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0. Introduction

The principal aim of this paper is to study the Fourier analysis on
Riemannian symmetric spaces. In particular, the Paley-Wiener theo-
rems of some types of function spaces on the symmetric space will be
discussed throughout the paper. As the application of these results,
the solvability of the single differential equation defined by the invariant
differential operator on the symmetric space will be shown in the last sec-
tion. Furthermore, in the forthcoming paper we will discuss Eherenpreis’
fundamental principle on Riemmanian symmetric space. The statement
of this fundamental principle is appeared in [OSW1]. In this point of
view, the results of this paper is the preliminary investigation for the
proof of the fundamental principle.

We introduce distributions and hyperfunctions of exponential type on
a Riemannian symmetric space and discuss their Fourier transforms.
Our study is originated from the preceding works on two subjects. One
is the theory of the Fourier transformation on a Riemannian symmet-
ric space developed by Harish-Chandra, Helgason, Trombi-Varadarajan,
Kostant, Eguchi and others. The another one is the theory of the Fourier
transforms of distributions and hyperfunctions of some types on a Eu-
clidean space. As to the theory of the Fourier transformation of distri-
butions of exponential type on a Euclidean space, there are works by
Hasumi, Sebastiaõe Silva and others. As to the theory of Fourier trans-
forms of hyperfunctions of some types on a Euclidean space, there are
works by Sato, Kawai, Morimoto, Zharinov, Nagamachi, Saburi, Kaneko
and others. The basic means and facts on introducing these generalized
functions are of the establishment of Eherenpreis’ fundamental principle.

Now we explain the series of contents of this paper. In §1 we set up the
notations and basic facts about the real reductive linear Lie group and
define a Riemmanian symmetric space which we deal with throughout
the paper briefly. In §2 we introduce the notion of the invariant differ-
ential operator of infra exponential type which is, in fact, the infinite
order differential operator on our symmetric space. Using these differ-
ential operator we define the function space A∗(G/K). Also we define
the function space C∗(G/K). This space is the inductive limit of the
space of Lp Shwartz functions discussed in [Eg1] and has the structure
of the FS space. The space A∗(G/K) is the subspace of C∗(G/K) and it
consists to the real analytic functions those are belong to C∗(G/K). In
§3 we review the Fourier-Laplace transformations on symmetric spaces
and state the main results. We devote the proof of the theorem in the
case of C∗(G/K) in §4. Since the proof of it is owed to the results of
[Eg1], we review it in this section. In order to prove the theorem in the
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case of A∗(G/K), we must get the knowledge of the Fourier series of the
analytic functions on the isotropy group at the origin of the symmetric
space. We discuss them in detail in §5. By means of the theorem in
the case of C∗(G/K) and the results of §5, we can get the proof of the
theorem in the case of A∗(G/K) in §6. For the sake of studies in the
forthcoming paper, we describe the Fourier coefficients of the Fourier-
Laplace images of our function spaces on the boundary of the symmetric
space. In the last section we derive some results on the solvability of a
single differential equation on the symmetric space.

In Appendix 1, we devote to study the fundamental lemma for our
discussion on the differential operator of infra exponential type. The
elementary lemmas on the infra exponential functions and the important
properties of the differential operators of infra exponential type deduced
from the results in Appendix 1 is collected in Appendix 2.

1. Notation and preliminaries

We use the standard notation Z, R and C for the ring of integers,
the field of real numbers and the field of complex numbers, respectively.
We denote by N the set of nonnegative integers. For any finite set F ,
we denote the number of elements of F by #F . For a C∞ manifold
V , we denote by C∞(V ) the space of C∞ functions on V . Let G be
a connected real reductive linear Lie group and K a maximal compact
subgroup of G. We denote by g and k the Lie algebras of G and K,
respectively. Then g = c + g1 where c is the center of g and g1 is the
derived algebra of g. Let θ be the Cartan involution of g with respect to
k. Let p be the subspace of g corresponding to the eigenvalue −1 of θ.
Then we have the Cartan decomposition g = k+ p. If we put ck = c ∩ k
and cp = c∩p, we have c = ck+ cp. Let 〈 , 〉k (resp. 〈 , 〉p ) be a positive
definite symmetric bilinear form on ck (resp. cp ). Let B( , ) denote the
Killing form on g1. We define and fix an Ad(G) invariant form Q( , )
on g by the following equation:

Q(X1 + Y1 + Z1, X2 + Y2 + Z2) = B(X1, X2) + 〈Y1, Y2〉k + 〈Z1, Z2〉p
for Xi ∈ g1, Yi ∈ ck and Zi ∈ cp (i = 1, 2).

It is clear that Q( , ) defines a scalar product on p. For any subspace l
of g, we denote by lc and l∗ the complexification and the real dual space
of l respectively. Furthermore denote by l∗c , the complexification of l∗.
We fix a maximal abelian subspace a of p and introduce a linear order
in a∗. Let Σ and Σ+ be the set of all restricted roots and restricted
positive roots, respectively. For any root α in Σ, we denote by gα the
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root space in g corresponding to α and by mα the dimension of gα. We
put n =

∑
α∈Σ+ gα and ρ = 1

2

∑
α∈Σ+ mαα. Let A and N be the analytic

subgroups of G corresponding to a and n, respectively. Then we have
the Iwasawa decomposition G = KAN (resp. g = k+ a+ n) of G (resp.
g). For any g in G, we denote κ(g) and H(g) for the unique elements k in
K and H in a such that g = k expHn where n in N . For any a in A, we
write H(a) by log a. Let M ′ and M be the normalizer and centralizer of
A in K, respectively. The quotient group W = M ′/M is the Weyl group
and acts on ac, a

∗ and a∗c in the obvious way. Let l denote a real rank of
G, that is l = dimA. The form Q( , ) induces Euclidean measures on
A and a∗; multiplying these by the factor (2π)−l/2 we have measures da
and dλ on A and a∗, respectively, and the Fourier transform

f∗(λ) =

∫
A

f(a) exp−iλ(log a)da (λ ∈ a∗c)

is inverted without any multiplicative constant, where i denotes the
square root of −1. The Haar measures dk on K and dm on M are
so normalized that the total measures are one, respectively. Moreover,
we denote the induced invariant measure on K/M by dkM . The Haar
measures of the nilpotent groups N and N = θ(N) are normalized so
that θ(dn) = dn and the integral of exp−2ρ(H(n)) with respect to dn
over N is one. Then the Haar measure dg on G can be normalized with
dg = exp 2ρ(log a)dkdadn (g = kan). The homogeneous space G/K is a
Riemannian symmetric space. By means of the polar decomposition of
G, there is a real analytic diffeomorphism:

exp : p 3 X
∼7−→ (expX)K ∈ G/K.

Also, we can define a norm on G/K by

|x| = Q(exp−1(x), exp−1(x))
1
2 (x ∈ G/K).

2. Function space C∗(G/K) and A∗(G/K)

Let X1, X2, · · · , Xm be an ordered basis of g. Xj determine right
G-invariant vector fields on G:

(Xjf)(g) =
d

dt
f(exp(−tXj)g)|t=0 (g ∈ G),

where f is a C∞ function on G. They act also on functions on G/K
which are identified with right K-invariant functions on G. Let U(g)
denote the universal enveloping algebra of gc. Naturally, each element
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of U(g) is regarded as a right invariant differential operator on G. We
put X = (X1, . . . , Xm). For α = (α1, . . . , αm) ∈ Nm, we define a
differential operator Xα on G/K by Xα = Xα1

1 · · ·Xαm
m .

For a finite dimensional C-vector space V , we denote by O(V ) the
space of entire holomorphic functions on V . A function f(z) in O(V ) is
called to be infra-exponential type if it satisfies the growth condition:

lim
|z|→∞

f(z)e−ε|z| = 0 for any ε > 0,

where |z| denotes a norm of z in V . Let Õ(V ) be the set of all functions
of infra-exponential type on V .

Definition 1. Let {X1, . . . , Xm} be an ordered basis of g. We call the
right G-invariant differential operator J(X) =

∑
α∈Nm CαX

α of infinite
order is of infra exponential type if and only if the function J(ξ) =∑

α∈Nm Cαξ
α with ξ = (ξ1, . . . , ξm) ∈ Cm belongs to Õ(Cm). Further,

we denote by Õ(g∗c) the set of all right G-invariant differential operators
of infra exponential type on G.

The following lemma can be proved directly from Lemma 1 in Appen-

dix 1 and guarantees the well-definedness of Õ(g∗c).

Lemma 1. Let {X1, . . . , Xm} and {Y1, . . . , Ym} be two ordered basis
of g and we put

Yi =
m∑
j=1

ai,jXj for i = 1, . . . ,m.

