Drawing Curves

Toshio Oshima

Abstract We propose a method to determine piecewise cubi@ curves passing
through given points. Our main purpose is to draw accurate graphs of mathematical
functions with smaller data. A program drawing such graphs using our method is
realized in a computer algebra and outputs the graphs in a source fit¢ ahd then
transforms it into a PDF file. Our method is also useful for numerical calculation of
a given area enclosed by a curve and for numerical integration of functions.

Keywords Bézier curve, cubic spline, computer algebra, Risa/Ag, TikZ, 3D
graph, numerical integration

1 Introduction

Since the last year | have a class of calculus in my university and show graphs of
functions such ag(x,y) = x> —y2. | have been developing a librags_muldif.rr
[3] of a computer algebrRisa/Asir [5] to realize my research explained in [4] and
then | added some functions in the library for such educational purpose including
calculus, linear algebra and elementary number theory. The library is an open source
and can be equally executed by a personal computer with any one of the operating
systems Windows, Mac and UNIX.

In fact, a function in the library executes the procedure in Fig. 1 to get the graphs.
Since the PDF file supports cubi@Ber curves, the size of the PDF file obtained
in the procedure is usually small and it is independent of the final resolution of the
graph.
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2 Curves

Consider a curve

C:la.b] >t y(t) = (X(t),y(t)) € R2.
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Display
A

put A ! ATEX  dvipdfmx i
Common format—— TikZ/Xy-pic in a X file ——— DVl file PDF file

(1)

We choose points ifa, b], namelyP; = y(tj) e Cwitha=tg <ty <tp <--- <ty =b
and draw a certain cun@ starting fromP,, exactly passing through,...,Py_1
in this order and ending &. We request the following conditions.

C' is determined only byPy, Py, ..., Py}

desirable.
e The curve can be described in a usyaXBource file.

C' is a good approximation & and it is free from its final resolution in drawing.
Smaller size of data (i.e. the numbidy and an output in a popular format are

One of the way to realize it is to connect the points by cul®eiBr curves and use
TikZ and/or X-pic which are in a package of g&X system (cf. Fig. 1).

2.1 Smooth curves

A Bézier curve of degreeis

[0,1] 5t — P(t) = P(By,...,Bn;t) = i (?)ti(l—t)niBi 2)

determined byn+ 1) pointsBy,...,Bn.

Note thatP(B, B';t) is the point internally dividing the line segmeBB' by t :
1—t. SinceP(By,...,Bn;t) = P(P(Bo,Bs;t),P(B1,B2;t),...,P(Bn_1,Bn;t);t), the
pointP(t) is geometrically described. For example, tubic Bézier curveis
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P(t) = P(Bo,B1, B2, B3;t) = P(P(Bo,B1;t), P(B1,B2;t), P(Bg, Bs;t);t)
- P(P(P(Bo, Bu;t),P(By,By;t);t), P(P(By, Bit), P(By, Bg;t);t);t).

The curve starts frorBg to the directiorBgB; and ends aBs to the directiorB,Bs.
It does not necessarily pass throusghnor B,.

Fig. 2 cubic Bezier curves

Consider a curv€ passing througl, Pi, P>, P; in this order. We simulate the
curve segment of connectingP; to P by the cubic Bzier curveP(P, Q,R, P;t)
with the control point€Q andR defined in Fig 2. The numberis determined by

4P P, 1
©= 3R+ AP =T )
IR )

To explain (3) we assume thBiP, = PiP, = P,P; and moreover thag,...,Ps
are on a circle with the cent&. We define a Bzier curve with the control points
Q andR which approximates the arc connectiRgandP,. Putting ZP,OR, = 6,
OPR =T, PLQ = PR = a, the pointT on the Bezier curve corresponding te= 3 is
given as follows under a suitable coordinate system.
0:(0,0), P : (rcosd,rsing), Py : (rcos, —rsing)
Q: (rcosd +acos7, rsing +asin 857

= (rcos§ +asing,rsing —acos))
R: (rcosd +asing,—rsing +acos))
T :(rcosd + 2asing,0)

PutOT = OR to approximate the arc. Then

6 | 3,5cinf _
rcos§+ﬁasm§ =Tr

and therefore
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0 0
_ill—cosj _4 sins

