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Abstract The rigid local system onP1 \S with a setS of finite points is realized
as a rigid Fuchsian differential equationM of Schlesinger canonical form. Here
“rigid” means that the equation is uniquely determined by the equivalence classes of
residue matrices ofM at the points inS. Thesemilocal monodromyin this paper is
the conjugacy class of the monodromy matrix obtained by the analytic continuation
of the solutions ofM along an orientedsimpleclosed curveγ on C \S. Since it
corresponds to the sum of residue matrices at the singular points surrounded byγ
and the equationM is obtained by applying additions and middle convolutions to
the trivial equation, we study the application of the middle convolution to the sums
of residue matrices. In this way we give an algorithm calculating this semilocal
monodromy, which also gives the local monodromy at the irregular singular point
obtained by the confluence of these points.

1 Introduction

The global theory of Fuchsian differential equations has been greatly developed
after the work of Katz [3] on rigid local systems, which we will shortly explain.

Fuchsian differential equation of Schlesinger canonical form is

M :
du
dx

=
p

∑
i=1

Ai

x−ci
u (1)

with Ai ∈ M(n,C). Heren is the rank of the equation,u is a column vector ofn
unknown functions,M(n,C) denotes the set of square matrices of sizeN with com-
ponents inC, Ai is called theresidue matrixatx= ci and the residue matrix atx= ∞
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equals−(A1+ · · ·+Ap) which we denote byAp+1. The equationM is calledirre-
duciblein Schlesinger canonical form if there exists no non-trivial proper subspace
V ⊂ Cn satisfyingAiV ⊂V for i = 1, . . . , p.

Definition 1. For a matrixA ∈ M(n,C) we put{µ1, . . . ,µr} = {µ ∈ C | rank(A−
µ)< n}. Then there exist positive numbersn j andmj,ν for 1≤ j ≤ r and 1≤ ν ≤ n j

such that

corank(A−µ j)
ν = mj,1+ · · ·+mj,ν (ν = 1, . . . ,n j), (2)

rank(A−µ j)
n j = rank(A−µ j)

n j+1. (3)

Here∑r
j=1 ∑

n j
ν=1mj,ν = n. Note that the set

{
[µ j ]mj,ν | 1≤ ν ≤ n j and 1≤ j ≤ r

}
,

which we call theeigenvalue classof A and write by (EC) ofA for simplicity, deter-
mines the conjugacy class of matrices containingA. The matrixA is semisimple if
and only ifn1 = · · ·= nr = 1. Here we may simply writeµ j in place of[µ j ]1.

Let
{
[λi,ν ]mi,ν | 1≤ ν ≤ ni} be the eigenvalue classes ofAi for i = 1, . . . , p+1,

respectively. Theindex of rigidityof M defined by Katz [3] equals

idxM :=
p+1

∑
i=1

ni

∑
ν=1

m2
i,ν − (p−1)n2.

An irreducible equationM is calledrigid if the conjugacy classes ofAi for i =
1, . . . , p+1 uniquely determine the simultaneous conjugacy class of(A1, . . . ,Ap+1),
which means that the local structure ofM at singular points uniquely determines the
global structure ofM . Katz [3] proved that an irreducible equationM is rigid if and
only if idxM = 2 by introducing two types of operations of the equations. They are
additions and middle convolutions and keep the irreducibility and the index of rigid-
ity. The additionAd

(
(x− ck)

λk
)

is defined by the transformationAi 7→ Ai +λkδi,k

(i = 1, . . . , p) with λk ∈ C and 1≤ k ≤ p, which corresponds to the transformation
u 7→ (x−ck)

λku. The middle convolutionmcµ corresponds to the fractional deriva-

tion u 7→
(

d
dx

)−µ
u with µ ∈ C, which will be explained in the next section.

Katz [3] proved that any rigid local system is transformed into the trivial equation
u′ = 0 of rank 1 by successive applications of additions and middle convolutions.
Since these operations are invertible, any rigid local system is constructed and re-
alized in the form (1) from the trivial equation by successive applications of these
operations.

The author [4] interpreted the middle convolution for linear ordinary differential
equations with polynomial coefficients, reduced various analysis of rigid Fuchsian
ordinary differential equations to the study of solutions under the middle convolu-
tion and got many general results for solutions of rigid Fuchsian differential equa-
tions, such as their integral representations, connection formulas, series expansions,
irreducibility of monodromy groups, contiguous relations etc. Note that any rigid
local system is uniquely realized by a rigid single Fuchsian differential equation
without an apparent singularity (cf. [6, Lemma 2.1]).
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Dettweiler–Reiter [1] interpreted the middle convolution mcµ introduced by Katz
into an operation of the tuple of residue matrices(A1, . . . ,Ap+1). In fact, they ex-
plicitly gave the conjugacy classes of residue matricesĀ j in terms of those of
A1, . . . ,Ap+1. Here(Ā1, . . . , Āp+1) is the tuple of residue matrices ofmcµM .

