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1 Introduction

The invariant differential operators on a semisimple symmetric space have
regular singularities along the boundaries of the space which is realized in
a compact manifold by [O6]. In the case of a Riemannian symmetric space
G/K, the study of such operators in [KO] enables [K–] to have the Poisson
integral expression of any simultaneous eigenfunction of the operators. Here
G is a connected real semisimple Lie group with finite center and K is its
maximal compact subgroup.

In the case of the group manifold G, which is an example of a semisim-
ple symmetric space, Harish-Chandra gives an asymptotic expansion of a right
and left K-finite eigenfunction, which plays an important role in the harmonic
analysis on G (cf. [Ha]). He uses only the Casimir operator to get the asymp-
totic expansion, which suggests us that one operator controls other operators
together with some geometry.

On the other hand, the Schrödinger operator corresponding to Calogero-
Moser-Sutherland system with a trigonometric potential function (cf. [Su])
or a Toda finite chain (cf. [To]) is completely integrable and the integrals
with higher orders are uniquely characterized by the Schrödinger operator
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and so are the simultaneous eigenfunctions. These integrals also have regular
singularities at infinity.

In this note we study a general commuting system of differential operators
with regular singularities by paying attention to the fact that an operator
characterizes the system. Our argument used in this note is based on expan-
sions in power series and hence it is rather elementary compared to that in
[KO] and [O4] where a microlocal method is used.

In fact we will study matrices of differential operators which may not
commute with others in the system but satisfy a certain condition because it
is better to do so even in the study of commuting scalar differential operators.
Some of its reasons will be revealed in the proof of Theorem 4.1, that of
Theorem 6.3, Remark 4.3 ii) etc.

In §2 we study differential operators which commute one operator. We will
see that the symbol map σ∗ plays an important role. In the case of the first
example above the map corresponds to Harish-Chandra’s isomorphism of the
invariant differential operators. In the case of the Schrödinger operator above
it corresponds to the commutativity among the integrals with higher orders.

In §3 we construct some of multivalued holomorphic solutions of the system
around the singular points which we call ideally analytic solutions and then
in §4 we study the induced equations of other operators, which assures that
the solutions automatically satisfy some other differential equations.

In §5 we study the holonomic system of differential equations with constant
coefficients holomorphically depending on a parameter, which controls the
leading terms of the ideally analytic solutions.

In §6 we study a complete system of differential equations with regular sin-
gularities which means that the system is sufficient to formulate a boundary
value problem along the singularities and we describe all the ideally analytic
solutions. In particular, when the system has a holomorphic parameter, we
construct solutions depending holomorphically on the parameter. It is in fact
useful to introduce a parameter for the study of a specific system by holomor-
phically deforming it to generic simpler ones.

In §7 and §8 we give some explicit examples of the systems related to
SL(n, R) and the completely integrable quantum systems with regular singu-
larities at infinity, respectively. Moreover we give Theorem 8.1 in the case of
completely integrable quantum systems with two variables.

2 Commuting differential operators with regular
singularities

For a positive integer m and a ring R we will denote by M(m,R) the ring
of square matrices of size m with components in R and by R[ξ] the ring of
polynomials of n indeterminates {ξ1, . . . , ξn} if ξ = (ξ1, . . . , ξn). The (i, j)-
component of A ∈ M(m, R) is denoted by Aij and we naturally identify
M(1, R) with R.
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Let M be an (n+n′)-dimensional real analytic manifold and let Ni be one-
codimensional submanifolds of M such that N1, . . . , Nn are normally crossing
at N = N1 ∩ · · · ∩ Nn. We assume that M and N are connected. We will
fix a local coordinate system (t, x) = (t1, . . . , tn, x1, . . . , xn′) around a point
xo ∈ N so that Ni are defined by the equations ti = 0, respectively.

Let AN denote the space of real analytic functions on N and AM the
space of real analytic functions defined on a neighborhood of N in M . For
α = (α1, . . . , αn), β = (β1, . . . , βn) ∈ Zn we put

|α| = α1 + · · · + αn,

α < β ⇔ αi ≤ βi for i = 1, . . . , n and α ̸= β.

Let N be the set of non-negative integers. We will denote
ϑi = ti

∂
∂ti

, ∂x =
(

∂
∂x1

, . . . , ∂
∂xn′

)
,

ϑα = ϑα1
1 · · ·ϑαn

n for α = (α1, . . . , αn) ∈ Nn,

∂β
x = ∂|β|

∂x
β1
1 ···∂x

β
n′

n′
for β = (β1, . . . , βn′) ∈ Nn′

,

tλ = tλ1
1 · · · tλn

n for λ = (λ1, . . . , λn) ∈ Cn.

Let DM and DN denote the rings of differential operators on M and N
with coefficients in AM and AN , respectively.

Definition 2.1. Let D̃∗ denote the subring of DM whose elements P have the
form

P =
∑

(α,β)∈Nn+n′

aα,β(t, x)ϑα∂β
x with aα,β(t, x) ∈ AM . (1)

Here the sum above is finite. Moreover D∗ denotes the subring of D̃∗ whose
elements P of the form (1) satisfy

aα,β(0, x) = 0 if β ̸= 0. (2)

When P is an element of D∗, P is said to have regular singularities in the
weak sense along the set of walls {N1, . . . , Nn} with the edge N (cf. [KO]).

Let define a map σ∗ of D̃∗ to DN [ξ] by

σ∗(P )(x, ξ, ∂x) :=
∑

α∈Nn, β∈Nn′

aα,β(0, x)ξα∂β
x

for P in (1). Then

t−λPtλϕ(t, x)
∣∣
t=0

= σ∗(P )(x, λ, ∂x)ϕ(0, x) for ϕ ∈ AM and λ ∈ Cn.

Here we note that the condition P ∈ D̃∗ equals

t−λPtλϕ(t, x) ∈ AM for ∀ϕ(t, x) ∈ AM
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and σ∗ is a ring homomorphism of D̃∗ to DN [ξ] and σ∗(D∗) = AN [ξ].
For k ∈ N and P ∈ D̃∗ with the form (1) we put

σk(P )(t, x, ξ, τ) :=
∑

|α|+|β|=k

aα,β(t, x)ξατβ

and then the order of P , which is denoted by ordP , is the maximal integer k
with σk(P ) ̸= 0.

For P =
(
Pij

)
1≤i≤m
1≤j≤m

∈ M(m, D̃∗), the order of P is defined to be the

maximal order of the components of P and denoted by ordP . We put

σ(P ) :=
(
σord P (Pij)

)
1≤i≤m
1≤j≤m

∈ M(m,AM [ξ, τ ]),

σ∗(P ) :=
(
σ∗(Pij)

)
1≤i≤m
1≤j≤m

∈ M(m,DN [ξ]),

σ̄∗(P ) := σ(P )(0, x, ξ, ∂x) ∈ M(m,DN [ξ]).

Then as a polynomial of ξ, σ̄∗(P ) is the homogeneous part of σ∗(P ) whose
degree equals ord P . For P, Q ∈ D̃∗, we note that σ(PQ) = σ(P )σ(Q) and

σord P+ord Q−1([P,Q]) =
n∑

i=1

(∂σ(P )
∂ξi

ti
∂σ(Q)

∂ti
− ∂σ(Q)

∂ξi
ti

∂σ(P )
∂ti

)

+
n′∑

j=1

(∂σ(P )
∂τj

∂σ(Q)
∂xj

− ∂σ(Q)
∂τj

∂σ(P )
∂xj

)
.

Theorem 2.2. Let P and Q be nonzero elements of M(m, D̃∗) such that
[P,Q] = 0, P ∈ M(m,D∗) and σ(P ) is a scalar matrix satisfying

n∑
ν=1

γν
∂σ̄∗(P )

∂ξν
̸≡ 0 for ∀γ ∈ Nn \ {0}. (3)

Here “ ̸≡ 0” means “not identically zero”. Suppose that σord P−1(P ) or σ(Q)
is a scalar matrix. Then [σ∗(P ), σ∗(Q)] = 0 and σ̄∗(Q) ̸= 0. Moreover if
σ(P )(t, x, ξ, τ) does not depend on t, so does σ(Q)(t, x, ξ, τ).

Proof. Since σ∗ is an algebra homomorphism, [σ∗(P ), σ∗(Q)] = σ∗([P,Q]) = 0.
Put rP = ordP and rQ = ordQ. Fix i and j such that σrQ

(Qij) ̸= 0. Note
that the assumption implies

σrP +rQ−1([P,Q]ij) = σrP +rQ−1([P11, Qij ]).

Put

σrP
(P11) =

∑
β, γ

|β|≤rP

pβ,γ(x, ξ)tγτβ , σrQ
(Qij) =

∑
β, γ

|β|≤rQ

qβ,γ(x, ξ)tγτβ ,
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σrP +rQ−1([P11, Qij ]) =
∑
β, γ

|β|≤rP +rQ−1

sβ,γ(x, ξ)tγτβ

and choose (βo, γo) ∈ Nn′+n such that
qβo,γo ̸= 0,

qβ,γ = 0 if γ < γo,

qβ,γo = 0 if β > βo.

Then

sβo,γotγ
o

τβo

=
( n∑

ν=1

∂p0,0

∂ξν
γo

ν

)(
qβo,γotγ

o

τβo
)
, (4)

which proves the first claim in the theorem because the condition [P,Q] = 0
with the assumption of the theorem means γo = 0.

