
Drawing Curves

Toshio Oshima

Abstract We propose a method to determine piecewise cubic Bézier curves passing
through given points. Our main purpose is to draw accurate graphs of mathematical
functions with smaller data. A program drawing such graphs using our method is
realized in a computer algebra and outputs the graphs in a source file of TEX and then
transforms it into a PDF file. Our method is also useful for numerical calculation of
a given area enclosed by a curve and for numerical integration of functions.

Keywords Bézier curve, cubic spline, computer algebra, Risa/Asir, TEX, TikZ, 3D
graph, numerical integration

1 Introduction

Since the last year I have a class of calculus in my university and show graphs of
functions such asf (x,y) = x2 − y2. I have been developing a libraryos muldif.rr
[3] of a computer algebraRisa/Asir [5] to realize my research explained in [4] and
then I added some functions in the library for such educational purpose including
calculus, linear algebra and elementary number theory. The library is an open source
and can be equally executed by a personal computer with any one of the operating
systems Windows, Mac and UNIX.

In fact, a function in the library executes the procedure in Fig. 1 to get the graphs.
Since the PDF file supports cubic Bézier curves, the size of the PDF file obtained
in the procedure is usually small and it is independent of the final resolution of the
graph.
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Fig. 1 Procedure
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2 Curves

Consider a curve

C : [a,b] ∋ t 7→ γ(t) =
(
x(t),y(t)

)
∈ R2. (1)

We choose points in[a,b], namely,Pj = γ(t j)∈C with a= t0 < t1 < t2 < · · ·< tN = b
and draw a certain curveC′ starting fromP0, exactly passing throughP1, . . . ,PN−1

in this order and ending atPN. We request the following conditions.

• C′ is determined only by{P0,P1, . . . ,PN}.
• C′ is a good approximation ofC and it is free from its final resolution in drawing.
• Smaller size of data (i.e. the numberN) and an output in a popular format are

desirable.
• The curve can be described in a usual TEX source file.

One of the way to realize it is to connect the points by cubic Bézier curves and use
TikZ and/or XY-pic which are in a package of a TEX system (cf. Fig. 1).

2.1 Smooth curves

A Bézier curve of degreen is

[0,1] ∋ t 7→ P(t) = P(B0, . . . ,Bn; t) =
n

∑
i=0

(
n
i

)
t i(1− t)n−iBi (2)

determined by(n+1) pointsB0, . . . ,Bn.
Note thatP(B,B′; t) is the point internally dividing the line segmentBB′ by t :

1− t. SinceP(B0, . . . ,Bn; t) = P(P(B0,B1; t),P(B1,B2; t), . . . ,P(Bn−1,Bn; t); t), the
pointP(t) is geometrically described. For example, thecubic Bézier curve is
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P(t) = P(B0,B1,B2,B3; t) = P
(
P(B0,B1; t),P(B1,B2; t),P(B2,B3; t); t

)
= P

(
P
(
P(B0,B1; t),P(B1,B2; t); t

)
,P
(
P(B1,B2; t),P(B2,B3; t); t

)
; t
)
.

The curve starts fromB0 to the direction
−−→
B0B1 and ends atB3 to the direction

−−→
B2B3.

It does not necessarily pass throughB1 norB2.

Fig. 2 cubic B́ezier curves
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Consider a curveC passing throughP0, P1, P2, P3 in this order. We simulate the
curve segment ofC connectingP1 to P2 by the cubic B́ezier curveP(P1,Q,R,P2; t)
with the control pointsQ andR defined in Fig 2. The numberc is determined by

c=
4P1P2

3(P0P2+P1P3)

1

1+

√
1
2

(
1+ (

−−→
P0P2,

−−→
P1P3)

P0P2·P1P3

) . (3)

To explain (3) we assume thatP0P1 = P1P2 = P2P3 and moreover thatP0, . . . ,P3

are on a circle with the centerO. We define a B́ezier curve with the control points
Q andR which approximates the arc connectingP1 andP2. Putting∠P1OP2 = θ ,
OP1 = r, P1Q= P2R= a, the pointT on the B́ezier curve corresponding tot = 1

2 is
given as follows under a suitable coordinate system.

