Classification of Fuchsian systems and their
connection problem

By

TosHIO OSHIMA®

§1. Introduction

Middle convolutions introduced by Katz [Kz] and extensions and restrictions in-
troduced by Yokoyama [Yo] give interesting operations on Fuchsian systems on the
Riemann sphere. They are invertible and under them the solutions of the systems are
transformed by integral transformations and the correspondence of their monodromy
groups is concretely described (cf. [Ko4], [Ha|, [HY], [DR2], [HF], [02] etc.).

In this note we review the Deligne-Simpson problem, a combinatorial structure
of middle convolutions and their relation to a Kac-Moody root system discovered by
Crawley-Boevey [CB|. We show with examples that middle convolutions transform the
Fuchsian systems with a fixed number of accessory parameters into fundamental systems
whose spectral type is in a finite set. In §9 we give an explicit connection formula for
solutions of Fuchsian differential equations without moduli.

The author wold like to express his sincere gratitude to Y. Haraoka, A. Kato, H.
Ochiai, K. Okamoto, H. Sakai, K. Takemura and T. Yokoyama. Discussions with them
enabled the author to write this note.

§ 2. Tuples of partitions

Letm = (mj’;/) j=0,1,... be an ordered set of infinite number of non-negative integers
I

=1,4,...

indexed by non-negative integers j and positive integers v. Then m is called a (k + 1)-
tuple of partitions of n if the following two conditions are satisfied.

(2.1) d mjy=n (j=0,1,...),
v=1
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The totality of (k + 1)-tuples of partitions of n are denoted by P,gi)l and we put

(2:3) Pret1 1= U 7)121)1’ P = U Igj—)h P = U Pr+1,
(2.4) ordm:=n if m¢€ 73(”),
25 1:= (mjﬂ/ - 51/,1)J:0,1,.. € 77(1),

v=1,2,..

k oo
(2.6)  idx(m,m’) := Z ijwm;-’,j —(k—1)ordm-ordm’ (m, m’ € Py q).

j=0v=1
Here ord m is called the order of m. For m, m’ € P and a non-negative integer p, the
tuples pm and m + m’ € P are naturally defined. For m € 77,52_)1 we choose integers

nog,...,ng so that m;, =0 for v > n; and 7 =0,...,k and we will express m by
m = (mg, my, ..., my)
=Mo,1y---,MO,ngs---3MEk1y---, Mk ny
=M0,1" " MOngs M1,1" Mgy Mk 1 M ny
if there is no confusion. Similarly m = (mqg 1,...,mgn,) if m € P;. Here
mj = (mj71, .. .,mj’n].) and ordm = ’I’)’Lj’l + -4 mj’n]. (0 S j S k)
For example m = (m;,) € 733(,4) with my; = 3 and mp, = mg, = my2 = 1 for

v=1,...,4 will be expressed by

(2.7) m=1,1,1,1;3,1;1,1,1,1 = 1111, 31, 1111 = 1%, 31, 1%,
Definition 2.1. A tuple of partition m € P is called monotone if

(2.8) mj, >miy1 (J=0,1,..., v=12..)

and m is called indivisible if the greatest common divisor of {m; ,} equals 1.

Let G, be the restricted permutation group of the set of indices {0,1,2,3,...} =
Z>¢, which is generated by the transpositions (j,j + 1) with j € Z>¢. Put & = {o €
S0 ; 0(0) = 0}, which is isomorphic to 6.

Definition 2.2.  Transformation groups S, and S’ of P are defined by

oo
Seo=Hx S, S :=]][G; G;j~=6.,, H~6,
(2.9) i=0
m;-’l,:ma(j)’aj(y) (j:(),l,..., V:1,2,...)

for g = (0'70'1,...> c Soo, m= (mj,y) c P and m’ = gm.
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§ 3. Conjugacy classes of matrices

For m = (mq,...,my) € Pl(n) and A = (A1,..., \ny) € CV we define a matrix
L(m;\) € M(n,C) as follows, which is introduced and effectively used by [Os]:

If m is monotone, then

L(m;\) := (Aij)lgigN’ A;j € M(m;, mj,C),

1<j<N
(3.1) Ailm, 1 (i = j)
Ay = I m; = (5HV>1§/1§mi - ( T(?) (i=7-1)
lgugmj

Here I,,, denote the identity matrix of size m; and M (m;, m;,C) means the set of
matrices of size m; x m; with components in C and M (m, C) := M(m,m,C).
For example

A0 10
00X OO
3.2 L(2,1,1: M1, Ao, Ag) =
(3:2) ( pAA) = g,
0 0 0 As
If m is not monotone, fix a permutation o of {1,..., N} so that (ms1), ..., My(n))
is monotone and put L(m;\) = L(my(1), .-+ Mo (N) Aa(1)s - - - > Ao (N))-
When A\ = -+ = Ay = p, L(m; \) will be simply denoted by L(m, p).

We denote A ~ B for A, B € M(n,C) if and only if there exists g € GL(n,C) with
B =gAg~!. If A~ L(m;)), m is called the spectral type of A and denoted by spt A.

Remark 1. i) Ifm = (mq,...,mpn) € 77{”) is monotone, we have
k
(3.3) A~L(m;)\) < rankH(A—)\,,) =n—(mi+---+mg) (E=0,1,...,N).
v=1

ii) For u € C put

(3.4) (m; A), = (Mg, ..o, My, i) with {i,... ix} ={i; X\ = p}.
Then we have
(3.5) L(m; \) ~ @ L((m; \),,).
pneC
iii) Suppose m is monotone. Then for p € C
L(m7 :u) ~ @ J(maX{V§ my > j}n“)?
(3.6) j=1
J(k, ) == L(1%, u) € M(k,C). (Jordan cell)
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iv) For A € M(n,C) we put Zy;n,c)(A) :={X € M(n,C); AX = XA}. Then
(3.7) dim Zys(n,c) (L(m; N)) =mi +m3 + -+

Note that the Jordan canonical form of L(m;\) is easily obtained by (3.5) and
(3.6). For example L(2,1,1, ) ~ J(3,pn) & J(1, p).

Lemma 3.1.  Let A(t) be a continuous map of [0,1) to M (n,C). Suppose there
exists a partition m = (mq,...,my) of n and continuous function \(t) of (0,1) to
CN so that A(t) ~ L(m;A(t)) for any t € (0,1). If dim Zps(,,c) (A(E)) is constant for
t€(0,1), then A(0) ~ L(m;lim_o A(t)).

Proof. The proof is reduced to the result (cf. Remark 20) in [Os] but a more
elementary proof will be given. First note that lim;_g A(¢) exists.

We may assume that m is monotone. Fix p € C and put {i1,...,ix} = {i; A;(0) =
p} with 1 <43 <ig < -+ <ig < N. Then

k
rank(A(0) — )" < rank [T (A(t) — i, (8)) = n — (mi, + -+ +my,).

Putting mj, = rank(A(0) — ,u)k_l — rank (A(0) — u)k, we have
My > My > -+ >my,e >0, my, >my >--->m;,_ >0,
my, + - +mi, <my, +--+mp (k=1,..., K).
Then the following lemma and the equality Y m? = > (m/)? imply m; = m.. O
Lemma 3.2. Let m and m’ € P; be monotone partitions satisfying
(3.8) my 4o tmy <my - 4mi (1=1,2,..).
If m #m’, then

oo o

Z m? < Z(m;)2
=1 =1

Proof. Let K be the largest integer with my # 0 and p be the smallest integer j
such that the inequality in (3.8) holds. Note that the lemma is clear if p > K.