Moreover suppose pβ,γ = 0 for γ ̸= 0. Then (4) is valid for any γo ∈ Nn and
βo ∈ Nn′

satisfying qβ,γo = 0 for β > βo and hence the condition [P,Q] = 0
means qβo,γo = 0 if γo ̸= 0. Thus qβ,γo = 0 if γo ̸= 0. ⊓⊔

Corollary 2.3. Let P ∈ M(m,D∗) such that σ(P ) and σord P−1(P ) are scalar
matrices. Suppose σ̄∗(P ) satisfies (3). Then the map

σ∗ : M(m, D̃∗)P := {Q ∈ M(m, D̃∗) ; [P,Q] = 0} → M(m,DN [ξ]),
Q 7→ σ∗(Q)

is an injective algebra homomorphism.
In particular, when m = 1, DP

∗ := {Q ∈ D∗ ; [P,Q] = 0} is commutative.

Proof. Since σ∗ is an algebra homomorphism and the condition Q1, Q2 ∈
M(m, D̃∗)P implies [Q1, Q2] ∈ M(m, D̃∗)P , this corollary is a direct conse-
quence of Theorem 2.2. ⊓⊔

Remark 2.4. i) Retain the notation in Theorem 2.2. Then (3) is valid for P ∈
M(m,D∗) if n functions ∂σ̄∗(P )

∂ξ1
, . . . , ∂σ̄∗(P )

∂ξn
are linearly independent over R.

In particular, if ordP = 2 and σ̄∗(P ) is a scalar matrix, the condition that

the matrix
(

∂2p̄

∂ξi∂ξj

)
1≤i≤n
1≤j≤n

is invertible for generic x ∈ N

implies (3). Here p̄ is the diagonal element of σ̄∗(P ).
ii) The assumption P ∈ M(m,D∗) is necessary in Theorem 2.2. For exam-

ple, [t ∂
∂t + x ∂

∂x , t ∂
∂x ] = 0 and σ∗(t ∂

∂x ) = 0. Moreover we note that[(
t ∂

∂t 0
0 t ∂

∂t + 1

)
,

(
0 t
0 0

)]
= 0.
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This gives an example such that σord P−1(P ) and σ(Q) are not scalar matrices.
iii) The invariant differential operators on a Riemannian symmetric space

G/K of non-compact type have regular singularities along the boundaries of
a realization of the space constructed by [O2] and the map σ∗ of DP

∗ to AN [ξ]
in Corollary 2 corresponds to Harish-Chandra isomorphism (cf. [K–]).

The element of the universal enveloping algebra U(g) of the Lie algebra
of G defines a differential operator on the realization of G/K through the in-
finitesimal action of the left translation by elements of G. Then the differential
operator is an element of D̃∗.

Moreover the invariant differential operators on a semisimple symmetric
space whose rank is larger than its real rank are in D̃∗ (cf. [O4]).

The radial parts of the Casimir operator acting on K-finite sections of
certain homogeneous vector bundle of G satisfy the assumption of Theorem 2.2
(cf. (26) and (27) for examples).

3 Ideally analytic solutions without logarithmic terms

For a subset Σ of Nn define

Σ : =
{
α ∈ Nn ; {α + γ ; γ ∈ Nn} ∩ Σ ̸= ∅

}
,

∂Σ : =
{
α ∈ Nn \ Σ ; there exists γ ∈ Σ̄ such that

n∑
i=1

|αi − γi| = 1}.

Moreover we denote by ÂM the ring of formal power series of t = (t1, . . . , tn)
with coefficients in AN .

Theorem 3.1. Let P ∈ M(m,D∗).
i) Let Σ be a subset of Nn such that

det
(
σ∗(P )(x, γ)

)
̸≡ 0 for ∀γ ∈ Nn \ Σ.

Let û(t, x) =
∑

α∈Nn uα(x)tα ∈ Âm
M be a formal solution of Pû = 0. Then

û = 0 if uα = 0 for ∀α ∈ Σ.
Hereafter in this theorem suppose

det σ̄∗(P )(x, ξ) ̸= 0 for ∀ξ = (ξ1, . . . , ξn) ∈ [0,∞)n \ {0} and ∀x ∈ N. (5)

ii) If û ∈ Âm
M satisfies Pû ∈ Am

M , then û ∈ Am
M .

iii) Fix f ∈ Am
M , a point xo ∈ N and a finite subset Σ of Nn such that

det
(
σ∗(P )(xo, γ)

)
̸= 0 for ∀γ ∈ Nn \ Σ.

By shrinking M ∋ xo if necessary and denoting

AM (P−1f) := {u ∈ Am
M ; Pu = f},
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AM (P−1f)Σ := {ū =
∑
α∈Σ

uα(x)tα ∈ Am
M ; Pū ≡ f mod

∑
β∈∂Σ

Am
M tβ},

the natural restriction map

AM (P−1f) ∼−→ AM (P−1f)Σ ,
∑

α∈Nn

uα(x)tα 7→
∑
α∈Σ

uα(x)tα

is a bijection. Here in particular

AM (P−1f){0} = {u ∈ Am
N ; σ∗(P )

(
x, 0)u = f |t=0}.

Proof. The proof proceeds in a similar way as in [O3, Theorem 2.1] where we
studies the same problem with n = 1.

We may assume xo = 0. Expanding functions in convergent power series
of (t, x) at (0, 0), we will prove the theorem in a neighborhood of (0, 0).

Put r = ordP and

P = σ∗(P )(x, ϑ) +
∑

(α,β)∈Nn+n′

|α|+|β|≤r

pα,β(t, x)ϑα∂β
x .

Then pα,β(0, x) = 0. For a finite subset Σ ⊂ Nn and

û(t, x) =
∑

α∈Nn

ûα(x)tα ∈ Âm
M ,

put
ū(t, x) =

∑
α∈Σ

ûα(x)tα.

Suppose Pû ≡ f mod
∑

α∈∂Σ Âm
M tα. Put h = f − Pū. Then

h =
∑

α∈Nn\Σ

hα(x)tα =
∑

α∈Nn\Σ, β∈Nn′

hα,βtαxβ ∈ Am
M

and
Pû = f ⇔ Pu = h with u = û − ū.

Then the equation Pû = f is equal to

σ∗(P )(x, ϑ)u = h −
∑

(α,β)∈Nn+n′

|α|+|β|≤r

pα,β(t, x)ϑα∂β
x u.

u =
∑

α∈Nn

uα(x)tα with uα(x) =

{
0 for α ∈ Σ,

ûα(x) for α ∈ Nn \ Σ,

which also equals
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σ∗(P )(x, αo)uαo(x) = hαo(x)

− Coef(tα
o

) of
( ∑

(α,β)∈Nn+n′

|α|+|β|≤r

pα,β(t, x)ϑα∂β
x

)( ∑
α∈Nn

|α|<|αo|

uα(x)tα
)

(6)

for ∀αo ∈ Nn \ Σ. Here “Coef(tα
o

)” means “the coefficient of tα
o

”. Since
det σ∗(P )(x, γ) ̸= 0 for γ ∈ Nn \ Σ, uαo(x) is inductively determined by h.

On the other hand, putting h = 0, it is clear that the claim i) follows from
the induction proving uαo = 0 by (6) for ∀αo ∈ Nn \ Σ.

Put
uα(x) =

∑
β∈Nn′

uα,βxβ with uα,β ∈ C.

The equation (6) equals

σ∗(P )(0, αo)uαo,βo

= hαo,β + Coef(xβo

) of
(
σ∗(P )(0, αo) − σ∗(P )(x, αo)

)( ∑
|β|<|βo|

uαo,βxβ
)

− Coef(tα
o

xβo

) of
( ∑

(α,β)∈Nn+n′

|α|+|β|≤r

pα,β(t, x)ϑα∂β
x

)( ∑
(α,β)∈Nn+n′

|α|<|αo|

uα,βtαxβ
)

for any αo ∈ Nn \Σ and βo ∈ Nn′
. Hence the elements uαo,βo of Cm satisfying

this equation are uniquely and inductively determined in the lexicographic
order of (|αo|, |βo|). Thus to complete the proof we have only to prove that∑

uα,βtαxβ is a convergent power series. Here we may assume Σ ∋ {0}.
In general, for formal power series ψ =

∑
aα,βtαxβ and ϕ =

∑
bα,βtαxβ

we denote ψ ≪ ϕ if |aα,β | ≤ bα,β for ∀α, β and in this case ϕ is called a
majorant series of ψ. Note that if ϕ is a convergent power series, so is ψ.

Now assume (5). We note that there exists ϵ > 0 such that

|det σ̄∗(P )(0, ξ)| ≥ ϵ(ξ1 + · · · + ξn)mr for ∀ξ ∈ [0,∞)n.

As in the proof of [O3, Theorem 2.1], we can choose C > 0, c > 0, M > 0 and
K ≥ 1 so that for ∀(α, β) ∈ Nn+n′

and ∀γ ∈ Nn \ Σ

cm|
(
σ∗(P )(0, γ)−1

)
ij
| ≤

r−1∏
j=0

(
r|γ| − j

)−1
,

σ∗(P )(x, γ)ij − σ∗(P )(0, γ)ij ≤
C(x1 + · · · + xn′)

∏r−1
j=0

(
r|γ| − j

)
1 − K(x1 + · · · + xn′)

,

pα,β(t, x)ij − pα,β(0, x)ij ≪ C(t1 + · · · + tn)
1 − K(t1 + · · · + tn + x1 + · · · + xn′)

h(t, x)i ≪
M(t1 + · · · + tn)

1 − K(t1 + · · · + tn + x1 + · · · + xn′)
.
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Here i and j represent the indices of square matrices or vectors of size m.
Hence the power series w(s, y) of (s, y) satisfying

c

r−1∏
j=0

(
rs

∂

∂s
− j

)
w =

Cmy

1 − Ky

r−1∏
j=0

(
rs

∂

∂s
− j

)
w

+
∑

j+k≤r

Cm(n + n′)rs

1 − K(s + y)

(
s

∂

∂s

)j( ∂

∂y

)k

w (7)

+
Ms

1 − K(s + y)
,

w(0, y) = 0

implies(
u(t, x) −

∑
α∈Nn\Σ

uα(x)tα
)
i
≪ w(t1 + · · · + tn, x1 + · · · + xn′) for 1 ≤ i ≤ m.

