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Abstract. We characterize the image of the Poisson transform on any distin-
guished boundary of a Riemannian symmetric space of the noncompact type
by a system of differential equations. The system corresponds to a genera-

tor system of two-sided ideals of a universal enveloping algebra, which are
explicitly given by analogues of minimal polynomials of matrices.

1. Introduction

The classical Poisson integral of a function on the unit circle in the complex plane
gives a harmonic function on the unit disk. More generally, each eigenfunction
of the Laplace–Beltrami operator on the Poincaré disk can be represented by a
generalized Poisson integral of a hyperfunction on the unit circle.

The notion of the Poisson integral has been generalized to a Riemannian symmet-
ric space X = G/K of the noncompact type, where G is a connected real reductive
Lie group and K is its maximal compact subgroup. The so-called Helgason con-
jecture states that every joint eigenfunction of the invariant differential operators
on X has a Poisson integral representation by a hyperfunction on the Furstenberg
boundary G/P of X, where P is a minimal parabolic subgroup of G. Helgason
proved the conjecture for the Poincaré disk. Kashiwara et al. [K–] proved it gener-
ally by using the theory of hyperfunctions and the system of differential equations
with regular singularities and their boundary value problem due to Kashiwara and
Oshima [KO].

The Poisson transform is an intertwining operator from the spherical principal
series representation to the eigenspace representation. For generic parameter λ of
the principal series representation, the Poisson transform Pλ gives an isomorphism
of the representations. The principal series representation is realized on the space
of the sections of a homogeneous line bundle over G/P whose parameter is λ. If
λ = ρ, the line bundle is trivial and the representation is realized on the space of
functions on G/P . Then the image of Pρ consists of the harmonic functions, that
is the functions that are annihilated by the invariant differential operators on the
symmetric space that kill the constant functions. We call this the “harmonic case”.

It is natural to pose the problem of characterizing the image of Pλ when the map
is not bijective. An interesting case corresponds to the problem of characterizing the
image of the Poisson transform from another distinguished boundary of X in one of
the Satake compactifications of X (cf. [Sa], [O1, O2]). Each distinguished boundary
is of the form G/PΞ, where PΞ is a parabolic subgroup of G. The Furstenberg
boundary is the maximal one among the distinguished boundaries.

For a classical Hermitian symmetric space of tube type, Hua [Hua] studied the
Poisson integrals of functions on the Shilov boundary, which are generalizations of
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the classical Poisson integrals on the unit disk. The Poisson integrals are harmonic
functions, and moreover, they are annihilated by second-order differential operators,
which are called the Hua operators. Korányi and Malliavin [KM] and Johnson [J1]
showed that the Hua operators characterize the Poisson integrals of hyperfunctions
on the Shilov boundary of the Siegel upper-half planes. Johnson and Korányi [JK]
constructed the Hua operators for a Hermitian symmetric space of tube type in
general and proved that they characterize the Poisson integrals of hyperfunctions
on the Shilov boundary. The second author [Sn2] generalized the result to non-
harmonic cases. In [Sn4], he also constructed a system of differential equations that
characterizes the image of the Poisson transform from a certain kind of distinguished
boundary of a Hermitian symmetric space.

For a Hermitian symmetric space of non-tube type, Berline and Vergne [BV]
defined generalized Hua operators, which are third-order differential operators, and
proved that these operators, together with invariant differential equations, charac-
terize the Poisson integrals of hyperfunctions on the Shilov boundary in the har-
monic case. Koufany and Zhang [KZ] generalized the result to non-harmonic cases.
For G = U(p, q) they also showed that second-order operators characterize the im-
age of the Poisson transform from the Shilov boundary, even for non-tube cases,
that is when p > q.

Johnson constructed a system of differential equations that characterizes the
image of the Poisson transform from each distinguished boundary for G = SL(n,R)
and SL(n,C) in [J2], and for general G in [J3] in the harmonic case.

The first author [O1] proposed a method to study boundary value problems
for various boundaries of X. Oshima constructed a system of differential oper-
ators corresponding to the boundary GL(n,R)/Pn−1,1 of GL(n,R)/O(n), where
Pn−1,1 is the maximal parabolic subgroup of GL(n,R) corresponding to the par-
tition (n − 1, 1). To prove that the differential equations indeed characterize the
image of the Poisson transform, he used the method of calculating differential equa-
tions for boundary values on the Furstenberg boundary, which are called “induced
equations”. All of the above mentioned works on the problem of characterizing
the image of the Poisson transform from a distinguished boundary by a system of
differential equations use essentially the method of calculating induced equations.

On the other hand, the first author ([O4, O5, O6] and [OO] with Oda), studied
two-sided ideals of a universal enveloping algebra of a complex reductive Lie algebra,
which are annihilators of generalized Verma modules, and applied them to boundary
value problems for various boundaries of a symmetric space. In this paper, we use
two-sided ideals constructed explicitly in [O6, OO] to characterize the image of
the Poisson transform from a distinguished boundary of a symmetric space, giving
several examples including previously known cases. We also study the case of
homogeneous line bundles on a Hermitian symmetric space. Since the differential
operators come from a two-sided ideal of the universal enveloping algebra of the
complexification of the Lie algebra of G, the proof that they characterize the image
of the Poisson transform is fairly easy. Indeed we do not need to calculate induced
equations on the Furstenberg boundary. For the harmonic case, our operators are
different from those constructed by Johnson [J2, J3] and they are more explicit.

This paper is organized as follows. In Section 2 we review representations realized
on a symmetric space and give basic results of the Poisson transforms on various
boundaries.

In Section 3 we review minimal polynomials on complex reductive Lie algebras,
which give a generator system of the annihilator of a generalized Verma module
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after [O6, OO] and show that the corresponding differential operators on a Rie-
mannian symmetric space characterize the image of the Poisson transform from a
distinguished boundary of the symmetric space.

In Section 4, we give examples when G is U(p, q), Sp(n,R) or GL(n,R). In
particular, for G = U(p, q) or Sp(n,R) and G/PΞ the Shilov boundary of X, our
operators for the trivial line bundle over X = G/K coincide with the previously
known Hua operators mentioned above.

2. Representations on symmetric spaces

In this section we review representations realized on Riemannian symmetric spaces
of the noncompact type and their characterizations by differential equations. The
statements in this section are known results or at least a reformulation or an easy
consequence of known facts (cf. [He2], [He1], [K–], [Ko], [KR], [O1], [Sn1] etc.) and
this section can be read without referring to other sections.

Let G be a connected real connected semisimple Lie group, possibly with infinite
center. Let K be a maximal compact subgroup of G modulo the center of G, let
θ be the corresponding Cartan involution, and g = k+ p the corresponding Cartan
decomposition of the Lie algebra g of G. Fix a maximal abelian subspace ap of
p. Let Σ(ap) be the set of the roots defined by the pair (g, ap) and fix a positive
system Σ(ap)

+. We denote its Weyl group by W (ap) and the fundamental system
by Ψ(ap). Half of the sum of the positive roots counting their multiplicities is
denoted by ρ. Let G = KAN be the Iwasawa decomposition of G with Lie(A) = ap
and N corresponding to Σ(ap)

+. Then P = MAN is a minimal parabolic subgroup
of G. Here M is the centralizer of ap in K. We denote by k, m and n the Lie algebras
of K, M and N , respectively.

Let U(g) be the universal enveloping algebra of the complexification gC of g,
which we identify with the algebra of left-invariant differential operators on G. In
general, for a subalgebra l of g, we denote by U(l) the universal enveloping algebra
of the complexification lC of l. Let S(g) be the symmetric algebra of gC. Then
the map sym of symmetrization of S(g) to U(g) defines a K-linear bijection. By
the Killing form on gC we identify the space O(pC) of polynomial functions on the
complexification pC of p with the symmetric algebra of pC. Let O(p)K be the space
of all K-invariant polynomials on pC and let H be the space of all K-harmonic
polynomials on pC. Then we have the following K-linear bijection:

(2.1)
H⊗O(p)K ⊗ U(k)

∼→ U(g)

h⊗ p⊗ k 7→ sym(h)⊗ sym(p)⊗ k

because of the Cartan decomposition g = k+ p and the K-linear bijection

(2.2) H⊗O(p)K 3 h⊗ p 7→ hp ∈ O(p)

studied by [KR].
We denote by A(G) and B(G) the space of real-analytic functions and that

of hyperfunctions on G, respectively. We write A(G)K for the space of all K-
finite elements of A(G) under the left translations. Let π denote the left regular
representation of G on F(G) defined by(

π(g)ϕ
)
(x) = ϕ(g−1x) (x ∈ G, ϕ ∈ F(G)).

Here F denotes one of the function spaces such as A (real-analytic functions),
C∞ (smooth functions), D′ (distributions), B (hyperfunctions). The corresponding
representation of g is denoted by π. That is,(

π(X)ϕ
)
(x) = d

dtϕ(e
−tXx)

∣∣
t=0

(ϕ ∈ C∞(G), X ∈ g, x ∈ G).
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On the other hand, X ∈ g acts as a left G-invariant differential operator on G by
the right action

(Xϕ)(x) = d
dtϕ(xe

tX)
∣∣
t=0

(ϕ ∈ C∞(G), x ∈ G),

and the universal enveloping algebra U(g) is identified with the algebra of left G-
invariant differential operators on G . Let ordD denote the order of the differential
operator on G corresponding to D ∈ U(g).

By the decomposition

(2.3) U(g) = nU(n+ ap)⊕ U(ap)⊕ U(g)k

coming from the Iwasawa decomposition g = k + ap + n, we define Dap
∈ U(ap)

for D ∈ U(g) so that D −Dap
∈ nU(n+ ap) + U(g)k and put γ(D) = e−ρ◦Dap

◦eρ.
Here eρ is the function on A defined by eρ(a) = aρ.

Note that the kernel of the restriction of γ to the space of all K-invariants
U(g)K of U(g) equals U(g)K∩U(g)k and the restriction defines the Harish-Chandra
isomorphism

(2.4) γ̄ : D(G/K) ' U(g)K
/(

U(g)K ∩ U(g)k
) ∼→ U(ap)

W

onto the space U(ap)
W of all W (ap)-invariants in U(ap). Here D(G/K) is the

algebra of invariant differential operators on G/K. Note also that sym(O(p)K) is
isomorphic to D(G/K) as K-modules under the isomorphisms (2.1), (2.2) and (2.4).