Suppose p < K. Then m; > 1. Let ¢ and r be the smallest integers satisfying
my, > my,; and m;, — 1 > m;. Then m, < m; and the inequality in (3.8) holds for

— /
k=p,...,r—1 because mp < m, < m,_;.
/ / / / / / /
Ty ey Mg My ey T gy ey TG, T
I I V V v Vv

My, .oy Mp—1,Mp, -« o Mg, Mgt1,- -5 Myp—1, My



CLASSIFICATION OF FUCHSIAN SYSTEMS AND THEIR CONNECTION PROBLEM 5
!/ _ / / _ _ / / /
Herep<qg<r<K+1,m,=--=m;>my = =m,_; and m;_; > m,. Put
" __ /o . .
mj =m; — 0jq+ 0jr.

Then m” is monotone, Y (m4)* < (3_m})* and my +---+m; <mf +---+m] (j=
1,2,...). Thus we have the lemma by the induction on the lexicographic order of the
triplet (K — p,my,, q) for a fixed m. O

Proposition 3.3.  Let A(t) be a real analytic map of (—1,1) to M(n,C) such
that dim Zg (A(t)) doesn’t depend on t. Then there exist a partition m = (mq,...,my)
of n and a continuous function A\(t) = (A (t),...,An(t)) of (—1,1) satisfying

(3.9) A(t) ~ L(m; A(t)).

Proof. We find ¢; € (—1,1), monotone partitions m) ¢ an) and real analytic
functions A9 (t) = (AP (#),...) on I; := (¢;, ¢j11) such that

¢j-1 < ¢ < cjpr, lim e =, At) ~ L(mY; AV (1) (vt e I).

Lemma 3.1 assures that we may assume AU)(t) is continuous on the closure I; of I;
and A(t) ~ L(mW; \0)(t)) for t € I;. Hence m¥) doesn’t depend on j, which we

denoted by m. We can inductively define permutations o; of the indices {1,..., N}
for j = 1,2,... so that o9 = id, ms, () = myp for p = 1,..., N and moreover that
()\g:)(l)(t), ceey )\g:)(N)(t)) for —j < v < j define a continuous function on (c_;,cjy1). O

Remark 2. i) Suppose that dim Zys(,, ) (A(t)) is constant for a continuous map
A(t) of (—=1,1) to M(n,C). For ¢ € (—1,1) we can find t; € (—1,1) and m € P(!) such
that lim;_,o t; = c and spt A(¢;) = m. The proof of Lemma 3.1 shows spt A(c) = m.
Hence

(3.10) spt A(t) doesn’t depend on ¢t < dim Zys(,, c)(A) doesn’t depend on ¢.

ii) It is easy to show that Proposition 3.3 is valid even if we replace “real analytic”
by “continuous” but it is not true if we replace “real analytic” and “(—1,1)” by “holo-
morphic” and “{t € C; |t| < 1}, respectively. The matrix A(t) = (9}) is a counter

example.

§4. Deligne-Simpson problem

For simplicity we put g = M (n,C) and G = GL(n,C) only in this section.
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Let A = (Ay,...,Ax) € g"tt. Put

(4.1) M(n,C)g*t .= {(Cy,...,C) € g"*1; Co + - + Cp = 0},
(4.2) Zg(A):={X €g;[4;,X]=0 (j=0,....k)}

A tuple of matrices A € gF*! is called irreducible if any subspace V C C" satisfying
A,V cViforj=0,...,kis {0} or C".

Suppose trace Ayg + --- + trace Ay, = 0. The additive Deligne-Simpson problem
presented by Kostov [Ko| is to determine the condition to A for the existence of an
irreducible tuple B = (By, ..., By) € M(n,C)5™" satisfying A; ~ B; for j = 0,..., k.
The condition is concretely given by Crawley-Boevey [CB] (cf. Theorem 10.1 and [Ko4]).

Suppose A € M(n,C)5™. Then A is called rigid if A ~ B for any element
B = (Bo,...,Bi) € M(n,C)i™! satisfying B; ~ A; for j = 0,...,k. Here we denote
A ~ B if there exists g € G with (Bo, ..., Bx) = (9409 %, ..., gArg™ ).

Remark 3.  Note that the local monodromy at oo of the Fuchsian system

k
(4.3) Z — Zj

on a Riemann sphere corresponds to Ay with A = (A,...,A;) € M(n,C)ET!. Then
the quotient M (n, C)k*/~ classifies the Fuchsian systems.

Under the identification of g with its dual space by the symmetric bilinear form
(X,Y) = trace XY for (X,Y) € g2, the dual map of ads : X — [A, X] of g equals
—ad 4 and therefore ad4(g) is the orthogonal compliment of ker ad 4 under the bilinear

form:
(4.4) ada(g) ={[4,X]; X eg} ={X eg;trace XY =0 (VY € Z4(A))}.
For A = (Ay,...,Ax) € g™t we put

Gk+1 — g
V) V)
k _
(907 e 79]@) = Zj:(} g]AJgj '

TA -

The image of ma is a homogeneous space G¥*1/H of Gk¥*! with

k

k
H:={(go,--.9r) €G*3 Y giAi9,0 =) A5}

=0 =0
and the tangent space of the image at Ag + - - - + Ay is isomorphic to

k k
ZadA ={X eg;trace XY =0 (VY € Z4(A) = ﬂZ A
J=0 §=0
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Hence the dimension of the manifold G**!/H equals n? — dim Z4(A) and therefore the
dimension of H equals kn? + dim Z4(A). Since the manifold

k k
(4.5) Oa :={(Co,....Cr) €g"™; Cj~Ajand Y C;=> A;}

J=0

is naturally isomorphic to H/Zg(Ap) x -+ - x Zg(Ag) with Zg(4;) :=={g € G; gA;g~ ! =
A}, the dimension of Oa equals kn? + dim Zg(A) — ijo dim Z4(A;).
Note that the dimension of the manifold

(4.6) Op = U (gAog™t, ..., gArg™") C gt
geG

equals n? — dim Z,4(A).
Suppose A € M (n, C)'g“. Then Op D Oa and we have the followings.

k
Proposition 4.1.  dimOa —dim Op = (k—l)nQ—Z dim Z4(A;)+2dim Z4(A).
=0
Definition 4.2.  The index of rigidity idx A of A is introduced by [Kz|:
k k
idx A := Zdim Zg(Aj) — (k= 1)n* = 2n® — Zdim{gAjg_1 : g € G},

§=0 §=0

k
Pidx A := dim Z4(A) + (& — 1) dim Zy(4;) = dim Z4(A) — §idxm.
7=0

Note that Pidx A > 0 and dim{gA4;g~'; g € G} are even.

Corollary 4.3. dim 5A—dim Oa and idx A are even and idx A < 2dim Z4(A).

Note that if A is irreducible, dim Z;(A) = 1.
The following result by Katz is fundamental.

