Semilocal monodromy of rigid local systems

Toshio Oshima

Abstract The rigid local system oi®! \ Swith a setS of finite points is realized

as a rigid Fuchsian differential equatio#’ of Schlesinger canonical form. Here
“rigid” means that the equation is uniquely determined by the equivalence classes of
residue matrices o/ at the points irS. The semilocal monodromin this paper is

the conjugacy class of the monodromy matrix obtained by the analytic continuation
of the solutions of# along an orientedimpleclosed curvey on C\ S Since it
corresponds to the sum of residue matrices at the singular points surroungted by
and the equationZ is obtained by applying additions and middle convolutions to
the trivial equation, we study the application of the middle convolution to the sums
of residue matrices. In this way we give an algorithm calculating this semilocal
monodromy, which also gives the local monodromy at the irregular singular point
obtained by the confluence of these points.

1 Introduction

The global theory of Fuchsian differential equations has been greatly developed
after the work of Katz [3] on rigid local systems, which we will shortly explain.
Fuchsian differential equation of Schlesinger canonical form is

cdu 2 A
///.&fi;x_ciu 1)

with A; € M(n,C). Heren is the rank of the equationy is a column vector oh
unknown functionsM(n, C) denotes the set of square matrices of diagith com-
ponents inC, A is called theresidue matridatx = ¢; and the residue matrix at= o
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equals—(Ay+--- +Ap) which we denote by, 1. The equation# is calledirre-
duciblein Schlesinger canonical form if there exists no non-trivial proper subspace
V C C"satisfyingAV cV fori=1,...,p.

Definition 1. For a matrixA € M(n,C) we put{pa,...,t} = {u € C| rank(A—
H) < n}. Then there exist positive numbersandm; , for 1 < j <rand 1<v <n;
such that

corankA—pj)’ =mj1+---+mjy (v=1,...,nj), (2)
rank(A— ;)" = rank(A— p;)N T (3)

Herez}zlzcjzlmj,v =n. Note that the sef[yj]m,, |[1<v <njand1<j<r},
which we call theeigenvalue classf A and write by (EC) ofA for simplicity, deter-
mines the conjugacy class of matrices containghe matrixA is semisimple if
and only ifny = --- = n, = 1. Here we may simply writ@j in place of{u;]s.

Let {V\i,v]m,v | 1< v < n} be the eigenvalue classesAffori=1,...,p+1,
respectively. Théndex of rigidityof .# defined by Katz [3] equals

p+1 n

idx.# = ; Zlnﬁvf(pfl)nz

An irreducible equation# is calledrigid if the conjugacy classes & for i =
1,..., p+1uniquely determine the simultaneous conjugacy clagd.of..,Ayy1),
which means that the local structure gf at singular points uniquely determines the
global structure of#Z. Katz [3] proved that an irreducible equatio# is rigid if and

only if idx.# = 2 by introducing two types of operations of the equations. They are
additions and middle convolutions and keep the irreducibility and the index of rigid-
ity. The additionAd ((x — c)*) is defined by the transformatioR — A + A
(i=1,...,p) with A, € C and 1< k < p, which corresponds to the transformation

U (X—cx)xu. The middle convolutiomc, corresponds to the fractional deriva-

tionu— (d%)_“ uwith u € C, which will be explained in the next section.

Katz [3] proved that any rigid local system is transformed into the trivial equation
U = 0 of rank 1 by successive applications of additions and middle convolutions.
Since these operations are invertible, any rigid local system is constructed and re-
alized in the form (1) from the trivial equation by successive applications of these
operations.

The author [4] interpreted the middle convolution for linear ordinary differential
equations with polynomial coefficients, reduced various analysis of rigid Fuchsian
ordinary differential equations to the study of solutions under the middle convolu-
tion and got many general results for solutions of rigid Fuchsian differential equa-
tions, such as their integral representations, connection formulas, series expansions,
irreducibility of monodromy groups, contiguous relations etc. Note that any rigid
local system is uniquely realized by a rigid single Fuchsian differential equation
without an apparent singularity (cf. [6, Lemma 2.1]).
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Dettweiler—Reiter [1] interpreted the middle convolution nictroduced by Katz
into an operation of the tuple of residue matri¢és, ..., Ap.1). In fact, they ex-
plicitly gave the conjugacy classes of residue matridgsn terms of those of
Ag,...,Api1. Here(Aq,...,Apt1) is the tuple of residue matrices wic, .7 .

Let | be a subset of1,...,p} and putA; = T, Ai. We show that the residue
class ofA = 5 A is explicitly determined by the residue classe®\of...,Ap; 1
andA, which is a generalization of a result in [1] and the main purpose of this paper.