Suppose that J(Y ) =
∑

α∈Nm CαY
α is a right G-invariant differential

operator of infra exponential type. If we put

J̃(X) =
∑

α∈Nm

C̃αX
α

=
∑

α∈Nm

Cα

(∑
a1,jXj

)α1 · · ·
(∑

am,jXj)
αm ,

then J̃(X) is also the right G-invariant differential operator of infra
exponential type.

The elementary and necessary facts on the functions and differential
operators of infra exponential type are collected in Appendix 2.

If J(X) =
∑

α∈Nm CαX
α belongs to Õ(g∗c), then we put Jα(X) =

CαX
α for all α ∈ Nm. We now introduce the following two function

5



spaces on G/K. These are main objects of our study throughout this
paper.

C∗(G/K) = {ϕ ∈ C∞(G/K); ‖ϕ‖α,r = sup
x∈G/K

|(Xαϕ)(x)|er|x| < ∞

for ∀α ∈ Nm, ∀r ≥ 0}

A∗(G/K) = {ϕ ∈ C∞(G/K);

‖ϕ‖J,r = sup
x∈G/K

sup
α∈Nm

|(Jα(X)ϕ)(x)|er|x| < ∞

for ∀J ∈ Õ(g∗c), ∀r ≥ 0}

It is easy to see that A∗(G/K) is a subspace of C∗(G/K) and the ele-
ments of ϕ of A∗(G/K) are real analytic on G/K. The space C∗(G/K)
is a so-called FS space. We denote the dual space of C∗(G/K) (resp.
A∗(G/K)) by C′

∗(G/K) (resp. A′
∗(G/K)) and call its element a distri-

bution (resp. hyperfunction) of exponential type on G/K.

Remark 1. Let G̃/K be the compactification of G/K discussed in [O1]
(see [Sc]). Then the element in C′

∗(G/K) is characterized by the fact that

it is in fact the restriction of a distribution on G̃/K.

Remark 2. Suppose G is abelian. Then as a linear space A∗(G/K) is
nothing but the inductive limit of the following spaces:

A∗(G/K) = inj lim
ε>0

OE(Rm × i(−ε, ε)m),

where

OE(Rm × i(−ε, ε)m) = {f ∈ O(Rm × i(ε, ϵ)m);

for ∀r > 0, ∃δ > 0 such that sup
z∈Rm×i(−δ,δ)m

|f(z)|er|z| < ∞}.

Here O(Rm × i(−ε, ε)m) stands for the space of holomorphic functions
of the tube domain Rm × i(−ε, ε)m.

Remark 3. A C∞-function ϕ on G/K belongs to A∗(G/K) if and only
if

sup
x∈G/K

|
∑

α∈Nm

Cα(X
αf)(x)|er|x| < ∞

for any J(X) =
∑

α∈Nm CαX
α ∈ Õ(g∗c) and r ≥ 0 (See Appendix 2,

Lemma 2). Moreover, the topology of A∗(G/K) is independent to the
choice of our ordered base {X1, . . . , Xm}. This is non-trivial fact, but
in the proof of the Paley-Wiener theorem (see §6), we will see that it is
the legitimate one.
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3. Fourier-Laplace transformations and main results.

The Fourier-Laplace transform Fϕ of ϕ ∈ C∗(G/K) is a function on
a∗c ×K/M and defined by

Fϕ(λ : kM) =

∫
G

ϕ(x)e(iλ−ρ)H(x−1k)dx for (λ, kM) ∈ a∗c ×K/M.

We now introduce the following two function spaces on a∗c ×K/M :

ZC
∗ (a∗c ×K/M) = {Φ ∈ C∞(a∗c ×K/M); Φ is holomorphic in

λ ∈ a∗c and ‖Φ‖j,r < ∞ for ∀j ∈ N, ∀r ≧ 0}
and

ZA
∗ (a∗c ×K/M) = {Φ ∈ ZC

∗ (a∗c ×K/M); ‖Φ‖J,r < ∞

for ∀J = (J1, J2) ∈ Õ(a∗c)×O2(C), ∀r ≧ 0}
where, denoted by ∆K/M the Laplacian on K/M ,

‖Φ‖j,r = sup
| Imλ|≦r

k∈K

|∆j
K/MΦ(λ : kM)|(1 + |λ|)j ,

‖Φ‖J,r = sup
| Imλ|≦r

k∈K

sup
n

|J1(λ)J2,n(∆K/M )Φ(λ : kM)|

and

O2(C) = {J ∈ O(C); J(z2) is of infra-exponential type}.
Of course, the meaning of the differential operator J2(∆K/M ) of infinite
order is similar to that of J(X) is the definition of A∗(G/K), and if
J2(∆K/M ) is of the form J2(∆K/M ) =

∑∞
n=0 cn∆

n
K/M , then we put

J2.n(∆K/M ) = cn∆
n
K/M .

Let U be the subset of a∗c . For a continuous function Φ on U ×K/M
we define its Poisson integral Φ̌ by

Φ̌(λ : x) =

∫
K

Φ(λ : kM)e−(iλ+ρ)H(x−1k)dk for (λ, x) ∈ U ×G.

We put

ZC
∗ (a∗c ×K/M)W = {Φ ∈ ZC

∗ (a∗c ×K/M); Φ̌(wλ : x) = Φ̌(λ : x)

for ∀w ∈ W, ∀(λ, x) ∈ a∗c ×G}
and

ZA
∗ (a∗c ×K/M)W = ZA

∗ (a∗c ×K/M) ∩ ZC
∗ (a∗c ×K/M)W .

Then it is clear that ZC
∗ (a∗c ×K/M)W (resp. ZA

∗ (a∗c ×K/M)W ) is the
closed subspace of ZC

∗ (a∗c ×K/M) (resp. ZA
∗ (a∗c ×K/M)).

Now we state the following Paley-Wiener theorem.
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Theorem 1. Let G be a connected real reductive linear Lie group and
K its maximal compact subgroup. Then we have the following linear
topological isomorphisms:

F : C∗(G/K) →̃ ZC
∗ (a∗c ×K/M)W .

F : A∗(G/K) →̃ ZA
∗ (a∗c ×K/M)W .

The inverse F−1 of F is given by

F−1Φ(xK) =
1

#W

∫
a∗
c

Φ̌(λ, x)|c(λ)|−2dλ for x ∈ G,

where c(λ) is Harish-Chandra’s c-function for the principal series of class
1 with respect to K.

Remark 4. As to the theory of Fourier transformation of distributions
of exponential type on the Euclidean space, there are works by [Ha], [M]
[SS] and others. Also the Fourier hyperfunctions on the Euclidean space
was studied in [Sat] [Kaw] [Kan] and others.

4. Proof of the theorem in the case of C∗(G/K).

We can get the proof of the theorem with respect to C∗(G/K) thanks
to Theorem 4.1.1 in [Eg 1]. Also, our proof of the theorem in the case
of A∗(G/K) is owed to the works of [Kan] in addition to that of [Eg 1].
So we review the result of it in the first place.

In this section, we will identify U(g) with the algebra of left-invariant
differential operators on G, as usual. It is known that there exists an anti
isomorphism ι from U(g) with the algebra of right-invariant differential
operators on G. If f is a function on G and u, u′ ∈ U(g), then we write

((ιu)u′f)(x) = f(u : x;u′) (x ∈ G).

For any element v of the symmetric algebra S(a∗c) over a∗c , let ∂(v)
denote the corresponding differential operator on a∗. Then S(a∗c) can
be regarded as the algebra of all differential operators with constant
coefficients on a∗c .

Let 0 < p ≤ 2 and let Cp(G/K) denote the set of C∞ function ϕ on G
which satisfy the following conditions: (i) ϕ(xk) = ϕ(x) for any x ∈ G
and k ∈ K; (ii) for any j ∈ N and u, u′ ∈ U(g),

τpu,u′,j(ϕ) = sup
x∈G

|ϕ(u : x;u′)|Ξ−2/p(x)(1 + |x|)j < ∞,
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where Ξ is the zonal spherical function defined by

Ξ(x) =

∫
K

e−ρ(H(xk))dk (x ∈ G).

The seminorms τpu,u′,j convert Cp(G/K) into an FS space.

Put ϵ = 2/p− 1. We define the tube domain F p by setting

F p = {λ ∈ a∗c ; | Im(wλ)(H)| ≤ ϵρ(H)for anyH ∈ a+and anyw ∈ W},

where a+ denotes the positive Weyl chamber of a. We denote the interior
of the domain F p by IntF p. For brevity of notation, we put F 2 =
IntF 2 = a∗. We define Zp(a∗ ×K/M) to the space of all C∞ complex
valued functions Φ on a∗×K/M which satisfy the following conditions :
(i) For any k ∈ K the function λ → Φ(λ : kM) extends holomorphically
to IntF p ; (ii) for any (n,m) ∈ N2 and v ∈ S(a∗c),

ζpv,n,m(Φ) = sup
λ∈IntFp,k∈K

|Φ(λ; ∂(v) : kM ;∆m
K/M )|(1 + |λ|)n < ∞,

where the condition (i) is omitted when p = 2. The seminorms ζpv,n,m
convert Zp(a∗ ×K/M) into an FS space.