Theorem 4.4 ([Kz]).  Suppose A € M(n,C)E*! is irreducible. Then idx A = 2
if and only if A is rigid, namely, Op = O\

8§ 5. Middle convolutions

We will review the additive middle convolutions in the way interpreted by Det-
tweiler and Reiter [DR, DR2].
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Definition 5.1 ([DR]). Fix A = (Ag,...,A;) € M(n,C)E*'. The addition
M,/ (A) € g"! of A with respect to /' = (pf,...,puh) € CFis (Ag—pf — - — ), A1 +
phy ..y A+ ph). The convolution (Gy. ..., Gy) € M(kn,C)E™ of A with respect to
A € C is defined by

(5.1) G, = (5p,j(Aq i 5p,qA)>1§p§k G=1,....k)
1<q<k
J
:j) Al A2 Aj—f-)\ Aj_|_1 Ak y
(52) Go=—(Ga +-+ G).

vy

Puticz{<;

Vk

) ;vj € ker A; (jzl,...,k)}andﬁzkerGo. Then K and £ are G-

invariant subspaces of C* and we define G; := Gj|cincir) € End(C") ~ M(n’,C)
with n/ = kn — dim(K 4 £). The middle convolution mcy(A) € M(n',C)§™" of A with
respect to A is defined by mcy(A) := (G, ..., Gk). Note that KN L = {0} if X # 0.

The conjugacy classes of C_Jj in the above definition are given by [DR2], which is
simply described using the normal form in §3 (cf. Proposition 3.3):

Theorem 5.2 ([DR, DR2]). Fiz A = (A, A1,..., Ax) € M(n,C)E™ and p =
(fo, - -+, px) € CFL and put
mey, = M, ome, o My,

(5.3) /
o= (e k), o = o+ pa e+ e

Assume the following conditions (which are satisfied if n > 1 and A is irreducible):

(5.4) (] ker(A; — p;) Nker(Ag — ) = {0} (i=1,....k Y7 eQC)
1<j<k
J#i

(5.5) > Im(A; — py) + Im(Ag — 7) = C" (i=1,....k Y7 eQC)
1<j<k
iFi
Then A’ :=mc,(A) satisfies (5.4) and (5.5) with replacing —p; by +p; and
(5.6) idx A’ = idx A.

If A is irreducible, so is A’. If 1 =0, then A’ ~ A. If A ~ B, then mc,(A) ~ mc,(B).
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Moreover for any 19 € C we have

(5.7) MC(—ry, ) © (g, ) (A) ~ Mapr 0 Me(2p0 o), 1) (A);

(5.8) mc_, ome,(A) ~ A.

Choose m € 77,52_)1 and \j,, € C so that

(5.9) Aj ~ L(my; ;) with mj == (mj1,...,mjn,) and Aj == (Aj1,..., Ajn,)-
Denoting 1; :=={v; \;, = pu;} and putting

min{p € I;; m, = max{m,; v € I;}} (I; #0)

(5.10) 0 = ,
! nj + 1 ([j - @)
(5.11) dg(m) =My, TMie, + 0+ Mg, — (k‘ — 1)n,
(5.12) m = my, — O, - de(m),
N+ ol — 2045 0
(513) )\SW = 75 |:u| :uJ (V # J) ,
—H; (v =14;)

we have A} ~ L(m); N;) (§=0,...,k) if |u| #0.

Example 5.3.  Suppose \;, p; and 7y are generic. Starting from A = (—\; —

A2, A1, A2) € M(1,C)3, we have the following list of eigenvalues of the matrices under

the application of middle convolutions to A (cf. hypergeometric family in Example 6.1):
1,1,1 (Hy) «— 11,11,11 (Hy : oFy) «— 111,111,12 (Hy : 3F5)

{_)\1 S A )\2} MCpug, 1,00
—M =X —po+prFpe AL po—pr e Aot p — p2 | Moy, —ne
_
—Ho —H1 —H2
“AM —A—potpr—To+T1 At po—p1+To—T1 A2+ po+pr+70+ 71

—Ho — To + T1 — M2 —p1 +To — T1 — M2 2
) —T1 H2

Here the eigenvalues are vertically written. Note that the matrices are semisimple if
the parameters are generic. Denoting A’ = (Ajf, A}, A5) = mcug puy pus(A) and A" =
(A, AY, AY) = mcqry oy, —py (A7), we have

Ap ~ L(L, 1= — A2 — po + p1 + p2, —fio),
(5.15) Ay ~ L(1,2; Ao + po + p11 + 7o + 71, p2), ete.

(5.14)
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Then Theorem 5.2 implies that the irreducible rigid tuple A = (A, A}, Ab) € M(2,C)3
satisfying (5.14) exists if and only if Ay # 1, Ao # po, A1 +A2+pe # 0 and po+pg +ps #
0, which corresponds to K = £ = {0} and |u| # 0. Moreover all the irreducible rigid
tuples A € M(2,C)3 are obtained in this way.

Definition 5.4. i) Under the notation in Theorem 5.2 the tuple of partitions
n)

m € P,g 11 1s called the spectral type of A and denoted by spt A.

ii) Let m € P]gi)l and A;, be generic complex numbers satisfying

k nj
(5'16> Z Z mj,I/)\j,l/ =0.

j=0rv=1

Then m is realizable if there exists a tuple A € M(n,C)E™! satisfying (5.9). Moreover
m is irreducibly realizable if there exists an irreducible tuple A € M (n, C)E*! satisfying
(5.9). An irreducibly realizable tuple m is rigid if idx m := idx(m, m) = 2, namely, the
corresponding irreducible tuple A is rigid.

For ¢ = (L, ...,lx) € ZEH! we define d(m) = m’ by (5.11) and (5.12) and denote

the unique monotone element in S’ m by s(m). Moreover we define

(5.17) O(m) :=0(1,1,..)(m) = 91 (m),

(5.18) Omaz(m) := 0y(m) with ¢; = min{u; mj,, = max{m;1,m;z2, .. }}

and m is basic if m is indivisible and Z?:o max{m; 1, mj2,...} < (k—1)ordm which
means ord Oy,q,(m) > ordm. Under the notation (5.18) and (5.9) we put

(5.19) MCmaz(A) 1= mex, 2, ... (A).

Remark 4. i) Suppose m € P41 is irreducibly realizable. Then mcy(m) € Pr41q
if #{(4,v); m;, > 0and v # £;} > 1. Moreover if A is a generic element of M (n, C)5**
satisfying spt A = m and moreover u = (o, ...,ux) € CF! is generic under the

condition that u; = X;,, for any /; satisfying m;,, > 0, then mc,(A) is a generic
element of M(n,C)§™" with the spectral type d(m).

ii) Let A € M(n, (C)]SJrl with a spectral type m. Let £ = ({o, {1, ...) with ¢; € Z+
and ¢, =1 for v > k. Define 1, = (m/ ) € PV by m/, , = &, ,,. Then

(5.20) idx A = idxm := idx(m, m),
(5.21) dy(m) = idx(m, 1,).

Theorem 5.5. i) ([Kz], [DR]) Let A € M(n,C)E* and put m = spt A. Then
A is irreducible and rigid if and only if n =1 or mcmaz(A) is irreducible and rigid and
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ord Opaz (m) < n. Hence if A is irreducible and rigid, A is constructed from an element

of M (1, (C)ISH by a finite iteration of suitable middle convolutions mc,, in Theorem 5.2.

ii) ([Kod4], [CB]) An indivisible tuple m € P is irreducibly realizable if and only if

one of the following three conditions holds.

(5.22) ordm =1
(5.23) m is basic, namely, m is indivisible and ord Op,q,(m) > ord m

(5.24) Omaz(m) € P is well-defined and irreducibly realizable.

Note that 9,(m) € P is well-defined if and only if mj;,, > d¢(m) for j =0,1,....

iii) (Theorem 10.2 in §10) Suppose a tuple m € P is not indivisible. Put m = dm
with an integer d > 1 and an indivisible tuple m € P. Then m is irreducibly realizable
if and only if m is irreducibly realizable and idxm < 0.

