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1 Introduction

The invariant differential operators on a semisimple symmetric space have
regular singularities along the boundaries of the space which is realized in
a compact manifold by [O6]. In the case of a Riemannian symmetric space
G/K, the study of such operators in [KO] enables [K-] to have the Poisson
integral expression of any simultaneous eigenfunction of the operators. Here
G is a connected real semisimple Lie group with finite center and K is its
maximal compact subgroup.

In the case of the group manifold G, which is an example of a semisim-
ple symmetric space, Harish-Chandra gives an asymptotic expansion of a right
and left K-finite eigenfunction, which plays an important role in the harmonic
analysis on G (cf. [Ha]). He uses only the Casimir operator to get the asymp-
totic expansion, which suggests us that one operator controls other operators
together with some geometry.

On the other hand, the Schrédinger operator corresponding to Calogero-
Moser-Sutherland system with a trigonometric potential function (cf. [Su])
or a Toda finite chain (cf. [To]) is completely integrable and the integrals
with higher orders are uniquely characterized by the Schrodinger operator
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and so are the simultaneous eigenfunctions. These integrals also have regular
singularities at infinity.

In this note we study a general commuting system of differential operators
with regular singularities by paying attention to the fact that an operator
characterizes the system. Our argument used in this note is based on expan-
sions in power series and hence it is rather elementary compared to that in
[KO] and [O4] where a microlocal method is used.

In fact we will study matrices of differential operators which may not
commute with others in the system but satisfy a certain condition because it
is better to do so even in the study of commuting scalar differential operators.
Some of its reasons will be revealed in the proof of Theorem 4.1, that of
Theorem 6.3, Remark 4.3 ii) etc.

In §2 we study differential operators which commute one operator. We will
see that the symbol map o, plays an important role. In the case of the first
example above the map corresponds to Harish-Chandra’s isomorphism of the
invariant differential operators. In the case of the Schrédinger operator above
it corresponds to the commutativity among the integrals with higher orders.

In §3 we construct some of multivalued holomorphic solutions of the system
around the singular points which we call ideally analytic solutions and then
in §4 we study the induced equations of other operators, which assures that
the solutions automatically satisfy some other differential equations.

In §5 we study the holonomic system of differential equations with constant
coefficients holomorphically depending on a parameter, which controls the
leading terms of the ideally analytic solutions.

In §6 we study a complete system of differential equations with reqular sin-
gularities which means that the system is sufficient to formulate a boundary
value problem along the singularities and we describe all the ideally analytic
solutions. In particular, when the system has a holomorphic parameter, we
construct solutions depending holomorphically on the parameter. It is in fact
useful to introduce a parameter for the study of a specific system by holomor-
phically deforming it to generic simpler ones.

In §7 and §8 we give some explicit examples of the systems related to
SL(n,R) and the completely integrable quantum systems with regular singu-
larities at infinity, respectively. Moreover we give Theorem 8.1 in the case of
completely integrable quantum systems with two variables.

2 Commuting differential operators with regular
singularities

For a positive integer m and a ring R we will denote by M (m, R) the ring
of square matrices of size m with components in R and by R[¢] the ring of
polynomials of n indeterminates {&1,...,&,} if &€ = (&1,...,&,). The (i,5)-
component of A € M(m,R) is denoted by A;; and we naturally identify
M(1, R) with R.
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Let M be an (n+n’)-dimensional real analytic manifold and let N; be one-

codimensional submanifolds of M such that Ny, ..., N, are normally crossing
at N = Nin---NN,. We assume that M and N are connected. We will
fix a local coordinate system (t,z) = (t1,...,tn,21,...,2Ty ) around a point

x° € N so that N; are defined by the equations ¢; = 0, respectively.

Let Axn denote the space of real analytic functions on N and Ajp; the
space of real analytic functions defined on a neighborhood of N in M. For
a=(a1,...,an), B=(P1,...,0n) € Z™ we put

|a|:a1_’_..._|_an7
a<pfB & q;<p; fori=1,....,nand a # 0.

Let N be the set of non-negative integers. We will denote

9 9 o)
ﬁl:tlaitl7 az:(Tm7..-’a$7L/)’

9 =97t 9% for a = (aq,...,q,) € N,
918! ’

0F = sl ot B= (B Bu) €N,

A=t for A= (A1,...,\,) € C™

Let Dy and Dy denote the rings of differential operators on M and N
with coefficients in Ay and Ay, respectively.

Definition 2.1. Let D, denote the subring of Dy; whose elements P have the
form

P= Z o 5(t, )00 with an5(t,x) € Ay (1)
(a,ﬂ)eNni»n’

Here the sum above is finite. Moreover D, denotes the subring of D, whose
elements P of the form (1) satisfy

aa,5(0,2) =0 if B#0. (2)

When P is an element of D, P is said to have regular singularities in the
weak sense along the set of walls {Ny,..., N, } with the edge N (cf. [KO]).
Let define a map o, of Dy to Dn[E] by

0. (P)(x,&,0,) = Z e 3(0,2)6%0P

€N, BeNn’
for P in (1). Then
APt p(t, ) |t:0: o«(P)(x,\,0;)0(0,2) for ¢ € Apyp and X € C™.
Here we note that the condition P € 15* equals

t= Pt p(t,x) € Ay for Vo(t,z) € Ay
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and o, is a ring homomorphism of D, to Dyl¢] and 0.(D,) = An[€].
For k € N and P € D, with the form (1) we put

ox(P)(t,z, & 7) = Z o p(t, z)E4TP

lol+[8]=k

and then the order of P, which is denoted by ord P, is the maximal integer k
with o (P) # 0.

For P = (B- € M(m,D,), the order of P is defined to be the

J ) 1<i<m
1<j<m

maximal order of the components of P and denoted by ord P. We put

o(P) = (00rap(P) ) iy € Mlm, Avlg. 7)),

1<j<m
7:(P) = (0(P) ) 1<icm € M(m Dyle]),
1<5<m

7+«(P) :==0(P)(0,z,&,0,) € M(m,Dn[€]).