Definition 2. Let y be an oriented simple closed cunwi C\ {cy,...,cp}. We may
assume

1 dz  [1 (ie))
e to e ?

with a subset C {1,..., p}. Thesemilocal monodromgf .# for {c; |i € |} is the
conjugacy class of the monodromy mathikof the solutions of# along the path
y. The semilocal monodromy of7 for {c¢; | i € {1,...,p+1}\ 1} is the conjugacy
class of the matrisa—2.

Suppose/ is rigid. Then the semilocal monodromy does not depend on the po-
sitions ofc; if (4) is valid. Hence it is the class containiaﬁTFlA' if any difference
of eigenvalues of\ is not a non-zero integer. Note that it follows from Corollary 1
that any eigenvalue of the semilocal monodromy#fis a certain product of inte-
ger powers of eigenvalues of local monodromies at singular points. This is not valid
wheny is not simple as is given in the first examplesih

Suppose the points for i € | coalesce into one conflunet poitand the rigid
equation# is changed into an equatio#’ with an irregular singular poirg; € C.
We may assume that the semilocal monodromy does not change in the confluence
and then we get the local monodromy.af’ atc,. This is the same for the conflu-
ence of the points; fori € {1,...,p+1}\1.

2 Middle convolution of a sum of residue matrices

The convolutiond, of the residue matricey of .# is given by

K
0 0 0
A=k A A+ Ap [ eM(pn,C)  (1<k<p) (5
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- ((A,- +I~la7j)é,k) 1<i<p

1<j<p

Ijere,&k are block matrices of sizewhose entries are square matrices of siaed
Apr1=—(A1+---+Ap). Letu € Cwith u # 0. Then the subspaces

0
A= | KerAj | ~KerAj (j=1,...,p),
0

p+1

\
K1 = {( ) | Aprv= uv} ~Ker(Apr1— M) and 7 =P %

v =1

of CP" are invariant under the linear transformations define&pﬁor i=1,...,p.
ThenA; induce linear transformations Gf*"/.% and the corresponding matrices
with respect to a base @*"/.%" are denoted by, respectively. Then the equation

— da P A
///:duzl A u
dx  4X-¢

is the middle convolution me.# of . and the tuple of matrice@, ..., Ap, Ap.1)
is the middle convolution of theNtup(é\l, o Apr). HereAp 1 = —(Ar+---+Ap).
PutA ;=i Ai, A=Y A and

0

yWi=i|y| (vech1<j<p)

For simplicity, we assume= {1,...,k} with 1 <k < p. Then

k
At A A A o A
AL At Ac Agr o Ap
A = ' ' ' ' [ eM(pnC). (6)
k|l A Ao o At A o A
0 0o ... 0 0O ... 0

By the linear automorphism oiP" defined by the matrix
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P= : - e M(pn,C),

the linear transformatioA; on CP" and the subspaces] are changed into

Avt- AU Az A Ayt o An

u
A =PAP 1= ' u ; (7)
0 0O---0 O 0
% v
v 0
Jni/l/ = k jv VE:%/]_ N Ji/lerl:: k O AS %+1 y

0 v

p+1

A= (2<j<p) and A =P
=1

Here we note that

A =2 nw) =i (A+p—2)'w) (weC" v=12...),
corank A/ —A)|gpny s = corank A +u—A)” (A eC\{O,u},v=12,...)
k
corank(Al — p1)P"|cpn/ 7 = dim KerA! + (k—1)n— Eldim%/i,
i=

N p
corank( Al — 0)P"|¢pn; -+ = dimKer(A 4+ p)"+ (p—k)n— dim.%].
j=kt1

Since (EC) of(A{ —A)Y|cen/ »+ €quals (EC) o\, we have the following theorem
by the above expression.

Theorem 1.Retain the assumption# 0and | C {1,..., p}. We have
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dimKer(Aj — ) = dimKer(A +u—A)Y (YA eC\{O,u}, v=1,2,..)),

_ K
dimKer(Al — 1)P" = dimKerA!' + (k—1)n— Zdimjé{,
i=

dimKer(A; —0)P" = dimKer(A + )"+ (p—k)n— 5 dim 7.
i=kt1
Suppose
KerA C KerA;N---NKerAg (8)
and
Ker(A 4+ u) ={0} or k=p. 9)

Then if A is semisimple, so A

Proof. Note that the assumption (8) impliegKerA,) C @!‘:1 2. Then the claims
in the theorem are clear by the argument just before the theorem.