Let I be a subset of{1, . . . , p} and putAI = ∑i∈I Ai . We show that the residue
class ofĀI = ∑i∈I Āi is explicitly determined by the residue classes ofĀ1, . . . , Āp+1

andĀI , which is a generalization of a result in [1] and the main purpose of this paper.

Definition 2. Let γ be an oriented simple closed curveγ in C\{c1, . . . ,cp}. We may
assume

1

2π
√
−1

∫
γ

dz
x−ci

=

{
1 (i ∈ I)

0 (i ̸∈ I)
(4)

with a subsetI ⊂ {1, . . . , p}. Thesemilocal monodromyof M for {ci | i ∈ I} is the
conjugacy class of the monodromy matrixM of the solutions ofM along the path
γ . The semilocal monodromy ofM for {ci | i ∈ {1, . . . , p+1}\ I} is the conjugacy
class of the matrixM−1.

SupposeM is rigid. Then the semilocal monodromy does not depend on the po-
sitions ofci if (4) is valid. Hence it is the class containinge2π

√
−1ĀI if any difference

of eigenvalues ofAI is not a non-zero integer. Note that it follows from Corollary 1
that any eigenvalue of the semilocal monodromy ofM is a certain product of inte-
ger powers of eigenvalues of local monodromies at singular points. This is not valid
whenγ is not simple as is given in the first example in§4.

Suppose the pointsci for i ∈ I coalesce into one conflunet pointcI and the rigid
equationM is changed into an equationM ′ with an irregular singular pointcI ∈C.
We may assume that the semilocal monodromy does not change in the confluence
and then we get the local monodromy ofM ′ at cI . This is the same for the conflu-
ence of the pointsci for i ∈ {1, . . . , p+1}\ I .

2 Middle convolution of a sum of residue matrices

The convolutionÃk of the residue matricesAk of M is given by

Ãk =



k

0 · · · 0 · · · 0
... · · ·

... · · ·
...

k A1 · · · Ak+µ · · · Ap

... · · ·
... · · ·

...

0 · · · 0 · · · 0


∈ M(pn,C) (1≤ k≤ p) (5)
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=
(
(A j +µδi, j)δi,k

)
1≤i≤p
1≤ j≤p

HereÃk are block matrices of sizep whose entries are square matrices of sizen and
Ãp+1 =−(Ã1+ · · ·+ Ãp). Let µ ∈ C with µ ̸= 0. Then the subspaces

K j := j


0...

KerA j
0...

≃ KerA j ( j = 1, . . . , p),

Kp+1 :=

{(
v...
v

)
| Ap+1v= µv

}
≃ Ker(Ap+1−µ) and K :=

p+1⊕
j=1

K j

of Cpn are invariant under the linear transformations defined byÃ j for j = 1, . . . , p.
ThenÃ j induce linear transformations ofCpn/K and the corresponding matrices
with respect to a base ofCpn/K are denoted bȳA j , respectively. Then the equation

M̄ :
dū
dx

=
p

∑
i=1

Āi

x−ci
ū

is the middle convolution mcµ M of M and the tuple of matrices
(
Ā1, . . . , Āp, Āp+1

)
is the middle convolution of the tuple(A1, . . . ,Ap+1). HereĀp+1 =−(Ā1+ · · ·+Āp).

PutĀI := ∑i∈I Āi , ÃI := ∑i∈I Ãi and

ι j(v) := j


0...
v
0...

 (v∈ Cn, 1≤ j ≤ p).

For simplicity, we assumeI = {1, . . . ,k} with 1≤ k≤ p. Then

ÃI =



k

A1+µ A2 · · · Ak Ak+1 · · · Ap

A1 A2+µ · · · Ak Ak+1 · · · Ap

...
...

.. .
... · · ·

...
...

k A1 A2 · · · Ak+µ Ak+1 · · · Ap

0 0 · · · 0 0 · · · 0
...

...
...

...
...

...
...


∈ M(pn,C). (6)

By the linear automorphism onCpn defined by the matrix
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P=



k

In
−In In

...
. . .

k −In In
In

. . .