-3 sind _§1+cosgr'
In this case we have
) 0 4l—cosg .9 . g 4 sing 9
Q: (rcos§+§ﬁsm§r, rsm7_§1+cosg cos§r>

)
_((4_1anc8 1anc8y_ SN2 )
= ((3—3c0s3)r, (1-3cC083)——=5I
((3 3 2)’( 3 2)l+cos§ ’

PQ 4 sin§ 1 2 @
PP 31+cos?2sing  3(1+cosd)’

Putr =1 andc= cos%. We examine the distance betwe@mand the point
B(t) = (X(t),y(t)) = P(1—1t)3+3Qt(1—t)? +3RE}(1 —t) + Pot?
on the Bezier curve. Denoting= s+ 3, we have

L(s) i=X(s+ 3)2+y(s+ 1)
_161-0’s 81l-CPy (-0, ,

Trc ° 1tc ° 1 ltc
1— 3

and when 6< s< 1,

s 82+ (1-45)+(1-48) 2
J/882(1— 4s2)2 > 3 =3

The equality in the above holds if and only 8= 1—4s?, namely,s> = . Hence
L(s) with |s| < % takes the minimal value 1 when= 0, i% and the maximal value
whens=+_1_

2V3’
1(1-c¢)?®
S

LE53) 27 1+c¢’
1 2
s (0=1=090)

L(+-L _ 1 (1-cosp)® )% 0—T— 60 5

(£33)~ 54 1+cosd #1900 ( —3- O)v (5)
2351541 (9 =2= 45 )7
2683400 (6= g =30°).

In view of (4), we determine that the segment betwBgmandP; in the curve
interpolating generdy, Py, P>, P; is the cubic Bzier curve with the control points
Q andR so that
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PO = cRPs, PoR=CcPiP, (6)
PQ+PR 4
PP, 3(1+cosd)’ @
Thus
— —— — —
cosp = RAR) oo 8 [Licosd_ 1y, (RRAR)
PoP2 - P13 2 2 2 PP - PiPs
and ij:m = 4
PP 3(1+cos?)

and therefore we have (3).
The cubic Ezier curve is given by

B(t) = P (1—1)°+30t(1—1)? + 3R (1—t) + Pt
= (=PL+3Q—3R+P)t3+ (3P, — 6Q+ 3R)t? + (—3P, + 3Q)t + P\

The Catmull-Rom spline curve is defined by

Clt) = (=3P + 3P — P2+ 3P+ (Ry— 3Py + 2Py + 3P)t?
+(—3P+ 3PP

and therefore the corresponding control poi@tandR in this case are defined by

Q=P+ (R —Ry),
R:PZ—F%(P?’—P]_),

which means that we fig = £ in (6).

In our case, the relative err oig) — l‘ is less thangk; (resp.saq) if ZPLOR <
120 (resp.< 90°). Note that a Bzier curve never coincides with an exact arc.

For a closed curv€ passing through poin®y, Ry, ...,Ry = Rp in this order we
draw a curve segment betweBy andR;1 by puttingR = Rij_1 fori =0,1,2
and 3 asin the above al}.ny =R, (v =1,...,N). Then the resulting curv&’ we
draw is a smooth closed curve (of cla® which simulate<.

When the numbec is fixed to be% in (6), the corresponding curve is known as
the (uniform) Catmull-Rom spline curve (cf. [2]). It is invariant under affine trans-
formations and our curve is invariant under conformal affine transformations.

The following first example in Fig. 3 is the curve drawn by the three points
(codt,sint) with t = £%, r indicated bye. The other 6 points calculated by us-
ing (3) are indicated by. In the final PDF file the positions of these 9 points are
only written and the real rendering of theeBer curve is done by a viewer of the
file and therefore the size of the PDF file is small. The second example is the (uni-
form/centripetal) Catmull-Rom spline curve passing through these three points.
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The other examples in Fig. 3 are the Lissajous cytg= (sin2,sin3) drawn
by the points corresponding te= 2’” forj=0,...,N.
Fig. 3 Bézier curves

QION,

X
N =3 (3 points) Catmull-Rom spline N =24,N=96 N =12 (9 points)

If the pointsP; = y(t;) are not suitably chosen, the resulting curve drawn by the
points may be not good. Even in this case our curve is better than the corresponding

Catmull-Rom spline curve as in the following example.