Put s = zr. Then (7) changes into(
c − Cmy

1 − Ky

)
zr ∂rw

∂zr
=

∑
j+k≤r

Cm(n + n′)rzr

1 − K(zr + y)

(z

r

∂

∂z

)j ∂kw

∂yk

+
Mzr

1 − K(zr + y)
,

∂jw

∂zj

∣∣∣
z=0

= 0 for j = 0, . . . , r − 1.

(8)

Since the first equation in the above is equivalent to(
c − Cmy

1 − Ky

)∂rw

∂zr
=

∑
j+k≤r

Cm(n + n′)r

1 − K(zr + y)

(z

r

∂

∂z

)j ∂kw

∂yk
+

M

1 − K(zr + y)
,

(8) has a unique solution of power series of (y, z), which is assured to be ana-
lytic at the origin by Cauchy-Kowalevsky’s theorem. In fact for a sufficiently
large positive number L, the solution of the ordinary differential equation(

c − Cmt

1 − Kt

)
w̃(r)(t) =

∑
j+k≤r

Cm(n + n′)rL−k

1 − Kt

( t

r

d
dt

)j

w̃(k)(t) +
M

1 − Kt
,

w̃(j)(0) = 0 for j = 0, . . . , r − 1

with {
t = z + Ly,

cLr > Cm(n + n′)r

satisfies w(z, y) ≪ w̃(z + Ly). Hence u is also a convergent power series. ⊓⊔
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Let ℓ be a non-negative integer and let U be an open connected neighbor-
hood of a point zo of Cℓ and let OU be the space of holomorphic functions
on U . We denote by UAM and UAN the space of real analytic functions on
M with holomorphic parameter z ∈ U and that on N with holomorphic pa-
rameter z ∈ U , respectively. Moreover we denote by UÂM the space of formal
power series of t = (t1, . . . , tn) with coefficients in UAN . Let UD∗ denote the
ring of differential operators P of the form{

P =
∑

(α,β)∈Nn+n′ aα,β(t, x, z)ϑα∂β
x ,

aα,β ∈ UAN , aα,β(0, x, z) = 0 if β > 0.

Then σ∗(P )(x, z, ξ) :=
∑

α pα,0(0, x, z)ξα ∈ UAN [ξ].

Theorem 3.2. Let P ∈ M(m, UD∗) and λ(z) =
(
λ1(z), . . . , λn(z)

)
∈ On

U .
i) Let Σ be a subset of Nn such that

det
(
σ∗(P )(x, z, λ(z) + γ)

)
̸≡ 0 for ∀γ ∈ Nn \ Σ.

Let ϕ(t, x, z) =
∑

α∈Nn ϕα(x, z)tα ∈ UÂm
M satisfying P

(
tλ(z)ϕ

)
= 0. Then

ϕ = 0 if ϕα = 0 for ∀α ∈ Σ.
Hereafter in this theorem suppose P satisfies

det σ̄∗(P )(x, z, ξ) ̸= 0 for ∀(x, z, ξ) ∈ N × U ×
{
[0,∞)n \ {0}

}
. (9)

ii) If ϕ(t, x, z) ∈ UÂm
M satisfies P

(
tλ(z)ϕ

)
= 0, then ϕ ∈ UAm

M .
iii) Fix xo ∈ N . Let Σ be a finite subset Σ of Nn such that

det
(
σ∗(P )(xo, zo, λ(zo) + γ)

)
̸= 0 for ∀γ ∈ Nn \ Σ.

Shrinking U and N if necessary and denoting

SolU (P ; λ) : = {u ; ut−λ(z) ∈ UAm
M and Pu = 0},

SolU (P ; λ)Σ : = {ū =
∑
α∈Σ

ϕα(x, z)tλ(z)+α ; ūt−λ(z) ∈ UAm
M and

Pū ≡ 0 mod
∑

β∈∂Σ

UAm
M tλ(z)+β},

we see that the natural restriction map

SolU (P ; λ) ∼−→ SolU (P ; λ)Σ ,∑
α∈Nn

ϕα(x, z)tλ(z)+α 7→
∑
α∈Σ

ϕα(x, z)tλ(z)+α

is a bijection. Here in particular

SolU (P ; λ){0} = {u ∈ UAm
N ; σ∗(P )

(
x, z, λ(z)

)
u = 0}.
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Proof. Fix xo ∈ N . Expanding functions in convergent power series of (t, x, z)
at (0, xo, zo), we will prove the lemma in a neighborhood of (0, xo, zo). Re-
placing P and the complexification MC of M by t−λ(z) ◦P ◦ tλ(z) and MC ×U ,
respectively, we can reduce this theorem to the previous theorem without the
parameter z. ⊓⊔

Corollary 3.3. Retain the notation in the previous theorem. Let ℓ = 1. Sup-
pose

σ∗(P )(x, z, λ(z)) = 0 for ∀(x, z) ∈ N × U

and

det
(
σ∗(P )(xo, z, λ(z) + γ)

)
̸= 0 for ∀γ ∈ Nn \ {0} and ∀z ∈ U \ {zo}.

Then there exists a non-negative integer k such that the following holds.
The previous theorem assures that for any ϕ0(x, z) ∈ UAm

N and fixed z ∈
U \ {zo} there exists a function u(t, x, z) satisfying

Pu = 0,

t−λ(z)u ∈Am
M ,

t−λ(z)u|t=0 = ϕ0(x, z).

Then t−λ(z)zku(x, z) extends holomorphically to the point z = zo.

Proof. Since the functions det
(
σ∗(P )(xo, z, λ(z)+γ)

)
have finite order of zeros

at z = z0 for γ ∈ Σ \{0}, this corollary follows from the proof of Theorem 3.1
(cf. (6) for ∀αo ∈ Nn \ {0}). In fact it is sufficient to put k the sum of these
orders of zeros for γ ∈ Σ \ {0}. ⊓⊔

Remark 3.4. It follows from the proves of Theorem 3.1 and Theorem 3.2 that
there exist differential operators P γ

α (x, z, ∂x) such that

ϕα(x, z) =
∑
γ∈Σ

P γ
α (x, z, ∂x)ϕγ(x, z) for α ∈ Nn \ Σ

in Theorem 3.2 iii).

Corollary 3.5. Fix (xo, λo) ∈ N × Cn and let V be a neighborhood of λo in
Cn. Suppose P ∈ M(m,D∗) satisfies (9) and

det
(
σ∗(P )(xo, λo + γ

)
− σ∗(P )(xo, λo

))
̸= 0 for ∀γ ∈ Nn \ {0}.

Then shrinking N , M and V if necessary, we have a linear bijection

βλ : SolV (P ) := {u ; ut−λ ∈ VAm
M and Pu = σ∗(P )(x, λ)u} ∼−→ VAm

N ,

u 7→ t−λu|t=0

with the coordinate ((t, x), λ) ∈ M ×V . In particular, we have a bijective map

βλo : Solλo(P ) := {u ; ut−λo

∈ Am
M and Pu = σ∗(P )(x, λo)u} ∼−→ Am

N ,

u 7→ t−λo

u|t=0.
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Definition 3.6. The map βλo of Solλo(P ) is called the boundary value map
of the solution space Solλo(P ) of the differential equation Pu = σ∗(P )(x, λo)u
with respect to the characteristic exponent λo.

Remark 3.7. When n = 1, u ∈ Solλo(P ) is called an ideally analytic solution
of the equation Pu = σ∗(P )(x, λo)u in [KO].

The following theorem says that SolV (P ) and σ∗(P ) characterize P ∈ D∗.

Theorem 3.8. Let P be an element of M(m,D∗) satisfying the assumptions
in Corollary 3.5. Let P ′ ∈ M(m,D∗) with σ∗(P ) = σ∗(P ′). Then the condition
SolV (P ) = SolV (P ′) implies P = P ′.

Proof. Suppose P ̸= P ′. Put

P − P ′ =
∑

α,β,γ

rα,β,γtγϑα∂β
x .

Then we can find γo ∈ Nn′ \ {0} such that
∑

α,β rα,β,γotγ
o

ϑα∂β
x ̸= 0 and

rα,β,γ = 0 if γ < γo. For v(x) ∈ Am
N the coefficients of tλ+γo

in (P−P ′)β−1
λ v(x)

show

0 =
(
t−λ

∑
α,β

rα,β,γoϑα∂β
x tλv(x)

)
|t=0

=
∑
α,β

rα,β,γoλα∂β
x v(x) for ∀λ ∈ V and ∀v(x) ∈ Am

N ,

which means a contradiction. ⊓⊔

4 Induced equations

Retain the notation in the previous section. Moreover we denote by UD̃∗ the
ring of holomorphic maps of U to D̃∗ for a connected open subset U of Cℓ.

