsf{Fox} \; \mathsf{pair}. \; \rho_{u(\omega)} \quad \leadsto \quad \mathsf{double} \; \mathsf{bracket} \; \{\![-,-]\!]^{u(\omega)} \; \mathsf{in} \; \hat{\mathsf{T}} \end{split}$$

Theorem (Kawazumi & Kuno 2010)

Any symplectic expansion θ of π induces (...after completions ...) an iso. from Goldman's Lie algebra $\mathbb{Q} \check{\pi}$ to Kontsevich's Lie algebra \mathfrak{a}_g .

$$\begin{array}{l} u(z) := \frac{1}{\mathrm{e}^{-z}-1} + \frac{1}{z} + \frac{1}{2} = -\frac{z}{12} + \frac{z^3}{720} - \frac{z^5}{30240} + \cdots \\ u(\omega) \in \hat{\mathsf{T}} \quad \leadsto \quad \text{inner Fox pair. } \rho_{u(\omega)} \quad \leadsto \quad \text{double bracket } \{\!\!\{-,-\!\!\}\!\!\}^{u(\omega)} \text{ in } \hat{\mathsf{T}} \end{array}$$

Theorem

For any symplectic expansion θ of π , we have:

$$\hat{A} \hat{\otimes} \hat{A} \xrightarrow{\{\{-,-\}\}\}} \hat{A} \hat{\otimes} \hat{A}$$

$$\hat{\theta} \hat{\otimes} \hat{\theta} \downarrow \simeq \qquad \qquad \simeq \downarrow \hat{\theta} \hat{\otimes} \hat{\theta}$$

$$\hat{T} \hat{\otimes} \hat{T} \xrightarrow{2\{\{-,-\}\}_{\mathsf{VdB}} + 2\{\{-,-\}\}^{u(\omega)}} \hat{T} \hat{\otimes} \hat{T}$$

Theorem (Kawazumi & Kuno 2010)

Any symplectic expansion θ of π induces (...after completions ...) an iso. from Goldman's Lie algebra $\mathbb{Q} \check{\pi}$ to Kontsevich's Lie algebra \mathfrak{a}_g .

$$\begin{array}{l} u(z) := \frac{1}{\mathrm{e}^{-z}-1} + \frac{1}{z} + \frac{1}{2} = -\frac{z}{12} + \frac{z^3}{720} - \frac{z^5}{30240} + \cdots \\ u(\omega) \in \hat{\mathsf{T}} \quad \leadsto \quad \text{inner Fox pair. } \rho_{u(\omega)} \quad \leadsto \quad \text{double bracket } \{\!\!\{-,-\}\!\!\}^{u(\omega)} \ln \hat{\mathsf{T}} \end{array}$$

Theorem

For any symplectic expansion θ of π , we have:

$$\hat{A} \hat{\otimes} \hat{A} \xrightarrow{\{\{-,-\}\}\}} \hat{A} \hat{\otimes} \hat{A}$$

$$\hat{\theta} \hat{\otimes} \hat{\theta} \downarrow \simeq \qquad \qquad \simeq \downarrow \hat{\theta} \hat{\otimes} \hat{\theta}$$

$$\hat{T} \hat{\otimes} \hat{T} \xrightarrow{2\{\{-,-\}\}_{\mathsf{VdB}} + 2\{\{-,-\}\}^{\mathsf{u}(\omega)}} \hat{T} \hat{\otimes} \hat{T}$$

Theorem (Kawazumi & Kuno 2010)

Any symplectic expansion θ of π induces (...after completions ...) an iso. from Goldman's Lie algebra $\mathbb{Q} \check{\pi}$ to Kontsevich's Lie algebra \mathfrak{a}_g .

$$u(z) := \frac{1}{e^{-z}-1} + \frac{1}{z} + \frac{1}{2} = -\frac{z}{12} + \frac{z^3}{720} - \frac{z^5}{30240} + \cdots$$

$$u(\omega)\!\in\!\hat{\mathsf{T}} \ \leadsto \ \text{inner Fox pair.} \ \rho_{u(\omega)} \ \leadsto \ \text{double bracket} \ \{\!\!\{-,-\!\!\}\!\!\}^{u(\omega)} \, \text{in} \, \hat{\mathsf{T}}$$