Then as a polynomial of £, 7.(P) is the homogeneous part of o,.(P) whose

degree equals ord P. For P, @ € D,, we note that c(PQ) = o(P)o(Q) and

do(Q) 00(Q), do(P)
O T TR TS )

do
(e

(2P)20(@) _ 901@) do(P)y
aTj 8xj 3’7']' ﬁxj '

Oord P+ord Qfl([Pa Q]) =

M:\ \TMS

+
1

.
Il

Theorem 2.2. Let P and Q be nonzero elements of M(mﬂs*) such that
[P,Q] =0, P € M(m,D,) and o(P) is a scalar matriz satisfying

S 20 for wenm (o} 3)

v=1

Here “Z£ 0”7 means “not identically zero”. Suppose that corqa p—1(P) or o(Q)
is a scalar matriz. Then [0.(P),0.(Q)] = 0 and 5.(Q) # 0. Moreover if
o(P)(t,z,&,7) does not depend on t, so does o(Q)(t,x,&, 7).

Proof. Since o, is an algebra homomorphism, [0 (P), 0.(Q)] = 0.([P,Q]) = 0.
Put rp = ord P and rg = ord Q. Fix 4 and j such that o,,(Q;;) # 0. Note
that the assumption implies

Orptro—1([P, Qlij) = 0rpiro—1([P11, Qij))-
Put
GTP(Pll) = Z pﬂ7’)’(z7£)t’y7—ﬁ7 UTQ(QU) = Z qﬁv’Y('rﬁg)t'yTBa
B

, B,
|B|<rp [B|<rq
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Orptrg-1([P11, Qis]) = Z 8, (2, 77"
B,y
IBI<rp+ro—1
and choose ((3°,7°) € N*'+" such that

qpo,~e # 07
4y =0 if v <+,
qg7fyo = 0 lf ﬁ > ,60.

Then

n
o o 8p070 o o
$go,yot” = ( o€ 73) (qﬁoﬂ"t’y 77 )a (4)

v

v=1

which proves the first claim in the theorem because the condition [P, Q] = 0
with the assumption of the theorem means v = 0.

Moreover suppose pg 4 = 0 for v # 0. Then (4) is valid for any v° € N and
B° € N satisfying gg~o = 0 for B > (° and hence the condition [P,Q] = 0
means ggo o = 0if 7v° # 0. Thus ¢g o =0if4° #0. O

Corollary 2.3. Let P € M(m,D,.) such that o(P) and oorqa p—1(P) are scalar
matrices. Suppose 7. (P) satisfies (3). Then the map
0. M(m,D,)" = {Q € M(m,D.); [P,Q] = 0} — M(m,Dy[¢]),
Qr 0.(Q)

is an injective algebra homomorphism.
In particular, when m = 1, DI :={Q € D, ; [P,Q] = 0} is commutative.

Proof. Since o, is an algebra homomorphism and the condition Q1, Q2 €
M (m, D.)? implies [Q1,Q2] € M(m,D,)F, this corollary is a direct conse-
quence of Theorem 2.2. 0O

Remark 2.4. 1) Retain the notation in Theorem 2.2. Then (3) is valid for P €
M (m, D,) if n functions agf(lP) s 8({0*5(13) are linearly independent over R.

In particular, if ord P = 2 and 7. (P) is a scalar matrix, the condition that

9%p

9 0¢;

the matrix < > is invertible for generic x € N
1<i<n
=

implies (3). Here p is the diagonal element of 7. (P).
ii) The assumption P € M (m, D,) is necessary in Theorem 2.2. For exam-
ple, [t% + xa%,ta%] =0 and o, (t%) = (0. Moreover we note that

1o}
th 0 0\l _,
0 t2+1)\00
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This gives an example such that go.q p—1(P) and o(Q) are not scalar matrices.

iii) The invariant differential operators on a Riemannian symmetric space
G/K of non-compact type have regular singularities along the boundaries of
a realization of the space constructed by [02] and the map o, of DF to Ax[¢]
in Corollary 2 corresponds to Harish-Chandra isomorphism (cf. [K-]).

The element of the universal enveloping algebra U(g) of the Lie algebra
of G defines a differential operator on the realization of G/K through the in-
finitesimal action of the left translation by elements of G. Then the differential
operator is an element of D,.

Moreover the invariant differential operators on a semisimple symmetric
space whose rank is larger than its real rank are in D, (cf. [O4]).

The radial parts of the Casimir operator acting on K-finite sections of
certain homogeneous vector bundle of G satisfy the assumption of Theorem 2.2
(cf. (26) and (27) for examples).

3 Ideally analytic solutions without logarithmic terms

For a subset X of N™ define
Yi={aeN"; {a+v;7eN"}NT £0},

09X :={aeN"\X; there exists v € X such that Z lo —vi| = 1}.
i=1

Moreover we denote by Ay the ring of formal power series of t = (t1,...,t,)
with coefficients in Ay.

Theorem 3.1. Let P € M(m, D).
i) Let X be a subset of N™ such that

det(o.(P)(z,7)) #0 for ¥y eN"\ X.
Let a(t,z) = > cnn Ual(2)t* € A be a formal solution of Pt = 0. Then
=0 if up, =0 for Va € X.
Hereafter in this theorem suppose

det . (P)(x,&) #0 for V¢ = (&1,...,&n) €10,00)" \ {0} and Vz € N. (5)

ii) If i € A7 satisfies Pu € A7y, then 4 € A7)
ili) Fiz f € A}, a point z° € N and a finite subset X of N such that

det(o.(P)(x°,7)) #0 for ¥y e N"\ X.
By shrinking M > x° if necessary and denoting

A (P71 f) o= {u € Ajy; Pu= f},
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Ay (PrHY = {a= Z ua ()t € Ay ; Pu=f mod Z Ar Py,

acy Beox

the natural restriction map

Au(PTH) S Au(P7 %,

aeN"™

Ug ()Y Z Ue ()t
>
s a bijection. Here in particular

Ape(PEHO = {u € AR ; 0 (P) (2, 0)u = flizo}-

Proof. The proof proceeds in a similar way as in [03, Theorem 2.1] where we
studies the same problem with n = 1.