We recall that the element P of UD̃∗ is characterized by the expression

P =
∑

(α,β)∈Nn+n′

pα,β(t, x, z)ϑα∂β
x (10)

with pα,β(t, x, z) ∈ UAM and

σ∗(P )(x, z, ξ, ∂x) =
∑
α,β

pα,β(0, x, z)ξα∂β
x .

Theorem 4.1. Let P ∈ M(m, UD∗) satisfying the assumption in Theo-
rem 3.2 iii) with Σ = {0}. Suppose that P1, . . . , Pp ∈ M(m, UD̃∗) satisfy
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[P, Pi] = SiP +
p∑

j=1

TijPj (11)

with Si ∈ M(m, UD̃∗) and Tij ∈ M(m, UD∗). Suppose moreover σ∗(Tij) = 0.
Then the map

βλ(z) :
{
u ; t−λ(z)u ∈ UAm

M and Pu = Piu = 0 for i = 1, . . . , p
}

∼−→
{
v ∈ UAm

N ;

{
σ∗(P )

(
x, z, λ(z)

)
v = 0,

σ∗(Pi)
(
x, z, λ(z), ∂x

)
v = 0 (i = 1, . . . , p)

}
,

u 7→ t−λ(z)u
∣∣
t=0

(12)

is a bijection.

Proof. Since (t−λ(z)Pju)|t=0 = σ∗(Pj)(x, z, λ(z), ∂x)t−λ(z)u|t=0, Theorem 3.2
assures that we have only to prove the surjectivity of the map to get the
theorem.

For a given v in the element of the set, we have u ∈ tλ(z)
UAm

M such that
Pu = 0 and t−λ(z)u|t=0 = v. Then PPiu =

∑p
j=1 TijPju, namely,

P − T11 −T12 −T13 · · · −T1p

−T21 P − T22 −T23 · · · −T2p

−T31 −T32 P − T33 · · · −T2p

...
...

...
. . .

...
−Tp1 Tp2 Tp3 · · · P − Tpp




P1u
P2u
P3u

...
Ppu

 = 0.

Since σ∗(Tij) = 0 and t−λ(z)Pju|t=0 = 0 for j = 1, . . . , p, Theorem 3.2 i)
assures Pju = 0. ⊓⊔

Definition 4.2. The system of differential equations

σ∗(P )(x, z, λ(z))v = σ∗(Pi)(x, z, λ(z), ∂x)v = 0 for i = 1, . . . , p

in Theorem 4.1 is called the system of induced equations with respect to the
boundary value map βλ(z) (cf. (12)).

Remark 4.3. i) Suppose P ∈ M(m, UD∗) satisfies the assumption in Theo-
rem 4.1. Let Q ∈ M(m, UD∗) such that [P,Q] = 0 and σ∗(Q)

(
x, z, λ(z)

)
= 0.

Then if u ∈ tλ(z)
UAm

M satisfies Pu = 0, we have Qu = 0.
ii) Let p be the rank of an irreducible semisimple symmetric space

G/H. The ring of invariant differential operators on G/H is isomorphic to
C[P1, . . . , Pp], where Pj are algebraically independent and satisfy [Pi, Pj ] = 0
for 1 ≤ i < j ≤ p. Under a suitable coordinate system (t1, . . . , tn, x1, . . . , xn′)
of a natural realization of G/H constructed by [O6], G/H is defined by
t1 > 0, . . . , tn > 0. Then n is the real rank of G/H and Pi ∈ D̃∗ \ D∗ if
n < p. It is shown in [O6] that we can choose P ∈

∑p
j=1 D∗Pj such that P ,

P1, . . . , Pp satisfy the assumption in Theorem 4.1.
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5 Holonomic systems of differential equations with
constant coefficients

In this section
(

∂
∂y1

, . . . , ∂
∂yn

)
is simply denoted by ∂. For µ = (µ1, . . . , µn) ∈

Cn and y = (y1, . . . , yn) ∈ Rn, we put

⟨µ, y⟩ = µ1y1 + · · · + µnyn.

Lemma 5.1. Let HomC[∂](M,N ) denote the space of C[∂]-homomorphisms
of a C[∂]-module M to a C[∂]-module N . Then the space is naturally a C[∂]-
module. Let Ô be the space of formal power series of y = (y1, . . . , yn) and
let O(Cn) be the space of entire functions on Cn ∋ y. Suppose M is a finite
dimensional C[∂]-module. Then⊕

λ∈Cn

HomC[∂]

(
M, C[y]e⟨λ,y⟩) ∼−→ HomC[∂]

(
M,

⊕
λ∈Cn

C[y]e⟨λ,y⟩)
∼−→ HomC[∂]

(
M,O(Cn)

)
∼−→ HomC[∂]

(
M, Ô

)
,

(13)

dimHomC[∂]

(
M,O(Cn)

)
= dimM. (14)

If M′ is a quotient C[∂]-module of M such that

HomC[∂]

(
M′,O(Cn)

) ∼−→ HomC[∂]

(
M,O(Cn)

)
,

then M ∼−→ M′.

Proof. For µ = (µ1, . . . , µn) ∈ Cn, let mµ denote the maximal ideal of C[∂]
generated by ∂

∂yi
−µi with i = 1, . . . , n. Then we have M ≃ Mλ1 ⊕· · ·⊕Mλm

with suitable λν = (λν,1, . . . , λν,n) ∈ Cn and C[∂]-modules Mλν satisfying
mk

λν
Mλν = 0 for a large positive integer k. Hence we have only to prove

the lemma for each Mλν
. By the outer automorphism ∂

∂yi
7→ ∂

∂yi
+ λν,i for

i = 1, . . . , n which corresponds to the multiplication of the functions in O(Cn)
or Ô by e−⟨λν ,x⟩ we may assume mk

0M = 0.
Suppose mk

0M = 0. Then HomC[∂]

(
M, C[y]

) ∼−→ HomC[∂]

(
M, Ô

)
and (13)

is clear. Since Ô is the dual space of C[∂] by the bilinear form ⟨P (∂), u⟩ =
P (∂)u|x=0, (14) is clear. The last statement follows from (14). ⊓⊔

Definition 5.2. A finite dimensional C[∂]-module M is semisimple if

HomC[∂]

(
M,

⊕
λ∈Cn

Ce⟨λ,y⟩) ∼−→ HomC[∂]

(
M,O(Cn)

)
.

Let U be a convex open subset of Cℓ, where ℓ is a non-negative integer, and
let UC[∂] and UO(Cn) be the space of holomorphic maps of U to C[∂] and that
of U to O(Cn), respectively.
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Proposition 5.3. Let r be a positive integer and let UM be a finitely generated
UC[∂] module with dim UM = r for any fixed z ∈ U . Assume that there exist
positive integer k and finite number of holomorphic maps λi of U to Cn such
that

(∏
i∈I mk

λi(z)

)
UM = 0 for any z ∈ U . Here the indices i run over a finite

set I. Then there exist UC[∂]-homomorphisms u1, . . . , ur of UM to UO(Cn)
such that they are linearly independent for any fixed z ∈ U .

Let I = I1 ∪ · · · ∪ IL be a decomposition of I such that

λi(z) ̸= λj(z) for ∀z ∈ U if i ∈ Iµ and j ∈ Iν and 1 ≤ µ < ν ≤ L.

Then we can choose {ui ; i ∈ I} such that for each ui there exists Iν satisfying

ui ∈ Hom
UC[∂]

(
UM,

∑
j∈Iν

e⟨λj(z),y⟩C[y]
)

for any fixed z ∈ U. (15)

Proof. Let {v1, . . . , vm} be a system of generators of UM. We identify the
homomorphisms of UM to UO(Cn) with their image of {v1, . . . , vm} and
hence uj(y, z) ∈ UO(Cn)m. Note that we can find UC[∂]-homomorphisms
ũ1(y, z), . . . , ũr(y, z) of UM to UO(Cn) if we replace O(U) by its quotient
field.

Fix a point zo ∈ U . Let γ(t) be a holomorphic map of {t ∈ C ; |t| < 1} to U
such that γ(0) = zo and ũj(y, γ(t)) are holomorphic and linearly independent
for 0 < |t| < 1. Then [OS, Proposition 2.21] assures that there exist meromor-
phic functions cij(t) such that the functions vi(y, t) =

∑r
j=1 cij(t)ũj(y, γ(t))

are holomorphic at t = 0 and that v1(y, 0), . . . , vr(y, 0) are linearly indepen-
dent. We can find Pi ∈ C[∂]m such that ⟨Pi, vj⟩ = δij for 1 ≤ i ≤ r and
1 ≤ j ≤ r. Here we put ⟨(Q1, . . . , Qm), (f1, . . . , fm)⟩ :=

∑m
ν=1 Qν(fν)(0) for

Qν ∈ C[∂]m and fν ∈ O(Cn)m.
Put A(z) =

(
⟨Pi, ũj⟩

)
1≤i≤r
1≤j≤r

, which is a matrix of meromorphic functions

on U and det A(z) is not identically zero. Let c̃ij(z) are meromorphic functions
on U such that ⟨Pi, uj⟩ = δij by putting ui =

∑r
j=1 c̃ij(z)ũj .

Suppose ui(y, z) is not holomorphic at z = z0. Then there exist a pos-
itive integer L and a holomorphic function γ̃ of {t ∈ C ; |t| < 1} to U
such that γ̃(0) = z0 and the function w(y, t) := tLui(y, γ̃(t)) is holomor-
phically extended to the point t = 0 and moreover w(y, 0) ̸= 0. Then
w(y, 0) defines a C[∂]-homomorphism of UM to O(Cn) at z = zo. But
w(y, 0), v1(y, 0), . . . , vr(y, 0) are linearly independent because ⟨Pi, w(y, 0)⟩ = 0
for i = 1, . . . , r, which contradicts to (14).