For any element Φ in Zp(a∗ × K/M), the Poisson integral Φ̌ is a
function on IntF p × G. We denote by Zp(a∗ × K/M)W the closed
subspace of all elements Φ of Zp(a∗×K/M) which satisfy the condition
Φ̌(wλ : x) = Φ̌(λ : x) for all x ∈ G,λ ∈ IntF p and w ∈ W . The
following theorem, which is fundamental for our proof of the theorem,
is the main result of [Eg 1].

Lemma 2. Let 0 < p ≤ 2. Then the Fourier-Laplace transform F is a
linear topological isomorphism of Cp(G/K) onto Zp(a∗ ×K/M)W .

By the definition of Zp(a∗ ×K/M)W , it is clear that

Zp(a∗ ×K/M)W ⊂ Zq(a∗ ×K/M)W

if 0 < p ≤ q ≤ 2. So we can consider the projective limit of them. We
define

Z̃(a∗c ×K/M)W = proj lim
0<p≤2

Zp(a∗ ×K/M)W .

Then Z̃(a∗c × K/M)W is also an FS space. Since each element Φ of

Z̃(a∗c × K/M)W is an entire holomorphic function with respect to the
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variable λ, it is easy to see that the topology of this space is given by
the seminorms

ζ̃j,r(Φ) = sup
| Imλ|≤r,k∈K

|Φ(λ : kM ;∆j
K/M )|(1 + |λ|)j (j ∈ N, r ≥ 0).

This means that Z̃(a∗c × K/M)W coincides with our space ZC
∗ (a∗c ×

K/M)W defined in §3.
Moreover we define

C̃(G/K) = proj lim
0<p≤2

Cp(G/K).

It is well known that there exist constants c > 0 and d > 0 such that
for all h ∈ Cℓ(A+),

(4.1) e−ρ(log h) ≤ Ξ(h) ≤ c e−ρ(log h)(1 + |h|)d,

where A+ = exp a+ and Cℓ(A+) stands for the closure of A+. Using

this estimate, we can easily find that C̃(G/K) consists of the functions
ϕ ∈ C∞(G) which satisfy the conditions: (i) ϕ(xk) = ϕ(x) for any x ∈ G
and k ∈ K; (ii) for any r ≥ 0 and u, u′ ∈ U(g),

τr,u,u′(ϕ) = sup
x∈G

|ϕ(u : x;u′)|er|x| < ∞.

Of course, C̃(G/K) is an FS space under the system of seminorms τr,u,u′ .
Furthermore, by means of Lemma 2, we see that the Fourier-Laplace

transform F gives a linear topological isomorphism of C̃(G/K) onto
ZC

∗ (a∗c ×K/M)W .

Therefore, in order to prove the Paley-Wiener theorem in the case of

C∗(G/K), it is sufficient to show that C̃(G/K) coincides with C∗(G/K).
As to the set theoretically, it is clear that

C∗(G/K) ⊃ C̃(G/K).

Hence we nee to show that C∗(G/K) ⊂ C̃(G/K). In other words, it
suffices to prove that the Fourier-Laplace image of C∗(G/K) is contained
in ZC

∗ (a∗c ×K/M)W .

The following lemma can be proved easily in the similar way of proving
Lemma 4.1 and Lemma 4.2 of [EK]. So we omit the proof.
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Lemma 3. Let ϕ ∈ C∗(G/K). The integral

(Fϕ)(λ : kM) =

∫
G

ϕ(x)e(iλ−ρ)H(x−1k)dx

=

∫
AN

ϕ(kan)e(−iλ−ρ)(log a)dadn

is uniformly convergent on F p × K/M for any p(0 < p ≤ 2), and for
any fixed k in K the function λ → (Fϕ)(λ : kM) is an entire holomor-
phic function on a∗c . Moreover the Poisson integral of Fϕ satisfies the
following functional equation with respect to the Weyl group:

(Fϕ)(wλ : x) = (Fϕ)(λ : x) (w ∈ W,λ ∈ a∗candx ∈ G).

For the purpose of proving the theorem, we now prove the following
estimate.

Lemma 4. For any r ≥ 0 and (m,n) ∈ N2 we can select r′ ≥ 0 and a
positive constant C such that

sup
| Imλ|≤r,k∈K

|(Fϕ)(λ : kM ;∆m
K/M )|(1 + |λ|)2n

≤ C sup
x∈G

|ϕ(∆n∆m
K/M : x)er

′|x|,

where ∆ is the Laplacian on G/K.

Proof. Since ∆ is G-invariant differential operator on G/K,

∆e(iλ−ρ)(H(x−1k)) = −(|λ|2 + |ρ|2)e(iλ−ρ)(H(x−1k)),

it is easy to see that

(F∆nϕ)(λ : kM) = (−1)n(|λ|2 + |ρ|2)n(Fϕ)(λ : kM).

Also, it is clear that ∆K/M and F commute with each other we obtain

(|λ|2 + |ρ|2)n(Fϕ)(λ : kM ;∆m
K/M )

= (−1)n
∫
G

ϕ(∆n∆m
K/M : x)e(iλ−ρ)(H(x−1k))dx.

Hence we have

(|λ|2 + |ρ|2)n|(Fϕ)(λ : kM ;∆m
K/M )|

≤ sup
x∈G

(|ϕ(∆n∆m
K/M : x)|er

′|x|)

∫
G

e−r′|x|e−(Imλ+ρ)(H(x−1k))dx.
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Since the function x → |x| (x ∈ G) is the K-invariant function, we have

(4.2)

∫
G

e−r′|x|e−(Imλ+ρ)(H(x−1k))dx

=

∫
AN

e−r′|an|e(Imλ+ρ)(log a)dadn

=

∫
G

e−r′|x|e(Imλ−ρ)(H(x))dx

=

∫
A+K

e−r′|a|e(Imλ−ρ)(H(ak))δ(a)dadk.

Here we used the well known formula dx = δ(a)dk′dadk (x = k′ak ∈
KA+K),where the function δ(a) on A+ is defined by

δ(a) = c
∏

α∈Σ+

{sinhα(log a)}mα

for a suitable constant c. Since it is known that∫
K

e(Imλ−ρ)(H(ak))dk ≤ e(Imλ)(log a)Ξ(a) (a ∈ A+),

by means of (4.1) it follows that (4.2) is bounded by

c

∫
A+

e−r′|a|(1 + |a|)de(Imλ−ρ)(log a)δ(a)da.

By the way, since | Imλ| ≤ r′, for a sufficiently large positive number r′

the last integral is finite. This completes the proof of the lemma.

Combining these lemmas, it is easy to see that

F (C∗(G/K)) ⊂ ZC
∗ (a∗c ×K/M)W .

Hence we have the desired result.

5. Fourier expansions of the function on K/M .

In order to prove the theorem in the case of A∗(G/K), we review some
results on the Fourier series of analytic functions on K.
Let T be a maximal toral subgroup of K. We denote by t the Lie

algebra of T . Let K̂ denotes the set of equivalence classes of irreducible
unitary representations of K. We fix a norm | | on t∗c , induced by the
positive definite bilinear form Q( , θ ) on k. We choose once for all a
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lexicographic order in t∗. Since an irreducible unitary representation δ
of K is uniquely determined, up to equivalence, by its highest weight
δ̄ (∈ t∗c), we will identify δ with its highest weight δ̄, throughout this

paper. For δ ∈ K̂ we take a Hilbert space Vδ which realizes a repre-
sentation δ of K. Let d(δ) and χδ denote the dimension of Vδ and the

character of δ, respectively. For each δ ∈ K̂, we take an orthonormal
basis {v1, · · · , vd(δ)} of Vδ, and put

fδ
ij(k) = (vj , δ(k)vi),

where ( , ) denotes the inner product of Vδ. By Peter-Weyl’s theorem,
the set

Υ = {d(δ) 1
2 fδ

ij ; δ ∈ K̂, 1 ≤ i, j ≤ d(δ)}

is a complete orthonormal basis of L2(K). Therefore any function Φ
on L2(K) can be expanded by a mean convergent Fourier series of the
functions in Υ :

(5.1) Φ(k) =
∑
δ∈K̂

d(δ)

d(δ)∑
i,j=1

Φδ
ij f

δ
ij(K) (k ∈ K),

where we put

Φδ
ij =

∫
K

Φ(k)fδ
ij(k) dk.

Let FΦ(δ) be a matrix of degree d(δ) where its (i, j)-entry is given by
Φδ

ij . Then it is clear that

(5.2)

d(δ)∑
i,j=1

Φδ
ijf

δ
ij(k) = Tr(FΦ(δ)δ(k)).