We may assume 2° = 0. Expanding functions in convergent power series

of (t,x) at (0,0), we will prove the theorem in a neighborhood of (0,0).
Put » = ord P and

P =o0.(P)(z,9)+ Z Paﬁ(tvﬂf)ﬁaag-

(o, B)EN"H7
lal+]8]<r

Then po 5(0,2) = 0. For a finite subset X' C N™ and

i(t,x) = Y da()t € Afy,

QGN’H
put
a(t,z) = Z Uo ()t
aey
Suppose Pt = f mod ) o5 At Put h = f — Pa. Then
h= Y ho(@)t*= > hapt"s’ € A}
aeN"\X a€N"\ X, BeNn’
and

Pi=f & Pu=h withu=14-a.
Then the equation Pu = f is equal to

o«(P)(z,9)u =h — Z Pap(t, )90 u.

(a,B)eN™H™
la| 18] <r

0 f X
u= Z U ()t with ug(z) = { orac,

ol Go(x) for a e N™\ X

which also equals
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0«(P)(z,a%)uge () = haeo(2)

— Coef(t*") of ( Z paﬁ(t,x)ﬁaﬁf)( Z ua(a:)ta) (6)
(a,ﬂ)eN"Jr"/ aEN"O
jal+181<r <ol

for Va® € N*\ X. Here “Coef(t*”)” means “the coefficient of +*"”. Since
det 0, (P)(z,7) # 0 for v € N* \ X, uyo () is inductively determined by h.
On the other hand, putting h = 0, it is clear that the claim i) follows from
the induction proving us. = 0 by (6) for Va® € N\ 3.
Put
ua () = Z Ug p2”  with wu, 5 € C.
BeN™

The equation (6) equals
0.(P)(0, a%)ugeo go
= a3+ Coef(2”") of (.(P)(0,0%) = 0. (P)(z,07) (Y ttao,52”)

181<18°]
— Coef(t*” 27" of ( Z Da,g(t, x)ﬁ“@f) ( Z uaﬁto‘xﬁ)
(a.B)eN (aB)eN
lal+]B<r |l <]

for any a® € N*\ X and ° € N"'. Hence the elements Uqo go of C™ satisfying
this equation are uniquely and inductively determined in the lexicographic
order of (|a°|,|3°]). Thus to complete the proof we have only to prove that
S g pt*xP is a convergent power series. Here we may assume X > {0}.

In general, for formal power series ¢ = 3" a, 5t%2° and ¢ = 3" b, 52"
we denote ¢ < ¢ if |aq,p] < ba,p for Va, 8 and in this case ¢ is called a
majorant series of . Note that if ¢ is a convergent power series, so is .

Now assume (5). We note that there exists € > 0 such that

|det 7. (P)(0,8)] > (& + -+ + &)™ for V& € [0,00)".

As in the proof of [O3, Theorem 2.1], we can choose C > 0, ¢ > 0, M > 0 and
K > 1 so that for V(a, 3) € N**™ and Vy € N*\ ¥

eml(on(PYO, 1)), < [] (1l =),
j=0

Clar + -+ 2 TTZ0 (rly] = 4)
1-K(@+-+xn)
< Clty+---+1ty)
1—K(ti 44ty + x4+ zy)
Mty + - +tn)
1—K{i 4+ +ty+x 4+ +2pr)

0. (P)(,7)ij — 0« (P)(0,7)ij <

)

Pa,8(t,2)ij — Pa,p(0, )i

h(t, x)i <
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Here ¢ and j represent the indices of square matrices or vectors of size m.
Hence the power series w(s,y) of (s,y) satisfying

o) L T2

£ C”_”‘Zii)w (3) ()

Jk<r
Ms
+ 1-K(s+vy)’
w(0,y) =0

implies

(u(t,x)— Z ua(a?)ta)i<<w(t1+~~-+tn,x1+~~+xn/) for1 <i<m.
a€Nm\ X

Put s = z". Then (7) changes into

(c— Cmy ) 0w Z Cm(n+n')"z" (f 8)%)"&

P - el
_ s _ T k
1-Ky/ 0z j+k§r1 K(zr4+y) \rdz/ 0Oy
n Mz 7 (8)
1-K(:"+vy)
& w .
97 z:():O for 7=0,...,7r—1.

Since the first equation in the above is equivalent to

Cmy \0™w Cm(n+n')" 1z 0 \i0*w M
(C 1—Ky>6zr B ;Tl—K(zrﬁ—y)(raz) Ayk +1—K(zr+y)’

(8) has a unique solution of power series of (y, z), which is assured to be ana-
lytic at the origin by Cauchy-Kowalevsky’s theorem. In fact for a sufficiently
large positive number L, the solution of the ordinary differential equation

_COmt N gy Cm(n+n')"L t d K M
(c 1—Kt)w (t)_j;m - Kt (rdt)w O+ T

w(0)=0 for j=0,...,r—1

with
t=z+ Ly,
cL” > Cm(n+n')"

satisfies w(z,y) < @w(z + Ly). Hence w is also a convergent power series. 0O
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Let ¢ be a non-negative integer and let U be an open connected neighbor-
hood of a point z° of C* and let Oy be the space of holomorphic functions
on U. We denote by Ay and pAn the space of real analytic functions on
M with holomorphic parameter z € U and that on N with holomorphic pa-
rameter z € U, respectively. Moreover we denote by vAnr the space of formal
power series of t = (t1,...,t,) with coefficients in yAy. Let D, denote the
ring of differential operators P of the form

P = Z(a,ﬁ)GN“Jr"’ aaw@(tv T, Z)ﬁaag,
Qa,8 € AN, aa”@(O,x,Z) =0 if 8>0.
Then o, (P)(z,2,€) := >, Pa,0(0,2,2)(* € vAN[£].