O : (0,0), P1 : (r cosθ
2 , r sin θ

2 ), P2 : (r cosθ
2 ,−r sin θ

2 )

Q : (r cosθ
2 +acosθ−π

2 , r sin θ
2 +asin θ−π

2 )

= (r cosθ
2 +asin θ

2 , r sin θ
2 −acosθ

2 )

R : (r cosθ
2 +asin θ

2 ,−r sin θ
2 +acosθ

2 )

T : (r cosθ
2 + 3

4asin θ
2 ,0)

O

P1

P2

Q

R

r

a

θ

•

•

•

•

•

×T

PutOT = OP1 to approximate the arc. Then

r cosθ
2 + 3

4asin θ
2 = r

and therefore
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a=
4
3

1−cosθ
2

sin θ
2

r =
4
3

sin θ
2

1+cosθ
2

r.

In this case we have

Q :
(

r cosθ
2 +

4
3

1−cosθ
2

sin θ
2

sin θ
2 r, r sin θ

2 − 4
3

sin θ
2

1+cosθ
2

cosθ
2 r
)

=
(
(4

3 −
1
3 cosθ

2 )r, (1−
1
3 cosθ

2 )
sin θ

2
1+cosθ

2

r
)
,

P1Q

P1P2
=

4
3

sin θ
2

1+cosθ
2

1

2sinθ
2

=
2

3(1+cosθ
2 )

. (4)

Putr = 1 andc= cosθ
2 . We examine the distance betweenO and the point

B(t) =
(
x(t),y(t)

)
= P1(1− t)3+3Qt(1− t)2+3Rt2(1− t)+P2t

3

on the B́ezier curve. Denotingt = s+ 1
2, we have

L(s) := x(s+ 1
2)

2+y(s+ 1
2)

2

=
16(1−c)3

1+c
s6− 8(1−c)3

1+c
s4+

(1−c)3

1+c
s2+1

= (1−c)3

1+c s2(4s2−1)2+1

and when 0≤ s≤ 1
2,

3
√

8s2(1−4s2)2 ≥ 8s2+(1−4s2)+(1−4s2)

3
=

2
3
.

The equality in the above holds if and only if 8s2 = 1−4s2, namely,s2 = 1
12. Hence

L(s) with |s| ≤ 1
2 takes the minimal value 1 whens= 0,±1

2 and the maximal value
whens=± 1

2
√

3
.

L(± 1
2
√

3
)−1=

1
27

(1−c)3

1+c
,

√
L(± 1

2
√

3
)−1≒ 1

54

(1−cosθ
2 )

3

1+cosθ
2

≒



1
648 (θ = 2π

3 = 120◦),
1

3668 (θ = π
2 = 90◦),

1
41900 (θ = π

3 = 60◦),
1

235541 (θ = π
4 = 45◦),

1
2683400 (θ = π

6 = 30◦).

(5)

In view of (4), we determine that the segment betweenP1 andP2 in the curve
interpolating generalP0,P1,P2,P3 is the cubic B́ezier curve with the control points
Q andR so that
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−−→
P1Q= c

−−→
P0P2,

−→
P2R= c

−−→
P3P1, (6)

P1Q+P2R

P1P2
=

4

3(1+cosθ
2 )

. (7)

Thus

cosθ =
(
−−→
P0P2,

−−→
P1P3)

P0P2 ·P1P3
, cos

θ
2
=

√
1+cosθ

2
=

√√√√1
2

(
1+

(
−−→
P0P2,

−−→
P1P3)

P0P2 ·P1P3

)

and
cP0P2+cP1P3

P1P2
=

4

3(1+cosθ
2 )

and therefore we have (3).
The cubic B́ezier curve is given by

B(t) = P1(1− t)3+3Qt(1− t)2+3Rt2(1− t)+P2t
3

= (−P1+3Q−3R+P2)t
3+(3P1−6Q+3R)t2+(−3P1+3Q)t +P1.