Also we have the Parseval’s equality:

‖Φ‖22 =
∑
δ∈K̂

d(δ)

d∑
i,j=1

(δ)|Φδ
ij |2,

where ‖Φ‖2 denotes the L2-norm of Φ on K.
Let ∆K be the Casimir operator of K. Let dδ be the differential of the

representation δ. Then it is well known that dδ(∆K) = (δ, δ + 2ρT )I,
where ρT denotes the half sum of positive roots with respect to the
Cartan subalgebra t of k.For any matrix A we denote by ‖A‖HS the

13



Hilbert-Schmidt norm of A. If Φ is a C∞ function on K, then it is known
that the Fourier series of Φ given by (5.1) converges to Φ absolutely and

uniformly on K. Therefore, since ‖δ(k)‖HS = d(δ)
1
2 , by means of (5.1)

and(5.2) we have

sup
k∈K

|Φ(k)| ≤
∑
δ∈K̂

d(δ)
3
2 ‖FΦ(δ)‖HS

=
∑
δ∈K̂

d(δ)
3
2ω(δ)−N‖F∆N

KΦ(δ)‖HS(5.3)

for any N ∈ N, where we put ω(δ) = (δ, δ + 2ρT ). By the Schwartz
inequality, the right hand side of (5.3) is dominated by

{
∑
δ∈K̂

d(δ)‖F∆N
KΦ(δ)‖2HS}

1
2 · {

∑
δ∈K̂

d(δ)2ω(δ)−2N} 1
2 .

Moreover by Weyl’s dimension formula, for any non-trivial representa-
tion δ we have

d(δ) ≤ D|δ|m,

where m is the number of positive roots and D is some positive constant.
Hence, for sufficiently large N , the series

∑
δ∈K̂ d(δ)2ω(δ)−2N converges.

Therefore by the Parseval’s equality, there exists a constant CN such that

sup
k∈K

|Φ(k)| ≤ CN‖∆N
KΦ‖2.

Let A(K) denotes the set of all real analytic functions on K. The
above argument and Lemma 3 in Appendix 2 imply the following lemma.

Lemma 5. Let Φ ∈ A(K). Then the following conditions (i) and (ii)
are equivalent:

sup
k∈K

|J(Y )Φ(k)| < ∞ for any J ∈ Õ(k∗c),(i)

‖J(Y )Φ‖2 < ∞ for any J ∈ Õ(k∗c).(ii)

For later use, we need the following estimate.

Lemma 6. Let Φ ∈ A(K). Suppose that J ∈ Õ(k∗c). Then there exist a

positive integer N , and a positive constant C and J̃ ∈ O2(C) such that

‖J(Y )Φ‖2 ≤ C ‖∆N
K J̃(∆K)Φ‖2.

14



Proof. For Φ ∈ A(K), we put (π(k)Φ)(x) = Φ(k−1x) (k, x ∈ K). For

each δ ∈ K̂, we define

Pδ = d(δ)−1

∫
K

χδ(k)π(k)dk.

Moreover we put

A(K)δ = {
d(δ)∑
i,j=1

cijf
δ
ij ; cij ∈ C }.

Then the operator Pδ is an orthogonal projection of A(K) onto A(K)δ.
Let {Y1, . . . , Ys} be an ordered orthonormal basis of k. For any β =

(β1, . . . , βs) ∈ Ns we put Y β = Y β1

1 · · ·Y βs
s . As usual, we regard Y β

as a right invariant differential operator on K. We define an operator
norm of Y β with respect to δ by

‖Y β‖δ = sup
∥f∥2=1,f∈A(K)δ

‖Y βf‖2.

Then it is easy to see that

(5.4) ‖Y β‖δ ≤ (‖Y1‖δ)β1 · · · (‖Ys‖δ)βs ,

and each ‖Yt‖δ (t = 1, . . . , s) is, in fact, given by

‖Yt‖δ = d(δ)
1
2 max
1≤i,j≤d(δ)

‖Ytf
δ
ij‖2

for any choice of orthonormal basis {vj}1≤j≤d(δ) of Vδ. For any Y in
k, there exists a Cartan subalgebra t of k such that Y is contained in
t. We now take a weight basis {vj}1≤j≤d(δ) as an orthonormal basis of

Vδ. Then it is easy to see that Y f δ
ij = µ(Y )fδ

ij for some weight µ of

the representation δ. This means that ‖Y ‖δ ≤ |δ||Y | for each Y in k.
Therefore, by virtue of (5.4) we have

(5.5) ‖Y β‖δ ≤ |δ||β|,

where |β| = β1 + · · ·+ βs.
Since

(J(Y )Φ)(k) =
∑
δ∈K̂

d(δ)

d(δ)∑
i,j=1

Φδ
ij(J(Y )fδ

ij)(k),
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if we write J(Y ) =
∑

β∈Ns aβY
β , then we obtain

‖J(Y )Φ‖2 ≤
∑
δ∈K̂

d(δ)

d(δ)∑
i,j=1

‖Φδ
ij‖

∑
β∈Ns

|aβ |‖Y βfδ
ij‖2.

Furthermore, thanks to the estimate (5.5), we have

‖J(Y )Φ‖2 ≤
∑
δ∈K̂

d(δ)

d(δ)∑
i,j=1

‖Φδ
ij‖

∑
β∈Ns

|aβ ||δ||β|d(δ)−
1
2

≤
∑
δ∈K̂

d(δ)‖FΦ(δ)‖HSd(δ)
2− 1

2 J̃(|δ|),

where we put

J̃(t) =
∑
β∈Ns

|aβ |t|β|.

Of course, J̃(t) is a function of infra exponential type of one variable.
By Lemma 5 in Appendix 2, we see that there exists J ′ ∈ O2(C) such
that

J̃(|δ|) ≤ |J ′(ω(δ))|.

Hence the similar argumentation as in the proof of Lemma 5 shows
that for sufficiently large N there is a constant C such that ‖J(Y )Φ‖2
is dominated by C‖∆N

KJ ′(∆K)Φ‖2. This completes the proof of the
assertion

Combining the results described in the preceding two lemmas, one can
easily find that the following fact.

Lemma 7. For Φ ∈ C∞(K), the following conditions (i) and (ii) are
equivalent with each other:

sup
k∈K

|J(Y )Φ(k)| < ∞ for any J ∈ Õ(k∗c),(i)

sup
k∈K

|J̃(∆K)Φ(k)| < ∞ for any J̃ ∈ O2(C).(ii)

Proof. Since the L2-norm of a function is always dominated by its sup-
norm on the compact manifold K, by virtue of Lemma 6 and Lemma
7, it is clear that (i) is deduced from (ii). On the other hand, for any

J̃ ∈ O2(C), if we put J(Y1, . . . , Ys) = J̃(∆K) then J ∈ Õ(k∗c) by Lemma
4 in Appendix 2. This proves the lemma.

As the corollary, we get also the following result.
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Lemma 8. For Φ ∈ C∞(K/M), the following two conditions (i) and
(ii) are equivalent with each other:

sup
k∈K

|J(Y )Φ(kM)| < ∞ for any J ∈ Õ(k∗c),(i)

sup
k∈K

|J̃(∆K/M )Φ(kM) < ∞ for any J̃ ∈ O2(C).(ii)

6. Proof of the theorem in the case of A∗(G/K).

By the theorem in the case of C∗(G/K), it is sufficiently to show
that F (A∗(G/K)) ⊂ ZA

∗ (a∗c × K/M)W and F−1(ZA
∗ (a∗c × K/M)W ) ⊂

A∗(G/K).
Let Φ ∈ ZA

∗ (a∗c × K/M)W . Put ϕ(x) = (F−1Φ)(x). It is clear that
ϕ ∈ C∗(G/K). If we can show that

(6.1) (FJ(X)ϕ)(λ : kM) ∈ ZC
∗ (a∗c ×K/M)W ,

(λ, kM) ∈ a∗c ×K/M

for arbitrary J ∈ Z̃(g∗c),

then, by means of the theorem in the case of C∗(G/K), we see that
(J(X)ϕ)(x) ∈ C∗(G/K). This means that ϕ ∈ A∗(G/K). Therefore
it is enough to verify that (6.1) for proving F−1(ZA

∗ (a∗c × K/M)W ) ⊂
A∗(G/K). Since

∆j
K/M (FJ(X)ϕ)(λ : kM) = F (∆j

K/MJ(X)ϕ)(λ : kM)

for any j ∈ N, by Lemma 3 in Appendix 2, the condition (6.1) is equiv-
alent to the following condition:

(6.2) sup
| Imλ|≤r,k∈K

|(FJ(X)ϕ)(λ : kM)|(1 + |λ|)r
′
< ∞

for ∀r > 0, ∀r′ > 0 and ∀J ∈ Õ(g∗c).

Now we put J(ζ) =
∑

α∈Nm
aα

α! ζ
α, where m = dim g. By Lemma 2 in

Appendix 2, it is also equivalent to the following condition:

(6.3) sup
| Imλ|≤r, k∈K

sup
α∈Nm

|aα
α!