Theorem 3.2. Let P € M(m,D,) and A(z) = (A1(2),..., \n(2)) € OF.
i) Let X be a subset of N™ such that

det(0x(P)(x,2,A(2) +7)) #0 for ¥y e N"\ X,

Let ¢(t,x,2) = Y cnn PalT, 2)1Y € UAT/[ satisfying P(tA(Z)ng) = 0. Then
¢ =0 if o =0 forVa € X.
Hereafter in this theorem suppose P satisfies

det 5. (P)(z,2,8) #0  forV(z,z,§) € N x U x {[0,00)" \ {0}}.  (9)

il) If ¢(t,xz, 2) € UAT]C[ satisfies P(tA(z)(b) =0, then ¢ € gAY}
iii) Fix x° € N. Let X be a finite subset X of N™ such that

det (o, (P)(2°,2°,A(2°) +7)) #0  for Vy e N"\ X.
Shrinking U and N if necessary and denoting

Soly (P; A) : = {u; ut™>®) € AT, and Pu =0},
Soly(PiN)” s ={u =Y ¢alz, )X a2 € y Ay, and
ey
Pu=0 mod Y  pApt*=H0y
pedxr

we see that the natural restriction map
Soly (P; \) == Soly (P; \)*,
Z qba(l‘,Z)t)\(z)Jra — Z ¢a(x’z>t>\(z)+a

aeNn ack

1s a bijection. Here in particular

Soly (P; M) = {u € pAR 5 0. (P) (2,2, A\(2))u = 0}.
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Proof. Fix z° € N. Expanding functions in convergent power series of (¢, x, z)
at (0,z°,2°), we will prove the lemma in a neighborhood of (0,z°, 2°). Re-
placing P and the complexification M¢ of M by t=*(*) o Pot**) and M¢ x U,
respectively, we can reduce this theorem to the previous theorem without the
parameter z. 0O

Corollary 3.3. Retain the notation in the previous theorem. Let £ = 1. Sup-
pose
0«(P)(z,2,\(2)) =0 for ¥(x,z) e N xU

and
det (o, (P)(z°,2,A\(2) +7)) #0 for Yy € N*\ {0} and Vz € U\ {=°}.
Then there exists a non-negative integer k such that the following holds.
The previous theorem assures that for any ¢o(z,z) € pAY and fized z €
U\ {z°} there exists a function u(t,x, z) satisfying
Pu =0,
=&y e AT
t=2Eul,—g = ¢o(z, 2).
Then t=**) 2*u(x, 2) extends holomorphically to the point z = 2°.

Proof. Since the functions det (o, (P)(z?, 2, A\(2)+7)) have finite order of zeros
at z = 2% for v € X\ {0}, this corollary follows from the proof of Theorem 3.1
(cf. (6) for Ya® € N™\ {0}). In fact it is sufficient to put k the sum of these
orders of zeros for vy € X'\ {0}. O

Remark 3.4. It follows from the proves of Theorem 3.1 and Theorem 3.2 that
there exist differential operators P (x, z, d,;) such that

Ga(,2) = Y PY(2,2,0,)dy(x,2) foraeN"\ ¥
yeX

in Theorem 3.2 iii).

Corollary 3.5. Fiz (z°,\°) € N x C" and let V be a neighborhood of A\° in
C". Suppose P € M(m,D,.) satisfies (9) and

det (o, (P) (2, X° + ) — 0 (P)(z°, X°)) #0 for ¥y e N"\{0}.
Then shrinking N, M and V if necessary, we have a linear bijection
B : Soly (P) := {u; ut™ € v AT and Pu = 0,(P)(z,\Nu} —> AR,
U — t_)‘u|t:0
with the coordinate ((t,x),\) € M x V. In particular, we have a bijective map
Bro : Solye (P) := {u; ut™" € A%, and Pu = 0. (P)(z,\°)u} = AR,

U — t_Aou‘t:().



12 Toshio Oshima

Definition 3.6. The map Bxo of Solye(P) is called the boundary value map
of the solution space Solxo(P) of the differential equation Pu = o.(P)(x, \°)u
with respect to the characteristic exponent A\°.

Remark 3.7. When n = 1, u € Soly.(P) is called an ideally analytic solution
of the equation Pu = 0,(P)(z, A°)u in [KO].

The following theorem says that Soly (P) and o, (P) characterize P € D,.

Theorem 3.8. Let P be an element of M (m,D,) satisfying the assumptions
in Corollary 3.5. Let P' € M(m,D,) with o.(P) = o.(P"). Then the condition
Soly (P) = Soly (P’) implies P = P’.

Proof. Suppose P # P'. Put

PP = Y v 90
a, B,y

Then we can find v° € N \ {0} such that dap Ta,got? 9402 # 0 and
Ta,p,, = 0if v < 4°. For v(z) € AR the coefficients of t**7” in (P—P")3; 'v(x)
show

0= (t_>‘ Z raﬁﬁoﬁaaft’\v(m)) lt=0
a,B

= Zraﬁﬁo)\“afv(x) for VA €V and Yu(z) € A%,
a8

which means a contradiction. O

4 Induced equations

Retain the notation in the previous section. Moreover we denote by Uﬁ* the
ring of holomorphic maps of U to D, for a connected open subset U of C*t.
We recall that the element P of /D, is characterized by the expression

pP= Z Pap(t, 2, 2)9°07 (10)
(a,B)eNn+n/
with pa g(t, z,2) € pAy and
0.(P)(2,2,6,0:) = Y _ pap(0,2,2)6*07.
a,B

Theorem 4.1. Let P € M(m, D) satisfying the assumption in Theo-
rem 3.2 iii) with X = {0}. Suppose that P, ..., P, € M(m,D.) satisfy
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P

[P,P]=S;P+Y TP (11)
j=1

with S; € M(m, D,) and T;; € M(m, D). Suppose moreover o.(T;;) = 0.
Then the map

Brz) :{u; 723y e vA; and Pu=Pu=0 fori=1,... 7p}

o.(P)(z,2,A(2))v =0,

U*(Pi)($,z,>\(z),8x)'u:() (Z':L”.?p) }7 (12)

= {U S UA%; {
w— t Ay |t:0
is a bijection.