Theorem

For any symplectic expansion θ of π , we have:

$$\hat{A} \hat{\otimes} \hat{A} \xrightarrow{\{\{-,-\}\}\}} \hat{A} \hat{\otimes} \hat{A}
\hat{\theta} \hat{\otimes} \hat{\theta} = \qquad \qquad \simeq \hat{\theta} \hat{\otimes} \hat{\theta}
\hat{T} \hat{\otimes} \hat{T} \xrightarrow{2\{\{-,-\}\}_{VdB} + 2\{\{-,-\}\}^{u(\omega)}\}} \hat{T} \hat{\otimes} \hat{T}$$

Remark

This tensorial description of $\{\!\{-,-\}\!\}$ can be generalized to any surface Σ of genus g with m+1 boundary comp.

Recall that $\eta \leadsto \eta^s \leadsto \{\!\{-,-\}\!\}$ and $\kappa \leadsto \{\!\{-,-\}\!\}_{\mathsf{VdB}}$.

Recall that $\eta \leadsto \eta^{\mathfrak s} \leadsto \{\!\{-,-\}\!\}$ and $\kappa \leadsto \{\!\{-,-\}\!\}_{\mathsf{VdB}}.$

 \Longrightarrow enough to show the commutativity of the diagram

Recall that $\ \eta \leadsto \eta^{\mathfrak s} \leadsto \{\!\{-,-\}\!\}$ and $\kappa \leadsto \{\!\{-,-\}\!\}_{\mathsf{VdB}}.$

 \Longrightarrow enough to show the commutativity of the diagram

$$\hat{A} \times \hat{A} \xrightarrow{\eta} \hat{A}$$

$$\hat{\theta} \times \hat{\theta} = \begin{array}{c} \downarrow \hat{\theta} \\ \hat{T} \times \hat{T} \xrightarrow{\kappa + \rho_{u(\omega) - 1/2}} \hat{T}.$$

Lemma

For any non-degenerate Fox pairing $\rho: \hat{A} \times \hat{A} \to \hat{A}$, there exists a unique $\nabla_{\rho} \in \hat{I}$ such that $\forall a \in \hat{I}$, $\rho(a, \nabla_{\rho}) = a$. Moreover, ∇_{ρ} determines ρ .

Recall that $\eta \leadsto \eta^s \leadsto \{\!\{-,-\}\!\}$ and $\kappa \leadsto \{\!\{-,-\}\!\}_{\mathsf{VdB}}$.

⇒ enough to show the commutativity of the diagram

$$\hat{A} \times \hat{A} \xrightarrow{\eta} \hat{A}$$

$$\hat{\theta} \times \hat{\theta} = \begin{array}{c} \uparrow \\ \uparrow \\ \uparrow \\ \end{array}$$

$$\hat{T} \times \hat{T} \xrightarrow{\kappa + \rho_{u(\omega) - 1/2}} \hat{T}.$$

Lemma

For any non-degenerate Fox pairing $\rho: \hat{A} \times \hat{A} \to \hat{A}$, there exists a unique $\nabla_{\rho} \in \hat{I}$ such that $\forall a \in \hat{I}$, $\rho(a, \nabla_{\rho}) = a$. Moreover, ∇_{ρ} determines ρ .

Recall that $\eta \leadsto \eta^{s} \leadsto \{\!\{-,-\}\!\}$ and $\kappa \leadsto \{\!\{-,-\}\!\}_{\mathsf{VdB}}$.

 \Longrightarrow enough to show the commutativity of the diagram

$$\hat{A} \times \hat{A} \xrightarrow{\eta} \hat{A}$$

$$\hat{\theta} \times \hat{\theta} = \begin{array}{c} \uparrow \\ \uparrow \\ \uparrow \\ \end{array}$$

$$\hat{T} \times \hat{T} \xrightarrow{\kappa + \rho_{u(\omega) - 1/2}} \hat{T}.$$

Lemma

For any non-degenerate Fox pairing $\rho: \hat{A} \times \hat{A} \to \hat{A}$, there exists a unique $\nabla_{\rho} \in \hat{I}$ such that $\forall a \in \hat{I}$, $\rho(a, \nabla_{\rho}) = a$. Moreover, ∇_{ρ} determines ρ .

 η and ρ^{θ} are Fox pairings in \hat{A} .