Example 5.6.  Successive applications of s o 0 to monotone elements of P:
15—2-6=3 4-3=1 3—2=1

411,411, 42,33 °22877 111, 111, 21,3 = 111,111,21 “=25" 11,11,11 °=35" 1,1, 1 (rigid)
211,211, 1111 °=255 111, 111, 111 *235°% 111, 111, 111 (realizable, not rigid)
211,211,211,31 =257 111,111, 111,21 ° 257" 211,211,211,31  (realizable, not rigid)
22.22 1111 235" 21,21, 111 °225% (not realizable)

The numbers on the above arrows are d¢; ;... y(m) = mo1 +---+mg1 — (k—1)-ordm.

8§ 6. Rigid tuples

Let Rg”) denote the totality of rigid tuples in P,gn) (cf. Definition 5.4). Put Ry =
U, R, RO = 52, R and R = (J°, Re. We identify elements of R if they
are in the same S..-orbit (cf. Definition 2.2) and then R denotes the set of elements
of R under this identification. Similarly we denote R and R™) for R, and R(”),
respectively, with this identification.

Example 6.1. i) The list of m € R with mg = 1" is given by Simpson [Si]:

1",1" n — 11 (H,: hypergeometric family) 12" mm, mm — 11 (EOq,,: even family)
127 m + 1m, mml (EOgp,11:0dd family) 111111,222,42 (Xg: extra case)

ii) We show examples and the numbers of elements of R(™).

Table R(™) (2<n<7)

2:11,11,11 3:111,111,21 3:21,21,21,21
4:1111,1111,31 4:1111,211,22 4:211,211,211
4:211,22,31,31 4:22,22,22,31 4:31,31,31,31,31

5:11111,11111,41 5:11111,221,32 5:2111,2111,32
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:2111,221,311
:221,32,32,41
:32,32,41,41,41
:111111,222,42
:21111,222,33
:2211,2211,33
:2211,321,321
:222,3111,321
:3111,3111,321
:321,33,51,51,51
:33,33,411,42
:411,411,411,42
:1111111,1111111,61
:211111,322,43
:22111,3211,43
:2221,2221,61,61
:2221,331,331
:31111,31111,43
:3211,3211,421
:3211,331,52,61
:322,331,511,61
:331,331,43,61
:4111,4111,43,61
:421,421,52,52
:421,43,52,61,61
:43,43,61,61,61,61
:52,52,52,61,61,61

NN AN ANANANANANNANANTNNTNTITOOOONDHO00 OO 00O
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:221,221,221
:311,311,32,41
:41,41,41,41,41,41
:111111,321,33
:21111,222,411
:2211,2211,411
:2211,33,42,51
:222,33,33,51
:3111,33,411,51
:321,42,42,42
:33,411,411,42
:411,42,42,51,51
:1111111,331,43
:22111,22111,52
:22111,331,421
:2221,31111,43
:2221,331,4111
:31111,322,421
:3211,322,331
:322,322,322
:322,421,43,61
:331,331,61,61,61
:4111,43,511,52
:421,43,43,52
:43,43,43,43
:43,52,52,52,61
:61,61,61,61,61,61,61,61

NN ANANANANNNNNNTNNTOODDNDDOODOO OO O,

:221,221,41,41
:32,32,32,32
:111111,111111,51
:21111,2211,42
:21111,3111,33
:2211,222,51,51
:222,222,321
:222,33,411,51
:321,321,42,51
:33,33,33,42
:33,42,42,51,51
:51,51,51,51,51,51,51
:211111,2221,52
:22111,2221,511
:2221,2221,43
:2221,322,421
:2221,43,43,61
:31111,331,4111
:3211,322,4111
:322,322,52,61
:322,43,52,52
:331,43,511,52
:421,421,421,61
:421,43,511,511
:43,43,43,61,61
:511,511,52,52,61

Rgcn): rigid k-tuples of partitions with order n

ord | #RV | #R™ | ord | #RY | #R™ || ord | #RYY | #R™
2 1 15 | 1481 | 2841 || 28 | 114600 | 190465
3 1 16 | 2388 | 4644 || 29| 143075 | 230110
4 3 17| 3276 | 6128 || 30 | 190766 | 310804
5 5 11| 18| 5186 | 9790 | 31| 235543 | 371773
6 13 98 | 19| 6954 | 12595 | 32 | 309156 | 493620
7 20 44 | 20 | 10517 | 19269 || 33 | 378063 | 588359
8 45 06 | 21 | 14040 | 24748 || 34 | 487081 | 763126
9 74| 157 | 22| 20210 | 36078 || 35 | 591733 | 903597
10| 142 306 | 23| 26432 | 45391 || 36 | 756752 | 1170966
11| 212 | 441 | 24| 37815 | 65814 | 37 | 907150 | 1365027
12| 421 | 857 | 25| 48103 | 80690 || 38 | 1143180 | 1734857
13| 588 | 1177 || 26 | 66409 | 112636 || 39 | 1365511 | 2031018
14 | 1004 | 2032 || 27 | 84644 | 139350 || 40 | 1704287 | 2554015
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8§7. A Kac-Moody root system

We will review the relation between a Kac-Moody root system and the middle
convolution which is clarified by Clawley-Boevey [CB].
Let b be an infinite dimensional real vector space with the set of basis II, where

(7.1) II={ag,a;,;j=01,2,..., v=1,2...}

Put

(72) Q = Z ZO& D) Q+ = Z ZZ()OC.
acll acll

We define an indefinite inner product on § by

(ala) =2 (a €11),

(a0|aj’y):—5%1 j:(),l,..., l/:1,2,...),

(
0 (i#j or lu—v|>1)
(

(a‘7 |a7y) =
i, Qg 1

i=j and |p—v|=1)

Let g, denote the Kac-Moody Lie algebra associated to the Cartan matrix

- e (i)

(cvilevi)
(7.5) I:=10,(j,v);j=0,1,..., v=1,2,...}.
We introduce linearly independent vectors eg and e;, (j =0,1,..., v =1,2,...) with
(76) (€0|60> = 2, (eo\ej,l,) = —51,71 and (ej’,/|€j/71,/) = 6j’j/61/’y/-

For a sufficiently large positive integer k let h* be a subspace of h spanned by
{ag, ajy; 4 =0,1,...,k, v =0,1,...}. Putting ef = ey +eg1+ -+ ex1, we have
(eklek) =24 (k+1)—2(k+1) = 1 — k. For a sufficiently large k we have an orthogonal
basis {ef, €;,;7=0,...,k, v=1,2,...} with

(efled) =1 =k, (ejuleji) =655 60,

(7.7)
(eklej ) =0  (j=0,....k v=1,2,...)

and therefore we may put

k
(78) Qg =€) =€y —€p1 —€1,1 —  — €k,
ozj,,,:ej,l,—ej,l,ﬂ (]ZO,...,k', V21,2,...).
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The element

k Zj 1
e
7.9 Co, ... L) == efy — L
(7.9) collo, - be)i=eg =3 D 745
j=0 v=1 J
is in the space spanned by ag and ¢, (j =0,...,k, v =1,...,¢;) and it is orthogonal

toany o, forv=1,...,¢; and j =0,...,k.