Proof. Since (t=*) Pju)|i=o = 0. (P;)(x, 2, \(2), 9. )t~ u;=¢, Theorem 3.2
assures that we have only to prove the surjectivity of the map to get the
theorem.

For a given v in the element of the set, we have u € t**) AT, such that
Pu =0 and t " **u|;_g = v. Then PPju = Z§:1 T;; Pju, namely,

P-Tn Ty Tz - =Ty Pru
=151 P—Th —Iby --- =Ty Pu
Ty =Ty P—T33--- =Ty Psu [ —q.
—4dp1 Tp2 Tpg s P — Tpp Ppu

Since 0.(T;;) = 0 and t~**) Pjul;—g = 0 for j = 1,...,p, Theorem 3.2 i)
assures Pju = 0. O

Definition 4.2. The system of differential equations
0« (P)(z, 2, \(2))v = 04 (P;) (2,2, \(2),05)v =0 for i=1,...,p

in Theorem 4.1 is called the system of induced equations with respect to the
boundary value map By (cf. (12)).

Remark 4.5.1) Suppose P € M(m,yD,) satisfies the assumption in Theo-
rem 4.1. Let Q € M(m, yD.) such that [P,Q] = 0 and 0.(Q) (x, Z, )\(z)) =0.
Then if u € t\(*)p AT, satisfies Pu = 0, we have Qu = 0.

ii) Let p be the rank of an irreducible semisimple symmetric space
G/H. The ring of invariant differential operators on G/H is isomorphic to
C[Py,...,Py), where P; are algebraically independent and satisfy [P;, P;] =0
for 1 <i < j <p. Under a suitable coordinate system (t1,...,tn, Z1,...,Zp/)
of a natural realization of G/H constructed by [O6], G/H is defined by
ty > 0,...,t, > 0. Then n is the real rank of G/H and P; € D. \ D, if
n < p. It is shown in [O6] that we can choose P € 3°%_, D..P; such that P,
Py, ..., P, satisfy the assumption in Theorem 4.1.
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5 Holonomic systems of differential equations with
constant coefficients

In this section (aiyl’ ce %) is simply denoted by 0. For u = (u1,...,un) €

C"™ and y = (y1,--.,yn) € R™, we put

(L, y) =y + - + nYn.

Lemma 5.1. Let Homgg) (M, N) denote the space of C[0]-homomorphisms
of a C[0]-module M to a C[0]-module N'. Then the space is naturally a C[0]-
module. Let O be the space of formal power series of y = (y1,...,Yn) and
let O(C™) be the space of entire functions on C™ > y. Suppose M is a finite
dimensional C[0]-module. Then

P Homego (M, Clyle™) = Homey (M, € Clyle®)
AeCn AeCr

~ 13
~, Homgy) (M, O(C™)) (13)
= Homgjg) (M, O),

dim Homgg (M, O(C™)) = dim M. (14)

If M is a quotient C[0]-module of M such that
Homc[a] (M/, O(Cn)) :—> Homc[a] (M, O(Cn)),

then M = M.

Proof. For 1 = (p1,...,1n) € C", let m, denote the maximal ideal of C[0]
generated by B%i —p; withi=1,...,n. Then we have M ~ M, &---dM,
with suitable A, = (A\y1,...,Aun) € C" and C[0]-modules M, satisfying
m’fw./\/l », = 0 for a large positive integer k. Hence we have only to prove
the lemma for each M, . By the outer automorphism 8%7; — 8%7; + Ay, for
i =1,...,n which corresponds to the multiplication of the functions in O(C™)
or O by e~ M%) we may assume miM = 0.

Suppose mf M = 0. Then Homgg) (M, Cly]) — Homgg) (M, @) and (13)
is clear. Since O is the dual space of C[d] by the bilinear form (P(d),u) =
P(0)u|g=0, (14) is clear. The last statement follows from (14). O

Definition 5.2. A finite dimensional C[0]-module M is semisimple if

Homc[a] (./\/l, @ (Ce<’\’y>) = Hom@[a] (M, O((Cn)),
AeCn

Let U be a convex open subset of C*, where ¢ is a non-negative integer, and
let (/C[0] and yO(C™) be the space of holomorphic maps of U to C[J] and that
of U to O(C™), respectively.
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Proposition 5.3. Let r be a positive integer and let yM be a finitely generated
vC[0] module with dim yM = r for any fized z € U. Assume that there exist
positive integer k and finite number of holomorphic maps A\; of U to C™ such
that (Hiel m’;i(z))UM =0 for any z € U. Here the indices i run over a finite
set I. Then there exist yC[0]-homomorphisms uy,...,u, of yM to yO(C")
such that they are linearly independent for any fived z € U.

Let I =1, U---Uly be a decomposition of I such that

Xi(2) #Xj(z) forVYzeU if iel,andjel, and 1 <p<v<L.
Then we can choose {u; ; t € I} such that for each u; there exists I, satisfying

u; € Homcpg) (oM, Z e<’\f(z)’y>(C[y]) for any fized z € U. (15)
Jel,

Proof. Let {v1,...,vn} be a system of generators of yM. We identify the
homomorphisms of ypM to yO(C™) with their image of {vi,...,v,} and
hence u;(y,z) € yO(C™)™. Note that we can find yC[0]-homomorphisms
w1(y, 2)y - - -, Ur(y, 2) of pM to yO(C™) if we replace O(U) by its quotient
field.