Suppose we draw a graph of the parabola definegby?. Taking the points on
the curvey(t) = (t,t?) corresponding to= —2, —1, 0, 0.2, 1, 2, we draw curve for
—1<t <1 by these 6 points.

Fig. 4 Parabola

N NSNS N

y=x2 (-1<x<1) piecewise linear Catmull-Rom spline Our curve

To avoid a singularity or a loop in aé&ier segment, a generalization of Catmul-
Rom spline is introduced (cf. [1]):

y(t) = tt;:ttl Bl+tt_tt1 Bx  (teta,ta]),
Blzttzz__ttoBl ttz—t By, 1:tt3—_ttlB ttg,—t Bo,
A1=ttll__tt0 o+ﬁ|’1, Ay = tzz_ttl 1+t2—t

N =P P+t (j=1,23).

3—1 3t

If a =0, the above curve equals the standard (uniform) Catmul-Rom spline. When
o =1, the curve is called chordal Catmul-Rom spline. Wies 0.5, the curve is
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called centripetal Catmull-Rom spline and has more desirable properties compared
to the original one (cf. [6]). It will not form loop nor cusp within a curve segment.

But these Catmul-Rom splines produce the same result as in Fig. 4 for the points
equally distributed on a circle becauge 1 P; does not depend o

2.2 Singularities

We consider a curvg(t) (t € [a,b]) which has singular points or discontinuous
points. We assume that the curve is a finite union of smooth curves but we do not
know the singular points of the curve.

First we choose pointB; = y(tj) withtg =a <t; < --- <ty = b on the curve.

We putt; = a+ @ in most cases (or as defadit)

For everyj, add the poinv(%) if

= ——
(P—oPj_1,Pj_1P}) )
= L G or == < C
Pi—2Pj-1-F-1F L RTR PR !
or

[ Pj,lpj >Cy
Repeat the above up totimes, P2 P

—
(P—1Pj,PiPj 11

If the lengthP;_1P; still exceeds a given threshold valGg after this procedure,
we cut our curve between two poirfes_; andP;.
The default threshold values dBg = cos 30, C, = dameter aftWindowgngm — 4,

We examine the graph of the function
y=[2sinx| — [|2sinx]] (0<x<5).

Here for a real numbet [t] denotes the largest integer which does not exteed

Note that this function is discontinuousxat §, %", %" and not smooth at=1t.
If we do not care the singularities, we have Fig. 5.

Fig. 5 y=||2sinx| — [|2sinX|]| (0<x<5,m=0andN =32)

The procedure explained in this subsection gives Fig. 6 and the number of seg-
ments of Besier curves increases from 32 to 70.

1 Moreover if the curve is defined outsidke b], we use the pointB_; andPRy.1 to define Bezier
curves.
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Fig. 6 y=||2sinx| — [[2sinX]| (0<x<5,m=4andN =32— 70)

YERNYIS

The graph of the absolute value of Riemann’s zeta fundfi@) for Rez= % is
given in Fig. 7.Risa/Asir takes less than a second to get it in a PDF file.

Fig. 7 y=|{(3 +xv/=1)| (m=6andN = 96— 355)

The final example in this subsection is the finite Fourier series

— qj leinX 4 lainX 1 qin X
yfSInX+§SIn§+gSIng+'“+ﬂSIn2—1

which approximates a square wave.

Fig. 8 Fourier series rh=6 andN = 192— 1020)

I T
—_— _—

3 Applications

3.1 Circles, arcs and ovals

The relative error of our approximation of an arc by a cubszigr curve becomes
smaller when its central angle becomes smaller. If the angle is smaller than 120
(resp. 90), then it is smaller than.Q6% (resp. 0.028%) as is shown in the previous
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section. The relative error here is measured by the distance from the center of the
circle containing the arc.

Hence the central angle of an arc is not large, it is sufficient for us to approximates
it by a single cubic Bzier curve or at most three cubic segments for most purposes.

Moreover since the &ier curve is compatible with affine transformations, we
can also draw an oval and an arc of an oval with the same accuracy by using an
affine transformation of our approximation of a circle or an arc of a circle. These
are realized in [3].