Remark 5.  We may assume £g > {1 > --- > {;, > 1. It is easy to have

k
1
(c0(los- - t)lwo(bo, .- b)) =1 —k+ > —

(>0 (k=1
>0 (k=2:0,="0,=1o0r (lo,l1,0) = (2,2,1), (3,2,1) or (4,2,1))
=0 (k=2:(fo,l1,05) = (2,2,2), (3,3,1) or (5,2,1))
<0 (k=2:¢1>2and ly+ 201+ 305 > 12)
=0 (k=3:ly=l1=ly=1V3=1)
<0 (k=3:4y>1)

(k>4

<0

The Weyl group W, of g is the subgroup of O(h) C GL(h) generated by the
simple reflections
(2]ov)
(auslevi)
The subgroup of W, generated by r; for i € I\ {0} is denoted by W/ . Putting
o(a) = ap and o () = ag(jy,, for o € &4, we define a subgroup of O(h):

(7.10) ri(x) =z —2 a; =z — (z|ay) oy (xeh,iel).

(7.11) Woo 1= Goo X Wi

For a tuple of partitions m = (mj,l,)j>0 1 € P,ij_)l of n, we define

Njw = Myl + My g2+,

O = Ny + Z Z Nj,0G,, = Nney — m; e, € Q4.
j=0v=1 j=0v=1
Proposition 7.1. i) idx(m, m’) = (am|om’)-

i) Given i € I, we have apm = 1;(04n) with

Oom (1 =0),

m = 1 v v+1

(m()’l N ,’I’)V’Lj71 e My b 1My e ey - ) (’L = (], l/))
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Moreover for £ = (by, {1, ...) € ZZ, satisfying ¢, =1 for v > 1 we have

oo £i—1
(713) Qy == 01, = O + Z Z oy, = (H Tj7gj_1 .. 'Tj,QTj,l) (CE0>,

j=0 v=1 §>0
Om Oy
(7.14) 9, (m) = Qm — 2%0@ = am — (@ |ap)ay.

Proof. 1) For a sufficiently large positive integer k we have

idx(m, m’) Z ijwm (k—1)ordm - ord m’

j=0v=1
k
Z (n —mnj1)( +ZZ (0 — nj,v+1>( v ju—l—l) (k — 1)nn'
k k oo
=onn’ +2 an’ynz-’y — Z(nn}yl + nlnj,1> — Z Z(”jw”;',wrl + n;-,l,nj’yﬂ)
§=0 5=0 j=0v=1
= (om|om).
The claim ii) easily follows from i). O

Remark 6 ([Kc]).  The set A" of real roots of the Kac-Moody Lie algebra equals
W5 II. Denoting K := {8 € Q4 ; supp 8 is connected and (8,a) < 0 (Vo € 1)}, the
set of positive imaginary roots AT equals W, K. The set A of roots equals A" U A™™
by denoting A" = —A™ and A" = AT"UA"™. Put Ay = ANQ4, A_ = —A,. Then
A = A1 UA_ and the root in A is called positive. Here supp § = {a € II; n, # 0} if
0= ZaGH nqa. A subset L C II is called connected if the decomposition L1 U Ly = L
with L; # 0 and Ly # () always implies the existence of v; € L; for j = 1 and 2
satisfying (vi|va) # 0.

o0 o0
Lemma 7.2. i) Leta = na0+z an,,,aj,l, € Ay withsuppa 2 {ag}. Then

j=0v=1
(715) nzan anyg anyg Z (j20,1,>,
(716) n < anJ — max{njvl, nj2,-.. }

o0 oo
il) Let o = nag + Z an,yaj,l, € Q4. Suppose « is indivisible, that s, %a ¢ Q
j=0rv=1
for k=2,3,.... Then « corresponds to a basic tuple if and only if

(7.17) {2"3'# <nju1t+nium (njo=n, j=0,1,..., v=1,2,..),

2n S no,1 +n171 +n271 + .-
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Proof. The lemma is clear from the following for o = nag + > nj ., € Ag:
(7.18) rip() = nao + > (g = 65300205 — nj a1 — 1y 1)) € A,
(719) T’o(O&) = (Z nj1— n)Oé() + an,,,ozj,l, e A.

For example, putting njo = n > 0 and r; n -7 17,0 = nag + 305 a5, € Ay
for a sufficiently large N, we have n;-’N =N N+ Nju—1—Nj, =nj,—1—nj, >0 for
w=1,2, ... and moreover (7.16) by roac € A . O

Remark 7. i) It follows from (7.14) that Katz’s middle convolution corresponds
to the reflection with respect to the root a; under the identification P C Q4 with (7.12).
Moreover there is a natural correspondence between the set of irreducibly realizable
tuples of partitions and the set of positive roots a of g., with supp a > o such that «
is indivisible or (a|a) < 0. Then the rigid tuple of partitions corresponds to the positive

real root whose support contains ag.

P ‘ Kac-Moody root system ‘
m am (cf. (7.12))

m : rigid a € A suppa 3

m : basic a€Qy: (aff) <0 (Vo ell)

(cf. (5.23)) indivisible and supp « is connected

a € Ay suppa D g

m : irreducibly realizable
indivisible or (a|a) <0

ord m n o oa=noy+ Zi L0y
idx(m, m’) (m|tm’)
Pidxm + Pidxm’ = Pidx(m + m’) (am|om’) = —1
(v,v+1)e G; C S, (cf. (2.9)) sj € WL (cf. (7.10))
9 in (5.17) ro in (7.19)
H ~ 64 (cf. (2.9)) S in (7.11)
(8, Sso) (cf. Definition 2.2) W in (7.11)

Here we define Pidxm := 1 —  idxm as in Definition 4.2 and (9, S) denotes the

group generated by 0 and S.

ii) For an irreducibly realizable tuple m € P, d(m) is well-defined if and only if
ordm > 1 or Z;‘;O mj2 > 1, which corresponds to the condition (5.4).

n)

iii) Suppose a tuple m € P,g 41 is basic. The subgroup of W, generated by
reflections with respect to ay (cf. (7.13)) satisfying (am|ar) = 0 and supp ay C supp o
is infinite if and only if idxm = 0.

Note that the condition (am|ay) = 0 means that the corresponding middle convo-
lution of A € M(n, C)lg*'1 with spt A = m keeps the partition type invariant.
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Proposition 7.3.  For irreducibly realizable m € P and m’ € R satisfying

(7.20) ordm > idx(m, m’) - ord m’,

we have

(7.21) m” ;= m — idx(m, m’)m’ is irreducibly realizable,
(7.22) idx m” = idx m.

Here (7.20) is always valid if m is not rigid.

Proof. The claim follows from the fact that a,,~ is the reflection of the root a,
with respect to the real root . ]

8§ 8. A classification of tuples of partitions

In this section we assume that a (k+ 1)-tuple m = (m;,) o<j<i of partitions of a
1<v<n;
positive integer satisfies

(81) mi;i Z m;2 2 s Z mj,nj Z 1 and Uz Z 2 (j = 0, 1,. . ,k‘)

Note that
mj,1+mj,2+~'+mj,nj:Ordm22 (]:07177k>

Proposition 8.1.  Let K denote the totality of basic elements of P defined in
(5.23) and for an even integer p put

K(p) :={m € £; idxm = p}.
Then #K(p) < oo. In particular K(p) =0 if p > 0 and
(8.2) Kn{d,5 )m={m} (meK),
(8.3) K(0) = {11,11,11,11 111,111,111 22,1111,1111 33,222, 111111}.

Here we use the notation in Remark 7 i), K(p) denotes the quotient of K(p) under the
action of the group So and the element of K(p) is denoted by its representative.