Recall that $\eta \leadsto \eta^{s} \leadsto \{\!\{-,-\}\!\}$ and $\kappa \leadsto \{\!\{-,-\}\!\}_{\mathsf{VdB}}$.

⇒ enough to show the commutativity of the diagram

$$\begin{vmatrix}
\hat{A} \times \hat{A} & \xrightarrow{\eta} & \hat{A} \\
\hat{\theta} \times \hat{\theta} & & \simeq \hat{\theta} \\
\hat{T} \times \hat{T} & \xrightarrow{\kappa + \rho_{u(\omega) - 1/2}} & \hat{T}.
\end{vmatrix}$$

Lemma

For any non-degenerate Fox pairing $\rho: \hat{A} \times \hat{A} \to \hat{A}$, there exists a unique $\nabla_{\rho} \in \hat{I}$ such that $\forall a \in \hat{I}$, $\rho(a, \nabla_{\rho}) = a$. Moreover, ∇_{ρ} determines ρ .

$$\hat{A} \times \hat{A} - - \stackrel{
ho^{\theta}}{-} - \rightarrow \hat{A}$$
 $\hat{\theta} \times \hat{\theta} \downarrow \simeq \qquad \simeq \downarrow \hat{\theta}$
 $\hat{T} \times \hat{T} \xrightarrow{\kappa + \rho_{u(\omega)-1/2}} \hat{T}$

 η and ρ^θ are Fox pairings in $\hat{A}.$ η and ρ^θ are non-degenerate.

Recall that $\eta \leadsto \eta^{s} \leadsto \{\!\{-,-\}\!\}$ and $\kappa \leadsto \{\!\{-,-\}\!\}_{\mathsf{VdB}}$.

⇒ enough to show the commutativity of the diagram

Lemma

For any non-degenerate Fox pairing $\rho: \hat{A} \times \hat{A} \to \hat{A}$, there exists a unique $\nabla_{\rho} \in \hat{I}$ such that $\forall a \in \hat{I}$, $\rho(a, \nabla_{\rho}) = a$. Moreover, ∇_{ρ} determines ρ .

$$\hat{A} \times \hat{A} - - \stackrel{\rho^{\theta}}{-} - \rightarrow \hat{A}$$

$$\hat{\theta} \times \hat{\theta} = \qquad \qquad \simeq \hat{\theta}$$

$$\hat{\tau} \times \hat{\tau} \xrightarrow{\kappa + \rho_{u(\omega)-1/2}} \hat{\tau}$$

 η and ρ^θ are Fox pairings in $\hat{A}.$ η and ρ^θ are non-degenerate.

$$abla_{\kappa+
ho_{u(\omega)-1/2}}={
m e}^{-\omega}-1$$

Recall that $\eta \leadsto \eta^s \leadsto \{\!\{-,-\}\!\}$ and $\kappa \leadsto \{\!\{-,-\}\!\}_{\mathsf{VdR}}$.

⇒ enough to show the commutativity of the diagram

$$\begin{vmatrix}
\hat{A} \times \hat{A} & \xrightarrow{\eta} & \hat{A} \\
\hat{\theta} \times \hat{\theta} & & \simeq \hat{\theta} \\
\hat{T} \times \hat{T} & \xrightarrow{\kappa + \rho_{\theta}(\omega) - 1/2} & \hat{T}.
\end{vmatrix}$$

Lemma

For any non-degenerate Fox pairing $\rho: \hat{A} \times \hat{A} \rightarrow \hat{A}$, there exists a unique $\nabla_{\rho} \in \hat{I}$ such that $\forall a \in \hat{I}, \ \rho(a, \nabla_{\rho}) = a$. Moreover, ∇_{ρ} determines ρ .

 η and ρ^{θ} are Fox pairings in \hat{A} . η and ρ^{θ} are non-degenerate.

$$egin{aligned} egin{aligned} oldsymbol{ert}_{\kappa+
ho_{u(\omega)-1/2}} &= oldsymbol{arphi} & 1 \ \implies
abla_{
ho^{ heta}} &=
u-1 =
abla_{ extit{r}} \end{aligned}$$

Recall that $\eta \leadsto \eta^s \leadsto \{\!\{-,-\}\!\}$ and $\kappa \leadsto \{\!\{-,-\}\!\}_{\mathsf{VdB}}$.