Identifying U(ap) with the space of polynomial functions on the complex dual
a∗C of ap, we put

(2.5) γλ(D) = γ(D)(λ) ∈ C
for λ ∈ a∗C and D ∈ U(g). Now we define

(2.6) Jλ = U(g)k+
∑

p∈O(p)K

U(g)
(
sym(p)− γλ(sym(p))

)
and

(2.7) A(G/K;Mλ) = {u ∈ A(G) ; Du = 0 for D ∈ Jλ}
and put A(G/K;Mλ)K = A(G)K ∩A(G/K;Mλ). Here A(G/K;Mλ) is naturally
a subspace of the space A(G/K) of real-analytic functions on G/K because the
function in A(G/K;Mλ) is right K-invariant. Now we can state our basic theorem.

Theorem 2.1. Fix λ ∈ a∗C and define a bilinear form

(2.8)
H⊗A(G/K;Mλ) → C

(h, u) 7→ 〈h, u〉 = (sym(h)u)(e)

and for a subspace V of A(G/K;Mλ), put

(2.9) H(V ) = {h ∈ H ; 〈h, u〉 = 0 for u ∈ V }.
(i) The bilinear form 〈 , 〉 is K-invariant and nondegenerate.
(ii) If V is a subspace of A(G/K;Mλ)K , then

V = {u ∈ A(G/K;Mλ)K ; 〈h, u〉 = 0 for h ∈ H(V )}.
(iii) There are natural bijections between the following sets of modules.

V(λ) = {V ⊂ A(G/K;Mλ) ; V is a close subspace of C∞(G) and G-invariant},
V(λ)K = {VK ⊂ A(G/K;Mλ)K ; VK is a g-invariant subspace},

J(λ) = {J ⊃ Jλ ; J is a left ideal of U(g)}.
Here the bijections are given by

V(λ) 3 V 7→ V ∩ A(G)K ∈ V(λ)K ,(2.10)
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V(λ)K 3 VK 7→ Jλ +
∑

p∈H(VK)

U(g) sym(p) ∈ J(λ),(2.11)

J(λ) 3 J 7→ {u ∈ A(G) ; Du = 0 for D ∈ J} ∈ V(λ).(2.12)

Before the proof of this theorem we review the Poisson transform. The G-module

B(G/P ;Lλ) = {f ∈ B(G) ; f(gman) = aλ−ρf(g)(2.13)

for (g,m, a, n) ∈ G×M ×A×N}

is the space of hyperfunction sections of the spherical principal series ofG parametrized
by λ ∈ a∗C. Put A(G/P ;Lλ) = B(G/P ;Lλ) ∩ A(G). Define the K-fixed element
K×A×N 3 (k, a, n) 7→ 1λ(kan) = aλ−ρ of A(G/P ;Lλ) and put Pλ(g) = 1−λ(g

−1).
By the G-invariant bilinear form

(2.14)

B(G/P ;Lλ)×A(G/P ;L−λ) → C

(φ, f) 7→ 〈φ, f〉λ =

∫
K

φ(k)f(k)dk

with the normalized Haar measure dk on K, we define the Poisson transform

(2.15)

Pλ : B(G/P ;Lλ) → B(G)

φ 7→ Pλφ(g) =
〈
π(g−1)φ,1−λ

〉
λ
=

∫
K

φ(gk)dk

=

∫
K

φ(k)Pλ(k
−1g)dk.

Then it is known that the image of Pλ is contained in A(G/K;Mλ) because DPλ =
γλ(D)Pλ for D ∈ U(g)K . (If the center Z of G is infinite, integrations over K in
the definitions of pairing 〈 · , · 〉λ and the Poisson transform should be understood
to be normalized integral over K/Z. But we write K for simplicity.)

For α ∈ Σ(ap) and w ∈ W (ap), we put

(2.16)

Σ(ap)
+
o = {α ∈ Σ(ap)

+; α
2 /∈ Σ(ap)},

eα(λ) =
{
Γ
(
λα

4 + mα

4 + 1
2

)
Γ
(
λα

4 + mα

4 + m2α

2

)}−1
,

e(λ) =
∏

α∈Σ(ap)
+
o

eα(λ),

c(λ) = Ce(λ)
∏

α∈Σ(ap)
+
o

2−
λα
2 Γ

(
λα

2

)
,

where mα is the multiplicity of the root α, λα = 2 〈λ,α〉
〈α,α〉 and C is a constant

determined by c(ρ) = 1.
The following theorem is the main result in [K–].

Theorem 2.2 (Helgason conjecture). Let λ ∈ a∗C.
(i) Pλ gives a topological G-isomorphism of A(G/P ;Lλ) onto A(G/K;Mλ) if

and only if e(λ) 6= 0.
(ii) Let w be an element of W (ap) which satisfies

(2.17) Re〈wλ, α〉 ≥ 0 for all α ∈ Σ(ap)
+.

Then Pwλ gives a topological G-isomorphism

(2.18) Pwλ : B(G/P ;Lwλ)
∼→ A(G/K;Mλ).

Remark 2.3. (i) The equivalence of the injectivity of Pλ and the condition e(λ) 6= 0
is proved in [He3].
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(ii) Suppose e(λ) 6= 0. Let D′(G) and C∞(G) denote the space of distributions
and that of C∞-functions on G, respectively. Then

(2.19)
Pλ

(
B(G/P ;Lλ) ∩ D′(G)

)
= {u ∈ A(G/K;Mλ) ; there exist C and k with |u(g)| ≤ C exp k|g|},

(2.20)

Pλ

(
B(G/P ;Lλ) ∩ C∞(G)

)
= {u ∈ A(G/K;Mλ) ; there exist k such that for any D ∈ U(k)

we can choose CD > 0 with
∣∣(π(D)

)
u(g)

∣∣ ≤ CD exp k|g|}.

Here C, CD and k are positive constants, U(k) is the universal enveloping algebra

of the complexification of k and |g| = 〈H,H〉 1
2 with the Killing form 〈 , 〉 if g ∈

K expHK with H ∈ ap. Note that U(k) in (2.20) may be replaced by U(g).
In fact, (2.19) is given in [OS1, Corollary 5.5]. Suppose u = Pλf . Since Pλ is

contained in the set (2.19), the U(g)-equivariance and the last expression in (2.15)
implies that the left-hand side of (2.20) is contained in the right-hand side of (2.20).
Note that the inverse of Pλ is the map of taking boundary values. We can see from
the definition that the order of distribution of the boundary value f of u is estimated
by k in (2.19) (cf. [OS1, the proof of Lemma 2.19] or [O3]). If u is contained in the
right-hand side of (2.20), the order of π(D)f is uniformly bounded for all D ∈ U(k)
and hence f |K ∈ C∞(K). A different proof can be found in [BS].

Proof of Theorem 2.1. Let X ∈ g, k ∈ K and u ∈ A(G/K). Then(
Xπ(k)u

)
(e) = d

dtu
(
k−1 exp tX

)∣∣
t=0

= d
dtu

(
(exp tAd(k−1)X)k−1

)∣∣
t=0

=
(
Ad(k)−1Xu

)
(e)

and therefore the bilinear from 〈 , 〉 in Theorem 2.1 is K-invariant.

Let K̂ be the set of equivalence classes of irreducible representations of K.
For δ, τ ∈ K̂ we denote by A(G/K;Mλ)δ and Hτ the δ isotopic components
of A(G/K;Mλ) and τ isotopic components of H, respectively. In general, for a
K-module U we denote by Uδ the subspace of K-isotopic components δ. Then the
K-equivariant map

A(G/K;Mλ)δ 3 u 7→
(
Hτ 3 h 7→ 〈h, u〉 ∈ C

)
∈ Hτ∗

is identically zero if δ 6= τ∗ by Schur’s lemma, where τ∗ is the dual of τ .
Suppose u ∈ A(G/K;Mλ)δ satisfies 〈h, u〉 = 0 for any h ∈ Hδ∗ . Then 〈h, u〉 = 0

for any h ∈ H and therefore it follows from (2.1), (2.6) and (2.7) that (Du)(e) = 0
for all D ∈ U(g). Hence u = 0 because u is real-analytic. On the other hand,

since H and A(G/K;Mλ)K are isomorphic to IndKM 1 (cf. [KR] and Theorem 2.2)
dimA(G/K;Mλ)δ = dimHδ∗ , and hence we can conclude that 〈 , 〉 defines a
nondegenerate bilinear form on A(G/K;Mλ)δ×Hδ∗ , and we have (i) and (ii). Here
we remark that the results follows from the weaker relation dimA(G/K;Mλ)δ ≥
dimHδ∗ .

First, note that the map (2.10) is a bijection of V(λ) onto V(λ)K whose inverse
is the map of taking the closure in C∞(G). The map is still bijective even if it is
restricted to the spaces killed by a left ideal J of U(g). Moreover, remark that for
X ∈ g, D ∈ U(g) and u ∈ A(G/K) we have

(
Dπ(X)u

)
(e) = −

(
XDu

)
(e).

Let VK ∈ V(λ)K . Then
(
D sym(h)u

)
(e) = 0 for D ∈ U(g), h ∈ H(VK) and

u ∈ VK because of the above remark. Note that for a left ideal J of U(g) and
a function u in A(G), the condition Du = 0 for all D ∈ J is equivalent to the
condition (Du)(e) = 0 for all D ∈ J . Hence we have

VK = {u ∈ A(G/K;Mλ)K ; 〈h, u〉 = 0 for h ∈ H(VK)}
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= {u ∈ A(G/K;Mλ)K ;
(
D sym(h)u

)
(e) = 0 for h ∈ H(VK) and D ∈ U(g)}

= {u ∈ A(G)K ; Du = 0 for D ∈ Jλ +
∑

h∈H(VK)

U(g) sym(h)}.

Let J be a left ideal of U(g) containing Jλ. Then (2.1) and (2.6) show that

(2.21)
J = Jλ ⊕ {sym(h);h ∈ HJ} with

HJ = sym−1(J) ∩H
and

{u ∈ A(G)K ;Du = 0 for D ∈ J}
= {u ∈ A(G/K;Mλ)K ; sym(h)u = 0 for h ∈ HJ}.

Hence the map of J(λ) to V(λ)K is injective and we have Theorem 2.1. �
Theorem 2.4. (i) The map

(2.22) H 3 h 7→ π(sym(h))1λ ∈ A(G/P ;Lλ)K

is K-equivariant. It is bijective if and only if e(−λ) 6= 0.
(ii)

(2.23) γλ(D) =
(
π(D)1−λ

)
(e) for D ∈ U(g).

(iii) Putting

(2.24) Hλ = {h ∈ H ; γλ
(
sym(Ad(k)h)

)
= 0 for all k ∈ K}

and

(2.25) J̄λ = Jλ +
∑

h∈Hλ

U(g) sym(h),

we have

(2.26) ImPλ = {u ∈ A(G) ; Du = 0 for D ∈ J̄λ}.