∈ M(pn,C),

the linear transformatioñAI onCpn and the subspacesK j are changed into

Ã′
I := PÃI P

−1 =



A1+ · · ·+Ak+µ A2 · · · Ak Ak+1 · · · An

µ
. . .

µ
0 0 · · · 0 0 · · · 0
...

...
...

...
...

...
...


, (7)

K ′
1 :=

 k


v
−v
...
−v
0...


∣∣∣∣∣∣∣∣v∈ K1

 , K ′
p+1 :=

 k


v
0
...
0
v...


∣∣∣∣∣∣∣∣v∈ Kp+1

 ,

K ′
j := K j (2≤ j ≤ p) and K ′ :=

p+1⊕
j=1

K ′
j .

Here we note that

(Ã′
I −λ )ν ι1(w) = ι1

(
(AI +µ −λ )νw

)
(w∈ Cn, ν = 1,2, . . .),

corank(Ã′
I −λ )ν |Cpn/K ′ = corank(AI +µ −λ )ν (λ ∈ C\{0,µ}, ν = 1,2, . . .)

corank(Ã′
I −µ)pn|Cpn/K ′ = dimKerAn

I +(k−1)n−
k

∑
i=1

dimKi ,

corank(Ã′
I −0)pn|Cpn/K ′ = dimKer(AI +µ)n+(p−k)n−

p

∑
j=k+1

dimK j .

Since (EC) of(Ã′
I −λ )ν |Cpn/K ′ equals (EC) ofĀI , we have the following theorem

by the above expression.

Theorem 1.Retain the assumptionµ ̸= 0 and I⊂ {1, . . . , p}. We have
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dimKer(ĀI −λ )ν = dimKer(AI +µ −λ )ν (∀λ ∈ C\{0,µ}, ν = 1,2, . . .),

dimKer(ĀI −µ)pn = dimKerAn
I +(k−1)n−

k

∑
i=1

dimKi ,

dimKer(ĀI −0)pn = dimKer(AI +µ)n+(p−k)n−
p+1

∑
i=k+1

dimKi .

Suppose

KerAI ⊂ KerA1∩·· ·∩KerAk (8)

and

Ker(AI +µ) = {0} or k= p. (9)

Then if AI is semisimple, so is̄AI .

Proof. Note that the assumption (8) impliesι1(KerAI )⊂
⊕k

i=1K ′
i . Then the claims

in the theorem are clear by the argument just before the theorem.⊓⊔

Remark 1.(i) If a subsetJ⊂{0, . . . , p+1} containsp+1, we have a similar result
for ĀJ = ∑ j∈J A j by the factĀ{0,...,p}\J + ĀJ = 0.

(ii) The condition (8) in the theorem is valid if

dimKerAI ≤ max
{

0,n−
k

∑
i=1

codimKerAi
}
.

(iii) Dettweiler-Reiter [1] obtained (EC) ofAI when #I = 1. Theorem 1 is a
generalization of their result. As is given in [1] a multiplicative version of Theorem 1
may be possible.

(iv) Haraoka [2] showed that the rigid equationM can be extended to a KZ
equation

∂ ũ
∂xi

= ∑
0≤ν≤p

ν ̸=i

Ai,ν
xi −xν

ũ (0≤ i ≤ p)

with x0 = x, x j = c j andA0, j = A j ( j = 1, . . . , p). HereAi, j = A j,i andAi,i = 0.
PutAi,p+1 := −(Ai,0+ · · ·+Ai,p) andÃI := ∑1≤ν<ν ′≤k Aiν ,iν ′ for I = {i1, . . . , ik} ⊂
{0,1, . . . , p+1}. Then the author [7] studied the simultaneous conjugacy class of the
tuple(ÃI , ÃJ) whenI ∩J = /0 or I ⊂ J which assures[ÃI , ÃJ] = 0. SinceA{1,...,k} =

ÃJ − ÃI with I = {1, . . . ,k} andJ = {0, . . . ,k}, we have (EC) ofA{1,...,k} by this
simultaneous conjugacy class. In fact, this is the original idea of this paper.

Corollary 1. LetL be the integer lattice spanned by the eigenvalues of the residue
matricesA1, . . . ,Ap+1 of a rigid Fuchsian equationM . Then any eigenvalue ofAI =

∑i∈I Ai is in L for any I⊂ {1, . . . , p+1}.
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Proof. We can reduceM to the trivial equation and construct it from the trivial
equation by applying suitable operationsAd

(
(x−x j)

λ j
)

and mcµ with λ j , µ ∈ L ,
which is explained in the next section. Hence the corollary follows from the theo-
rem.