Proof. 1t follows from Remark 7 i) that K corresponds to the set of indivisible
roots in K in Remark 6 and we have (8.2) because K N Wya = {a} for a € K.
Let m € KN Pgy1. We may assume that m is monotone and indivisible. Since

kE nj k
(8.4) idxm + Z Z(mﬂ —mj,) - mj, = (Z m;1 — (k—1)ord m> -ord m,
§=0

j=0v=2
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the assumption m € K is equivalent to
(8.5) Z Z (mj1 —mj,) -mj, <—idxm.
7=0rv=2

Hence idxm < 0.
First suppose idxm = 0. Then m;; = mj2 = -+ = m;,, and the identity

k k nj
miq idxm (mj1—mj,)m;,
8.6 it EL SR PR j,1 3w )Mjv
(8.6) Z ordm ordm Zg (ordm)?

J=0

implies Zj —o7- =k —1. Since SOk < k"QH we have k < 3. When k = 3, we have

7=0 n] —
ng=mn; = nNg = ng = 2. When k£ = 2, n—o + =+ - =1 and we easily conclude that
{no,n1,n2} equals {3,3,3} or {2,4,4} or {2,3, 6}, Wthh means (8.3).
Since idxm = 2(ordm)? — Z?:o N; with Nj = (ordm)? — Y277 m? , > 0, there
exist a finite number of m € P such that the numbers ord m and idx A are fixed because

k is bounded. Therefore to prove the remaining part of the lemma we may assume

(8.7) idxkm < -2 and ordm > —T7idxm + 7.
Then
(8.8) ordm > 21 and (ordm)? > —147idxm.

If mj1 > mj,, >0, (8.5) implies mj; — 1 < —idxm < 1 ordm — 1 and therefore

1
(89) m;1 S ? ordm,
n 1
2 2
(8.10) ;mj’,, <mj-ordm < ?(ordm) :
Hence 2m;; < ordm for j =0,...,k,

—_

l\D

kE nj k
_ k1
. 2 2 2
idxm+ (k—1) - (ordm)* = E E m;, < EO— (ordm)? 5 (ordm)
‘7:

j=0v=1

and 252 (ordm)? < —idxm < 1 ord m, which proves k < 3.
Suppose k = 3. Since m # 11, 11,11,11, we have m;; < %ordm with a suitable 7,

3
idxm = Z Z mj’ (ordm)? < Z m; 1 ordm — 2(ord m)?
j=0v=1 =0

<($3+i+1+1-2)(ordm)? = —L(ordm)’
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and ordm < —&idxm 2 idx m, which contradicts to (8.7).

“ordm
Suppose k = 2 and put J={jsmj1#mjn, (j=0,1,2)}. Then
14 idxm :ZZolmgu oo mi, D2 m5,
(ord m)? (ord m)? (ord m)? (ord m)?

and therefore
1 J 1
I A

) n;
j€{0,1,23\J

because of (8.7), (8.8) and (8. 10) for j € J. Lemma 8.2 assures that this never holds

1 .
becausel—m——>0 1-— m——>— 1—m——>—and1—m> according
to #J = 3,2,1 and 0, respectively. ]

Lemma 8.2.  Put Iy, = {zf o in;€{2,3.4,. }} N[0,1). Then

Iy (0,4], I, € (0,2] and I3C(0,45].

Proof. LetrGI;H_l It is clear that r < 1 5 forr e I.

Letr—niO—I— €l If ng =2, thenn1>3andr<— Ifn023,thenr§§.
Letr———l— —I——Elg We may assume ng < nj < no.

Ifn0§4,thenr§3.

Suppose ng = 3. If n; > 4, r<5 If ny = 3, thenn2>4andr<11

Suppose ng = 2. Then n; > 3. Ifn1_3 then n2>6andr< . If ny > 4, then

n2>4andr§ég. O

Remark 8. i) K(0) is given by Kostov [Ko2] and its elements correspond to the
indivisible positive null-roots « of the affine root systems Dy, Eg, E7 and Eg (cf. Re-
mark 5, Proposition 7.1 and Table K(0)).

ii) In the proof we obtained ordm + 7idxm < 6 for m € K but we can prove

(8.11) ordm+ 3idxm <6 for me K,
(8.12) ordm + idxm < 2 for m e K\ Ps.
Example 8.3. For a positive integer m we have special 4 elements
Dim) cmm — 11, m?, m?,m? E(m) m*m —11,m>,m

ES™ mBm —11,m*, 2m)2 B mPm — 11, (2m)3, (3m)?

3
(8.13)

in K(2 — 2m) with orders 2m, 3m, 4m and 6m, respectively.
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Proposition 8.4. We have

K(-2)={11,11,11,11,11 21,21,111,111 31,22,22,1111 22,22,22,211
211,1111,1111 221,221,11111 32,11111,11111 222,222, 2211
33,2211,111111 44,2222,22211 44,332,11111111 55,3331, 22222
66, 444, 2222211},

Proof. Let m € C(—2)NPg4+1 be monotone. Then (8.5) and (8.4) with idxm = —2
implies Y (mj1 —m;,)m;, =0 or 2 and we have the following 5 possibilities.

(A) mo1---mop, =2---211 and mj 1 = my,, for 1 < j <k.

(B) mo,1---mo,n, =3---31 and my 1 = mj,, for 1 <j <k

(C) mo,1-- Mo, =3---32 and mj1 = mj,, for 1 <j <k

(D) m1---Mmipy =2---21and mj1 =mj,, for 0 <i<1<j <k
(E) mj1=mjy, for 0 <j <k andordm = 2.

Case (A). If2---211 isreplaced by 2 - - - 22, m is transformed into m’ with idxm’ =
0. If m’ is indivisible, m’ € K(0) and m is 211,14 1% or 33,2211,15. If m’ is not
indivisible, 3m’ € K(0) and m is one of the tuples given in (8.13) with m = 2.

Put m = ng — 1 and examine the identity (8.6).

Case (B). 377?—1—1 +n%—|—---+n—1k =k —1. Since nj > 2, we have 1k —1 < 3n§+1 <1
and k < 3.

If Kk =3, we have m = 1, ordm = 4, n% + 7%2 + 7%3 = %, {ni,n9,n3} = {2,2,4} and
m = 31,22,22,1111.

Assume k = 2. Then ni +-L =1—_-3_ and Lemma 8.2 implies m < 5. We have

1 ng 3m—+1

n% + 7%2 = %, %7 1—70, % and i according to m = 5, 4, 3, 2 and 1, respectively. Hence
we have m = 3, {n1,n2} = {2,5} and m = 3331, 55, 22222.

Case (C). 2 +n%+~--+nik =k—1. Since n; > 2, 3k —1< 2= < 1 and

3m+2 +2
k<3.If k=3, then m =1, ordm =5 and n% + n%» + 7%3 = %, which never occurs.
Thus we have k = 2, ni + ni =1- 3nf’+2 and Lemma 8.2 implies m < 5. We have
1 1 _ 14 11 8 5 .. :

2 . _ .
ot =T 01D 8 and £ according to m = 5, 4, 3, 2 and 1, respectively. Hence

we have m =1 and n; = ng =5 and m = 32,11111,11111 or m = 2 and n; = 2 and

no = 8 and m = 332,44, 11111111.
Case (D). %H"FszH +ni2+---+nik:k—1. Since n; > 3 for j > 2, we have
2

k—lg%%irl:%irl and m < 2. Ifmzl,thenk§3andn%—kn%:Z—%:gand

we have m = 21,21, 111, 111. If m = 2, then k = 2, - = 1— ¢ and m = 221,221, 11111.

Case (E). Since m;; =1 and (8.4) means —2 = Z?:o 2mj, — 4(k — 1), we have
k=4and m=11,11,11,11,11. O

By the aid of a computer we have the following tables.
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Table of #K(p).