Proof. Since 1λ is K-invariant, the map (2.22) is K-equivariant. Moreover for
h ∈ H, the condition π(sym(h))1λ = 0 is equivalent to

(
π(sym(Ad(k)h))1λ

)
(e) = 0

for k ∈ K because
(
π(sym(h))1λ

)
(kan) =

(
π(sym(h))1λ

)
(k)aρ−λ. On the other

hand, (2.23) follows from the definition of γλ and 1−λ.
Let h ∈ Hλ. Then π(sym(h))1−λ = 0 and therefore sym(h)Pλ = 0, and hence it

is clear from (2.15) that ImPλ ⊂ {u ∈ A(G) ; Du = 0 for D ∈ J̄λ}.
Since π(D)1λ ∈ C1λ for D ∈ U(g)K , (2.1) shows that

U(g)1λ = {π(sym(h))1λ ; h ∈ H},
which is the Harish-Chandra module of the minimal closed G-invariant subspace of
A(G/P ;Lλ) containing 1λ. For φ ∈ A(G/P ;Lλ)δ, we have Pλφ(g) =

〈
φ, π(g)1−λ

〉
λ

and therefore the condition Pλφ = 0 is equivalent to
〈
φ, π(sym(h))1λ

〉
λ
= 0 for all

h ∈ Hδ∗ . Hence [KerPλ : δ] = [Hλ : δ∗] and Theorem 2.2 shows that [ImPλ : δ] =
[A(G/K;Mλ) : δ] − [Hλ : δ∗], which means dim(ImPλ)δ = dim{u ∈ A(G); Du =
0 for D ∈ J̄λ}δ, and furthermore (2.26) owing to Theorem 2.1 and Remark 2.3 (i).

If e(−λ) 6= 0, the bijectivity of (2.22) follows from Theorem 2.2 becauseHλ = {0}
by the argument above. But it follows directly from the result in [Ko] (cf. [He3])
that 1λ is cyclic in A(G/K;Lλ) if and only if e(−λ) 6= 0. �
Remark 2.5. Assume that G is a connected complex semisimple Lie group viewed
as a real Lie group and λ ∈ a∗C satisfies Re〈λ, α〉 ≥ 0 for all α ∈ Σ(ap)

+. Then Jλ
is identified with the annihilator of the Verma module of g parametrized by λ. It
follows from Theorem 2.1 and Theorem 2.2 that there is a natural bijection between
the set of the two-sided ideals of the universal enveloping algebra of g containing
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Jλ and the set of the closed G-invariant subspaces of the spherical principal series
representation of G parametrized by λ.

For a subset Ξ of Ψ(ap), let WΞ be a subgroup of W (ap) generated by reflections
with respect to the elements of Ξ and put PΞ = PWΞP . Let PΞ = MΞAΞNΞ be the
Langlands decomposition of PΞ with AΞ ⊂ A. For an element µ of the complex dual
a∗Ξ,C of the Lie algebra aΞ of AΞ, the space of hyperfunction sections of spherical
degenerate series is defined by

(2.27) B(G/PΞ;LΞ,µ) = {f ∈ B(G) ; f(gman) = aµ−ρf(g)

for (g,m, a, n) ∈ G×MΞ ×AΞ ×NΞ}.

Then as in the case of the minimal parabolic subgroup, we can define the Poisson
transform as

(2.28)

PΞ,µ : B(G/PΞ;LΞ,µ) → B(G)

φ 7→ (PΞ,µφ)(g) =
〈
π(g−1)φ,1Ξ,−µ

〉
Ξ,µ

=

∫
K

φ(gk)dk =

∫
K

φ(k)PΞ,µ(k
−1g)dk.

Here 〈 , 〉Ξ,µ is the bilinear form of B(G/PΞ;LΞ,µ) × A(G/PΞ;LΞ,−µ) defined on
the integral over K, 1Ξ,µ(kman) = aµ−ρ for (k,m, a, n) ∈ K ×MΞ ×AΞ ×NΞ and
PΞ,µ(g) = 1Ξ,−µ(g

−1).
Now we remark the following.

Lemma 2.6. We have naturally

B(G/PΞ;LΞ,µ) ⊂ B(G/P ;Lµ+ρ(Ξ)),(2.29)

ImPΞ,µ = ImPµ−ρ(Ξ).(2.30)

Here we identify ap with its dual by the Killing form and regard µ ∈ a∗Ξ,C as an

element of a∗C with value zero on a⊥Ξ , and define ρΞ = ρ|aΞ and ρ(Ξ) = ρ− ρΞ.

Proof. The inclusion (2.29) is clear from (2.13) and (2.27), which implies 1Ξ,−µ =
1−(µ−ρ(Ξ)) because A(G/PΞ,LΞ,−µ) ⊂ A(G/P ;L−µ+ρ(Ξ)). Since PΞ,µ is left MΞ-
invariant and

B(G/PΞ;LΞ,µ)|K = B(K/MΞ ∩K) and B(G/P ;Lµ−ρ(Ξ))|K = B(K/M),

we have (2.30) from (2.15) and (2.18). �

Corollary 2.7. (i) PΞ,µ is injective if e(µ+ ρ(Ξ)) 6= 0. In particular, the Poisson
transform PρΞ : B(G/PΞ) → A(G/K;Mρ) is injective.

(ii) If e(−µ+ ρ(Ξ))e(µ+ ρ(Ξ)) 6= 0, then B(G/PΞ;LΞ,µ) is irreducible.

Proof. The claim (i) is a direct consequence of Theorem 2.2 (i) and Lemma 2.6.
The K-invariant bilinear form 〈 , 〉Ξ,µ and (2.28) show that the following state-

ments are equivalent:

PΞ,µ is injective.(2.31)

1Ξ,−µ is cyclic in B(G/PΞ;LΞ,−µ).(2.32)

Any nonzero closed G-invariant subspace of(2.33)

B(G/PΞ;LΞ,µ) contains 1Ξ,µ.

Hence (ii) is clear. �

Remark 2.8. (i) The calculation of Hλ in (2.24) is equivalent to the determination
of the kernel of P γ(λ) defined by [Ko, §4].
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(ii) Under the notation in Lemma 2.6

(2.34) [Hµ+ρ(Ξ) : δ] ≥ [IndKM 1 : δ]− [IndKMΞ(K) 1 : δ] for δ ∈ K̂

and the equality holds if and only if PΞ,µ is injective.

Most of the statements in this section can be generalized to line bundles over
G/K. We will give the necessary modifications when we consider homogeneous
line bundles over a Hermitian symmetric space G/K. For simplicity we suppose
G is simple and k have a nontrivial center. Let K ′ be the analytic subgroup of G
with the Lie algebra k′ = [k, k] and let Y be the central element of k so normalized
that exp tY ∈ K ′

R if and only if ` ∈ Z, where K ′ is denoted by K ′
R when G is a

real form of a simply connected complex Lie group (cf. [Sn1]). Let χ` : K → C
be the one-dimensional representation of K defined by χ`(k) = 1 if k ∈ K ′ and
χ`(exp tY ) = exp

√
−1`t. Then we can define the space of real-analytic sections of

a homogeneous line bundle E` over G/K associated to the representation χ` of K:

(2.35) A(G/K;E`) = {u ∈ A(G) ; u(gk) = χ`(k)
−1u(g) for k ∈ K}.

Let D(E`) be the algebra of invariant differential operators acting on sections of
E`. Defining γ`(D) ∈ U(a) for D ∈ U(a) so that

(2.36) eρ◦γ`(D)◦e−ρ ∈ nU(n+ ap)⊕
∑

X∈k U(g)
(
X + χ`(X)

)
,

as in the case of γ, we have the Harish-Chandra isomorphism

(2.37) γ̄` : D(E`) ' U(g)K
/(

U(g)K ∩
∑

X∈k U(g)(X + χ`(X))
)
→ U(ap)

W

onto U(ap)
W . Fix λ ∈ a+C . Denoting γ`

λ(D) = γ`(D)(λ) ∈ C for D ∈ U(g), we put

(2.38) J`
λ =

∑
X∈k U(g)

(
X + χ`(X)

)
+
∑

p∈O(p)K U(g)
(
sym(p)− γ`

λ(sym(p))
)

and

(2.39) A(G/K;M`
λ) = {u ∈ A(G) ; Du = 0 for D ∈ J`

λ}.

Theorem 2.9. Replacing Mλ by M`
λ, the statements (i), (ii) and (iii) in Theo-

rem 2.1 are valid if the K-invariance of 〈 , 〉 is modified by

(2.40)
〈
Ad(k)h, χ−`(k)π(k)u

〉
= 〈h, p〉 for k ∈ K,h ∈ H and u ∈ A(G/K;M`

λ).

Proof. Recalling the proof of Theorem 2.1, we have only to consider

(2.41) A(G/K;M`
λ)δ⊗χ`

×Hδ∗ 3 (u, p) 7→ 〈p, u〉 ∈ C

because of the K-invariance (2.40). Hence if we have dimA(G/K;M`
λ)δ⊗χ`

≥
dimHδ∗ , the same argument as in the proof of Theorem 2.1 works for Theorem 2.9.

On the other hand, the proof of [Sn1, Lemma 8.6] says that

[A(G/K;M`
λ), δ ⊗ χ`] ≥ [IndKM χ`|M , δ ⊗ χ`].

Tensoring χ−` to the right-hand side, we have [IndKM χ`|M , δ ⊗ χ`] = [IndKM 1, δ],
which is also equal to [H, δ∗]. �

Put {|α|;α ∈ Σ(ap)} = {c1, . . . , cN} with c1 > · · · > cN . Then N = 1 or 2 or 3
and we fix βν ∈ Σ(ap)

+ with |βν | = cν . Moreover we put

(2.42) B(G/P ;L`
λ) = {f ∈ B(G) ; f(gman) = χ`(m)−1aλ−ρf(g)

for (g,m, a, n) ∈ G×M ×A×N}
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and

(2.43)

eα(λ, `) =
{
Γ
(

λα

2 +
mα

2

4 + 1+`
2

)
Γ
(

λα

2 +
mα

2

4 + 1−`
2

)}−1

,

e(λ, `) =
∏

α∈Σ(ap)+, |α|=|β1|

eα(λ, `)×
∏

α∈Σ(ap)+, |α|=|β2|

eα(λ),

c(λ, `) = Ce(λ, `)
2∏

k=1

∏
α∈Σ(ap)+, |α|=|βk|

2−
λα
k Γ

(
λα

k

)
,

where C ∈ R is determined by c(ρ, 0) = 1, eα(λ) is given in (2.16) and mα
2
may be

0. Then the main result in [Sn1] says

Theorem 2.10. (i) The Poisson transform

P`
λ : B(G/P ;L`

λ) → B(G)

φ 7→ (P`
λφ)(g) =

∫
K

φ(gk)χ`(k)dk =

∫
K

φ(k)1−`,−λ(g
−1k)dk

is a G-homomorphism and ImP`
λ ⊂ A(G/K;M`

λ). Here the function 1−`,−λ ∈
A(G/P ;L−`

−λ) is defined by 1−`,−λ(kan) = χ`(k)a
−λ−ρ for (k, a, n) ∈ K ×A×N .