3 Semilocal monodromy

Let {[λ j,ν ]n j | ν = 1, . . . ,mj,ν} be the eigenvalue classes of the residue matricesA j

of M given in (1) for j = 1, . . . , p+1. Then thegeneralized Riemann schemeof M
is defined by

{
λm

}
=


x= c1 . . . cp ∞
[λ1,1]m1,1 . . . [λp,1]mp,1 [λp+1,1]mp+1,1

...
...

...
...

[λ1,n1]m1,n1
. . . [λp,np]mp,np

[λp+1,np+1]mp+1,np+1

 (10)

and
m = m1,1 · · ·m1,n1,m2,1 · · ·m2,n2, · · · ,mp+1,1 · · ·mp+1,np+1

which express the(p+1) tuples of partitions ofn

n= mj,1+ · · ·+mj,n j ( j = 1, . . . , p+1) (11)

and is called thespectral typeof M . We put definerankm = n
The spectral typem is orderedif

mj,1 ≥ mj,2 ≥ ·· · ≥ mj,n j ( j = 1, . . . , p+1).

For a given spectral typem, sm denotes the corresponding ordered spectral type.
For an ordered spectral typem we define

d(m) :=
p+1

∑
j=1

mj,1− (p−1)rankm, (12)

∂m := m′ =
(
m′

j,ν
)

ν=1,...,n j
j=1,...,p+1

with

m′
j,ν = mj,ν −d(m)δν ,1 (ν = 1, . . . ,n j , j = 1, . . . , p+1).

(13)

Here somem′
j,ν may be zero. Then suchm′

j,ν are omitted andn j may be decreased.
It is proved by Katz [3] thatM is rigid if there exists a non-negative integerr

such that(∂s)νm are tuples of partitions of positive integers forν ∈ {1, . . . , r} and
moreover

rankm > rank∂sm > rank(∂s)2m > · · ·> rank(∂s)rm = 1. (14)
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Here(p+1) tuples of partitionm mean thatmj,ν are non-negative integer in (11).
Suppose (10) is the generalized Riemann scheme ofM . Suppose moreover

rankM > 1 and m is ordered by replacingm by sm if necessary. Applying
∏p

j=1Ad
(
(x−c j)

−λ j,1
)

to M , we may assumeλ j,1 = · · ·= λ j,p = 0. Then we apply
mcλp+1

to the system, we get a rigid Fuchsian equation with the spectral type∂m.
The sequence (14) of spectral types corresponds to this procedure.

Katz [3] moreover showed that ifm are tuples of partitions with this property
(14), then for anyλ j,ν satisfying Fuchs condition

p+1

∑
j=1

n j

∑
ν=1

mj,ν λ j,ν = 0,

there exists a Fuchsian equationM with the generalized Riemann scheme (10),
which is rigid for a genericλ j,ν . This follows from the factAd

(
(x−c j)

λ )◦Ad
(
(x−

c j)
−λ )= mc−µ ◦mcµ = id.
The necessary and sufficient condition for the irreducibility of the monodromy

group of the solutions ofM is explicitly given (cf. [4, Proposition 10.16] and [6]).
Then (EC) of the local monodromy matrix atx= c j is given by{

[e2π
√
−1λ j,ν ]mj,ν | ν = 1, . . . ,n j

}
if M is rigid, which is given in [4, Remark 10.11 iii)]. This is not obvious when
there existν < ν ′ with λ j,ν −λ j,ν ′ ∈ Z\{0} but this is proved as follows.

If λ j,ν −λ j,ν ′ ̸∈ Z for anyν andν ′ with 1≤ ν < ν ′ ≤ n j , the claim is obvious.
Suppose (EC) of a matrixA(t) with the continuous parametert ∈ [0,1] is given

by {[λν(t)]mν | ν = 1, . . . , r} for t ∈ (0,1]. We may assumeλν(t) are continuous
functions on[0,1]. Then (EC) of a matrixA(0) weakly equals{[λν(0)]mν | ν =
1, . . . , r} (cf. [5, Proposition 3.3]). Here “weakly” means that the condition (2) is
replaced by

corank(A−µ j)
ν ≥ mj,1+ · · ·+mj,ν (ν = 1, . . . ,n j) (15)

in Definition 1. Then the index of rigidity with respect to the local monodromy
matrices implies the above statement.

Proposition 1. Let M in (1) be a rigid Fuchsian differential equation and forI ⊂
{1, . . . , p}, let

{
[λν ]mν | ν = 1, . . . , r

}
be (EC) ofAI = ∑i∈I Ai . Supposeλν −λν ′ /∈

Z \{0} for 1≤ ν < ν ′ ≤ r. Then (EC) of the semilocal monodromy ofM for {ci |
i ∈ I} equals

{
[e2π

√
−1λν ]mν | ν = 1, . . . , r

}
.