Hence for any zo ∈ U we can construct u1(y, z), . . . , ur(y, z) which are
linearly independent and holomorphic in a neighborhood of zo ∈ U . Then
the theorem follows from the theory of holomorphic functions with several
variables because U is a convex open subset of Cℓ.

Since we have a decomposition UM = UM1 ⊕ · · · ⊕ UML such that(∏
i∈Iν

mk
λi(z)

)
UMν = 0 for ν = 1, . . . , L, we can assume (15). ⊓⊔
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Example 5.4. Let W be a finite reflection group on a Euclidean space Rn. Let
C[p1, . . . , pn] be the algebra of W -invariant polynomials on Rn. For example,
pk(x) =

∑
1≤i1<···<ik≤n xi1 · · ·xik

. Then the system of differential equations

Mλ : pi(∂)u = pi(λ)u for i = 1, . . . , n

with λ ∈ Cn is a fundamental example of a UC[∂]-module in Proposition 5.3.
Here U = Cn ∋ λ and r = #W . The system is semisimple if and only if
wλ ̸= λ for ∀w ∈ W \ {e}. When λ = 0, the solutions of this system are
called harmonic polynomials for W . In this case, an explicit construction of
solutions is given by [O5] such that u1(λ, y), . . . , ur(λ, y) are entire functions
of (λ, y) ∈ C2n and linearly independent for any fixed λ ∈ Cn.

Remark 5.5. We will apply the result in this section to our original systems
with the coordinates ti = e−yi for i = 1, . . . , n. Then C[∂] and e⟨λ,y⟩f(y)
change into C[ϑ] and t−λf

(
− log t1, . . . ,− log tn

)
, respectively.

6 Ideally analytic solutions for complete systems

In this section we will study the system of differential equations

M : Piu = 0 for i = 0, 1, . . . , q (16)

with Pi ∈ M(m, UD∗). Here z ∈ U is a holomorphic parameter and U is a
convex open subset of Cℓ. We assume that σ∗(Pi) do not depend on x ∈ N .
We moreover assume that P = P0 satisfies (5) and the system

M : σ∗(Pi)(z, ϑ)ū = 0 for i = 0, 1, . . . , q, (17)

which we call indicial equation, satisfies the assumption of Proposition 5.3.
Then we call M a complete system of differential equations with regular sin-
gularities along the set of walls {N1, . . . , Nn}.

For a non-negative integer k let C[log t](k) denote the polynomial function
of (log t1, . . . , log tn) with degree at most k. Put C[log t] =

∪∞
k=1 C[log t](k).

Definition 6.1. A solution u(t, x, z) of M with the holomorphic parameter z
is called an ideally analytic solution if u(t, x, z) ∈

⊕
λ∈C tλC[log t]Am

M for any
fixed z ∈ U .

First we will examine the system M without the holomorphic parameter
z or U is a point. Then let {ūi = tλivi(log t) ; i = 1, . . . , r} be a basis of the
solutions of (17). Here vi(ξ) ∈ C[ξ] and these λi are called exponents of the
system M. We define {

e(ūi) := λi,

deg(ūi) := deg vi.
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We may assume that for any λ ∈ Cn and k ∈ N

{ūi ;
(
e(ūi), deg(ūi)

)
= (λ, k)} is empty

or linearly independent in the space tλC[log t]m(k)/tλC[log t]m(k−1).

Definition 6.2. Let u(t, x) be an ideally analytic solution of M. Then a non-
zero function

w(t, x) =
∑

ν

tλpν(log t)ϕν(x) (18)

with suitable λ ∈ Cn, pν(ξ) ∈ C[ξ] and ϕν(x) ∈ Am
N is called a leading term

of u(t, x) if
u(t, x) − w(t, x) ∈

∑
µ∈Cn

λ−µ/∈Nn

tµC[log t]Am
M

and λ is called a leading exponent of this leading term. If {w1(t, x), . . . , wk(t, x)}
is the complete set of the leading terms of u(t, x), we say

∑k
i=1 wi(t, x) the

complete leading term of u(t, x).

Then we have the following theorem.

Theorem 6.3. The leading term (18) of an ideally analytic solution u(t, x)
of M is a solution of (17). Hence there exist ϕi(x) ∈ AM such that

w(t, x) =
∑
λi=λ

ūi(t)ϕi(x). (19)

In particular, λ is an exponent of M.
Assume

detσ∗(P1)(e(ūi) + γ) ̸= 0 for γ ∈ Nn \ {0}. (20)

Then for any ϕ(x) ∈ AN there exists a unique solution of M in the space
te(ūi)C[log t]Am

M whose leading term equals ϕ(x)ūi. Denoting the solution by
Tūi(ϕ), we have the following bijective isomorphism if (20) is valid for 1 ≤
i ≤ r.

Ar
N

∼−→ {ideally analytic solutions of M}, (ϕi) 7→
r∑

i=1

Tūi(ϕi). (21)

Proof. Examining the equation Pu(t, x) = 0 modulo
∑

µ∈Cn

λ−µ/∈Nn

tµC[log t]Am
M ,

we have σ∗(P )(ϑ)w(t, x) = 0 and thus (19).
Put λ = e(ūi). First suppose deg(ūi) = 0. Then under the condition

(20), Theorem 3.1 assures the unique existence of ϕ̃(t, x) ∈ Am
M such that

P1t
λϕ̃(t, x) = 0 and te(ūi)ϕ̃(0, x) = ϕ(x)ui(t) and moreover Theorem 4.1

assures Pjt
λϕ̃(t, x) = 0. If there exists another solution ũ ∈ tλC[log t]Am

M
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of M with the same property, the leading exponent λ′ of u − ũ satisfies
λ′ − e(ūi) ∈ Nn \ {0}, which contradicts to (20). Thus we have proved the
required uniqueness of the solution.

Next suppose ui = tλvi(log t) with deg vi > 0. Let V be a vector space
spanned by the components of elements of C[∂ξ]vi(ξ) and let {w1(ξ), . . . , wq(ξ)}
be a basis of V . Here we may assume C[∂ξ]wk ∈

∑k
ν=1 Cwν for k = 1, . . . , q.

Let û be the vector of size qm with components ûνwν(log t) with ûν ∈ tλAm
M

for ν = 1, . . . , q. Then the system M is replaced by a system M̂ with an un-
known function û where Pi are replaced by suitable P̂i ∈ M(qm,D∗), respec-
tively. We note that M̂ also satisfies the assumption of the theorem because
det

(
σ∗(P̂i)

)
= det

(
σ∗(Pi)

)q. Thus we may only consider the solutions with
components in tλAM .

For example, if n = n′ = 1 and P = (ϑ − λ)2 + t2∂2
x, the solution of the

equation Pu = 0 in the space tλAM ⊕(tλ log t)AM corresponds to the solution
of (

(ϑ − λ)2 + t2∂2
x 2(ϑ − λ)

(ϑ − λ)2 + t2∂2
x

)(
u1

u2

)
= 0

in the space tλA2
M by the correspondence u = u1 + u2 log t.

To complete the proof of the system we have only to prove that the map
(21) is surjective. Let u be any ideally analytic solution of M. Then any
leading exponent of u is an exponent of the system M and therefore we define
ϕi(x) by (19) if e(ūi) is a leading exponent of u and by 0 otherwise. Then
if u ̸=

∑
i Tūi(ψ), any leading exponent of u −

∑
i Tūi(ϕ) is not in the set

{e(ūi)}, which contradicts the first claim in the theorem. ⊓⊔

We will return to the case when (16) is the complete system which has a
holomorphic parameter z ∈ U ⊂ Cℓ.

First assume that M is semisimple for any z ∈ U (cf. Definition 5.2) and
that the indicial equation M satisfies the assumption in Proposition 5.3 by
putting ti = e−xi for 1 ≤ i ≤ n. Then the proof of the previous theorem
implies the following.

Proposition 6.4. Assume that M is semisimple for any z ∈ U . Let {ūi(x, z) =
tλi(z)fi(z) ; i = 1, . . . , r} be a basis of the solutions of (17) for any z ∈ U .
Here fi(z) ∈ O(U)m. Assume (20) for any z ∈ U . Then Tūi(ϕ) is holomorphic
for z ∈ U under the notation in Theorem 6.3.

To examine the case without the assumption in this proposition, we study
a generic holomorphic curve t 7→ z(t) through the point zo ∈ U where the
assumption breaks. Hence we restrict the case when ℓ = 1.

Suppose ℓ = 1 and fix zo ∈ U . For simplicity we put zo = 0. Assume that
M is semisimple (cf. Definition 5.2) for any fixed z ∈ U \{0}. We will shrink U
if necessary hereafter until the end of the following theorem. Let {ū1, . . . , ūr}
be a basis of the solutions of the indicial equation for ∀z ∈ U \ {0}, where ūi

are
ūi(t, z) = tλi(z)fi(z) for i = 1, . . . , r
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with suitable fi ∈ O(U)m. Then Proposition 5.3 assures that there exist
meromorphic functions cij(z) such that by denoting

w̄i(t, z) =
r∑

j=1

cij(z)ūj(t, z),

{w̄1, . . . , w̄r} is a basis of the solutions of the indicial equation for ∀z ∈ U and
w̄j(t, z) are holomorphic function of (log t, z) ∈ Cn ×U . By virtue of (15), we
may assume cij(z) = 0 if λi(0) ̸= λj(0).

Then we have the following theorem which is the main purpose of this
note.