(ii) If

(2.44) −2
〈λ, α〉
〈α, α〉

/∈ {1, 2, 3, . . .} for α ∈ Σ(ap)
+

and e(λ, `) 6= 0, then P`
λ is a topological G-isomorphism of B(G/P ;L`

λ) onto
A(G/K;M`

λ).
(iii) Suppose Re〈λ, α〉 > 0 for α ∈ Σ(ap)

+. Then the following statements are
equivalent:

c(λ, `) 6= 0.(2.45)

P`
λ is injective.(2.46)

ImP`
λ = A(G/K;M`

λ).(2.47)

Notice that Theorem 2.2 (ii) does not hold in the case of nontrivial line bundles.
Now we consider the degenerate series. Let Mo

Ξ,s denote the semisimple part of

MΞ, namely Mo
Ξ,s is the analytic subgroup of MΞ with the Lie algebra [mΞ,mΞ].

Suppose

(2.48) χ`|Mo
Ξ,s∩K = 1.

Let Z(MΞ) be the center of MΞ. Then Z(MΞ) ⊂ M and for µ ∈ a∗Ξ we can define
a one-dimensional representation τ`,µ of PΞ by

(2.49) τΞ,`,µ(yman) = χ`(m)aµ−ρ for (y,m, a, n) ∈ Mo
Ξ,s ×M ×AΞ ×NΞ.

Put

(2.50)
B(G/PΞ;L`

Ξ,µ) = {f ∈ B(G) ; f(gp) = τΞ,`,µ(p)f(g) for p ∈ PΞ},

A(G/PΞ;L`
Ξ,µ) = B(G/PΞ;L`

Ξ,µ) ∩ A(G)

and define an element 1Ξ,`,µ ∈ A(G/PΞ;L`
Ξ,µ) by

(2.51) 1Ξ,`,µ(kan) = χ−`(k)a
µ−ρ for (k, a, n) ∈ K ×A×N.

Then by the G-invariant bilinear form
(2.52)

B(G/PΞ;L`
Ξ,µ)×A(G/PΞ;L−`

Ξ,−µ) 3 (φ, f) 7→
〈
φ, f

〉
Ξ,`,µ

=

∫
K

φ(k)f(k)dk ∈ C
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we can define the Poisson transform as

(2.53)

P`
Ξ,µ : B(G/PΞ;L`

Ξ,µ) → A(G/K;M`
µ+ρ(Ξ))

φ 7→ (P `
Ξ,µφ)(g) =

〈
π(g−1)φ,1Ξ,−`,−µ

〉
Ξ,`,µ

=
〈
φ, π(g)1Ξ,−`,−µ

〉
Ξ,`,µ

.

We note the following lemma which is similarly proved as in Lemma 2.6.

Lemma 2.11.

B(G/PΞ;L`
Ξ,µ) ⊂ B(G/P ;L`

µ+ρ(Ξ)),(2.54)

ImP`
Ξ,µ = ImP`

µ−ρ(Ξ).(2.55)

Lastly, in this section we examine the space of harmonic functions on G/K:

H(G/K) := A(G/K;Mρ).

Let XΞ be the Satake compactification of G/K where G/PΞ appears as the unique
compact G-orbit in the closure of G/K in XΞ (cf. [Sa]). For a ∈ A we denote
by a → ∞ if α(log a) → ∞ for any α ∈ Ψ(ap). Then for any k ∈ K the point
kaK ∈ G/K ⊂ XΞ converges to a point in G/PΞ ⊂ XΞ. The Poisson transform
Pρ defines a bijective homomorphism of B(G/P ) onto H(G/K). Let C(G/PΞ) be
the space of continuous functions on G/PΞ. Note that C(G/PΞ) ' C(K/MΞ) ⊂
C(G/P ) ' C(K/M).

Proposition 2.12. Let F be C or Cm or C∞ or D′ or B. Note that F(G/PΞ) '
F(K/K ∩MΞ) ⊂ F(G/P ) ' F(K/M). Then we have

PΞ,ρF(G/PΞ)

= {u ∈ H(G/K) ; u(ka) uniformly converges to a function on

K/K ∩MΞ in the strong topology of F(K) when a → ∞}.
(2.56)

This is shown as follows. Suppose u is a function in the above left-hand side.
Then the boundary value βu of u equals lima→∞ u(ka) (cf. for example, [OS1] and
[BOS]) and Pρβu = u. The assumption implies βu ∈ F(G/PΞ) and hence Pρβu =
PΞ,ρβu. Moreover the Poisson transform of the function f ∈ F(G/PΞ) ⊂ F(G/P )
has limit lima→∞(Pρu)(ka) = u(ka) in the strong topology of F(K).

In particular, if u ∈ H(G/K) can be continuously extended to the boundary
G/PΞ inXΞ, then u satisfies many differential equations corresponding to Ξ because
it is in the image of PΞ,ρ.

These statements can be extended for general eigenspaces A(G/K;Mλ) by using
weighted boundary values given in [BOS, Theorem 3.2].

3. Construction of the Hua type operators

3.1. Two sided ideals. We want to study a good generator system characterizing
the image of the Poisson transform P`

Ξ,µ given by (2.53). Namely, we characterize
the image by a two-sided ideal of the universal enveloping algebra.

As the simplest example, we recall the case when ` = 0 and the Poisson transform
Pλ given by (2.15) from the Furstenberg boundary. The image of Pλ is characterized
as a simultaneous eigenspace of the invariant differential operators D(G/K) on the
symmetric space G/K when the Poisson transform is injective. The image is also a
simultaneous eigenspace of the center Z(g) of U(g) with eigenvalues corresponding
to the infinitesimal character and in most cases the system of equations on G/K
defined by the generators of Z(g) is equal to that defined by D(G/K). In fact,
this holds if the image of Z(g) ⊂ U(g)K under the identification (2.4) generates
D(G/K), which is valid when G is of classical type. Moreover, even when the
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image of Z(g) does not generate D(G/K), the system of equations defined by the
generators of Z(g) characterizes the image of the Poisson transform (2.15) for the
generic parameter λ, which follows from [He4] or [Oc].

Thus we can expect that the system of differential equations, characterizing the
image of the Poisson transform P`

Ξ,µ, is given by a two-sided ideal of U(g) at least
when the parameter µ is generic. In other words, it is expected to coincide with
the system defined by a certain left ideal of U(g) studied in the previous section.
Note that if P`

Ξ,µ is injective, the two-sided ideal should kill B(G/PΞ;L`
Ξ,µ). Hence

the system obtained by the operators killing B(G/PΞ;L`
Ξ,µ) is expected to be the

desired one. The annihilator of B(G/PΞ;L`
Ξ,µ) corresponds to that of a generalized

Verma module, which will be explained.
Let a be the Cartan subalgebra of the complexification of g containing ap and

let Σ(a)+ be a compatible positive system of the complexification attached to the
Cartan subalgebra a, and let b be attached to the Cartan subalgebra a, and let b
be the corresponding Borel subalgebra. Denoting the fundamental system of Σ(a)+

by Ψ(a), we have Ψ(ap) = {α|ap
; α ∈ Ψ(a)} \ {0}. For a subset Ξ ⊂ Ψ(ap) we

define a subset
Θ = {α ∈ Ψ(a) ; α|ap

∈ Ξ ∪ {0}} ⊂ Ψ(a)

and denote by pΘ, gΘ, nΘ and p0 the complexifications of pΞ, mΞ + aΞ, nΞ and the
Lie algebra of P , respectively. Note that Θ corresponds to a fundamental system
of the root system of gΘ. Let λ denote the character of pΘ defined by

(3.1) τΞ.`,µ(e
X) = eλ(X) (X ∈ pΞ).

Let aΘ be the center of gΘ. Then λ is identified with an element of the dual a∗Θ of
aΘ. Define left ideals

JΘ(λ) =
∑

X∈pΘ

U(g)
(
X − λ(X)

)
,

J0(λ) =
∑
X∈p0

U(g)
(
X − λ(X)

)
,

J(λ) =
∑
X∈b

U(g)
(
X − λ(X)

)
of U(g). Then we can see easily that

JΘ(λ) = {D ∈ U(g) ; Df = 0 (∀ f ∈ F(G/PΞ;L`
Ξ,µ)}.

Let a denote the anti-automorphism of U(g) defined by a(X) = −X, a(XY ) =
Y X for X, Y ∈ g.

Proposition 3.1. Assume that IΘ(λ) is a two-sided ideal of U(g) that satisfies

(3.2) JΘ(λ) = IΘ(λ) + J0(λ).

Then

F(G/PΞ;L`
Ξ,µ) = {f ∈ F(G/P ;L`

µ+ρ(Ξ)) ; π(a(D))f = 0 (∀D ∈ IΘ(λ))}.

Proof. Since (
π(a(D))f

)
(g) =

(
(Ad(g−1)D)f

)
(g) (∀ g ∈ G)

and IΘ(λ) is a two-sided ideal of U(g), the proposition follows. �
The above proposition shows that the two-sided ideal IΘ(λ), which satisfies (3.2)

characterizes F(G/PΞ;L`
Ξ,µ) in F(G/P ;L`

µ+ρ(Ξ)) as a U(g)-submodule. Notice that

the condition

(GAP) JΘ(λ) = IΘ(λ) + J(λ)

studied in [O4, O5, O6, OO] implies (3.2).
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Theorem 3.2. Suppose that the Poisson transform

P`
µ+ρ(Ξ) : B(G/P ;L`

µ+ρ(Ξ)) → A(G/K;M`
µ+ρ(Ξ))

is bijective and assume that (3.2) holds for a two-sided ideal IΘ(λ) of g. Then the
image of the Poisson transform of B(G/PΞ;L`

Ξ,µ) is characterized by the system

M`
µ+ρ(Ξ) together with the system defined by IΘ(λ).