21

index 0] 2]-4]—-6] 8[-10] -12] -14] —16 [ —18 [ —20
#K(p) 41 13| 36 | 67| 90| 162 | 243 | 305 | 420 | 565 | 720
# triplets 3 9| 24| 44 o6 97 | 144 | 163 | 223 | 291 | 342
# 4-tuples 1 3 9| 17| 24 45 68 95 | 128 | 169 | 239
Table of (ordm : m) of K(—4) (* corresponds to (8.13) and + means 0y, (M) # m))
+2:11,11,11,11,11,11 3:111,21,21,21,21 4:22,22,22,31,31
+3:111,111,111,21 +4:1111,22,22,22 4:1111,1111,31,31
4:211,211,22,22 4:1111,211,22,31 *6:321,33,33,33
6:222,222,33,51 +4:1111,1111,1111 5:11111,11111,311
5:11111,2111,221 6:111111,222,321 6:111111,21111,33
6:21111,222,222 6:111111,111111,42 6:222,33,33,42
6:111111,33,33,51 6:2211,2211,222 7:1111111,2221,43
7:1111111,331,331 7:2221,2221,331 8:11111111,3311,44
8:221111,2222,44 8:22211,22211,44 *9:3321,333,333
9:111111111,333,54 9:22221,333,441 10:1111111111,442,55
10:22222,3322,55 10:222211,3331,55 12:22221111,444,66
*12:33321,3333,66 14:2222222,554,77 *18:3333321,666,99

in the diagram represent the simple roots in supp o, and two circles are connected by

a line if the inner product of the corresponding simple roots is not zero. The number

We express the root amy, for m € K£(0) and K(—2) using Dynkin diagram. The circles

attached to a circle is the corresponding coefficient n or n;, in the expression (7.12).

For example, if m = 11,11, 11, 11, then am = 200 + a1 + 1,2 + 22 + 3 2, which

corresponds to the first diagram in the following.

Table K(0)
3
2 4 6 5 4 3 2 1
O—O0—""FC0O—""C0O0—"F0—"0—"—C0—0
1
2 2
1 2 3 4 3 2 1 1 2 3 2
O—O—"C0O—""C0O0—"F0—"C0C—"0O O0—O0—C—=0
Table K(—2)

Dotted circles represent simple roots which are not orthogonal to the root.

2
N N
U U
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22

ol0,

=0 ~O
- ~O
~+O e
~0 5—0—20
~O 1@
~O 0O
e —O
“O5—0

O4

O w0
aO =0
<O 0
O =0
0 &0
O =0
<O =0
O O
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89. Connection problem

Fix a tuple m = (m;,) j=o,..k € Plgf_)l in this section. For complex numbers

gee

v=1,...,n;
Ajv € Cand € C we put
1
[)\0,1].(m071) . [)\k,l].(mkg) 1+ 1
{Am} = : : : e = :
[)\O’HO](mo,nO) ce [)\k,nk](mkynk) L+ p— 1

We may identify {\n,} with an element of M (n,k+ 1,C).

Definition 9.1. A rigid tuple m € Ry is a rigid sum of m’ and m" if
(9.1) m=m'+m" and m’, m"”" € R,
and we express this by m = m’ ® m”, which we call a rigid decomposition of m.

Theorem 9.2.  Fiz k+ 1 points {z9,...,2x} C CU{oco} and a rigid tuple m €
Ri41. Assume \;,, € C are generic under the Fuchs relation [{Am}| = 0 with

k ny
(9.2) {md =) mjA, —ordm + 1.
j=0v=0
i) There uniquely exists a single Fuchsian differential equation Pu = 0 of order
n with regular singularities at {zg,...,zr} C CU {oco} such that the set of exponents
at z; C CU{oo} is equal to that of components of the (j + 1)-th column of {Am} and
moreover that the local monodromies are semisimple at z; for j =0,...,k.
ii) Assume k = 2, mon, = Min, = 1 and mj,, > 0 forv =1,...,n; and
Jj=0,1,2. Let ¢(Aony ~> A\1,n,) denote the connection coefficient from the normalized
local solution of Pu = 0 in i) corresponding to the exponent \g n, at 2o to the normalized

local solution corresponding to the exponent \i n, at z1. Then

T‘LQ—l 7’L1—1

II Tome = Aow +1) - T Thw = Aim)
9.3) (Moo~ AMymy ) = 2= =
( (o ) I ()

/ 1
m ém  =m
/ o _
mO,nO_ml,nl_l

(94) Z m;-’,j = (n1 — 1)mj,l, — 5j,0<1 — no(S,,mo) + 5j,1(1 — nlél,ml)

Y

MG g =7 3, =1 (0<j<2, 1<v<n,).
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Remark 9. i) Putting (j,v) = (0,n0) in (9.4) or considering the sum ) for
(9.4) with j = 1, we have

(9.5) #{m' € R3; m' @m"” =m with mg, =mg,, =1} =no+n -2,

(9.6) Z ordm’ = (n; — 1) ord m.
m’®&m’ =m
M g =mt =1
ii) We may regard {A\m} as a Riemann scheme of the Fuchsian equation with the
condition that the local monodromies at the singular points are semisimple for generic
Aj,» under the Fuchs condition. The equation for general A; , is defined by the analytic
continuation. The corresponding Riemann scheme will be denoted by P{Am}.

iii) A proof of this theorem and related results will be given in another paper. The
proof is a generalization of that of Gauss summation formula for Gauss hypergeometric
series due to Gauss, which doesn’t use integral representations of the solutions.

iv) In the theorem the condition k¥ = 2 means that there exists no geometric
moduli in the Fuchsian equation and we may assume (2o, 21,22) = (0,1,00). By the
transformation of the solutions u s z=*0:n0 (1-— z)_’\l’nlu we may moreover assume
A0,ng = AM,n; = 0. Then the meaning of “normalized local solution” is clear under the
condition mg n, = M1y, = 1.

v) By the aid of a computer the author obtained the table of the concrete connec-
tion coefficients (9.3) for m € Rj3 satisfying ordm < 40 together with checking (9.4),
which contains 4,111,704 independent cases.

Example 9.3 (H, : hypergeometric family). = The Fuchsian differential equation
of hypergeometric family of order n has the spectral type m = (1", n — 11,1™). Its

Riemann scheme is

Ao,1 [/\1,1](n—1) A2

(9.7) P
Ao,n—1 A2 n—1
)\O,n )\1,2 )\2,71

with complex numbers J; , satisfying the Fuchs relation

(98) Z()\07y+)\27y>—|—(’I’L—1)/\1’1+/\1’2 =n—1.
It follows from (9.5) that there are n rigid decompositions m = m’ @ m” of m with
mg ., =my o =1 and they are
1.+ 1T, n—11,1---1=0---0T, 1 0,0---010---0
®1---10,n—21,1---101---1  (i=1,...,n),

Y
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which are symbolically expressed by H,, = H; & H,_1. Then the formula (9.3) implies

n—1

H F(Aon —Aoi+1)-T(A1— A12)

(Ao ~ Apg) = =

n

H F(Aon + A1+ A2)

1=1

and n_l
T'(A2—Aa+1) - [T (i — Aom)
i=1

i ()\O,V>1§V§n—1 [)\1,1](71—2) ()\2,V>1§V§n .
i=1 A12
Here we denote
M1
1 :
K2 . 1
(m)icv<n = | + | €C" and  (w)i<v<n = | uipy | €C"
M.n Viz N
fin
for complex numbers p1, ..., u,. In the same way as above we have
n—1
(Ao — Ao
C()\()’n ~ )\2,71) = H ( 2, 2, )
i=1 F(){)\O,n ALl )\Z,i}‘)
' ”1:[1 T(Xom — Ao + 1)
i=1 ()\O,v>1SVSn [)‘1,1](71—2) ()‘Q,V>1§V§n—1)
A1,2

by the rigid decompositions
0.--0I, 1 0,0...010---0
1.--10,n—21,1---101---1

(3

1---1T,n—11,1---11

@

— 1. 10111, n—21,1---1
©0...010---00, 1 0,0---0L (i=1,....,n—1).