The Catmull-Rom spline curve is defined by

C(t) = (−1
2P0+

3
2P1− 3

2P2+
1
2P3)t

3+(P0− 5
2P1+2P2+

1
2P3)t

2

+(−1
2P0+

1
2P2)t +P1

and therefore the corresponding control pointsQ andR in this case are defined by{
Q= P1+

1
6(P2−P0),

R= P2+
1
6(P3−P1),

which means that we fixc= 1
6 in (6).

In our case, the relative error
∣∣∣OB(t)

OP1
−1
∣∣∣ is less than 1

640 (resp. 1
3600) if ∠P1OP2 ≤

120◦ (resp.≤ 90◦). Note that a B́ezier curve never coincides with an exact arc.
For a closed curveC passing through pointsR0,R1, . . . ,RN = R0 in this order we

draw a curve segment betweenRj andRj+1 by puttingPi = Ri+ j−1 for i = 0,1,2
and 3 as in the above andRν±N = Rν (ν = 1, . . . ,N). Then the resulting curveC′ we
draw is a smooth closed curve (of classC1) which simulatesC.

When the numberc is fixed to be1
6 in (6), the corresponding curve is known as

the (uniform) Catmull-Rom spline curve (cf. [2]). It is invariant under affine trans-
formations and our curve is invariant under conformal affine transformations.

The following first example in Fig. 3 is the curve drawn by the three points
(cost,sint) with t = ±π

3 , π indicated by•. The other 6 points calculated by us-
ing (3) are indicated by×. In the final PDF file the positions of these 9 points are
only written and the real rendering of the Bézier curve is done by a viewer of the
file and therefore the size of the PDF file is small. The second example is the (uni-
form/centripetal) Catmull-Rom spline curve passing through these three points.
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The other examples in Fig. 3 are the Lissajous curveγ(t) = (sin2t,sin3t) drawn
by the points corresponding tot = 2π j

N for j = 0, . . . ,N.

Fig. 3 Bézier curves
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If the pointsPj = γ(t j) are not suitably chosen, the resulting curve drawn by the
points may be not good. Even in this case our curve is better than the corresponding
Catmull-Rom spline curve as in the following example.

Suppose we draw a graph of the parabola defined byy= x2. Taking the points on
the curveγ(t) = (t, t2) corresponding tot =−2,−1, 0, 0.2, 1, 2, we draw curve for
−1≤ t ≤ 1 by these 6 points.

Fig. 4 Parabola

y= x2 (−1≤ x≤ 1) piecewise linear Catmull-Rom spline Our curve

To avoid a singularity or a loop in a B́ezier segment, a generalization of Catmul-
Rom spline is introduced (cf. [1]):

γ(t) =
t2− t
t2− t1

B1+
t − t1
t2− t1

B2 (t ∈ [t1, t2]),

B1 =
t2− t
t2− t0

B1+
t − t0
t2− t0

B2, B1 =
t3− t
t3− t1

B1+
t − t1
t3− t1

B2,

A1 =
t1− t
t1− t0

P0+
t − t0
t1− t0

P1, A2 =
t2− t
t2− t1

P1+
t − t1
t2− t1

P2,

A3 =
t3− t
t3− t2

P2+
t − t2
t3− t2

P3, t j = (Pj−1Pj)
α + t j−1 ( j = 1, 2, 3).

If α = 0, the above curve equals the standard (uniform) Catmul-Rom spline. When
α = 1, the curve is called chordal Catmul-Rom spline. Whenα = 0.5, the curve is
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called centripetal Catmull-Rom spline and has more desirable properties compared
to the original one (cf. [6]). It will not form loop nor cusp within a curve segment.

But these Catmul-Rom splines produce the same result as in Fig. 4 for the points
equally distributed on a circle becausePj−1Pj does not depend onj.

2.2 Singularities

We consider a curveγ(t) (t ∈ [a,b]) which has singular points or discontinuous
points. We assume that the curve is a finite union of smooth curves but we do not
know the singular points of the curve.

First we choose pointsPj = γ(t j) with t0 = a < t1 < · · · < tN = b on the curve.