Fix a point 2° € U. Let 7(t) be a holomorphic map of {t € C; [t| < 1} to U
such that v(0) = 2° and u;(y,~(t)) are holomorphic and linearly independent
for 0 < |t| < 1. Then [OS, Proposition 2.21] assures that there exist meromor-
phic functions ¢;;(t) such that the functions v;(y,t) = 25:1 cii (0)a;(y, v(t))
are holomorphic at ¢ = 0 and that v1(y,0),...,v,.(y,0) are linearly indepen-
dent. We can find P; € C[0]™ such that (P;,v;) = 6;; for 1 < ¢ < r and
1 < j <r.Here we put ((Q1,...,Qm), (f1,---s fm)) := >oney Qu(f,)(0) for
Q. € C[O]™ and f, € O(C™)™.

Put A(z) = ((PZ-, ﬂ])) 1<;<r» Which is a matrix of meromorphic functions

1<5<r
on U and det A(z) is not ide_n]tfcally zero. Let ¢;;(z) are meromorphic functions
on U such that (P;,u;) = d;; by putting u; = 377_, &;(2)1;.

Suppose u;(y, z) is not holomorphic at z = z°. Then there exist a pos-
itive integer L and a holomorphic function 4 of {t € C; |t| < 1} to U
such that 4(0) = 2° and the function w(y,t) := tLu;(y,7(¢)) is holomor-
phically extended to the point ¢ = 0 and moreover w(y,0) # 0. Then
w(y,0) defines a C[d]-homomorphism of ypM to O(C™) at z = z°. But
w(y,0),v1(y,0),...,v.(y,0) are linearly independent because (P;, w(y,0)) =0
for i =1,...,r, which contradicts to (14).

Hence for any z° € U we can construct ui(y,2),...,u,(y,z) which are
linearly independent and holomorphic in a neighborhood of 2° € U. Then
the theorem follows from the theory of holomorphic functions with several
variables because U is a convex open subset of C¥.

Since we have a decomposition yM = yM; @ --- & yM such that
(ITics, mii(z))UMy =0forv=1,...,L, we can assume (15). O
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Ezample 5.4. Let W be a finite reflection group on a Euclidean space R™. Let
Clp1, - .-, pn) be the algebra of W-invariant polynomials on R™. For example,
Pr(T) =D 14, <..cip<n Tir =~ Ti.- Then the system of differential equations

My pi(Qu=pi(Nu for i=1,...,n

with A € C" is a fundamental example of a ;yC[d]-module in Proposition 5.3.
Here U = C™ > X and r = #W. The system is semisimple if and only if
wA # X for Vw € W\ {e}. When A = 0, the solutions of this system are
called harmonic polynomials for WW. In this case, an explicit construction of
solutions is given by [O5] such that ui(A,y),...,u,(\ y) are entire functions
of (\,y) € C* and linearly independent for any fixed A € C™.

Remark 5.5. We will apply the result in this section to our original systems
with the coordinates ¢; = e~ for i = 1,...,n. Then C[9] and ¥ f(y)
change into C[9] and ¢~ f(—logt1,...,—logt,), respectively.

6 Ideally analytic solutions for complete systems

In this section we will study the system of differential equations
M:Pu=0 fori=0,1,...,q (16)

with P; € M(m,yD,). Here z € U is a holomorphic parameter and U is a
convex open subset of C*. We assume that o.(P;) do not depend on x € N.
We moreover assume that P = Py satisfies (5) and the system

M:0.(P)(z,Nu=0 for i=0,1,...,q, (17)

which we call indicial equation, satisfies the assumption of Proposition 5.3.
Then we call M a complete system of differential equations with reqular sin-
gularities along the set of walls {Ny,..., N,}.

For a non-negative integer k let C[log] ;) denote the polynomial function
of (logti,...,logt,) with degree at most k. Put Cllogt¢] = (J;—, Cllog t] (k)-

Definition 6.1. A solution u(t,x, z) of M with the holomorphic parameter z
is called an ideally analytic solution if u(t,z,2) € @ cc tAC[log t]ATY for any
fized z € U.

First we will examine the system M without the holomorphic parameter
z or U is a point. Then let {@; = tYiv;(logt); i = 1,...,7} be a basis of the
solutions of (17). Here v;(§) € C[¢] and these \; are called exponents of the
system M. We define

e(ti;) == A,
deg(u;) := degv;.
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We may assume that for any A € C™ and k € N

{u;; (e(uw;), deg(t;)) = (A k)} is empty
or linearly independent in the space t*C[log t]z’,g)/t’\(C[log tlle—1)-

Definition 6.2. Let u(t, x) be an ideally analytic solution of M. Then a non-
zero function

w(t,z) = Z t*p, (log )b, () (18)

with suitable A € C", p,(§) € C[{] and ¢, (z) € AR is called a leading term
of u(t,x) if
u(t,x) —w(t,z) € Y t*Cllogt]Af;
jecn
A—pgN"
and A is called a leading exponent of this leading term. If {w1 (¢, z), ..., wi(t,z)}
is the complete set of the leading terms of u(t,x), we say Zle w;(t,x) the
complete leading term of u(t, ).

Then we have the following theorem.