Remark 1.(i) If asubset] C {0,..., p+1} containsp+ 1, we have a similar result
for Ay =3 jesAj by the factAp  py 3 +A;=0.
(i) The condition (8) in the theorem is valid if

K
dimKerA; < max{0,n— Zcodim KerA }.

(iif) Dettweiler-Reiter [1] obtained (EC) ofy when # = 1. Theorem 1 is a
generalization of their result. As is given in [1] a multiplicative version of Theorem 1
may be possible.

(iv) Haraoka [2] showed that the rigid equatio#’ can be extended to a KZ
equation

90 _ Av o
9% O<v<pXi — Xy
VA
with Xo = X, Xj = ¢j andAgj =Aj (j=1,...,p). HereA j = Aj; andAj = 0.
PutALp_H]_ = _(A|0 + e + A|p) andA| = 21§V<V'§|(Aiv-,ivl fOI‘ I == {il, ey |k} C
{0,1,..., p+1}. Then the author [7] studied the simultaneous conjugacy class of the
tuple (A;,A;) whenl NJ =0 orl C J which assuregA;,A;] = 0. SinceA; 1 =

(0<i<p

simultaneous conjugacy class. In fact, this is the original idea of this paper.

Corollary 1. Let.Z be the integer lattice spanned by the eigenvalues of the residue
matricesAy, ..., Apr1 Of arigid Fuchsian equation. Then any eigenvalue 8f =
SietAvisin Z forany I {1,...,p+1}.
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Proof. We can reduce# to the trivial equation and construct it from the trivial
equation by applying suitable operatiohd ((xij))‘i) and mg with Aj, y € 2,
which is explained in the next section. Hence the corollary follows from the theo-
rem.

3 Semilocal monodromy

Let {[Ajv]n, | v=1,...,m;,} be the eigenvalue classes of the residue matAges
of 4 givenin (1) forj=1,...,p+ 1. Then thegeneralized Riemann schewfe #
is defined by

X=C ... Cp 00
[Al,l]ml,l s [)‘ p,l] Mp.1 [A P+1~,1]mp+1,1
{Am} = : : : : (10)
[Al,nl]m11n1 e [)\ P-,np]mp.np [/\p+1,np+1]mp+1‘np+1

and
M=y Min,M2a-Mypy, e, Mpiaa- - Mpring,,

which express thép+ 1) tuples of partitions oh
N=mji+-+Mpn ((=1....,p+1) (11)

and is called thepectral typef .4 . We put defineankm = n
The spectral typen is orderedf

mj,lij,zz"'ij,nj (J:173p+1)

For a given spectral typm, sm denotes the corresponding ordered spectral type.
For an ordered spectral type we define

P+l
d(m) := z mj.1 — (p— 1)rankm, (12)
=1

om:=m'= (rﬁlv) v=1,..n; With
o j=1..,p+1 (13)
mi,=mjy—dmd (v=1....nj, j=1,...,p+1).

Here someﬂ , may be zero. Then suc‘rf , are omitted ana; may be decreased.

Itis proved by Katz [3] that# is r|g|d |f there exists a non-negative integer
such thatds)m are tuples of partitions of positive integers foe {1,...,r} and
moreover

rankm > rankdsm > rank(ds)’m > --- > rank(ds)'m = 1. (14)
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Here(p+ 1) tuples of partitiorm mean thatn; , are non-negative integer in (11).

Suppose (10) is the generalized Riemann schemg#ZofSuppose moreover
rank.# > 1 and m is ordered by replacingn by sm if necessary. Applying
M- Ad ((x—cj)~%it) to.#, we may assumaj ; = --- = Aj , = 0. Then we apply
me,,, to the system, we get a rigid Fuchsian equation with the spectraldgpe
The sequence (14) of spectral types corresponds to this procedure.

Katz [3] moreover showed that ih are tuples of partitions with this property
(14), then for any; , satisfying Fuchs condition

p+1 N
Z z mjﬁvAj.v = O7
j=1v=1

there exists a Fuchsian equatio# with the generalized Riemann scheme (10),
which is rigid for a generid; . This follows from the facAd ((x— ¢i)*) oAd((x—
¢j)™) =mc_yome, =id.