We putt j = a+ j(b−a)
N in most cases (or as default)1.

For everyj, add the pointγ( t j−1+t j
2 ) if

• (
−−−−−−→
Pj−2Pj−1 ,

−−−−→
Pj−1Pj )

Pj−2Pj−1 ·Pj−1Pj
<C1 or

(
−−−−→
Pj−1Pj ,

−−−−→
Pj Pj+1)

Pj−1Pj ·Pj Pj+1
<C1

or

• Pj−1Pj >C2

Repeat the above up tom times, Pj−2

Pj−1

Pj

Pj+1

II

33
×

If the lengthPj−1Pj still exceeds a given threshold valueC2 after this procedure,
we cut our curve between two pointsPj−1 andPj .

The default threshold values areC1 = cos30◦, C2 =
diameter of Window

16 andm= 4.

We examine the graph of the function

y= |2sinx|−
[
|2sinx|

]
(0≤ x≤ 5).

Here for a real numbert,
[
t
]

denotes the largest integer which does not exceedt.
Note that this function is discontinuous atx= π

6 ,
5π
6 , 7π

6 and not smooth atx= π.
If we do not care the singularities, we have Fig. 5.

Fig. 5 y=
∣∣|2sinx|−

[
|2sinx|

]∣∣ (0≤ x≤ 5, m= 0 andN = 32)

The procedure explained in this subsection gives Fig. 6 and the number of seg-
ments of B́esier curves increases from 32 to 70.
1 Moreover if the curve is defined outside[a,b], we use the pointsP−1 andPN+1 to define B́ezier
curves.
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Fig. 6 y=
∣∣|2sinx|−

[
|2sinx|

]∣∣ (0≤ x≤ 5, m= 4 andN = 32→ 70)

x= 0 π
6

5π
6 π 7π

6

The graph of the absolute value of Riemann’s zeta functionζ (z) for Rez= 1
2 is

given in Fig. 7.Risa/Asir takes less than a second to get it in a PDF file.

Fig. 7 y=
∣∣ζ ( 1

2 +x
√
−1)

∣∣ (m= 6 andN = 96→ 355)

6050403020100

4

3

2

1

The final example in this subsection is the finite Fourier series

y= sinx+ 1
3 sin x

3 +
1
5 sin x

5 + · · ·+ 1
21 sin x

21

which approximates a square wave.

Fig. 8 Fourier series (m= 6 andN = 192→ 1020)

3 Applications

3.1 Circles, arcs and ovals

The relative error of our approximation of an arc by a cubic Bézier curve becomes
smaller when its central angle becomes smaller. If the angle is smaller than 120◦

(resp. 90◦), then it is smaller than 0.16% (resp. 0.028%) as is shown in the previous
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section. The relative error here is measured by the distance from the center of the
circle containing the arc.

Hence the central angle of an arc is not large, it is sufficient for us to approximates
it by a single cubic B́ezier curve or at most three cubic segments for most purposes.

Moreover since the B́ezier curve is compatible with affine transformations, we
can also draw an oval and an arc of an oval with the same accuracy by using an
affine transformation of our approximation of a circle or an arc of a circle. These
are realized in [3].

3.2 Integration

The area enclosed by a curve is numerically calculated by our approximation since
an area enclosed by a curve with cubic Bézier segments is easily calculated.

Suppose an area is enclosed by segments of cubic Bézier curves

[0,1] ∋ t 7→ γ j(t) =
(
x j(t),y j(t)

)
( j = 0, . . . ,N).

Then the absolute value of the line integral

I(γ) =
N

∑
j=0

∫ 1

0
y j(t)dxj(t) =

N

∑
j=0

∫ 1

0
x′j(t) ·y j(t)dt

gives the area. Herex′j(t) ·y j(t) are polynomials of degree 5 and therefore the above
value is easily calculated.

If the curve is an approximation of the graph ofy= f (x) with x∈ [a,b], the above
value is an approximation of

∫ b
a f (x)dx.