(FXαϕ)(λ : kM)|(1 + |λ|)r
′
< ∞

for ∀r > 0 and ∀r′ > 0.

The following lemma is essential for our proof.
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Lemma 9. Let {X1, . . . , Xm} (resp. {Y1, . . . , Ys}) be an ordered basis
of g (resp. k). Let ϕ ∈ C∗(G/K). Then for any α ∈ Nm, the Fourier-
Laplace transform of the function Xαϕ can be written uniquely as

F (Xαϕ)(λ : kM) =
∑

|β|+|γ|≤|α|
β∈Ns,γ∈Nℓ

pβ,γ(λ : kM : α)Y β(Fϕ)(λ : kM),

where pβ,γ(λ : kM : α) are real analytic functions with respect to the
variable kM in K/M and holomorphic in λ ∈ a∗c . Moreover we can find
a constant C such that

|pβ,γ(λ : kM : α)| ≤ C |α|(1 + |λ|)|γ| |α|!
(|β|+ |γ|)!

for any α ∈ |Nm, β ∈ Ns and γ ∈ Nℓ.

Proof. For any X ∈ g and ϕ ∈ C∗(G/K), we observe that

(FXϕ)(λ : kM) =

∫
G

d

dt
ϕ(exp(−tX)x)|t=0e

(iλ−ρ)H(x−1k)dx

=

∫
G

ϕ
d

dt
e(iλ−ρ)H(x−1k exp(−tXk−1))|t=0dx

where Xk−1 denoting the adjoint action of k−1 on g. According to the
Iwasawa decomposition of g, one can write Xk−1 as the following form:

Xk−1 = Xk(k) + Xa(k) + Xn(k)

(Xk(k) ∈ k, Xa(k) ∈ a, Xn(k) ∈ n).

Now, let {H1, . . . ,Hℓ} be an orthonormal basis of a with respect to
Q( , ). Suppose that X = Xj . Then we can express Xa(k) as

Xa(k) =

ℓ∑
j=1

aij(k)Hj .

Since Xa(km) = Xa(k) for all m ∈ M , it is clear that aij(k) are the real

analytic functions on K/M . We define functions bij(k) (j = 1, . . . , s) by
the formula

Xk(k)
k =

s∑
j=1

bij(k)Yj ,
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By the similar way as above, we see that bij(k) are also the real analytic
functions on K/M . Let Kϵ be a relatively compact complex neighbor-
hood of K in Kc, the complexification of K, such that the functions
aij(k) and bij(k) are holomorphic on there. It is clear that there is a

positive constant L such that the absolute values of aij(k) and bij(k) are
less than L on Kϵ.

On the other hand, since H(xa) = H(x) + log a (a ∈ A) and H(xn) =
H(x) (n ∈ N) we have

(FXiϕ)(λ : kM)

= (ρ− iλ)(Xa(k))(Fϕ)(λ : kM) + (Xk(k)
kFϕ)(λ : kM)

=

ℓ∑
j=1

aij(k)(ρ− iλ)(Hj)(Fϕ)(λ : kM) +

s∑
j=1

bij(k)(YjFϕ)(λ : kM).

Now, we define differential operators ∂
∂λj

(j = 1, . . . , ℓ) on ac by

∂

∂λj
f(H) =

d

dt
f(H − tHj)|t=0

for f ∈ C∞(a∗c). Furthermore we put

X̃i =

ℓ∑
j=1

aij(k)
∂

∂λj
+

s∑
j=1

bij(k)Yj .

Since the above equality implies that

FXiϕ = X̃iFϕ

we have
FXαϕ = X̃αFϕ.

Thanks to Lemma 1 in Appendix 1, we can uniquely write

X̃α =
∑

|β|+|γ|≤|α|
β∈Ns,γ∈Nℓ

qβ,γ(kM : α)Y β(
∂

∂λ1
)γ1 · · · ( ∂

∂λℓ
)γℓ

and we have the estimate

|qβ,γ(kM : α)| ≤ D|β|+|γ|+1L|α| |α|!
(|β|+ |γ|)!

(k ∈ K)
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with some positive number D which depends only on s, ℓ and ϵ.
On the other hand, it should be noted that there is a constant C1 such

that
ℓ∑

j=1

|(ρ− iλ)(Hj)| ≤ C1(1 + |λ|).

We put

pβ,γ(λ : kM : α) = qβ,γ(kM : α)((ρ− iλ)(H1))
γ1 · · · ((ρ− iλ)(Hℓ))

γℓ .

Of course, we may assume that D > 1. Therefore, if we put

C = C1D
2L

then the assertion of this lemma follows immediately from the above
argument.

This Lemma implies that

sup
α∈Nm

|aα
α!

(FXαϕ)(λ : kM)|

≤ sup
α∈Nm

|aα
α!

|
∑

|β|+|γ|≤|α|
β∈Ns,γ∈Nℓ

|pβ,γ(λ : kM : α)||Y βFϕ(λ : kM)|

≤ sup
N∈N

sup
|α|=N
α∈Nm

|aα
α!

C |α||α|!|
∑

|β|+|γ|≤N

β∈Ns,γ∈Nℓ

(1 + |λ|)|γ||Y β |Φ(λ : kM)|
(|β|+ |γ|)!

.

If we put aN = sup|α|=N,α∈Nm
|α|!
α! |aα|C

|α|, then aN ∈ A1, where we
put

Aj = { {dα}α∈Nj : lim|α|→∞|dα|
1

|α| = 0 }.

Therefore we have

sup
α∈Nm

|aα
α!

(FXαϕ)(λ : kM)|

≤ sup
N∈N

aN
∑

|β|+|γ|≤N

(1 + |λ|)|γ||Y βΦ(λ : kM)| 1

|β|!|γ|!

≤ sup
β∈Ns,γ∈Nℓ

sup
N≥|β|+|γ|

aN (1 + |λ|)|γ||Y βΦ(λ : kM)| 1

|β|!|γ|!
.

Moreover if we define
ãL = sup

N≥L
aN
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then it is clear that ãL ∈ A1. By means of Lemma 1 in Appendix 2,
there exist an element {bk} of A1 such that

ã|β|+|γ| ≤ b|β|b|γ|

for any β ∈ Ns and γ ∈ Nℓ.
Therefore, in order to show that (6.3), it is sufficiently to show that

(6.4) sup
| Imλ|≤r

k∈K

sup
β∈Ns
γ∈Nℓ

b|β|b|γ|

|β|!|γ|!
(1 + |λ|)(|γ|+r′)|Y βΦ(λ : kM)| < ∞

for ∀r > 0, ∀r′ ≥ 0 and {bk} ∈ A1.
Using Lemma 2 in Appendix 2, the condition (6.4) is equivalent to

(6.5) sup
| Imλ|≤r

k∈K

|J1(λ)J2(Y )Φ(λ : kM)| < ∞

for ∀r > 0, ∀J1 ∈ Õ(a∗c) and ∀J2 ∈ Õ(k∗c).
By the way, since Φ ∈ ZA

∗ (a∗c × K/M)W , (6.5) follows immediately
from Lemma 8 in §5. This asserts F−1(ZA

∗ (a∗c ×K/M)W ) ⊂ A∗(G/K).
Inversely, we will prove that the relation : F (A∗(G/K)) ⊂ ZA

∗ (a∗c ×
K/M)W . Suppose that ϕ ∈ A∗(G/K). Since J(X)ϕ ∈ C∗(G/K), we see

that FJ(X)ϕ ∈ ZC
∗ (a∗c ×K/M)W for any J ∈ Õ(g∗c). In particular we

find that

(6.6) sup
| Imλ|≤r

k∈K

|(FJ(X)ϕ)(λ : kM)| < ∞

for any r > 0 and J ∈ Õ(g∗c).
Let ∆ be the Laplace operator on G/K. Then it is well known that

there is a polynomial χ of degree two on a∗c such that

(F∆Nϕ)(λ : kM) = χ(λ)NFϕ(λ : kM)

for any N ∈ N. For any J1 ∈ Õ(a∗c) and any r > 0, by Lemma 5 in

Appendix 2, there is J̃1 ∈ O2(C) such that

|J1(λ)| ≤ |J̃1(χ(λ))| for | Imλ| ≤ r.

Let J2 ∈ O2(C). Thanks to Lemma 3 and Lemma 4 in Appendix 2, if
we put

J(X1, . . . , Xm) = J̃1(∆)J2(∆K/M )
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then we see that J ∈ Õ(g∗c). So we have

sup
| Imλ|≤r

k∈K

|J1(λ)J2(∆K/M )Fϕ(λ : kM)|

≤ sup
| Imλ|≤r

k∈K

|J̃1(χ(λ))J2(∆K/M )Fϕ(λ : kM)|

= sup
| Imλ|≤r

k∈K

|F (J̃1(∆)J2(∆K/M )ϕ)(λ : kM)|

= sup
| Imλ|≤r

k∈K

|F (J(X)ϕ)(λ : kM)|.