Proof. Since the Poisson transform and its inverse map (boundary value map) are
both G-equivariant, Proposition 3.1 implies the theorem. �

It is clear that there exists a two-sided ideal IΘ(λ) satisfying (GAP) if and only
if

(3.3) JΘ(λ) = Ann
(
MΘ(λ)

)
+ J(λ).

Here MΘ(λ) is the generalized Verma module U(g)/JΘ(λ) and

Ann
(
MΘ(λ)

)
:= {D ∈ U(g) ; DMΘ(λ) = 0}

=
∩
g∈G

Ad(g)JΘ(λ)

= {D ∈ U(g) ; π(a(D))B(G/PΞ;L`
Ξ,µ) = 0}.

The condition (3.3) is satisfied, at least λ is dominant and regular, namely,

(3.4) −〈λ+ ρ̃, α〉
〈α, α〉

/∈ {0, 1, 2, 3, . . .} (∀α ∈ Σ(a)+),

which is a consequence of [OO, Theorem 3.12]. Here ρ̃ is half of the sum of the
elements of Σ(a)+. Hence (3.3) is satisfied for the harmonic case when µ = ρ, ` = 0
and λ = 0.

When the complexification of g equals glN , Oshima [O5] constructed the gener-
ator system of Ann

(
MΘ(λ)

)
for any Θ ⊂ Ψ(a) and any character λ of pΘ through

quantizations of elementary divisors and gives a necessary and sufficient condition
for (3.3) (cf. [OO, Lemma 4.15]), which says that (3.3) is valid at least if λ is regular,
namely,

(3.5)
〈λ+ ρ̃, α〉
〈α, α〉

6= 0 (∀α ∈ Σ(a)+).

Oshima [O6] constructed a generator system of a two-sided ideal IΘ(λ) when g is a
real form of finite copies of classical complex Lie algebras gln, spn or on and shows
that IΘ(λ) satisfies (GAP) if λ is (strongly) regular, which will be explained in the
next subsection.

3.2. Minimal polynomials. Oshima [O6] constructed a set of generators of the
annihilator of a generalized Verma module of the scalar type for classical reductive
Lie algebras. We review the main result of [O6] and discuss its implication for the
Poisson transform on a degenerate series representation.

Let N be a positive integer and let glN ' End(CN ) be the general linear Lie
algebra. Let Eij ∈ M(N,C) be the matrix whose (i, j) entry is 1 and the other
entries are all zero. We have a triangular decomposition

glN = n̄N + aN + nN ,

where

aN =

N∑
j=1

CEii, nN =
∑

1≤j<i≤N

CEij , n̄N =
∑

1≤i<j≤N

CEij .
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Let g be one of the classical complex Lie algebras gln, o2n, o2n+1 or spn and put
N = n, 2n, 2n+ 1, or 2n, respectively, so that g is a subalgebra of glN . Denoting

Ĩn =
(
δi,n+1−j

)
1≤i≤n
1≤j≤n

=

(
1

. .
.

1

)
and J̃n =

(
Ĩn

−Ĩn

)
,

we naturally identify

(3.6)
on = {X ∈ gln; σon(X) = X} with σon(X) = −Ĩn

tXĨn,

spn = {X ∈ gl2n; σspn
(X) = X} with σspn

(X) = −J̃n
tXJ̃n.

Let σ be the involutive automorphism of glN defined as above so that g = glσN :=
{X ∈ glN ; σ(X) = X} (cf. [O6, Definition 3.1]). Put Fij = Eij if g = gln and
Fij = Eij + σ(Eij) with g = glσN in other cases. Moreover, putting Fi = Fii and
F = (Fij)1≤i, j≤N ∈ M(N, g), we have

(3.7) Ad(g)q(F) = tg · q(F) · g−1 (∀g ∈ G)

for any polynomial q(x) and the analytic subgroup G of GL(n,C) with the Lie
algebra g. We have a triangular decomposition of g

g = n̄+ a+ n,

where a = g ∩ aN , n = g ∩ nN and n̄ = g ∩ n̄N . Then a is a Cartan subalgebra of g
and b = a+ n is a Borel subalgebra of g.

Let Θ = {0 < n1 < n2 < · · · < nL = n} be a sequence of strictly increasing

positive integers ending at n and put HΘ =
∑L

k=1

∑nk

i=1 Fi. Define
mΘ = {X ∈ g ; ad(HΘ)X = 0},
nΘ = {X ∈ n ; 〈X,mΘ〉 = 0}, n̄Θ = {X ∈ n̄ ; 〈X,mΘ〉 = 0},
pΘ = mΘ + nΘ.

Then pΘ is a parabolic subalgebra of g containing b. Put HΘ̄ =
∑L−1

k=1

∑nk

i=1 Fi and
define mΘ̄, nΘ̄, n̄Θ̄ and pΘ̄ by replacing Θ by Θ̄ in the above definition.

For 1 ≤ i ≤ n with nj−1 < i ≤ nj , put ιΘ(i) = j. For λ = (λ1, . . . , λL) ∈ CL

define a character of pΘ by

λ
(
X +

n∑
i=1

CiFi

)
=

n∑
i=1

CiλιΘ(i) for X ∈ nΘ + [mΘ,mΘ] and Ci ∈ C.

In this subsection U(g) denotes the universal enveloping algebra of the complex Lie
algebra g. The generalized Verma module MΘ(λ) = U(g)/JΘ(λ) is a quotient of
the Verma module M(λ) = U(g)/J(λ). If λL = 0, we similarly define a character
of pΘ̄, JΘ̄(λ) and MΘ̄(λ).

Define polynomials

(3.8)



qΘ(gln;x, λ) =
L∏

j=1

(x− λj − nj−1),

qΘ(o2n+1;x, λ) = (x− n)
L∏

j=1

(x− λj − nj−1)(x+ λj + nj − 2n),

qΘ(spn;x, λ) =
L∏

j=1

(x− λj − nj−1)(x+ λj + nj − 2n− 1),

qΘ(o2n;x, λ) =
L∏

j=1

(x− λj − nj−1)(x+ λj + nj − 2n+ 1)

and if g = spn, o2n+1 or o2n,

qΘ̄(g;x, λ) = (x− nL−1)
L−1∏
j=1

(x− λj − nj−1)(x+ λj + nj − 2n− δg)
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with

δg =


1 if g = spn,

0 if g = so2n+1 or gln,

−1 if g = so2n.

Define two-sided ideals of U(g):

(3.9)


IΘ(λ) =

N∑
i=1

N∑
j=1

U(g)qΘ(g;F, λ)ij +
∑
j∈J

U(g)
(
∆j − λ(∆j)

)
,

IΘ̄(λ) =
N∑
i=1

N∑
j=1

U(g)qΘ̄(g;F, λ)ij +
∑
j∈J̄

U(g)
(
∆j − λ(∆j)

)
,

where ∆1, . . . ,∆n are fixed generators of the center Z(g) ⊂ U(g) with
ord∆j = j (1 ≤ j ≤ n) if g = gln,

ord∆j = 2j (1 ≤ j ≤ n) if g = o2n+1 or g = spn,

ord∆j = 2j (1 ≤ j < n), ord∆n = n if g = o2n

and

(3.10)


J = {1, 2, . . . , L− 1}, N = n if g = gln,

J = {1, 2, . . . , L}, J̄ = {1, 2, . . . , L− 1}, N = 2n+ 1 if g = o2n+1,

J = J̄ = {1, 2, . . . , L− 1}, N = 2n if g = spn,

J = J̄ = {1, 2, . . . , L− 1} ∪ {n}, N = 2n if g = o2n.

Here λ(∆j) ∈ C are defined so that ∆j − λ(∆j) ∈ Ann
(
M(λ)

)
. When g = o2n, ∆j

for j = 1, . . . , n−1 are fixed and ∆n is not fixed by a nontrivial outer automorphism
of o2n.

Oshima [O6] studied sufficient conditions on λ such that

(3.11) JΘ′(λ) = IΘ′(λ) + J(λΘ)

with Θ′ = Θ or Θ̄. For g = gln, a necessary and sufficient condition on λ for (3.11)
is given ([O6, Remark 4.5 (i)]). In particular, in the case when g = gln, o2n+1 or
spn, (3.11) holds for Θ′ = Θ if λ|a + ρ̃ is regular, that is 〈λ|a + ρ̃, α〉 6= 0 for any
roots α ∈ Σ(a). When g = o2n, (3.11) holds for Θ′ = Θ if λΘ|a + ρ̃ is strongly
regular, that is λ|a + ρ̃ is not fixed by the nontrivial outer automorphism of the
root system Σ(a). Moreover, for g = gln, o2n, o2n+1 or spn, (3.11) holds for Θ = Θ̄
if λ satisfies the same regularity condition as above and λL = 0. See Section 4 of
[O6] for details.

The above construction of the minimal polynomial qΘ(x, λ) can be extended
for any complex reductive Lie algebra g by considering a faithful representation
(π,CN ) of g (see [O6, §2]). Oshima and Oda [OO] studied sufficient conditions
for the counterpart of (3.11) with Θ′ = Θ for a general reductive Lie algebra g
([OO, Theorem 3.21, Proposition 3.25, Proposition 3.27]). In particular, when g is
one of the simple exceptional Lie algebras E6, E7, E8, F4 or G2, the counterpart
of (3.11) with Θ′ = Θ associated with a nontrivial irreducible representation of g
with minimal degree holds if Re 〈λΘ + ρ̃, α〉 > 0 for all positive roots Σ(a)+ with
respect to a Cartan subalgebra a of g (cf. [OO, Remark 4.13]).

Lastly in this section we list the order of the elements of IΘ(λ) associated with
the natural representation or the nontrivial representation with minimal degree
according to the condition that g is of classical type or exceptional type, respectively,
when Θ corresponds to a maximal parabolic subgroup PΞ of G, as was described
in the previous subsection. In the following Satake diagram the number attached
to a simple root α ∈ Ψ(a) indicates the order of the elements of IΘ(λ) by the
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correspondence Θ = Ψ(ap) \ {α|ap
}. The order is easily seen from (3.8) if g is of

the classical type and it is given in [OO, §4] if g is of the exceptional type.
The dotted circles correspond to the Shilov boundaries in Hermitian cases.
When g is a complex simple Lie algebra, the degree is obtained by the corre-

sponding Dynkin diagram with no arrow and no black circle.