Theorem 6.5. Under the notation above. there exist differential operators
Rij(x, z, ∂x) such that for any ϕ(x, z) ∈ UAm

M ,
∑r

i=1 Tūi

(
Rij(x, z, ∂x)ϕ(x, z)

)
is a holomorphic function of z ∈ U and an ideally analytic solution of M with
the complete leading term ϕ(x)w̄i(t, z) for any fixed z ∈ U . Moreover the map

Ar
N

∼−→ {ideally analytic solutions of M},(
ϕi(x)

)
7→

∑
i,j

Tūi

(
Rij(x, z, ∂x)ϕj(x)

)
holomorphically depends on z ∈ U and it is bijective for any z ∈ U . Here
Rij(x, z, ∂x) are holomorphic functions of z ∈ U \ {0} valued in the space of
differential operators on N and may have at most poles at z = 0 and moreover

Rij(x, z, ∂x) =

{
0 if λi(0) − λj(0) /∈ Nn,

cij(z) if λi(0) = λj(0).

Proof. We will inductively construct Rij(x, z, ∂x) according to the number
L(λj) =

∑n
ν=1 ℜλj,ν(0). Here λj = (λj,1, . . . , λj,n) and ℜζ denotes the real

part of ζ ∈ C.
Fix a positive integer k with k ≤ r. By the hypothesis of the induction

we may assume that Rij have been constructed if L(λj) > L(λk). Put R
(0)
jk =

cik(z). We inductively define R
(ν)
ik for ν = 0, 1, . . . as follows. Put

r∑
i=1

Tūi

(
R

(ν)
ik ϕ(x, z)

)
= z−nν ϕ(ν)

nν
(t, x) + · · · + z−1ϕ

(ν)
1 (t, x) + ϕ

(ν)
0 (t, x, z)

with ϕ
(ν)
0 (t, x, z) ∈ UAM . Suppose nν > 0. By the analytic continuation of

znν
∑

i Tūi

(
R

(ν)
ik ϕ(x, z)

)
, it is clear that ϕ

(ν)
nν (t, x) is a solution of M at z = 0.

Any leading exponent µ of ϕ
(ν)
nν (t, x) satisfies µ − λk(0) ∈ Nn \ {0} and hence

the complete leading term of ϕ
(ν)
nν (t, x) is∑

λj(0)∈λk(0)+
(

Nn\{0}
)ψ

(ν)
j (x)w̄j(t, 0).
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Note that ψ
(ν)
j (x) = P

(ν)
j (x, ∂x)ϕ(x) for some differential operators which do

not depend on ϕ(x). Put P
(ν)
j (x, ∂x) = 0 if λj(0) − λk(0) /∈ Nn \ {0}. Hence

r∑
i=1

Tūi

(
R

(ν)
ik (x, z, ∂x)ϕ(x)

)
−

r∑
i=1

r∑
j=1

z−nν Tūi

(
Rij(x, z, ∂x)P (ν)

j (x, ∂x)ϕ(x)
)

(22)
has a pole of order less than nk. Defining

R
(ν+1)
ik (x, z, ∂x) = R

(ν)
ik (x, z, ∂x) −

r∑
j=0

z−nν Rij(x, z, ∂x)P (ν)
j (x, ∂x)

inductively, we have Rij(x, z, ∂x) = R
(ν)
ij (x, z, ∂x) for certain ν such that the

left hand size of (22) is holomorphic at z = 0. ⊓⊔

Remark 6.6. Let Pi ∈ D∗ for i = 1, . . . , n satisfies
[Pi, Pj ] =

∑n
ν=1 RijνPν for 1 ≤ i ≤ j ≤ n,

σ∗(Pi) do not depend on x ∈ N,

{ξ ∈ Cn ; σ̄∗(P1)(ξ) = · · · = σ̄∗(Pn)(ξ) = 0} = {0}

with some Rijν ∈ D∗ satisfying σ∗(Rijν) = 0. Then for a suitable positive
integer L there exist Ri ∈ C[ϑ] such that{

ordPi + ordRi = 2L,

σ∗(P0) = ξ2L
1 + · · · + ξ2L

n

by putting

P0 =
n∑

i=1

RiPi.

Then {P0, . . . , Pn} satisfies (11) with S = 0 and σ∗(Tij) = 0 because

[P0, Pj ] =
n∑

i=1

(
[P0, Rj ]Pi +

n∑
ν=1

RiRijνPν

)
and σ∗([P0, Ri]) = σ∗(RiRijν) = 0.

In this case let λo be an exponent of the system Piu = 0 (1 ≤ i ≤ n).
Then for a suitable ρ ∈ Cn and a positive integer k, the system

UM :
(
Pi − σ∗(P )(λo + ρzk)

)
u =

∑
Ri

(
Pi − σ∗(P )(λo + ρzk)

)
u = 0

satisfies the assumption of Theorem 6.5 for U = {z ∈ C ; |z| < 1} by changing
the lower order terms of Ri if necessary. Hence we can analyze the ideally
analytic solutions of M by the analytic continuation of the parameter z to
the origin.
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Theorem 6.7. Retain the notation and the assumption in Theorem 6.5. Let
r′ be the dimension of the finitely generated C[ϑ]-module

M̄o :=
m∑

j=1

C[ϑ]uj

/ q∑
i=0

m∑
k=1

C[ϑ]
m∑

j=1

σ̄∗(Pi)kj(zo, ϑ)uj .

Suppose n′ = 0 and r′ ≤ r. Then r′ = r and any solution of M defined on a
small connected neighborhood of (to, xo) ∈ M with z = zo and 0 < |toj | ≪ 1 for
j = 1, . . . , n is an ideally analytic solution given in Theorem 6.5. In particular
the dimension of space of the solutions equals r.

Proof. Let wν for ν = 1, . . . , r′ be elements of
∑m

j=1 C[ϑ]uj whose residue
classes form a basis of M̄o. Fix z = zo. Then in a neighborhood of (0, xo)

r∑
j=1

AM [ϑ]uj =
r′∑

ν=1

AMwν +
q∑

i=0

m∑
k=1

AM [ϑ]
m∑

j=1

(Pi)kjuj .

Let w be a column vector of size r′ with components wν . Then the system M
implies

N : ϑjw = Qj(t)w for j = 1, . . . , n

with suitable Qj ∈ M(r′,AM ). Then any solution w(t) of N on a neighborhood
of (to, xo) is analytic and w = 0 if w(to) = 0. Hence the dimension of the space
of solutions of N is smaller than or equals to r′. But we have constructed r
linearly independent solutions in Theorem 6.5. Hence we have this theorem.
⊓⊔

Remark 6.8. Retain the notation in Theorem 6.7. Suppose q = n−1, [Pi, Pj ] =
0 for 0 ≤ i < j ≤ q, σ̄∗(Pi) are diagonal matrices and

{ξ ∈ Cn ; σ̄∗(Pi)(ξ) = 0 for i = 0, . . . , q} = {0}.

Then r′ = r and r′ = m
∏q

i=0 ordPi.

7 Examples related to SL(n, R)

For a connected real reductive Lie group G and an open subgroup H of the
fixed point group of an involutive automorphism σ of G, the homogeneous
space G/H is called a reductive symmetric homogeneous space. Then in a
suitable realization X̃ of G/H constructed by [O6], the system of differen-
tial equations that defines the simultaneous eigenspace of the elements of the
ring D(G/H) of the invariant differential operators on G/H has regular sin-
gularities along the boundaries of G/H in this realization. It is an important
problem to study the eigenspace. For example, see [K–] in the cases of Rie-
mannian symmetric spaces.
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Note that the Lie group G is identified with a symmetric homogeneous
space of G×G with respect to the involutive automorphism σ of G defined by
σ(g1, g2) = (g2, g1) for (g1, g2) ∈ G1 ×G2 and that any irreducible admissible
representation of G can be realized in an eigenspace of D(G).

In this section we will consider differential equations related to the Lie
group G = SL(n, R), which give examples of the differential equations we
study in this note. The element of the Lie algebra sl(n, R) of G is identified
with that of M(n, R) whose trace equals 0. Let Eij be the fundamental matrix
unit whose (i, j)-component equals 1 and the other components are 0. Then
sl(n, R) is spanned by the elements Ẽij = Eij − δij

n (E11 + · · · + Enn) with
1 ≤ i ≤ j ≤ n. For simplicity we put Ẽi = Ẽii.

We identify sl(n, R) with the space of right invariant vector field on G by

(Xf)(g) =
d
dt

f(getX)
∣∣∣
t=0

for X ∈ sl(n, R), f ∈ C∞(G) and g ∈ G.

Here we note that

(Epqf)
(
(xij)

)
:=

d
dt

f
(
(xij)etEpq

) ∣∣∣
t=0

=
( n∑

ν=1

xνp
∂f

∂xνq

)(
(xij)

)
for g ∈ C∞(

GL(n, R)
)

and
(
xij

)
1≤i≤n
1≤j≤n

∈ GL(n, R) because (i, j)-component

of
(
xij

)
1≤i≤n
1≤j≤n

Epq equals xipδqj .

We first review, by examples, that the invariant differential operators of
the Riemannian symmetric space G/K has regular singularities along the
boundaries of the space in the realization constructed in [O2]. By the Iwasawa
decomposition G = N̄AK with

K = SO(n) = {g ∈ SL(n, R) ; tgg = In},

A =

a =

a1

. . .
an

 ; aj > 0 for 1 ≤ j ≤ n and a1 · · · an = 1

 , (23)

N̄ =




1
x21 1
...