This last quantity is in fact finite by the estimate (6.6). This completes
the proof of theorem.

As the corollary to the above proof of the theorem we get the following
result.

Theorem 2. The topology of A∗(G/K) defined by the family of semi-

norms ‖ϕ‖J,r (J ∈ Õ(g∗c), r ≥ 0) coincides with the topology defined by
the family of seminorms

‖ϕ‖J1,J2,r = sup
x∈G/K

sup
n,k

|(J1,n(∆)J2,k(∆K/M )ϕ)(x)|er|x|,

where Jj ∈ O2(C) (j = 1, 2) and r ≥ 0.

7. Fourier expansions on K/M revisited.

In this section we will describe the images of ZC
∗ (a∗c ×K/M)W and

ZA
∗ (a∗c ×K/M)W under the Fourier transform FK/M on K/M . At the

first place, we review certain results on the so-called Kostant matrix
[Kos1,Kos2].

For each δ ∈ K̂, we put

V M
δ = { v ∈ Vδ ; δ(m)v = v ∀m ∈ M },

ℓ(δ) = dimV M
δ and K̂M = { δ ∈ K̂ ; ℓ(δ) > 0 }.

Now the Poincaré-Birchoff-Witt theorem implies that U(g) = U(a) +
(U(g)k+nU(g)), where U(a) stands for the universal enveloping algebra
of a∗c . If u ∈ U(g), let qu ∈ U(a) be the component of u in U(a) relative
to the direct sum decomposition of U(g). If a ∈ U(a) we look upon a
as a polynomial on a∗c . Let S(g) and S(p) denote the symmetric algebra
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over g and p, respectively, and p → p∗ the symmetrization map of S(g)
onto U(g). Let H = H(p) ⊂ S(p) denotes the subspace of harmonic
polynomials relative to Ad(K). Of course, for each h ∈ H, we consider
h as a function on p via the form Q( , ). Let X be a regular element in a.
Consider the imbedding K/M = Ad(K)X ⊂ p. Since it is known [Hel2]
that each h in H is determined by its values on the orbit Ad(K)X of
X, and each K-finite function on K/M can be taken by the restriction
of a harmonic polynomial, we observe that the restriction mapping ι :
h → h|Ad(K)X is a bijection of H onto the space E∞(K/M) of K-finite
functions on K/M . Let Eδ(K/M) = PδE∞(K/M), where Pδ is the
projection operator for δ defined in §5. Put Hδ = ι−1(Eδ(K/M)) ⊂ H.
Then there is a bijection Hδ onto Eδ(K/M). Let {v1, . . . , vd(δ)} be an

orthonormal basis of Vδ such that {v1, . . . , vℓ(δ)} spans V M
δ . Since the

functions fδ
ij(kM) = (vj , δ(k)vi) (1 ≤ i ≤ ℓ(δ), 1 ≤ j ≤ d(δ)) form a

basis of Eδ(K/M), we see that dimHδ = ℓ(δ). We now take and fix a
basis ε1, . . . , εℓ(δ) of HomK(V M

δ , H∗). We define the ℓ(δ)× ℓ(δ) matrix

Qδ(λ) by

Qδ(λ)ij = qεj(vi)(ρ− iλ) (1 ≤ i, j ≤ ℓ(δ)),

(cf. [Kos1,Kos2]). This is the so-called Kostant matrix.

Let Φ ∈ C∞(a∗c ×K/M). For each δ ∈ K̂M , we define

F δ
K/MΦ(λ) = Φδ(λ) =

∫
K

Φ(λ : kM)fδ(kM)dk,

where fδ is the ℓ(δ)× d(δ) matrix with entries fδ
ij . Moreover we put

FK/MΦ(λ) = {Φδ(λ)}δ∈K̂M
.

Then the following result is well known (cf. [He2]).

Lemma 10. Let U be a W -invariant subset in a∗c . Suppose that Φ(λ :
kM) is a continuous function on U ×K/M . Then the Poisson integral
Φ̌(λ : x) ( (λ, x) ∈ U × G ) of Φ is invariant under W with respect
to the variable λ if and only if the Fourier coefficients FK/MΦ(λ) =

{Φδ(λ)}δ∈K̂M
satisfy the following conditions : for each δ ∈ K̂M , the

function Qδ̌(λ)−1Φδ(λ) is invariant under W , where δ̌ denotes the con-
tragradient representation of δ.

By this lemma, we can characterize the properties possessed by the
Fourier coefficients of the functions belong to ZC

∗ (a∗c ×K/M)W and
ZA

∗ (a∗c ×K/M)W , respectively.
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In order to describe these Fourier coefficients, we now introduce the
following two function spaces :

HC(a∗c)W = { {Φδ(λ)}δ∈K̂M
: Φδ(λ) satisfy the conditions

F (O), F (W ) and F (RD) },

and

HA(a∗c)W = { {Φδ(λ)}δ∈K̂M
: Φδ(λ) satisfy the conditions

F (O), F (W ) and F (ED) }.

Here the conditions F (O), F (W ), F (RD) and F (ED) are as follows :

F (O) : Φδ is a ℓ(δ)× d(δ) matrix whose entries are

holomorphic functions on a∗c ,

F (W ) : For any δ ∈ K̂M ,

Qδ̌(wλ)−1Φδ(wλ) = Qδ̌(λ)−1Φδ(λ)

for any w ∈ W and λ ∈ a∗c ,

F (RD) : ‖{Φδ}‖r
′,r

= sup
∥ Imλ∥≤r

sup
δ∈K̂M

‖Φδ(λ)‖(1 + |δ|)r
′
(1 + |λ|)r

′
< ∞

for any r′ ≥ 0 and r ≥ 0

and

F (ED) : ‖{Φδ}‖J,r

= sup
∥ Imλ∥≤r

sup
δ∈K̂M

‖Φδ(λ)J2(δ)J1(λ)‖ < ∞

for any J = (J1, J2) ∈ Õ(a∗c)× Õ(t∗c) and r ≥ 0,

where we put
‖Φδ(λ)‖ = max

1≤i≤ℓ(δ)
1≤j≤d(δ)

‖Φδ
ij(λ)‖.

Remark. Let (a∗c)
′ = {λ ∈ a∗c : detQδ(λ) 6= 0 for all δ ∈ K̂M}

and (a∗c)
− = {λ ∈ a∗c : Re(iλ, α) ≤ 0 for all α ∈ Σ+}. Since it is

known that (a∗c)
′ ⊃ (a∗c)

−, the condition F (W ) implies that, in particu-

lar, Qδ̌(λ)−1Φδ(λ) are entire holomorphic for Φ ∈ HC(a∗c)W .
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Theorem 3. FK/M gives the following two linear topological isomor-
phism :

FK/M : ZC
∗ (a∗c ×K/M)W

∼−→ HC(a∗c)W ,

FK/M : ZA
∗ (a∗c ×K/M)W

∼−→ HA(a∗c)W .

Moreover we have

Φ(λ : kM) =
∑

δ∈K̂M

d(δ)
∑

1≤i≤ℓ(δ)
1≤j≤d(δ)

Φδ
ij(λ)f

δ
ij(kM)

for ZC
∗ (a∗c ×K/M)W .

Using the similar argument that of §5 and §6, the theorem can be
proved (cf.[Su]). So we omit its proof.

8. Surjectivity of invariant differential operators.

In this section, we will derive some results on the solvability of a single
differential equation on G/K, as the application of the Paley-Wiener
theorem.

Let D(G/K) be the algebra of G-invariant differential operators on
G/K. It is well known that D(G/K) is commutative and there exists
a generator system {∆1, . . . ,∆ℓ} (ℓ = dim a = rankG/K) such that
D(G/K) = C[∆1, . . . ,∆ℓ]. We put D = (∆1, . . . ,∆ℓ). For any P ∈
C[D] we put

(8.1) P (λ) = P (D)e(iλ−ρ)(H(x−1))|x=e (λ ∈ a∗c),

where e denotes the unit element of G. Of course, P (λ) ∈ C[λ]W , the
algebra of W -invariant polynomials on a∗c , and for any ϕ ∈ C∗(G/K), it
is easy to see that the following formula holds:

(8.2) F (P (D)ϕ)(λ : kM) = P (λ)Fϕ(λ : kM).

Theorem 4. Let P (D) be any non-zero G-invariant differential opera-
tor on G/K. The we have

P (D)C′
∗(G/K) = C′

∗(G/K),

P (D)A′
∗(G/K) = A′

∗(G/K),

where C′
∗(G/K) and A′

∗(G/K) are the strong dual spaces of C∗(G/K)
and A∗(G/K), respectively.