The generalized hypergeometric series

N [ee) (a1>k"'(an>k Zk
WP (@1t Bai®) = 30 s G Ty

k=0

is a solution of the differential equation

(9.9) (ﬂ(zdilz +ﬁj)'%—H(2%+aj)>u:0

J=1 J=1
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with the Riemann scheme

([ 2=0 1 00

1=01 [0n-1y @ n n

(9.10) : Lo with Y ay =) B
-8, .y v=1 v=1

\ 0 —Bn On )

This is the Gauss hypergeometric series when n = 2. Here we denote

(Me=100y+1)--(v+k-1)
fory € Cand k=1,2,... and (7)o = 1. Hence by putting

)\O,V:]-_Bl/ (1§V§n—1>, )\O,nzoa )‘1,1:()7
AMo=—0, and Ay, =0a; (1<1i<n)

we have

_ 17 LB)
C<)\O,n ~ )\172) = ];[1 F(a

= lim (1-— x)ﬁ”nFn_l(a,ﬁ; x) (Re 8, > 0),

r—1—-0

(1 - B; 7 LB (i —
(M2~ Xon) = H N i c(Xo,n ~ A2n) = 1:[1 pgiér((zz — Zn;

3

These connection coefficients are calculated by Levelt [Le] and Okubo et al [OTY].

Example 9.4 (EOs,, : even family). Let m be a positive integer. The single
Fuchsian differential equation whose Riemann scheme is

)\071 P\l,l](m) [)‘271](771)

(9.11) P A2lm-1) [A2.2]m)

Ao,2m A3

with the Fuchs relation

2m

(9.12) Z )\071, + m)\171 + (m — 1))\172 -+ )\1’3 -+ m)\271 + m)\2’2 =2m—1
v=1

is of even family of order 2m. Then Theorem 9.2 and the rigid decompositions
: :
1---11, mm—11,mm=0---01, 100, 10® 1---10, m — 1lm — 11, 01
! !
=0---11,110,11®1---00, m — 1m — 21, m — 1m — 1,
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which are symbolically expressed by EQs,,, = Hi ® EOs,,_1 = Hy ® EOoy,_o, imply

ﬁ LA — A1s) . Qnﬁl I'(Xo2m — Ao,j + 1)
i=1 (H)\O om ALl A2 ZH) j=1 F( Ao A1 A2 )
Ao,2m A2 A2
F(M3— A+ 1)

A )m-1)  [A2w]om)
F( (Aow)icv<am—1 [M2lm-1) [A23-il(m-1) )

<>\O2m“’“>)\13 =

Y

2
(A3~ dozm) = ||
i=1

A3
‘ 2nﬁ1 I'(Xo,; — Ao,2m)
i=1 A 1lm—1) [M21)m—1)

L(I< (Aop)i<v<em—1 [M2lm-2) P22lm-1) ¢|)
V]
A13

)

§10. Appendix

Crawley-Boevey [CB] gives the following complete answer to the additive Deligne-
Simpson problem.

Theorem 10.1 ([CB]).  Let k and n be positive integers, m; = (mj1,...,Mjn;)
be partitions of n and \; = (Mj1,...,Ajn,) € CY for j = 0,....k. Put m =
(mg,...,myg) € P,gi)l and assume the condition (5.16). Then there exists an irreducible
tuple of matrices A = (Ay,. .., Ax) € M(n,C)**! satisfying

if and only if ay, is a positive root and moreover

(10.2) (Zm“))w,.. Zm“X)A ) £(0,...,0)eCN

for any decomposition
(10.3) m=m®b +... 4+ m®
with N > 2 and m® e Pr+1 such that

am defined by (7.12) are positive roots (i =1,...,N),

(10.4)

under the notation and the correspondence in Remark 7 i).
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K. Takemura indicated to the author that the following result follows from Theo-
rem 10.1 and kindly allows the author to include the proof in this note.

Theorem 10.2.  Retain the notation and the assumption in Theorem 10.1. If
there exists an irreducible tuple of matrices A = (A, ..., Ar) € M(n,C)**! satisfying
(10.1), then am defined by (7.12) is a positive root such that m is indivisible or idx m <
0. Conversely if a tuple m € P is indivisible or m satisfies idxm < 0 and moreover

Qam 1S a positive root, then m is irreducibly realizable.

Proof. Note that this theorem follows from Theorem 10.1 if m is indivisible be-
cause (10.2) always holds when )\; , are generic under the condition (5.16).
Suppose m = dm with an integer d > 1 and an indivisible tuple m € Pj;. Since

Pidxm =1— idxm =1 — (am, &m), we have
(10.5) Pidxdm = 1 + d?(Pidxm — 1).

If Pidxm = 1, we have Pidx m = Pidx (d —1)m = 1 and this theorem also follows from
Theorem 10.1 with the decomposition m = m + (d — 1)m corresponding to (10.3).

Hence we may moreover suppose Pidxm > 1. Assume the existence of the decom-
position (10.3) such that >_; mgf)y)\jw = 0 in Theorem 10.1. If )\, , are generic, we
have m(Y) = d;m with positive integers d; satisfying d = d; + - - - + dy. Then

N N
Pidxm — Y " Pidxd;m = 1 + d*(Pidxm — 1) — ) (1 4 d?(Pidxm — 1))
i=1 i=1
=2 Y did;(Pidxm—1)— (N —1) >0
1<i<j<N
when Pidxm > 2 and N > 2. Hence Theorem 10.1 completes the proof. O

Remark 10. i) Kostov [Ko2| studies the above result when idxm = 0.

ii) It follows from Theorem 10.2 that the spectral type of any irreducible tuple
A € M(n,C)E*! is irreducibly realizable.

iii) We define that a tuple A € M (n, C)ISH and the corresponding Fuchsian sys-
tem (4.3) are fundamental if A is irreducible and cannot be transformed into a tuple
of matrices with a lower rank by any successive applications of additions and middle
convolutions. We also define that a tuple m € P is fundamental if it corresponds to a
suitable fundamental tuple A € M(n, C)5™.

Then a tuple m € P is fundamental if and only if m is basic or there exist a positive
number d and a basic tuple m € P satisfying m = dm and idxm < 0.

Hence it follows from Proposition 8.1 and the equality (10.5) that there exist only
a finite number of fundamental tuples m € P such that idx m equal to a fixed number.
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iv) (Nilpotent case : [CB], [Ko3]) Under the notation in Theorem 10.1 there exists
an irreducible tuple A € M (n,C)**! satisfying (10.1) with \;, = 0 for any j and v if
and only if ordm = 1 or m is fundamental and moreover m is not the special element
in Example 8.3 with m > 2. Here we have the decompositions Dimﬂ) = Dim) + DS)
and Ej(.mﬂ) = Ej(m) - Ej(-l) for j = 6, 7 and 8 which satisfy (10.3) and (10.4).

[CB]
[DR]

[DR2]
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