...
. . .

xn1 xn2 · · · 1

 ; xij ∈ R for 1 ≤ j < i ≤ n

 ,

tj : =
aj+1

aj
for j = 1, . . . , n − 1,

the Riemannian symmetric space G/K is identified with the product manifold
N̄×A with the coordinate (tk, xij) ∈ (0,∞)n−1×R

n(n−1)
2 . Then the Lie algebra

of the solvable group of N̄A is spanned by the elements
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Eij =
(i−1∏

ν=j

tν

)( ∂

∂xij
+

n∑
ν=i+1

xνi
∂

∂xνj

)
for 1 ≤ j < i ≤ n,

Ẽij = Eij −
δij

n
(E11 + · · · + Enn) for 1 ≤ i ≤ n and 1 ≤ j ≤ n,

Ei : = Ẽii = ϑi−1 − ϑi for 1 ≤ i ≤ n, ϑ0 = ϑn+1 = 0.

The coordinate (tk, xij) ∈ R
(n+2)(n−1)

2 can be used for local coordinate of the
realization of G/K.

Let U(g) be the universal enveloping algebra of the complexification g of
the Lie algebra of G. Then if G = SL(n, R), the ring D(G/K) is naturally iso-
morphic to the center U(g)G of U(g) and U(g)G is generated by the elements
L2, . . . , Ln which are given by

det
(
Ẽij + (n+1

2 − i − λ)δij

)
= Ln − Ln−1λ + · · · + (−1)nλn

for λ ∈ C (cf. [Ca]). Here det(Aij) =
∑

σ∈Sn
sgn(σ)Aσ(1)1 · · ·Aσ(n)n and

U(g)G is generated by the algebraically independent (n − 1)-elements which
are the coefficients of λk for k = 0, 1, . . . , n − 2.

Let k be a Lie algebra of SO(n), which is generated by the elements Eij −
Eji for 1 ≤ i < j ≤ n.

Since

∆2 = det
(

E1 + 1
2 E12

E21 E2 − 1
2

)
= (E1 + 1

2 )(E2 − 1
2 ) − E21E12

≡ (E1 + 1
2 )(E2 − 1

2 ) − E2
21 mod U(g)k

= −(ϑ − 1
2 )2 − t2∂2

x = −t2(∂2
t + ∂2

x) − 1
4 with ϑ = t ∂

∂t ,

we see that D
(
SL(2, R)/SO(2)

)
= C[t2

(
∂2

∂t2 + ∂2

∂x2

)
]. Here SL(2, R)/SO(2)

is realized in the upper half plane {x + it ; (t, x) ∈ (0,∞) × R} and ∆2 has
regular singularities along the real axis. On the other hand, the explicit form
of the vector field LX defined by the translation e−sX · p for s ∈ R, X ∈ g
and p ∈ SL(2, R)/SO(2) is given by

LE21 = −∂x, LE1 = ϑ + x∂x, LE12 = 2xϑ − (t2 − x2)∂x.

When G = SL(3, R), we have

det

E1 + 1 − λ E12 E13

E21 E2 − λ E23

E31 E32 E3 − 1 − λ

 = (E1 + 1 − λ)(E2 − λ)(E3 − 1 − λ)

+ E21E32E13 + E31E12E23 − (E11 + 1 − λ)E32E23 − E21E12(E3 − 1 − λ)

− E31(E2 − λ)E13 = ∆3 − ∆2λ − λ3

with
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∆3 = (E1 + 1)E2(E3 − 1) + E21E32E13 + E31E12E23

− (E1 + 1)E32E23 − E21E12(E3 − 1) − E31E2E13

≡ (E1 + 1)E2(E3 − 1) − (E1 + 1)E2
32 − (E3 − 1)E2

21 − (E2 − 1)E2
31

+ 2E21E32E31 mod U(g)k

= −(ϑ1 − 1)(ϑ1 − ϑ2)(ϑ2 − 1) + 2t21t
2
2(∂x + y∂z)∂y∂z

+ (ϑ1 − 1)t22∂
2
y − (ϑ1 − ϑ2 − 1)t21t

2
2∂

2
z − (ϑ2 − 1)t21(∂x + y∂z)2,

∆2 = E2(E3 − 1) + (E1 + 1)(E3 − 1) + (E1 + 1)E2

− E32E23 − E21E12 − E31E13

≡ E2(E3 − 1) + (E1 + 1)(E3 − 1) + (E1 + 1)E2

− E2
32 − E2

21 − E2
31 mod U(g)k

= −(ϑ1 − 1)2 + (ϑ1 − 1)(ϑ2 − 1) − (ϑ2 − 1)2

− t22∂
2
y − t21t

2
2∂

2
z − t21(∂x + y∂z)2,

x = x21, y = x32 and z = x31.

Then D
(
SL(3, R)/SO(3)

)
= C[∆̄3, ∆̄2], where ∆̄3 and ∆̄2 are the last expres-

sions of ∆3 and ∆2 in the above, respectively. This expression of invariant
differential operators on SL(3, R)/SO(3) is given by [O1] to obtain the Pois-
son integral representation of any simultaneous eigenfunction of the operators
on the space, where such representation is first obtained in the space with the
rank larger than one. In fact 4∆2 and 8∆2 + 8∆3 are explicitly written there
under the coordinate (s, t, u, v, w) with (s, t, u, v, w) = (t22, t

2
1, x, y, z), which

corresponds to a local coordinate system in the realization given in [OS].
When G = SL(n, R) the second order element L2 of U(g)G is

L2 =
∑

1≤i<j≤n

(
(Ei +

n + 1
2

− i)(Ej +
n + 1

2
− j) − EjiEij

)
≡

∑
1≤i<j≤n

(ϑ̃i−1 − ϑ̃i)(ϑ̃j−1 − ϑ̃j)

−
∑

1≤i<j≤n

(j−1∏
ν=i

t2ν

)( ∂

∂xji
+

n∑
ν=j+1

xνj
∂

∂xνi

)2

mod U(g)k,

ϑ̃i = ϑi − i(n−i)
2

and D(G/K) = C[L̄2, . . . , L̄n] satisfying

σ∗(L̄k) =
∑

1≤i1<i2<···<ik≤n

(ξ̃i1−1 − ξ̃i1)(ξ̃i2−1 − ξ̃i2) · · · (ξ̃ik−1 − ξ̃ik
),

ξ̃i = ξi − i(n−i)
2

for k = 2, . . . , n.
We will examine more examples. For a in (23) we have
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Ad(a−1)Eij := aEija
−1 = a−1

i ajEij = tijEij ,

tij = a−1
i aj =

{
titi+1 · · · tj−1 if i ≤ j,

t−1
j t−1

j+1 · · · t
−1
i−1 if i > j,

U(g)k =
∑

1≤i<j≤n

U(g)(Eij − Eji).

Hence

Ad(a−1)(Eij − Eji)2 + (Eij − Eji)2

− (tij + t−1
ij )Ad(a−1)(Eij − Eji) · (Eij − Eji)

= (t2ij − 1)EijEji + (t−2
ij − 1)EjiEij

= (tij − t−1
ij )2EjiEij + (t2ij − 1)(Eii − Ejj),

Ad(a−1)(Eij − Eji) · Eij − tijE
2
ij = −t−1

ij EjiEij .

Thus we have

EjiEij =
t2ij

1 − t2ij
(Eii − Ejj) (24)

+
t2ij

(1 − t2ij)2
(
Ad(a−1)(Eij − Eji)2 + (Eij − Eji)2

)
−

tij(1 + t2ij)
(1 − t2ij)2

Ad(a−1)(Eij − Eji) · (Eij − Eji)

= t2ijE
2
ij − tij Ad(a−1)(Eij − Eji) · Eij . (25)

Let (ϖ,Vϖ) be a finite dimensional representation of a closed subgroup
H of G and C∞(G; Vϖ) denote the space of Vϖ-valued C∞-functions on G.
Then the space of C∞-sections C∞(G/H; ϖ) of the G-homogeneous bundle
associated to ϖ is

{f ∈ C∞(G;Vϖ) ; f(gh) = ϖ−1(h)f(g) for ∀h ∈ H}.

Consider the case when H = K. Because of the decomposition G = KAK
the function f ∈ C∞(G/K; ϖ) is determined by its restriction on KA and by
the natural map K ×A → KA the restriction can be considered as a function
f̄ on K × A. Then the action of the differential operator L2 to f̄ is

L̄2 =
∑

1≤i<j≤n

(
(ϑ̃i−1 − ϑ̃i)(ϑ̃j−1 − ϑ̃j) −

t2ij
1 − t2ij

(ϑi−1 − ϑi − ϑj−1 + ϑj)

−
t2ij

(1 − t2ij)2
(
Ad(a−1)(Eij − Eji)2 + ϖ(Eij − Eji)2

)
−

tij(1 + t2ij)
(1 − t2ij)2

Ad(a−1)(Eij − Eji) · ϖ(Eij − Eji)
)
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at (k, a) ∈ K × A, which follows from (24). Here the induced representation
of the Lie algebra k of K is also denoted by ϖ.