Proof. Let P (λ) be the polynomial on a∗c defined by (8.1). Suppose that
P (λ) 6= 0. Since multiplication by P (λ) is a homeomorphism of ZC

∗ (a∗c×
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K/M)W (resp. AA
∗ (a

∗
c ×K/M)W ) onto P · ZC

∗ (a∗c ×K/M)W (resp. P ·
ZA

∗ (a∗c × K/M)W ), (8.2) and the Paley-Wiener theorem (Theorem 1)
imply that the mapping ϕ → P (D)ϕ is a homeomorphism of C∗(G/K)
(resp. A∗(G/K)) onto P (D)C∗(G/K) (resp. P (D)A∗(G/K)). Of course,
if we denote by P (D)∗ the adjoint of P (D), then the mapping ϕ →
P (D)∗ϕ is also a homeomorphism of C∗(G/K) (resp. A∗(G/K)) onto
P (D)∗C∗(G/K) (resp. P (D)∗A∗(G/K)).

Therefore, if S ∈ C′
∗(G/K) (resp. A′

∗(G/K)) then the linear form
P (D)∗ϕ → S(ϕ) on P (D)∗C∗(G/K) (resp. P (D)∗A∗(G/K)) is con-
tinuous. By the Hahn-Banach theorem, there exists an element T of
C′
∗(G/K) (resp. A′

∗(G/K)) such that T (P (D)∗ϕ) = S(ϕ) for arbitrary
ϕ ∈ C∗(G/K) (resp. A∗(G/K)). This implies that P (D)T = S, so the
theorem is proved.

Appendix 1.

For a positive number L, we put UL = {z ∈ Cn; |z1|+ · · ·+ |zn| < L}.
Let X1, . . . , Xk and Y1, . . . , Ym be differential operators of the forms

Xi =
n∑

j=1

ai,j(z)
∂

∂zj
,(A1.1)

Yi =
k∑

j=1

bi,j(z)Xj + bi(z)(A1.2)

which satisfy

(A1.3) [Xi, Xj ] =

k∑
ℓ=1

cℓi,j(z)Xℓ.

Here ai,j(z), bi,j(z), bi(z) and cℓi,j(z) ∈ O(UL) and we assume that the

rank of the matrix
(
ai,j

)
1≦i≦k,1≦j≦n

equals k at a generic point of UL.

Then we have

Lemma 1. We can uniquely write

(A1.4) Y1 · · ·Ym =
∑

|α|≦m,α∈Nk

pα(z)X
α1
1 · · ·Xαk

k

with suitable pα(z) ∈ O(UL). Suppose there exists a positive number
M such that the absolute values of ai,j(z), bi,j(z), bi(z), c

ℓ
i,j(z) are less
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than M on UL. Then for any positive number L′ satisfying L′ < L we
have

(A1.5) |pα(z)| ≦ C |α|+1Mmm!/|α|! for any z ∈ UL′ .

with a positive number C which depends only on n,L and L′.

Proof. For simplicity we will write Xα in place of Xα1
1 · · ·Xαk

k . It is
obvious that we can express Y1 · · ·Ym in the form (A1.4). Suppose there
exist r ∈ N and qα(z) = O(UL) such that

∑
|α|≦r qα(z)X

α = 0 and

suppose qβ 6= 0 with a suitable β ∈ Nk satisfying |β| = r. Fix a point
w ∈ UL so that qβ(w) 6= 0 and moreover the rank of the matrix

(
ai,j(w)

)
equals k. We can find polynomial functions fi(z) of degree 1 which
satisfy fi(z) = 0 and Xi(fj)(w) = δi,j for i, j = 1, . . . , k. Then we have∑

|α|≦r

(
qαX

α(fβ1

1 · · · fβk

k )
)
(w) = qβ(w).

this contradicts the assumption
∑

qαX
α = 0, from which the uniqueness

of the expression (A1.4) follows.
To get the estimates for pα we employ the method of majorant. Let

Ô denotes the ring of formal power series of z. For ϕ =
∑

Cνx
ν ∈ Ô

and ϕ′ −
∑

C ′
νz

ν ∈ Ô we write ϕ � ϕ′ if and only if |Cν | ≦ C ′
ν for

anyν ∈ Nn. For differential operators Pi =
∑

pi,ν∂
ν (i = 1, 2, . . . of

finite order with pi,j ∈ Ô, we denote P1 � P2 if and only if pi, ν � p2, ν
for any ν. We remark that if P1 � P2 and P3 � P4, then P1P2 � P4P5.
Here we denote

zν = zν1
1 · · · zνn

n and ∂ν =
( ∂

∂z1

)ν1 · · ·
( ∂

∂zn

)νn

for ν ∈ Nn.
By changing zi and Xi by (L + L′)zi/2 and min{(L + L′)/2, 1} (i =

1, · · · , k), respectively, we may assume M = 1 and L′ < 1 < L to prove
(A1.5). Put t = z1 + · · ·+ zn and ϕ =

∑
i t

i = (1− t)−1. It follows from
Lemma 2 that there exists C > 1 such that

ai,j � Cϕ, bi,j(z) � Cϕ, bi(z) � Cϕ and ci,j(z) � Cϕ.

Now we define

X ′
i =

n∑
j=1

Cϕ2k−i ∂

∂zj
for i = 1, · · · , k,

Y ′
i =

n∑
j=1

CϕjX ′
j + Cϕ for i = 1, · · · ,m.
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Then Xi � X ′
i, and Yi � Y ′i and

[X ′
i, X

′
j ] = C2n(i− j)ϕ4k−i−j+1

n∑
ℓ=1

∂

∂zℓ

=
k∑

ℓ=1

C(i− j)nk−1ϕ2k+ℓ−i−j+1X ′
ℓ.

Since C(i − j)nk−1ϕ2k + ℓ− i− j + 1 � Cϕ if 1 ≦ j < i ≦ k and

1 ≦ ℓ ≦ k, it is easy to see that there exist p′α(z) ∈ Ô which satisfy

(A1.6) Y ′
1 · · ·Y ′

m =
∑

|α|≦m

(X ′
1)

α1 · · · (X ′
k)

αk

and pα(z) � p′α(z) for all α ∈ Nk. On the other hand, since Y ′
i =

C2kϕ2k( ∂
∂z1

+ · · ·+ ∂
∂zn

) + Cϕ, we can uniquely write

(A1.7) Y ′
1 · · ·Y ′

m =
∑
i≦m

qi(z)
( n∑
j=1

∂

∂zj

)i
with qi(z) ∈ Õ. Combining (A1.6) and (A1.7), we have p′alpha(z) �
q|α|(Z). Put L′′ = (L′ + 1)/2. Then Lemma 2 assures the existence of

C ′ > 1 which satisfies C2n2ϕ2n � C ′(L′′ − t)−1. Define q′i(t) ∈ Õ by

(A1.8)
(
C ′(L′′ − t)−1 ∂

∂t
+ C ′(L′′ − t)−2

)m
=

m∑
i=0

q′i(t)
( ∂

∂t

)i
.

Then qi(z) � q′i(z1+ · · ·+zn) and q′i(t) = C ′mCm,i(L
′′− t)i− 2m under

the notation in Lemma 3. Using the estimate for Cm,j in Lemma 3, we
have

(A1.9) |pα(z)| ≦ C ′m22m−|α|(L′′ − L′)|α|−2mm!/|α|!

for any z ∈ UL′ because pα(z) � q|α|(z1+ · · ·+zn). Now the proposition
clear.

Lemma 2. For positive numbers L and L′ with L > L′, we can choose
C > 0 such that

(A1.10) ϕ � C
(
sup
z∈UL

|ϕ(z)|
) ∞∑
k=0

(z1 + · · ·+ zn)
k
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for any bounded holomorphic function ϕon UL.

Proof. (cf. [O3] Lemma 2.3 ) Put M = sup{x ∈ UL|ϕ(z)|} and ϕ =∑
aνz

ν with aν ∈ C. Denoting Xi = |zi| + 1
2n (L − |z|) for z ∈ UL, we

have

aν = (2π
√
−1)n

∫
|w1|=x1

· · ·
∫
|wn|=xn

1

w1 · · ·wn
zνw−νϕ(w)dw1 · · · dwn.

This proves |aνzν | ≦ M for all z ∈ UL. Then the rest part of the proof
of the lemma is the same as that of [O3] Lemma 2.3. In fact by an
estimate

sup{xα;x1 + · · ·+ xn < L, xi ≧ 0} ≧ L|α|α!(|α|!)−1(|α|+ 1)1−n,

we can put C = maxi≧0(i+ 1)n−1(L′/L)i as in [O3].

Lemma 3. Putting ϕ = (1− t)−1 and X = d
dt , we have

(A1.11) (ϕX + ϕ2)m =
m∑
j=0

Cm,jϕ
2m−jXj

for any positive integer m. Here the constants Cm,j are determined by
the relation

(A1.12)

{
C0,0 and Cm,−1 = 0,

Cm,j = (2m− j − 1)Cm−1,j + Cm−1,j−1

and satisfy 0 ≦ Cm,j ≦ 22m−jm!/j!.