 \Longrightarrow enough to show the commutativity of the diagram

$$\begin{vmatrix}
\hat{A} \times \hat{A} & \xrightarrow{\eta} & \hat{A} \\
\hat{\theta} \times \hat{\theta} & & \simeq \hat{\theta} \\
\hat{T} \times \hat{T} & \xrightarrow{\kappa + \rho_{\theta}(\omega) - 1/2} & \hat{T}.
\end{vmatrix}$$

Lemma

For any non-degenerate Fox pairing $\rho: \hat{A} \times \hat{A} \to \hat{A}$, there exists a unique $\nabla_{\rho} \in \hat{I}$ such that $\forall a \in \hat{I}$, $\rho(a, \nabla_{\rho}) = a$. Moreover, ∇_{ρ} determines ρ .

$$\hat{A} \times \hat{A} - - \stackrel{\rho^{\theta}}{-} - \rightarrow \hat{A}$$

$$\hat{\theta} \times \hat{\theta} \downarrow \simeq \qquad \qquad \simeq \downarrow \hat{\theta}$$

$$\hat{T} \times \hat{T} \xrightarrow{\kappa + \rho_{u(\omega) - 1/2}} \hat{T}$$

 η and ρ^{θ} are Fox pairings in \hat{A} . η and ρ^{θ} are non-degenerate.

$$egin{aligned}
abla_{\kappa+
ho_{u(\omega)-1/2}} &= \mathsf{e}^{-\omega} - 1 \ &\Longrightarrow
abla_{
ho^{ heta}} &=
u - 1 &=
abla_{\eta} &\Longrightarrow
ho^{ heta} &= \eta \end{aligned}$$

Contents

- Double brackets in algebras
- Pox pairings in Hopf algebras
- The intersection double bracket of a surface
- 4 Tensorial description of the intersection double bracket
- 5 Intersection double brackets in higher dimensions

Work in progress . . .

 \mathbb{K} : field

M: oriented smooth manifold of dimension $n \geq 3$ with $\partial M \neq \emptyset$

Work in progress ...

 \mathbb{K} : field

M : oriented smooth manifold of dimension $n \geq 3$ with $\partial M \neq \varnothing$

 $A_* = H_*(\Omega(M,\star))$: loop algebra of M where $\star \in \partial M$

Work in progress . . .

 \mathbb{K} : field

M: oriented smooth manifold of dimension $n \geq 3$ with $\partial M \neq \emptyset$

 $A_* = H_*(\Omega(M,\star))$: loop algebra of M where $\star \in \partial M$

Theorem

Intersection of "family of paths" induces a Gerstenhaber double bracket

$$\{\!\{-,-\}\!\}:A_*\otimes A_*\longrightarrow A_*\otimes A_*$$

which has degree (2 - n).

Work in progress . . .

 \mathbb{K} : field

M: oriented smooth manifold of dimension $n \geq 3$ with $\partial M \neq \emptyset$

 $A_* = H_*(\Omega(M,\star))$: loop algebra of M where $\star \in \partial M$

Theorem

Intersection of "family of paths" induces a Gerstenhaber double bracket

$$\{\!\{-,-\}\!\}:A_*\otimes A_*\longrightarrow A_*\otimes A_*$$

which has degree (2 - n).

About the proof.

Adapt the ideas of Chas & Sullivan (1999) using a homology theory based on manifolds with corners to deal with the transversality issue.

Work in progress ...

 \mathbb{K} : field

M : oriented smooth manifold of dimension $n \geq 3$ with $\partial M \neq \varnothing$

 $A_* = H_*(\Omega(M,\star))$: loop algebra of M where $\star \in \partial M$

Theorem

Intersection of "family of paths" induces a Gerstenhaber double bracket

$$\{\!\{-,-\}\!\}:A_*\otimes A_*\longrightarrow A_*\otimes A_*$$

which has degree (2 - n).

About the proof.

Adapt the ideas of Chas & Sullivan (1999) using a homology theory based on manifolds with corners to deal with the transversality issue.

Corollary

The graded commutative algebra representing the functor

$$B_* \longmapsto \mathsf{Hom}_{\mathcal{A}Ig_*}(A_*, \mathsf{Mat}_N(B_*))$$

has a canonical structure of Gerstenhaber algebra of degree (2 - n).