Proof. Since the equation is rigid, the semilocal monodromy does not depend on
the pointsci and we may choose pointsci (i ∈ I) as a single point, which implies
the proposition. There may be a better understanding of this proof if we considerc j

as variables (cf. Remark 1 (iv) ).⊓⊔

Remark 2. (i) We expect that the semilocal monodromy for a rigid spectral type
m with a generalized Riemann scheme (10) is semisimple if the exponentsλ j,ν are
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generic under the Fuchs condition. Note that the semisimlicity of local monodromies
do not assure that of a semilocal monodromy (cf. (16) withλ1+ · · ·+λk+µ = 0).

We also expect that by the continuation of parametersλ j,ν with the rigidity, we
also determine a semilocal monodromy even if it is not semisimple as in the case of
the local monodromy.

(ii) The algorithm calculating (EC) ofAI given in this paper is implemented in a
computer algebra, which is contained in [8].

4 Examples

We start with Gauss hypergeometric equation, which is characterized by the spectral
type11,11,11. Applying the operationmcγ ◦Ad

(
(x−1)β ) ◦Ad

(
xα) to the trivial

equation, we get

du
dx

=

((
α+γ β

0 0

)
x

+

(
0 0
α β+γ

)
x−1

)
u

with the Riemann scheme x= 0 1 ∞
0 0 −γ

α + γ β + γ −α −β − γ

 .

Under a suitable base of solutions the local monodromy matricesM0 at x = 0 and
M1 atx= 1 are given by

M0 =

(
ac (b−1)c
0 1

)
, M1 =

(
1 0

a−1 bc

)
with a= e2π

√
−1α , b= e2π

√
−1β andc= e2π

√
−1γ .

The monodromy matrix corresponding to a simple closed curve|z| = 2 is given
by M1M0 and (EC) ofM1M0 is {c, abc} if the equation is irreducible.

The monodromy matrix corresponding to a closed curveC with 1
2π

√
−1

∫
C

dz
z =

−1 and 1
2π

√
−1

∫
C

dz
z−1 = 1 is given byM1M−1

0 . The eigenvalue ofM1M−1
0 is not a

rational function ofa, b andc. For example, ifa= c=−1, the eigenvaluet satisfies
t2+3(b−1)t −b= 0.

Applying mcµ ◦ ∏p
j=1Ad

(
(x− c j)

λ j
)

to the trivial equation, we get Jordan-
Pochhammer equationM with the generalized Riemann scheme x= c1 · · · cp ∞

[0]p−1 · · · [0]p−1 [−µ ]p−1

λ1+µ · · · λp+µ −λ1−·· ·−λp−µ

 .
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This equation is characterized by the spectral type

p+1︷ ︸︸ ︷
(p−1)1,(p−1)1, · · · ,(p−1)1.

The monodromy group of this equation is irreducible if and only if any one of the
(p+2) numbersλ1, · · · ,λp,µ ,λ1+ · · ·+λp+µ is not an integer (cf. [4,§13.3]).

Then (EC) ofA1,...,k with 1≤ k≤ p equals{
λ1+ · · ·+λk+µ , [0]p−k, [µ ]k−1

}
and (EC) of the semilocal monodromy for{c1, . . . ,ck} equals{

e2π
√
−1(λ1+···+λk+µ)

, [1]p−k, [e
2π

√
−1µ ]k−1

}
(16)

if the equation has an irreducible monodromy (cf. (7)). Replacing

c j by
1
c̃ j

and λ j by
p

∑
i= j

λ̃i

c̃ j ∏
k+1≤ν≤i,ν ̸= j

(c̃ j − c̃ν)
for j = k+1, . . . , p,

we get an irregular singularity atx = ∞ by the confluence given bỹc j → 0
for j = k+ 1, . . . , p which corresponds to aversal additiondefined in [4,§2.3]
(cf. [4, §13.3]). This versal addition depends holomorphically onc̃ j and equals

Ad
(
e−λ̃k+1x− λ̃k+2

2 x2−···− λ̃p
p−k xp−k

∏k
j=1(x−c j)

λ j
)

whenc̃k+1 = · · ·= c̃p = 0. Then the
conjugacy class of the semilocal monodromy matrix for{c1, . . . ,ck} is kept invari-
ant under the confluence and (EC) of the inverse of the local monodromy matrix at
the irregular singular point equals (16).
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