“Degree of minimal polynomials associated to natural/smallest representations”

A1
n : SL(n+ 1,R)

2
◦

2
◦

2
◦

· · · 2
◦

2
◦

A4
n : SU∗(2n)

•
2
◦ •

· · · 2
◦ •

C2,1
n : SU(n, n)

3
◦

· · · 3
◦

2
·◦

3
◦

· · · 3
◦gg 77dd ::

BC2m,2,1
n : SU(n+m,n)

3
◦

· · · 3
·◦ • •

3
·◦

· · · 3
◦hh 66jj 44

B1,1
n : SO(n+ 1, n)

3
◦

3
◦

3
◦

· · · 3
◦

3
◦+3

B2m+1,1
2 : SO(2m+ 3, 2)

3
·◦

3
◦

3
•

· · · 3
•

3
•+3

BC2m+1,1
n : SO(n+ 2m+ 1, n)

3
◦

3
◦

3
◦

· · · 3
•

3
•

3
•+3

C1,1
n : Sp(n,R)

3
◦

3
◦

3
◦

· · · 3
◦

2
·◦ks

C4,3
n : Sp(n, n)

•
3
◦ •

3
◦

· · ·
•

2
◦ks

BC4m,4,3
n : Sp(n+m,n)

•
3
◦ •

3
◦

· · ·
• •ks

D1
n : SO(n, n)

3
◦

3
◦

3
◦

· · · 3
◦

2
◦ww

2
◦

GG

B2m,1
2 : SO(2 + 2m, 2)

3
·◦

3
◦ • •

•ww
•

GG

B2m,1
n : SO(n+ 2m,n)

3
◦

3
◦

3
◦

· · ·
•

•ww
•

GG

B2,1
n : SO(n+ 2, n)

3
◦

3
◦

3
◦

· · · 3
◦

3
◦ww
◦

GG
``
~~

BC4,4,1
n : SO∗(4n+ 2)

•
3
◦ •

· · ·
•

3
·◦ww
·◦

GG
``
~~

C4,1
n : SO∗(4n)

•
3
◦ •

3
◦

2
·◦ww
•

GG

E1
6 : EI

3
◦

4
◦

5
◦

3
◦

4
◦

3
◦

F 2,1
4 : EII

6
◦

8
◦

5
◦

3
◦

8
◦

6
◦cc ;;dd ::

BC8,6,1
2 : EIII

6
·◦ • •

3
◦

•
6
·◦ii 55

A8
2 : EIV

3
◦ • •

•
•

3
◦

E1
7 : EV

3
◦

5
◦

7
◦

4
◦

6
◦

5
◦

4
◦

F 4,1
4 : EV I

3
◦

5
◦

7
◦

4
◦

•
5
◦ •

C8,1
3 : EV II

3
◦ • •

4
◦

•
6
◦

4
·◦

E1
7 : EV III

6
◦

11
◦

16
◦

8
◦

13
◦

11
◦

9
◦

6
◦

F 8,1
4 : EIX

6
◦ • •

•
•

11
◦

9
◦

6
◦

F 1,1
4 : FI

3
◦

5
◦

8
◦+3

6
◦

BC8,7
1 : FII

• • •+3
6
◦

G1
2 : G2

3
◦

5
◦_*4

Remark 3.3. The restricted root system is shown by the notation in [OS1, Ap-
pendix] such as BCm1,m2,m3

n and the Lie algebra mΞ and its complexification for
any Ξ ⊂ Ψ(ap) can be easily read from the Satake diagram as was explained in
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[OS2, Appendix B]. Namely, if G is semisimple, the subdiagram corresponding to
Ψ(Θ) = {α ∈ Ψ(α) ; α|ap

∈ Θ ∪ {0}} is the Satake diagram of mΞ.
If G is a connected real form of a simply connected semisimple complex Lie

group, Mo
Ξ,s is a real form of a simply connected complex Lie group, and MΞ/M

o
Ξ

is isomorphic to the direct sum of (Z/2Z)k and ` copies of U(1). Here Mo
Ξ is the

identity component ofMΞ, ` is the number of arrows pointing to roots in Ψ(a)\Ψ(Θ)
and k is the number of roots in Ψ(a) \Ψ(Θ) which are not pointed to by any arrow
and are not directly linked by any line attached to any root α ∈ Ψ(a) with α|ap

= 0.

4. Examples

In this section we examine in detail the differential operators on a homogeneous
line bundle over a Riemannian symmetric space G/K induced from the two-sided
ideal given in the preceding section for G = U(p, q), Sp(n,R) and GL(n,R).

4.1. U(p, q). Let σ be the complex linear involution of g = glp+q defined by

σ(X) = Ip,qXIp,q with Ip,q :=

(
Ip 0
0 −Iq

)
.

Here 1 ≤ q ≤ p. Then G = U(p, q) = {g ∈ GL(p + q,C) ; g = Ip,qtg−1Ip,q} and
K = U(p, q) ∩ U(p+ q) = U(p)× U(q).

The corresponding Satake diagram and the Dynkin diagram of the restricted
root system are as follows.

U(p, q) (p = q) :
α̃1
◦

· · · α̃q−1

◦
α̃q

·◦
α̃q+1

◦
· · · α̃2q−1

◦gg 77dd :: =⇒
α1
◦

· · · αq−1

◦
αq

·◦ks

U(p, q) (p > q) :
α̃1
◦

· · · α̃q−1

·◦ •
· · ·

•
α̃p−1

·◦
· · · α̃p+q−1

◦hh 66jj 44 =⇒
α1
◦

· · · αq−1

◦
αq

·◦+3

In this subsection, we restrict ourselves to a parabolic subgroup PΞ that satisfies
(2.48) for ` 6= 0. This is the case when Ξ ⊂ Ψ(ap) \ {αq}. We fix L + 1 non-
negative integers 0 = n0 < n1 < · · · < nL = q and put Ξ = {αi ; i ∈ {1, . . . , q} \
{n1, n2, . . . , nL}}. Then

Θ = {α̃ν ; q − 1 < ν < p− 1} ∪
L∪

j=1

{α̃ν , α̃p+q−ν ; nj−1 < ν < nj}.

We have

(4.1) mΞ + aΞ ' gln1
⊕ gln2−n1

⊕ · · · ⊕ glnL−nL−1
⊕ u(p− q).

In particular, if L = 1, then Ξ = Ψ(ap) \ {αq} and G/PΞ is the Shilov boundary of
G/K.

We examine the system of differential equations characterizing the image of the
Poisson transform P`

Ξ,µ of the space of hyperfunction sections over the boundary

G/PΞ of G/K. If p > q, then the differential operators corresponding to the
generators of the two-sided ideal of U(g) given by the minimal polynomial described
in Section 3 is of order 2L + 1, but we will show that the image of the Poisson
transform can be characterized by operators of order at most 2L, by reducing the
operators in the two-sided ideals modulo

∑
X∈k U(g)

(
X +χ`(X)

)
and taking a K-

invariant left ideal (cf. Theorem 4.2, Corollary 4.3). For L = 1 these second-order
differential operators are the Hua operators (cf. Remark 4.5).

Let i, j, k, `, µ and ν are indices which satisfy

1 ≤ i, j ≤ q and q < k, ` ≤ p and 1 ≤ µ, ν ≤ p
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and put
ī = p+ q + 1− i, j̄ = p+ q + 1− j.

Put
kC =

∑
µ,ν

CEµ,ν +
∑
i,j

CEī,j̄

and

aC =

q∑
i=1

CEi with Ei = Ei,̄i + Eī,i.

Let ei ∈ a∗C defined by
ei(Ej) = δi,j .

Define

Yi = −Ei,i + Ei,̄i − Eī,i + Eī,̄i,

Yi,k = Ei,k + Eī,k, Yk,i = Ek,i − Ek,̄i,

Yi,j,+ = Ei,j + Eī,j − Ei,j̄ − Eī,j̄ for i 6= j,

Yi,j,1 = Ei,j + Eī,j + Ei,j̄ + Eī,j̄ for i < j,

Yi,j,2 = Ej,i − Ej̄,i − Ej,̄i + Ej̄,̄i for i < j

and let nC be the nilpotent subalgebra of glp+q spanned by Yi, Yi,k, Yi,j,+ with i 6= j,
Yi,j,1 and Yi,j,2 with i < j. Then glp+q = gC = kC + aC + nC is the complexification
of the Iwasawa decomposition u(p, q) = k+ ap + n of the Lie algebra of U(p, q).

For a polynomial f(x) we will examine F ∈ M
(
p+ q, U(g)

)
defined by F = f(E)

with E = (Ei,j) ∈ M
(
p+ q, U(g)

)
. Note that Vf =

∑
i,j CFi,j is a g-module by the

adjoint action of g and it is decomposed into 4 k-submodules.

(4.2) Vf =
⊕

ε1,ε2=0,1

V ε1,ε2
f with V ε1,ε2

f :=
∑

pε1<i≤p+qε1
pε2<j≤p+qε2

CFi,j .

We will calculate γ`(Fi,j) (cf. (2.36)) for F = (Fi,j) to get V ε1,ε2
f killing the image

of the Poisson transform P`
Ξ,µ. A similar calculation was done in the proof of [O6,

Proposition 3.4]. The polynomial f(x) so that Vf characterizes the image of P`
Ξ,µ

is given in the preceding section and then the degree of f(x) which is the maximal
order of the elements of Vf equals 2L + 1 or 2L if p > q or p = q, respectively. It
happens that Vf does not kill the image but V ε1,ε2

f does so for suitable f(x) and

(ε1, ε2), and then we will get the system of differential equations of order ≤ 2L
characterizing the image also in the case when p > q.

Note that for H ∈ aC

[H,Yi] = 2ei(H)Yi,

[H,Yi,k] = ei(H)Yi,k, [H,Yk,i] = ei(H)Yk,i,

[H,Yi,j,+] = (ei + ej)(H)Yi,j,+,

[H,Yi,j,1] = (ei − ej)(H)Yi,j,1, [H,Yi,j,2] = (ei − ej)(H)Yi,j,2.

Then the root system Σ(ap) is of type BC
2(p−q),2,1
q and

Ψ(ap) = {e1 − e2, e2 − e3, . . . , eq−1 − eq, eq},
ρ = (p+ q − 1)e1 + (p+ q − 3)e2 + · · ·+ (p− q + 1)eq,

Ei,̄i =
1
2Ei +

1
2Yi +

1
2 (Ei,i − Eī,̄i),

Eī,i =
1
2Ei − 1

2Yi − 1
2 (Ei,i − Eī,̄i),

Ek,̄i = −Yk,i + Ek,i, Eī,k = Yi,k − Ei,k,

Ei,j̄ =
1
2 (Yi,j,1 − Yi,j,+)− Eī,j̄ for i < j,
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Eī,j =
1
2 (Yi,j,1 + Yi,j,+)− Ei,j for i < j,

Ei,j̄ = − 1
2 (Yi,j,+ + Yj,i,2) + Ei,j for i > j,

Eī,j =
1
2 (Yi,j,+ − Yj,i,2) + Eī,j̄ for i > j.