Let (δ, Vδ) be an irreducible representation of K. Then the δ-component
of C∞(G/K; ϖ) is an element f ∈ V ⊗ C∞(G/K; ϖ) which satisfies

d
dt

f(etXg)
∣∣∣
t=0

=
(
δ(X)f

)
(g)

for X ∈ k. Hence the function f is determined by its restriction f̄ on A and
the action of the operator L2 to f̄ is

L̄2 =
∑

1≤i<j≤n

(
(ϑ̃i−1 − ϑ̃i)(ϑ̃j−1 − ϑ̃j) −

t2ij
1 − t2ij

(ϑi−1 − ϑi − ϑj−1 + ϑj)

−
t2ij

(1 − t2ij)2
(
δ(Eij − Eji)2 + ϖ(Eij − Eji)2

)
(26)

−
tij(1 + t2ij)
(1 − t2ij)2

δ(Eij − Eji) ⊗ ϖ(Eij − Eji)
)
.

Note that the operator P = L̄2 satisfies the assumption of Corollary 2.3.
When G is SL(2, R) or its universal covering group and f̄ is an eigenfunc-

tion of L2, we can put ϖ(E12 − E21) =
√
−1k and δ(E12 − E21) = −

√
−1m

for certain numbers k and m and(
ϑ2 +

1
4
− 1 + t2

1 − t2
ϑ +

t(k − mt)(m − kt)
(1 − t2)2

− (λ +
1
2
)2

)
f̄ = 0.

Put t = e−x and u = f̄ . Then ϑ = − d
dx and

u′′ + cothx · u′ − (k + m)2

4 sinh2 x
u +

km

4 sinh2 x
2

u = λ(λ + 1)u,

d2v

dz2
− (k + m − 1)(k + m + 1)

sinh2 2z
v +

km

sinh2 z
v =

(
2λ + 1

)2
v.

by denoting v = sinh
1
2 x · u and z = x

2 .

Then for ṽ = sinhm z · sinh− k+m+1
2 2z · v and w = − sinh2 z we have

w(1 − w)
d2ṽ

dw2
+

(k − m + 2
2

− (k + 2)w
) dṽ

dw
−

(k

2
− λ

)(k

2
+ λ + 1

)
ṽ = 0

and hence f̄ is a linear combination of the functions{
sinh

k−m
2 z · cosh

k+m
2 z · F (k

2 − λ, k
2 + λ + 1, k−m

2 + 1;− sinh2 z),

sinh
m−k

2 z · cosh
k+m

2 z · F (m
2 − λ, m

2 + λ + 1, m−k
2 + 1;− sinh2 z

)
.

Thus it is clear that the non-zero real analytic solution f̄ defined in a neigh-
borhood of the point z = 0 exists if and only if k−m ∈ 2Z. Here F (α, β, γ; z)
denotes the Gauss hypergeometric function (cf. [W]).
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Next we assume H = N and ϖ is a character of N . Then there exist
complex numbers c1, . . . , cn−1 such that

ϖ(e
P

1≤i<j≤n sijEij ) = e
√
−1(c1s12+···+cn−1sn−1,n).

The element f ∈ C∞(G/N ; ϖ) is determined by the restriction f̄ = f |KA and
it follows from (25) that the operation of L2 to f̄ is∑
1≤i<j≤n

(ϑ̃i−1− ϑ̃i)(ϑ̃j−1− ϑ̃j)+
∑

1≤i<n

(
c2
i t

2
i +

√
−1citi(Ei,i+1−Ei+1,i)

)
. (27)

Hence if G = SL(2, R), the eigenfunction f of L2 of the δ-component of
C∞(G/N ; ϖ) with δ(E12 − E21) =

√
−1m satisfies(

−(ϑ − 1
2 )2 + c2

1t
2 − c1mt + (λ + 1

2 )2
)
f |A = 0

and hence
d2

dt2
(f |A) −

(
c2
1 −

c1m

t
+

λ(λ + 1)
t2

)
(f |A) = 0.

If we put u(x) = e
x
2
(
f |A(e−x)

)
, then

u′′ −
(
c2
1e

−2x − c1me−x
)
u = (λ + 1

2 )2u.

Denoting W (±2c1t) = f |A(t), we have the Whittaker equation (cf. [W])

W ′′ +
(
−1

4
± m

2t
+

1
4 − (λ + 1

2 )2

t2

)
W = 0.

8 Completely integrable quantum systems

A Schrödinger operator

P =
n∑

k=1

∂2

∂x2
k

+ R(x1, . . . , xn)

of n variables is called completely integrable if there exist n algebraically in-
dependent differential operators Pk such that

[Pi, Pj ] = 0 for 1 ≤ i < j ≤ n and P ∈ C[P1, . . . , Pn].

Under the coordinate system (t1, . . . , tn) with

t1 = ex1−x2 , . . . , tn−1 = exn−1−xn , tn = exn ,

the Schrödinger operators P which belong to D∗ and have elements Q ∈ D∗
satisfying
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Q =
n∑

k=1

∂4

∂x4
k

+ Q′ with ordQ′ < 4

are classified in [O8] and proved to be completely integrable (cf. [O7] and [O9]).
They are reduced to the Schrödinger operators with the potential functions
R(x1, . . . , xn) in the following list.∑

1≤i<j≤n

C1

(
sinh−2 xi+xj

2 + sinh−2 xi−xj

2

)
+

n∑
k=1

(
C2 sinh−2 xk + C3 sinh−2 xk

2

)
,

(Trig-BCn-reg)

∑
1≤i<j≤n

C1 sinh−2 xi−xj

2 +
n∑

k=1

(
C2exk + C3e2xk

)
, (Trig-An−1-bry-reg)

C1

n−1∑
i=1

exi−xi+1 + C1exn−1+xn + C2 sinh−2 xn

2 + C3 sinh−2 xn,

(Toda-Dn-bry)

C1

n−1∑
i=1

exi−xi+1 + C2exn + C3e2xn . (Toda-BCn)

Here C1, C2 and C3 are any complex numbers.
We can generalize the Schrödinger operators in terms of root systems

(cf. [OP]). Let Σ be an irreducible root system with rank n, Σ+ a positive
system of Σ and Ψ ⊂ Σ a fundamental system of Σ+. Then Σ is identified
with a finite subset of a Euclidean space Rn and

P =
n∑

k=1

∂2

∂x2
k

+
∑

α∈Σ+

Cα

sinh2 ⟨α,x⟩
2

(Cα ∈ C, Cα = Cβ if |α| = |β|) (28)

and

P =
n∑

k=1

∂2

∂x2
k

+
∑
α∈Ψ

e⟨α,x⟩ (29)

are Schrödinger operators of Heckman-Opdam’s hypergeometric system (cf.
[HO]) and Toda finite chain (cf. [To]) corresponding to the fundamental system
Ψ , respectively. They are in D∗ under the coordinate system

tk = e⟨αk,x⟩ for k = 1, . . . , n

with Ψ = {α1, . . . , αn} and known to be completely integrable.
If Σ is of type BCn, then

Σ+ = {ei − ej , ek, 2ek ; 1 ≤ i < j ≤ n, 1 ≤ k ≤ n}
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and the Schrödinger operators (28) and (29) correspond to (Trig-BCn-reg) or
(Toda-BCn). If Σ is of other classical type, the operators also correspond to
special cases of (Trig-An−1-bry) or (Toda-Dn-bry) or (Toda-BCn).

The potential functions R(x) of known completely integral quantum sys-
tems which may not have regular singularities at infinity are expressed by
functions with one variable. If P2 and P3 are operators of order 4 and 6 with
the highest order terms

∑n
k=1

∂4

∂x4
k

and
∑n

k=1
∂6

∂x6
k
, respectively, this is proved

by [Wa] in general. We will examine this in the case when n = 2.

Theorem 8.1. Let ℓ be a positive integer. Suppose the differential operators

P =
∂2

∂x2
+

∂2

∂y2
+ R(x, y),

Q =
m∑

i=0

ci
∂m

∂xm−i∂yi
+

∑
i+j≤m−2

Si,j(x, y)
∂i+j

∂xi∂yj

(30)

satisfy [P,Q] = 0 and σm(Q) /∈ C[σ(P )]. Here R(x, y) and Si,j(x, y) are square
matrices of size ℓ whose components are functions of (x, y) and ci ∈ C. Put(

ξ
∂

∂τ
− τ

∂

∂ξ

) m∑
i=0

ciξ
m−iτ i =

L∏
ν=1

(aνξ − bντ)mν (31)

with suitable (aν , bν) ∈ C2 \ {0} satisfying aνbµ ̸= aµbν for µ ̸= ν. Here mν

are positive integers and m1 + · · · + mL = m. Then

R(x, y) =
L∑

ν=1

mν−1∑
i=0

(bνx + aνy)iRν,i(aνx − bνy) (32)

with m square matrices of size ℓ whose components are functions Rν,i(t) of
the one variable t.

Proof. The coefficients of ∂m+1

∂xm−1−j∂yj in the expression [P,Q] for (30) show

2∂xSm−2−j,j + 2∂ySm−1−j,j−1 = cj(m − j)∂xR + cj+1(j + 1)∂yR

for j = 0, . . . ,m − 1. Hence the theorem follows from the following equation.

0 = 2
m−1∑
j=0

(−1)j
(
∂j

x∂m−j
y Sm−2−j,j + ∂j+1

x ∂m−1−j
y Sm−1−j,j−1

)
= 2

m−1∑
j=0

(−1)j∂j
x∂m−1−j

y

(
cj(m − j)∂xR + cj+1(j + 1)∂yR

)
=

m−1∑
j=0

(−1)jcj(m − j)∂j+1
x ∂m−1−j

y R +
m−1∑
j=0

(−1)jcj+1(j + 1)∂j
x∂m−j

y R

=
((

ξ
∂

∂τ
− τ

∂

∂ξ

) m∑
i=0

ciξ
m−iτ i

) ∣∣∣
ξ=∂y, τ=−∂x

R. ⊓⊔
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