Proof. Since the lemma is clear when m = 1, we will prove it by the
induction on m. Then

(ϕX + ϕ2)(ϕX + ϕ2)m = (ϕX + ϕ2)
∑

Cm,jϕ
2m−jXj

=
∑

Cm,j(ϕ
2m−j+1Xj+1 + ϕ(2m− j)ϕ2m−j+1Xj + ϕ2m−j+2Xj)

=
∑

(Cm,k−1 + (2m+ 2− k − 1)Cm,kϕ
2m+2−kXk

and hence we have (A1.12).

Put am,j = Cm,j

∏m−j
i=1 (2i+ j − 1)−1. Then

am,j = am−1,j +
(m−j∏
i=1

2i+ j − 2

2i+ j − 1

)
am−1,j−1.

Hence we can prove 0 ≦ am,j ≦ 2m by the induction on m and 0 ≦
Cm,j ≦ 2m

∏m−j
i=1 (2i+ j − 1) ≦ 2m

∏m−j
i=1 2(i+ j) = 22m−jm!/j!.
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Appendix 2.

We review well known facts and elementary lemmas on the functions
and the differential operators of infra exponential type.

Let

J(ζ) =
∑

α∈Nm

aα
α!

ζα ∈ O(Cm) (ζα = ζα1
1 · · · ζαm

m ).

Then the following conditions are mutually equivalent :

(1) J is of infra exponential type;
(2) For any ε > 0 there is a constant Cε > 0 such that |J(ζ)| ≤

Cε e
ε|ζ|;

(3) lim|α|→∞ |aα|
1

|α| = 0;
(4) For any r > 0 there is a constant Dr > 0 such that |aα| ≤

Dr r
−|α|.

Of course, the product of functions of infra exponential type is also a

infra exponential type. Let Õ(Cj) be the set of all (entire holomorphic)
functions of infra exponential type on Cj (j = 1, 2, . . . ). By (4) of

characterizations of Õ(Cm), if J(ζ) belongs to Õ(Cm) then for any c =
(c1, . . . , cm) ∈ Cm, the new function Jc(ζ) defined by

Jc(ζ) =
∑

α∈Nm

aα
α!

(cζ)α

also belongs to Õ(Cm), where we put cζ = (c1ζ1, . . . , cmζm). Moreover,
since ∑

|α|=N,α∈Nm

1

α!
=

mN

N !
,

if we put
ãN = sup

|α|=N,α∈Nm

|aα|,

then we observe that

J(t) =
∑

α∈Nm

ã|α|

α!
t|α| ∈ Õ(C).

Now we put

Am = { {aα}α∈Nm : J(ζ) =
∑

α∈ Nm

aα
α!

ζα ∈ Õ(Cm) }.

Then the following lemmas can be shown immediately from the above

equivalent characterizations of Õ(Cm).
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Lemma 1. Let {an} ∈ A1. For any positive integer k, we put

bk = sup
n≥k

|an|
k
n .

Then {bk} is also an element of A and the estimate

bkbj ≥ |ak+j |

holds for any positive integers k and j.

Lemma 2. For any C∞ function f on G, the following conditions are
equivalent :

(1) supx∈G |
∑

α∈Nm
aα

α! X
αf(x)| < ∞ ∀{aα} ∈ Am;

(2) supx∈G supα∈Nm |aα

α! X
αf(x)| < ∞ ∀{aα} ∈ Am;

where we put m = dimG. Moreover if G is abelian and Xα means the
multiplication operator (that is to say, Xα : f(x) 7−→ xαf(x)), then the
assertion is also true for any C∞ function f on G.

Let Õ(g∗c) be the set of all G-invariant differential operators of infra
exponential type on G (see §2). The following important lemma can be
proved by Lemma 1 in Appendix 1.

Lemma 3. If Ji(X) ∈ Õ(g∗c) (i = 1, 2) then J1(X)J2(X) ∈ Õ(g∗c) for

any choice of the ordered basis {X1, . . . , Xm} on g. In particular Õ(g∗c)
is an U(g)-module.

Proof. Let {X1, . . . , Xm} be an ordered basis of g and let

J1(X) =
∑

α∈Nm

aα
α!

Xα, J2(X) =
∑

γ∈Nm

cγ
γ!

Xγ .

Then

J1(X)J2(X) =
∑

α∈Nm

aα
α!

XαJ2(X).

Put

XαJ2(X) =
∑

β∈Nm

c(α, β)Xβ .

By Lemma 1 in Appendix 1, we can express XαXγ as

XαXγ =
∑

|β|≤|α|+|γ|

pα,γβ Xβ
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and we have the estimate

|pα,γβ | ≤ C |β|+1M |α|+|γ| (|α|+ |γ|)!
|β|!

M for some constants C and M .
Hence we see that

XαJ2(X) =
∑

γ∈Nm

cγ
γ!

(
∑

|β|≤|α|+|γ|

pα,γβ Xβ)

=
∞∑

L=0

∑
|β|=L
β∈Nm

(
∑
γ∈Nm

|α|+|γ|≥L

cγ
γ!

pα,γβ )Xβ .

Suppose that |β| = L. Then we observe that

c(α, β) =
∑

γ∈Nm, |γ|≥L−|α|

cγ
γ!

pα,γβ .

Therefore we find that

|c(α, β)| ≤
∞∑

k=L

∑
|γ|=k−|α|

|cγ
γ!

pα,γβ |

≤ CL+1

L!

∞∑
k=L

Mkk!
∑

|γ|=k−|α|

|cγ |
γ!

.

Since for any r > 0 there is a constant dr > 0 such that

|cγ | ≤ dr(
1

r
)|γ|,

we have

(A2.1)

|c(α, γ)| ≤ drC
L+1

L!

∞∑
k=L

Mkk!
∑

|γ|=k−|α|

1

γ!
(
1

r
)|γ|

=
drC

L+1

L!

∞∑
k=L

Mkk!
mk−|α|

(k − |α|)!
(
1

r
)k−|α|

=
drC

L+1

L!
(
r

m
)|α|

∞∑
k=L

k!

(k − |α|)!
(
mM

r
)k.
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On the other hand, we have

(A2.2)

J1(X)J2(X) =
∑
α

aα
α!

∑
β

c(α, β)Xβ

=
∑
β

(
∑
α

aα
α!

c(α, β))Xβ .

Since there is also a constant d̃r such that

|aα| ≤ d̃r(
1

r
)|α|,

if |β| = L then by (A2.1) we have

|
∑
α

aα
α!

c(α, β)|

≤
∞∑
ℓ=0

∑
|α|=ℓ

|aα|
α!

drC
L+1

L!
(
r

m
)ℓ

∞∑
k=L

k!

(k − ℓ)!
(
mM

r
)k

≤ drd̃rC
L+1

L!

∞∑
ℓ=0

mℓ

ℓ!
(
1

r
)ℓ(

r

m
)ℓ

∞∑
k=L

kℓ(
mM

r
)k

=
drd̃rC

L+1

L!

∞∑
k=L

∞∑
ℓ=0

kℓ

ℓ!
(
mM

r
)k

=
drd̃rC

L+1

L!

∞∑
k=L

(
emM

r
)k

Hence, if r is sufficiently large number we have

|
∑
α

aα
α!

c(α, β)| ≤ drd̃rC
L+1

L!

( emM
r )L

1− emM
r

≤ drd̃rC

L!
(
CemM

r
)L.

By (A2.2), this proves the assertion.

We denote by O2(C) the set of all functions J(z) ∈ O(C) such that
J(z2) are of the infra exponential type. The following lemma can be
proved similar way as above lemma using Lemma 1 in Appendix 1. So
we leave the proof.
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Lemma 4. Let ∆ be a Casimir operator of g. Suppose that J(z) ∈
O2(C). For any ordered basis {X1, . . . , Xm} of g, put

J̃(X) = J̃(X1, . . . , Xm) = J(∆).

Then we have J̃(X) ∈ Õ(g∗c).

The following similar lemma is now also obvious.

Lemma 5. Let J ∈ O(C). Suppose that J(tM ) is of the infra exponen-
tial type for some positive integer M . If we put

J̃(x1, . . . , xm) = J(
m∑
i=1

xM
i + lower terms in xi’s)

then J̃ ∈ Õ(Cm).

Moreover, by Lemma 8.1.6 in [Kan], we have the following estimate.

Lemma 6. For any J ∈ Õ(Cm), r ≤ 0 and ai ∈ C (i = 1, . . . ,m), there

exists J̃ ∈ O2(C) such that

|J(ζ1, . . . , ζm)| ≤ |J̃(
m∑
i=1

ζ2i +
m∑
i=1

aiζi)| for | Im ζ| ≤ r.
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