Theorem 6.3. The leading term (18) of an ideally analytic solution u(t,x)
of M is a solution of (17). Hence there exist ¢;(x) € Apr such that

w(t,x) = Y wit)di(x). (19)

A=A

In particular, X is an exponent of M.
Assume

det o (P1)(e(w;) +7v) #0 for v e N"\ {0} (20)

Then for any ¢(x) € An there exists a unique solution of M in the space
te(@)Clog t] AT, whose leading term equals ¢(x)tu;. Denoting the solution by
Tu,(6), we have the following bijective isomorphism if (20) is valid for 1 <
1 <r.

v — {ideally analytic solutions of M}, (¢;) — ZTm (¢i)- (21)
i=1

Proof. Examining the equation Pu(t,z) = 0 modulo ) ,ccr t*C[logt] A},
A—pgN"
we have o, (P)(%)w(t,z) = 0 and thus (19). e
Put A = e(w;). First suppose deg(#;) = 0. Then under the condition
(20), Theorem 3.1 assures the unique existence of ¢(t,z) € A} such that
Pyt o(t, ) = 0 and )40, 2) = ¢(x)u;(t) and moreover Theorem 4.1
assures Pjt*¢(t,z) = 0. If there exists another solution % € t*C[logt].A7
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of M with the same property, the leading exponent X of u — @ satisfies
N —e(u;) € N*\ {0}, which contradicts to (20). Thus we have proved the
required uniqueness of the solution.

Next suppose u; = t*v;(logt) with degv; > 0. Let V be a vector space
spanned by the components of elements of C[0¢|v;(€) and let {wy(§), ..., wq (&)}
be a basis of V. Here we may assume C[0¢|wy, € 25:1 Cw, for k=1,...,q.
Let @ be the vector of size gm with components 1, w, (logt) with @, € t* AT,
for v =1,...,q. Then the system M is replaced by a system M with an un-
known function @ where P; are replaced by suitable P; € M (gm,D,), respec-
tively. We note that M also satisfies the assumption of the theorem because
det (o (R)) = det(o. (Pi))q. Thus we may only consider the solutions with
components in t*Ay;.

For example, if n = n’ = 1 and P = (9 — \)? + t202, the solution of the
equation Pu = 0 in the space t* Ay, @ (t* log t). A corresponds to the solution

o ((19 AR (¥ —2(;9);3 1282) (Z;) -

in the space t’\A?w by the correspondence u = u; + us logt.

To complete the proof of the system we have only to prove that the map
(21) is surjective. Let u be any ideally analytic solution of M. Then any
leading exponent of u is an exponent of the system M and therefore we define
¢i(x) by (19) if e(a;) is a leading exponent of u and by 0 otherwise. Then
if w# >, Ty, (¢), any leading exponent of u — >, Ty, (¢) is not in the set
{e(@;)}, which contradicts the first claim in the theorem. O

We will return to the case when (16) is the complete system which has a
holomorphic parameter z € U C C*.

First assume that M is semisimple for any z € U (cf. Definition 5.2) and
that the indicial equation M satisfies the assumption in Proposition 5.3 by
putting t; = e™® for 1 < ¢ < n. Then the proof of the previous theorem
implies the following.

Proposition 6.4. Assume that M is semisimple for any z € U. Let {u;(x, z) =
N fi(2); i = 1,...,7} be a basis of the solutions of (17) for any z € U.

Here fi(z) € O(U)™. Assume (20) for any z € U. Then Ty, (¢) is holomorphic

for z € U under the notation in Theorem 6.3.

To examine the case without the assumption in this proposition, we study
a generic holomorphic curve ¢ — z(t) through the point 2° € U where the
assumption breaks. Hence we restrict the case when ¢ = 1.

Suppose £ =1 and fix 2° € U. For simplicity we put z° = 0. Assume that
M is semisimple (cf. Definition 5.2) for any fixed z € U\ {0}. We will shrink U
if necessary hereafter until the end of the following theorem. Let {1, ..., @, }
be a basis of the solutions of the indicial equation for Vz € U \ {0}, where ;
are

ai(t,2) =@ fi(z) for i=1,...,r
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with suitable f; € O(U)™. Then Proposition 5.3 assures that there exist
meromorphic functions ¢;;(z) such that by denoting

{w1,...,w,} is a basis of the solutions of the indicial equation for Vz € U and
w;(t, z) are holomorphic function of (logt, z) € C* x U. By virtue of (15), we
may assume ¢;;(z) = 0 if ;(0) # A;(0).

Then we have the following theorem which is the main purpose of this
note.

Theorem 6.5. Under the notation above. there exist differential operators
Rij(x,2,0;) such that for any ¢(x,2) € vAyy, >y Ta, (Rij(z, 2, 0,)9(x, 2))
is a holomorphic function of z € U and an ideally analytic solution of M with
the complete leading term ¢(x)w;(t, z) for any fized z € U. Moreover the map

"~ — {ideally analytic solutions of M},
(pi(x)) — ZTm (Rij(z,2,0;)9;(z))
.3

holomorphically depends on z € U and it is bijective for any z € U. Here
Rij(x,z,05) are holomorphic functions of z € U \ {0} valued in the space of
differential operators on N and may have at most poles at z = 0 and moreover

0 if Ai(0) = A;(0) ¢ N™,

cij(2) if Ai(0) = A;(0).

Proof. We will inductively construct R;;(z,z,0,) according to the number
LX) = 30 ®A;,(0). Here \j = (A\j1,...,))n) and RC denotes the real

part of ¢ € C.
Fix a positive integer k with &k < r. By the hypothesis of the induction

we may assume that R;; have been constructed if L(\;) > L(\g). Put R§'(I)c) =
¢ik(z). We inductively define R%) for v =0,1,... as follows. Put

Rij(xazaax) = {

Z Tﬂi (Rz(]:)gb(xv Z)) = an,,(b;l:) (ta 93) + o+ 271¢(1V) (ta x) + ¢éy)(t7 z, Z)
1=1

with (;S(()V) (t,z,z) € pAp. Suppose n, > 0. By the analytic continuation of
2"y Ty, (REZ)QS(x, z)), it is clear that qﬁ%’? (t,x) is a solution of M at z = 0.
Any leading exponent p of qﬁ%l: (t,x) satisfies u — A, (0) € N™\ {0} and hence

the complete leading term of (;551”) (t,x) is

v

3 W8 () (t, 0).

X, (0)€X(0)+ (Nm\{0})
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Note that 1/)]@ (x) = Pj(y) (x,0;)¢(x) for some differential operators which do
not depend on ¢(z). Put Pj(”) (x,05) = 01if X;(0) — Ax(0) ¢ N™\ {0}. Hence