In the following table we show examples of the relative errors of the numerical
integrations using this method. In the table, circle and cardioid are parametrized by

(cosθ ,sinθ) and
(
(1+cosθ)cosθ ,(1+cosθ)sinθ

)
,

respectively. For example, in the case of cardioid in the table, “32 parts” means that
the cardioid is approximated by 32 cubic Bézier segments determined only by the
points

(
(1+cosθ j)cosθ j ,(1+cosθ j)sinθ j

)
with θ j =

jπ
16 −π and j = 0,1, . . . ,32

and the approximated area is calculated by the segments.
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Integrations using B́ezier curves

curve interval 16 parts 32 parts 96 parts 384 parts 1536 parts

circle 0≤ θ ≤ 2π 6.8×10−8 1.1×10−9 1.5×10−12 3.2×10−17 8.7×10−20

cardioid−π ≤ θ ≤ π 5.4×10−4 3.1×10−5 3.8×10−7 1.5×10−9 5.8×10−12

xsinx 0≤ x≤ π 2.9×10−4 1.8×10−6 2.2×10−8 8.7×10−11 3.4×10−13

sinx
x 0< x≤ π 1.5×10−6 9.5×10−8 1.2×10−9 4.6×10−12 1.7×10−14

1
x2+1

−∞ < x< ∞ 1.3×10−5 1.3×10−7 8.5×10−10 4.7×10−12 2.1×10−14

e−x2 −∞ < x< ∞ 7.1×10−4 1.3×10−4 2.6×10−6 1.1×10−8 4.3×10−11

x−
3
2 1≤ x< ∞ 3.0×10−4 3.8×10−5 1.4×10−6 6.6×10−9 2.6×10−11

1
x2+

√
−1

−∞ < x< ∞ 2.3×10−3 1.7×10−4 2.6×10−6 1.9×10−8 8.1×10−11

e
1
z |z|= 1 7.6×10−5 4.1×10−6 4.8×10−8 1.9×10−10 7.3×10−13

If the interval of integration is infinite, we compactify it to[0,1] for the calcula-
tion. For example, if the interval is(−∞,∞), the transformations

φC : (0,1) ∋ t 7→ x= 1
C(

1
1−t −

1
t ) ∈ (−∞,∞),

ψC : (0,1) ∋ t 7→ x= 1
C

(
e

1
1−t −e

1
t
)
∈ (−∞,∞).

are used in [3]. In the above examples, the positive constantC is the default value in
[3]. If | f (x)|= O(x−2), the transformation byφC usually gives a better approxima-
tion than byψC.

In Fig. 9 we show the change of integrand of
∫ ∞

−∞

dx
x2+1

under the compactifica-

tion.

Fig. 9 Compactification
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3.3 3D graphs

Our original main purpose is to draw graphs of surfaces defined byz= f (x,y) with
mathematical functionsf (x,y). Using our method Fig. 1, we draw curves on a sur-
face defined by the condition thatx is constant ory is constant. It takes 10∼ 30
seconds to get a required PDF file after a command inRisa/Asir if f (x,y) is a sim-
ple rational function. We can use TikZ and XY-pic. In contrast to XY-pic the source
text in TikZ is more readable, easy to be edited and has stronger abilities such that
it supports coloring and filling region by a pattern but is takes a little longer time to
be transformed into a PDF file. Hence our library [3] supports both of them.

We give two examplesz= |sin(x+y
√
−1)| andz= xy2

x2+y4 :

Fig. 10 3D graphs
|sinz| (z= x+yi, −π ≤ x≤ π,−1≤ y≤ 1) z= xy2

x2+y4 (−1≤ x≤ 1,−1≤ y≤ 1)

angle(50◦,15◦) ratio 1 : 3 : 3 angle(70◦,20◦)

This function is discontinuous at(x,y) = (0,0)(−π − i,1.543)

(π + i,0)

(−π + i,0)
(π − i,0)

•
(−π,0)

•
(0,0)

•
(π,0)

(−1,−1,0.5)

(1,1,−0.5)

(−1,1,−0.5)

(1,−1,−0.5)
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