3.2 Integration

The area enclosed by a curve is numerically calculated by our approximation since
an area enclosed by a curve with cubieziier segments is easily calculated.
Suppose an area is enclosed by segments of cuéseBcurves

[0,1] 5t yj(t) = (Xj(t),yj(t)) (j=0,....N).

Then the absolute value of the line integral

1t —ifoly;a)dxj(t)—i/jxﬁ(t)-w(t)dt

gives the area. Hepg (t) - yj(t) are polynomials of degree 5 and therefore the above
value is easily calculated.

If the curve is an approximation of the graphyof f (x) with x € [a, b], the above
value is an approximation qﬁ’ f(x)dx

In the following table we show examples of the relative errors of the numerical
integrations using this method. In the table, circle and cardioid are parametrized by

(cos,sin@) and ((1+cosB)cosh, (1+cosb)sinb),

respectively. For example, in the case of cardioid in the table, “32 parts” means that
the cardioid is approximated by 32 cubi@Ber segments determined only by the
points ((1+ cosB;) cosb;, (1+ cosb;) sin;) with 6; = 4T — mandj =0,1,...,32

and the approximated area is calculated by the segments.
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Integrations using 8zier curves

curve | interval 16 parts| 32 parts| 96 parts | 384 parts| 1536 partg
circle |0< 0 <2m|6.8x10°8/1.1x 10 %|1.5x 1012|3.2x 10 17|8.7x 1020
cardioid —m< 0 < m5.4x104/3.1x 10°°®3.8x10 7 [1.5x 10 ° [5.8x 10 12
xsinx | 0<x<7 [29x104/1.8x10%22x 108 [8.7x 10 113.4x 1013
SX | 0<x< 7 [1.5x10°/9.5x10°8/1.2x 10°° 4.6 x 10 12/1.7 x 10 14
x2:—Ls-1 —00 < X< 0[1.3%x10°1.3x107|85x 10 104.7x 10 12121 x 1014
e X |—00<x<|7.1x1041.3x104/2.6x 1076 [1.1x 1078 |4.3x 1011
X2 | 1<x<o [3.0x1043.8x10°51.4x 106 [6.6x 1072 [2.6 x 10-1L
Wllﬁ —0 < X< 0]23x103/1.7x104/2.6x10°¢ [1.9x 108 [8.1x 1011
ez |zZl=1 |7.6x107°4.1x10°48x108 |1.9x107107.3x10713

If the interval of integration is infinite, we compactify it {6, 1] for the calcula-
tion. For example, if the interval i6-, ), the transformations

(13N
Ue

are used in [3]. In the above examples, the positive con€téithe default value in
[3]. If |f(X)] = O(x~2), the transformation by usually gives a better approxima-
tion than byyi.

In Fig. 9 we show the change of integrandj[)f xzdij—(l under the compactifica-

tion.

Fig. 9 Compactification

PN WA OO N ®
T T

@ (default)

PN WD o N®
T T T T T T 1

Y12 (default)

PN WD OO N®
T T T T T T 1
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3.3 3D graphs

Our original main purpose is to draw graphs of surfaces defined=by(x,y) with
mathematical function$(x,y). Using our method Fig. 1, we draw curves on a sur-
face defined by the condition thatis constant oy is constant. It takes 18 30
seconds to get a required PDF file after a commarRiga/Asir if f(x,y) is a sim-

ple rational function. We can usekd and X-pic. In contrast to ¥pic the source

text in TikZ is more readable, easy to be edited and has stronger abilities such that
it supports coloring and filling region by a pattern but is takes a little longer time to
be transformed into a PDF file. Hence our library [3] supports both of them.

We give two examplez= |sin(x+yy/—1)| andz= szfy‘,:

Fig. 10 3D graphs
[sinz (z=x+yi, —m<x<m-1<y<1) z= Xz"‘fy‘t (-1<x<1,-1<y<1)

angle(50°,15°) ratio1:3:3 angle(70°,20°)
This function is discontinuous éx,y) = (0,0)

(-m-i.1543
(-1,-105)

X
X%
i >
KBS B2
(OLES 2N SR
i e S
i R NN
Rt SN NN
SN W4 %
G R O
< /8 &
iy >
Ty \ ey
vl ;
l’,/ Tn+i.0)

(m+i.0)
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