The necessary and sufficient condition for the irreducibility of the monodromy
group of the solutions of# is explicitly given (cf. [4, Proposition 10.16] and [6]).
Then (EC) of the local monodromy matrix>at= c; is given by

{[eZ”F“LV]mLV lv=1...n;}

if .# is rigid, which is given in [4, Remark 10.11 iii)]. This is not obvious when
there exis < v’ with Aj , — A v € Z\ {0} but this is proved as follows.
If Ajv—Ajv € Zforanyv andv’ with 1 < v < v’ < nj, the claim is obvious.
Suppose (EC) of a matri&(t) with the continuous parametee [0,1] is given
by {[Av(t)]m, | v=1,...,r} fort € (0,1]. We may assuma,(t) are continuous
functions on[0,1]. Then (EC) of a matrixA(0) weakly equals{[Ay(0)]m, | Vv =
1,...,r} (cf. [5, Proposition 3.3]). Here “weakly” means that the condition (2) is
replaced by

corankA—pj)” > mj1+---+mjy (v=1,...,nj) (15)

in Definition 1. Then the index of rigidity with respect to the local monodromy
matrices implies the above statement.

Proposition 1. Let.# in (1) be a rigid Fuchsian differential equation and forc
{1,...,p} let {[A]m, | v=1,...,r} be (EC) ofAl = ;| Ai. Supposé\, — A,/ ¢
7\ {0} for 1 <v < Vv’ <r. Then (EC) of the semilocal monodromy.#f for {c; |
i €1} equals{[™ "My, |v=1,..r}.

Proof. Since the equation is rigid, the semilocal monodromy does not depend on
the pointsc; and we may choose points (i € |) as a single point, which implies

the proposition. There may be a better understanding of this proof if we corsider
as variables (cf. Remark 1 (iv) ).O

Remark 2. (i) We expect that the semilocal monodromy for a rigid spectral type
m with a generalized Riemann scheme (10) is semisimple if the expohgntsre
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generic under the Fuchs condition. Note that the semisimlicity of local monodromies
do not assure that of a semilocal monodromy (cf. (16) With- - - - + Ax + u = 0).

We also expect that by the continuation of parametgiswith the rigidity, we
also determine a semilocal monodromy even if it is not semisimple as in the case of
the local monodromy.

(ii) The algorithm calculating (EC) oA, given in this paper is implemented in a
computer algebra, which is contained in [8].

4 Examples

We start with Gauss hypergeometric equation, which is characterized by the spectral
type 11,11, 11. Applying the operatiomc, o Ad((x— 1)B) o Ad(x?) to the trivial
equation, we get

0 0
au_((%"8) _(E6%)y,
dx X x—1
with the Riemann scheme

x=0 1 00
0 0 -y .
a+y B+y —a-B-y

Under a suitable base of solutions the local monodromy mathigeat x = 0 and
M1 atx =1 are given by

_(ac (b—1)c (1 0
MO_(O 1 )’ Ivh_(a—l bc)

with a= e™~1a p— m/~-18 gndc = 21y,

The monodromy matrix corresponding to a simple closed c|#ve 2 is given
by M1Mp and (EC) ofM1 Mg is {c, abc} if the equation is irreducible.

The monodromy matrix corresponding to a closed ci@wegith ch S =

-1l and—— zmﬁ fC -4 = 1is given byM;M; . L. The eigenvalue oIR/IlMO is not a
rational function ofa, b andc. For example, i = ¢ = —1, the eigenvaluesatisfies
t?+3(b—1)t—b=0.

Applying mg, o |‘|Jp:1Ad ((x— cj))‘i) to the trivial equation, we get Jordan-
Pochhammer equatio® with the generalized Riemann scheme

=Cp --- Cp 00
[Op-1 -+ [O]p1 [—H]p-1 .
AL+U - ApF U —Ap—--—Ap— U
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p+1

This equation is characterized by the spectral type 1)1, (p—1)1,---,(p—1)1.
The monodromy group of this equation is irreducible if and only if any one of the
(p+2) numbersAy,---,Ap, 4, A1+ -+ Ap+ H is not an integer (cf. [4§13.3]).

Then (EC) ofA; . x with 1 <k < pequals

{Ar+- A+ [Opk, k1)

and (EC) of the semilocal monodromy fe,...,ck} equals

(& gy [ ) (16)

if the equation has an irreducible monodromy (cf. (7)). Replacing

Ai

Cj (Ci —&)
k-+1<V<i, V#]

for j=k+1,...,p,

cj by 611 and Aj by

M=

we get an irregular singularity at = « by the confluence given bg; — 0
for j = k+1,...,p which corresponds to &ersal additiondefined in [4,52.3]
(cf. [4, §13.3:]). This v_ersal addition depends holomorphically &@nand equals

eaax k2,2 Af XPK Iy » N
Ad (et T2 PR (x—cj) i) wheng;1 =--- =€ =0. Thenthe
conjugacy class of the semilocal monodromy matrix{for, . .., ck} is kept invari-
ant under the confluence and (EC) of the inverse of the local monodromy matrix at
the irregular singular point equals (16).
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