Suppose Fa,b ∈ U(g) for 1 ≤ a, b ≤ p+ q satisfy

[Ei,j , Fa,b] = δj,aFi,b − δi,bFa,j for 1 ≤ i, j, a, b ≤ p+ q.

Fix s, t ∈ C and let τs,t be the one-dimensional representation of kC with τs,t(Eµ,ν) =
τs,t(Eī,j̄) = 0 if µ 6= ν and i 6= j and τs,t(Eν,ν) = s and τs,t(Eī,̄i) = t. Note that
χ`(X) = τs,t(X) with ` = s− t for X ∈ kC with TraceX = 0. Put

F̃u,v =

p+q∑
w=1

Eu,wFw,v.

Consider in modulo nCU(g) +
∑

X∈kC
U(g)(X − τs,t(X)), and we have

F̃i,a =
∑
ν

Ei,νFν,a +
∑
i>j

Ei,j̄Fj̄,a + Ei,̄iFī,a +
∑
i<j

Ei,j̄Fj̄,a

≡
∑
ν

(Fi,a − δiaFν,ν) + sFi,a +
∑
i>j

Ei,jFj̄,a +
1

2
(Ei + Ei,i − Eī,̄i)Fī,a

−
∑
i<j

Eī,j̄Fj̄,a

≡ (p+ s)Fi,a − δia
∑
ν

Fν,ν − δia
∑
i>j

Fj̄,j +
Ei + s− t− 1

2
Fī,a −

1

2
δiaFī,i

+
1

2
δīaFī,̄i −

∑
i<j

(Fī,a − δīaFj̄,j̄),

F̃k,a =
∑
ν

Ek,νFν,a +
∑
j

Ek,j̄Fj̄,a

≡
∑
ν

(Fk,a − δkaFν,ν) + sFk,a +
∑
j

Ek,jFj̄,a

= (p+ s)Fk,a − δka
∑
ν

Fν,ν −
∑
j

δkaFj̄,j ,

F̃ī,a =
∑
i>j

Eī,jFj,a + Eī,iFi,a +
∑
i<j

Eī,jFj,a +
∑
k

Eī,kFk,a +
∑
j

Eī,j̄Fj̄,a

≡
∑
i>j

Eī,j̄Fj,a +
1

2
(Ei − Ei,i + Eī,̄i)Fi,a −

∑
i<j

Ei,jFj,a −
∑
k

Ei,kFk,a

+
∑
j

(Fī,a − δī,aFj̄,j̄) + tFī,a

≡ tFī,a − δī,a
∑
i>j

Fj,j̄ +
Ei − s+ t− 1

2
Fi,a −

1

2
δī,aFi,̄i +

1

2
δi,aFi,i

−
∑
i<j

(Fi,a − δi,aFj,j)−
∑
k

(Fi,a − δi,aFk,k) +
∑
j

(Fī,a − δī,aFj̄,j̄).

Suppose

Fa,b = 0 if |a− b| 6= 0, p.

Then we have

F̃a,b = 0 if |a− b| 6= 0, p
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and

F̃i,i = (p+ s)Fi,i −
p∑

ν=1

Fν,ν −
∑
j<i

Fj̄,j +

(
Ei + s− t

2
− q + i− 1

)
Fī,i

= sFi,i +

(
Ei + s− t

2
− q

)
Fī,i −

p∑
ν=1

(Fν,ν − Fi,i)−
i−1∑
j=1

(Fj̄,j − Fī.i),

F̃i,̄i = (p+ s)Fi,̄i +

(
Ei + s− t

2
− q + i

)
Fī,̄i +

∑
i<j

Fj̄,j̄

= (p+ s)Fi,̄i +
Ei + s− t

2
Fī,̄i +

q∑
j=i+1

(Fj̄,j̄ − Fī,̄i),

F̃k,k = (p+ s)Fk,k −
p∑

ν=1

Fν,ν −
q∑

j=1

Fj̄,j

= sFk,k −
q∑

j=1

Fj̄,j −
p∑

ν=1

(Fν,ν − Fk,k),

F̃ī,i =

(
Ei − s+ t

2
− p+ i

)
Fi,i +

p∑
ν=i+1

Fν,ν + (q + t)Fī,i

= (q + t)Fī,i +
Ei − s+ t

2
Fi,i +

p∑
ν=i+1

(Fν,ν − Fi,i),

F̃ī,̄i = −
∑
j<i

Fj,j̄ +

(
Ei − s+ t

2
− p+ i− 1

)
Fi,̄i −

∑
j 6=i

Fj̄,j̄ + (q + t− 1)Fī,̄i,

= tFī,̄i +

(
Ei − s+ t

2
− p

)
Fi,̄i −

q∑
j=1

(Fj̄,j̄ − Fī,̄i)−
i−1∑
j=1

(Fj,j̄ − Fi,̄i).

Put

F 1
i,̄i =

1
2 (Ei+s−t), F 1

ī,i =
1
2 (Ei−s+t), F 1

i,i = F 1
k,k = s+λ1 and F 1

ī,̄i = t+λ1.

Suppose (u, v) are in {(i, i), (i, ī), (̄i, i), (̄i, ī), (k, k)} and Fm−1
u,v are defined. By

putting Fu,v = Fm−1
u,v , define F̃m−1

u,v = F̃u,v by the above equations and moreover

Fm
u,v = F̃m−1

u,v + λmFm−1
u,v ∈ U(ap).

Thus we inductively define Fm
u,v. Note that

(
Fm
a,b

)
1≤a≤p+q
1≤b≤p+q

≡
m∏
j=1

((
Ea,b + λjδa,b

)
1≤a≤p+q
1≤b≤p+q

)
Fm
i,̄i = (λm + p+ s)Fm−1

i,̄i
+

Ei + s− t

2
Fm−1
ī,̄i

+

q∑
j=i+1

(Fm−1
j̄,j̄

− Fm−1
ī,̄i

),

Fm
ī,̄i = (t+ λm)Fm−1

ī,̄i
−

q∑
j=1

(Fm−1
j̄,j̄

− Fm−1
ī,̄i

)

+

(
Ei − s+ t

2
− p

)
Fm−1
i,̄i

−
i−1∑
j=1

(Fm−1
j,j̄

− Fm−1
i,̄i

).
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Putting
Fm
±i = Fm

ī,̄i ± Fm
i,̄i ,

we have

2Fm
±i = (λm + p+ s)(Fm−1

±i − Fm−1
∓i )± Ei + s− t

2
(Fm−1

±i + Fm−1
∓i )

±
q∑

j=i+1

(Fm−1
±j − Fm−1

±i )±
q∑

j=i+1

(Fm−1
∓j − Fm−1

∓i )

+ (t+ λm)(Fm−1
±i + Fm−1

∓i )−
q∑

j=1

(Fm−1
±j − Fm−1

∓i )−
q∑

j=1

(Fm−1
±j − Fm−1

∓i )

±
(
Ei − s+ t

2
− p

)
(Fm−1

±i − Fm−1
∓i )

∓
i−1∑
j=1

(Fm−1
±j − Fm−1

±i )±
i−1∑
j=1

(Fm−1
∓j − Fm−1

∓i )

and

Fm
i =

(
λm +

Ei + s+ t

2

)
Fm−1
i −

i−1∑
j=1

(Fm−1
j − Fm−1

i ),

Fm
−i =

(
λm + p− Ei + s+ t

2

)
Fm−1
−i − (p+ s− t)Fm−1

i −
q∑

j=i+1

(Fm−1
−j − Fm−1

−i ).

For 0 = n0 < n1 < · · · < nL = q and (µ1, . . . , µL) ∈ CL put

Ei = 2µ` if there exists ` with n`−1 < i ≤ n`

and

λk =

{
−µk − s+t

2 − nk−1 if k ≤ L,

µ2L+1−k − s+t
2 − p+ n2L+1−k if L < k ≤ 2L.

(4.3)

f(x) =
2L∏
j=1

(
x+ λk

)
=

L∏
k=1

(
x− µk − s+t

2 − nk−1

)(
x+ µk − s+t

2 − p+ nk

)
.(4.4)

Then for i > 0 inductively we can prove

Fm
i = 0 if m ≥ L or i ≤ nm,

and moreover by the induction for i = q, q − 1, . . . , 1,

Fm
i,̄i = 0 if m > L and i > n2L−m.

In particular we have F 2L
īi

= F 2L
ī,̄i

= 0 for i = 1, . . . , q and hence F 2L
a,b = 0 for

a = 1, . . . , p+ q and b = p+ 1, . . . , p+ q.
Note that when p = q, the same argument as above proves F 2L

a,b = 0 also for
a = 1, . . . , p+ q and b = 1, . . . , p.

Lemma 4.1. Suppose M =
(
Mij

)
1≤i≤p+q
1≤j≤p+q

∈ M
(
p+ q, U(g)

)
satisfies

[Eij ,Mk`] = δjkMi` − δ`iMk`.

Put M̃ = M
(
Eij + λδij

)
1≤i≤p+q
1≤j≤p+q

and M̃ ′ =
(
Eij + λδij

)
1≤i≤p+q
1≤j≤p+q

M . Then

M̃ ′
aν ≡ 0 mod

∑
1≤b≤p+q
p<c≤p+q

U(g)Mbc for 1 ≤ a ≤ p+ q, p < ν ≤ p+ q,
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M̃aν ≡ Maν

(
λ+ s+ q

)
mod

∑
X∈k

U(g)
(
X − χs,t(X)

)
+

∑
1≤b≤p+q
p<c≤p+q

U(g)Mbc

for 1 ≤ a ≤ p+ q, 1 ≤ ν ≤ p.

Proof. If 1 ≤ ν ≤ p, then

M̃aν =

p+q∑
b=1

Mab(Ebν + λδbν)

≡ Maν(λ+ s) +

p+q∑
b=p+1

MabEbν mod
∑
X∈k

U(g)
(
X − χs,t(X)

)
≡ Maν(λ+ s+ q) +

∑
X∈k

U(g)
(
X − χs,t(X)

)
+

∑
1≤b≤p+q
p<c≤p+q

U(g)Mbc.

The former relation is clear. �
Thus we have the following theorem.

Theorem 4.2. Put E = (Ei,j)1≤i≤p+q
1≤j≤p+q

∈ M
(
p+ q, g

)
and define

(4.5) f̃(x) = (x− s− q)

L∏
k=1

(
x− µk − s+t

2 − nk−1

)(
x+ µk − s+t

2 − p+ nk

)
and put

I0Ξ(µ, s, t) :=
∑

1≤i≤p+q, p<j≤p+q

U(g)f(E)i,j = U(g)V 0,1
f + U(g)V 1,1

f ,(4.6)

IΞ(µ, s, t) :=
∑

1≤i≤p+q, 1≤j≤p+q

U(g)f(E)i,j = U(g)Vf ,(4.7)

ĨΞ(µ, s, t) :=
∑

1≤i≤p+q, 1≤j≤p+q

U(g)f̃(E)i,j = U(g)Vf̃ .(4.8)

Then I0Ξ(µ, s, t) is a left ideal of U(g) satisfying

D ≡ 0 mod nCU(g) +
∑
X∈k

U(g)
(
X − χs,t(X)

)
+

L∑
i=1

n0+···+ni∑
ν=n0+···+ni−1+1

U(g)(Eν − 2µi) (∀D ∈ I0Ξ(µ, s, t))

(4.9)

and ĨΞ(µ, s, t) is a two-side ideal of U(g) satisfying

(4.10) ĨΞ(µ, s, t) ⊂ I0Ξ(µ, s, t) +
∑
X∈k

U(g)
(
X − χs,t(X)

)
.

If p = q, the left ideal I0Ξ(µ, s, t) in the claim (4.9) may be replaced by the two-sided
ideal IΞ(µ, s, t).

The polynomial f̃(x) or f(x) equals the minimal polynomial qΘ(glp+q;x, t) given
in the last section when p > q or p = q, respectively. Hence this theorem and the
argument in the preceding section give the following corollary.

Corollary 4.3. Suppose the infinitesimal character of B(G/PΞ;L`
Ξ,µ) is regular

and c(µ + ρ(Ξ), `) 6= 0. Then the image of P`
Ξ,µ is identified with the subspace of

A(G) killed by I0Ξ(µ, s, t) (resp. IΞ(µ, s, t)),
∑

X∈k U(g)
(
X − χs,t(X)

)
and ∆i − ci

for i = 2, . . . , L− 1 with ∆i = TraceEi when p > q (resp. p = q). Here the complex
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parameters µ, s, t of I0Ξ(µ, s, t) or IΞ(µ, s, t) and ci ∈ C are determined according
to the parameter µ and ` of P`

Ξ,µ,

Example 4.4 (Shilov boundary). Consider the case when L = 1. We will write

E =

(
K1 P
Q K2

)
∈ M

(
p+ q, U(g)

)
for simplicity. Here K1 = (Ei,j)1≤i, j≤p etc. Then

E ≡
(
s P
Q t

)
,

K1P ≡ (p+ s)P mod
∑
X∈k

U(g)
(
X − χs,t(X)

)
,

K2Q ≡ (q + t)Q mod
∑
X∈k

U(g)
(
X − χs,t(X)

)
,

E2 ≡
(
K1 P
Q K2

)(
s P
Q t

)
=

(
PQ+ sK1 (K1 + t)P
(K2 + s)Q QP + tK2

)
≡

(
PQ+ s2 (p+ s+ t)P

(q + s+ t)Q QP + t2

)
,(

E− λ− s+t
2

)(
E+ λ− p− s+t

2

)
≡ E2 −

(
p+ s+ t

)
E−

(
λ+ s+t

2

)(
λ− p− s+t

2

)
≡

(
PQ+ s2 − (p+ s+t

2 )s 0
(q − p)Q QP + t2 − t(p+ s+t

2 )

)
−

(
λ+ s+t

2

)(
λ− p− s+t

2

)
≡

(
PQ− s(p+ t) 0

(q − p)Q QP − t(p+ s)

)
−
(
λ+ s+t

2

)(
λ− p− s+t

2

)
=

(
PQ− (s− t)p 0

(q − p)Q QP

)
−
(
λ+ s−t

2

)(
λ− p− s−t

2

)
.

Then the system of second-order equations characterizing the image of the corre-
sponding Poisson transform equals

(4.11) (QP )i,ju = δi,j
(
λ+ s−t

2

)(
λ− p− s−t

2

)
u (1 ≤ i, j ≤ q).

Note that the element TraceQP of U(g) defines a G-invariant differential operator
on the homogeneous line bundle E` over G/K with ` = s − t, which is a constant
multiple of the Laplace–Beltrami operator on E`.

Remark 4.5. The second-order operators (QP )i,j in Example 4.4 are nothing but
the Hua operators for G = U(p, q). In the case of the trivial line bundle over
G/K, that is the case when s = t = 0, the fact that they characterize the image
of the Poisson transform on the Shilov boundary was proved in [JK] for p = q
and λ = p, [Sn2] for p = q and generic λ, [BV] for p > q and λ = p, and [KZ]
for p > q and generic λ. Our result gives a further generalization to line bundles
over G/K. Moreover the differential operators of order 2L corresponding to G/PΞ

in Corollary 4.3 can be considered to be a generalization of the second-order Hua
operators corresponding to the Shilov boundary.

4.2. Sp(n,R). We calculate the system of differential equations characterizing the
image of the Poisson transform P`

Ξ,µ attached to the Shilov boundary of the symmet-

ric space Sp(n,R)/U(n) as in the case of the symmetric space U(p, q)/U(p)×U(q).
Putting

F =

(
K P
Q −tK

)
with


2Kij = Eij − Ej+n,i+n,

2Pij = Ei,j+n + Ej,i+n,

2Qij = Ei+n,j + Ej+n,i,
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we have
∑

1≤i, j≤2n CFij ' spn.

[Eij − Ej+n,i+n, Ek,`+n + E`,k+n] = δjkEi,`+n + δj`Ei,k+n + δj`Ek,i+n + δjkE`,i+n

[Kij , Pk`] =
1
2δjkPi` +

1
2δj`Pik,

[Kij , Qk`] = − 1
2δikQj` − 1

2δi`Qjk,∑
ν

KiνPνj −
∑
ν

PνjKiν = n
2Pij +

1
2Pij =

n+1
2 Pij ,∑

ν

−KνiQνj +
∑
ν

QνjKνi =
n
2PQij +

1
2Qij =

n+1
2 Qij ,(

K P
Q −tK

)(
` P
Q −`

)
=

(
`K + PQ KP − `P
`Q− tKQ QP + ` tK

)
≡

(
PQ+ `2 n+1

2 P
n+1
2 Q QP + `2

)
E
(
E− n+1

2

)
≡

(
PQ+ `(`− n+1

2 ) 0
0 QP + `(`+ n+1

2 )

)
(
E− λ

)(
E+ λ− n+1

2

)
≡

(
PQ− (n+ 1)` 0

0 QP

)
−

(
λ+ `

)(
λ− `− n+1

2

)
.

Hence the system of the differential equations is

(4.12)

{
(PQ)i,ju = δi,j

(
λ− `

)(
λ+ `− n+1

2

)
u (1 ≤ i, j ≤ n),

(QP )i,ju = δi,j
(
λ+ `

)(
λ− `− n+1

2

)
u (1 ≤ i, j ≤ n).

Remark 4.6. The second-order operators (PQ)i,j and (QP )i,j are nothing but the
Hua operators for G = Sp(n,R). The fact that the equations (4.12) characterize the
image of the Poisson transform on the Shilov boundary was proved by the second
author [Sn3] for generic ` and λ. In the case of the trivial line bundle over G/K,
which is the case when ` = 0, it was proved in [KM] for n = 2 and λ = 3

2 , [J1] for

λ = n+1
2 , and [Se] for generic λ.

4.3. GL(n,R). In the previous examples of this section, we wrote down differen-
tial equations which characterize the image of the Poisson transform in the coor-
dinates of p. Lastly, we give a proposition that is useful in similar calculations
for the symmetric space G/K = GL(n,R)+/SO(n,R), where GL(n,R)+ = {g ∈
GL(n,R) ; det g > 0}. Using this proposition inductively, we can obtain differential
operators on G/K in the coordinates of p from elements of U(g) that are given by
minimal polynomials.

Proposition 4.7 (GL(n,R)). Put

E = K + P =
(
Kij + Pij

)
with

{
Kij =

1
2 (Eij − Eji),

Pij =
1
2 (Eij + Eji),

gC =
n∑

i, j=1

CEij ' gln, and kC =
n∑

i, j=1

CKij ' on.

Then for m = 0, 1, 2 . . .

KPm = n
2P

m − 1
2 Trace(P

m) +
n∑

ν=1

(Pm)νjKiν(4.13)

≡ n
2P

m − 1
2 Trace(P

m) mod U(g)k,

(E− n
2 )P

m ≡ Pm+1 − 1
2 Trace(P

m),(4.14)
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Pm ≡ (E− n
2 )

m−1E+ 1
2

m∑
k=2

(E− n
2 )

m−k Trace(P k−1),(4.15)

Trace(Pm) ≡ Trace
(
(E− n−1

2 )m−1E
)
.(4.16)

Proof. Since

[Eij , Ekl] = δjkEil − δliEkj ,

[Eij , Ekl + Ekl] = δjkEil − δliEkj + δjlEik − δkiElj ,

[Eij − Eji, Ekl + Ekl] = δjkEil − δliEkj + δjlEik − δkiElj

− δikEjl + δljEki − δilEjk + δkjEli

= 2(δjkPil + δjlPik − δilPjk − δikPjl)

[Kij , Pkl] =
1
2 (δjkPil + δjlPik − δikPjl − δilPjk),∑

µ,ν

(P p)µνKiµ(P
q)νj −

∑
µ,k

(P p+1)µkKiµ(P
q−1)kj

=
∑
µ,ν,k

(P p)µν [Kiµ, Pνk](P
q−1)kj

= 1
2

∑
µ,ν,k

(P p)µν(δµνPik + δµkPiν − δiνPµk − δikPµν)(P
q−1)kj

= 1
2 (TraceP

p)(P q)ij − 1
2 (TraceP

p+1)(P q−1)ij ,

we have (4.13) by the sum of these equations for p = m− q = 0, . . . ,m. Moreover
(4.14) follows from (4.13). Then (4.14) proves (4.15) by the induction on m and
(4.16) corresponds to the trace of the matrices in (4.15). �
Remark 4.8. Our study of characterizing the images of the Poisson transform for
general boundaries of a symmetric space by two-sided ideals originated in [O4] for
the boundaries of GL(n,R)+/SO(n), where generators of the ideals that are differ-
ent from minimal polynomials are constructed. The ideal spanned by the compo-
nents of γ

(
f(E)

)
for any polynomial f(x) is characterized by [O6, Theorem 4.19]

for the symmetric space GL(n,C)/U(n).
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