ZTﬁl (x,2,0z) Zz,z " T, (Rij(x, 2,0y ) ; (x,aw)qﬁ(a:))

=1 j=1
(22)
has a pole of order less than n. Defining

RY (@, 2,0,) = R (2, 2,0) Zz " Rij(x,2,0:) P} (,0,)

J

inductively, we have R;;(z,z,0;) = Rl(;)(:r, z,0,) for certain v such that the
left hand size of (22) is holomorphic at z =0. O

Remark 6.6. Let P; € D, for i =1,...,n satisfies

[Pi7pj]:ZTVL:1RZ‘jVPD fOI‘ 1§’LS]§717
0.(P;) do not depend on xz € N,
{€eC;au(P)(§) = = 0.(Pn)(§) = 0} = {0}

with some R;;, € D, satisfying o,(R;;,) = 0. Then for a suitable positive
integer L there exist R; € C[] such that

OI‘dPZ‘ +OI‘dRZ‘ = 2L,
ou(Po) = &5 + -+ &F

by putting
-So .
i=1

Then { P, ..., P,} satisfies (11) with S = 0 and 0.(T;;) = 0 because

n

[Po, Py = Z([PO, R;1P; + ZRiRijz/Py)
i=1 v=1
and U*([Po, RzD = 0*(RiRijy) =0.
In this case let A° be an exponent of the system Pu = 0 (1 < i < n).
Then for a suitable p € C™ and a positive integer k, the system

oMt (P = 0u(PYX + p2*))u =Y Ri(Pi — 0. (P)(A° + p2¥))u =0

satisfies the assumption of Theorem 6.5 for U = {z € C; |z| < 1} by changing
the lower order terms of R; if necessary. Hence we can analyze the ideally
analytic solutions of M by the analytic continuation of the parameter z to
the origin.
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Theorem 6.7. Retain the notation and the assumption in Theorem 6.5. Let
v’ be the dimension of the finitely generated C[9]-module
m

M° ::chw]uj/ STCW]S 6. (P (22, 9.

q
= i=0 k=1 j=1

Suppose n' =0 and ' < r. Then r' = r and any solution of M defined on a
small connected neighborhood of (t°,x°) € M with z = 2° and 0 < [t3| < 1 for
j=1,...,nis an ideally analytic solution given in Theorem 6.5. In particular
the dimension of space of the solutions equals r.

Proof. Let w, for v = 1,...,r" be elements of Z;":l(C[ﬂ]uj whose residue

classes form a basis of M°. Fix z = z°. Then in a neighborhood of (0,z°)

i .AM [ﬁ]u] = i .AMU)V + Z i .AM [19] Z(Pi)kjuj-

i=0 k=1 j=1

Let w be a column vector of size ' with components w,. Then the system M
implies
N Qw=Q;t)w for j=1,....n

with suitable Q; € M(r’, Ay). Then any solution w(t) of N on a neighborhood
of (t°, 2°) is analytic and w = 0 if w(t®) = 0. Hence the dimension of the space
of solutions of N is smaller than or equals to r'. But we have constructed r
linearly independent solutions in Theorem 6.5. Hence we have this theorem.
O

Remark 6.8. Retain the notation in Theorem 6.7. Suppose ¢ = n—1, [P;, P;] =
0 for 0 <i < j <gq, d.(F;) are diagonal matrices and

{£€C";0.(P)(E) =0 for i=0,...,q} = {0}

Then v/ =r and ' = m[[{_,ord P,.

7 Examples related to SL(n,R)

For a connected real reductive Lie group G and an open subgroup H of the
fixed point group of an involutive automorphism o of G, the homogeneous
space G/H 1is called a reductive symmetric homogeneous space. Then in a
suitable realization X of G/H constructed by [06], the system of differen-
tial equations that defines the simultaneous eigenspace of the elements of the
ring D(G/H) of the invariant differential operators on G/H has regular sin-
gularities along the boundaries of G/H in this realization. It is an important
problem to study the eigenspace. For example, see [K-] in the cases of Rie-
mannian symmetric spaces.
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Note that the Lie group G is identified with a symmetric homogeneous
space of G x G with respect to the involutive automorphism o of G defined by
o(g1,92) = (g2,91) for (g1,92) € G1 x G5 and that any irreducible admissible
representation of G can be realized in an eigenspace of D(G).

In this section we will consider differential equations related to the Lie
group G = SL(n,R), which give examples of the differential equations we
study in this note. The element of the Lie algebra sl(n,R) of G is identified
with that of M (n, R) whose trace equals 0. Let E;; be the fundamental matrix
unit whose (4, j)-component equals 1 and the other components are 0. Then
sl(n,R) is spanned by the elements Eij = E; — %(Eu + -+ E,;,) with
1 <4 < j < n. For simplicity we put E, = E,;.

We identify s[(n, R) with the space of right invariant vector field on G by

(X)) = %f(getx) for X € sl(n,R), f € C®(G) and g € G.

t=0

Here we note that

(Bpa f)((zi5)) = %f((xij)etqu) o (Z »”Cupa?;) ((zi5))

v=1

for g € C*°(GL(n,R)) and (z;)1<i<n € GL(n,R) because (i, j)-component
1<j<n

of (ij) 1<i<n Epq equals z;,04;.
1<5<n
We first review, by examples, that the invariant differential operators of
the Riemannian symmetric space G/K has regular singularities along the
boundaries of the space in the realization constructed in [02]. By the Iwasawa

decomposition G = NAK with

K = 8S0(n) ={g € SL(n,R); 'gg = I,.},

ai
A=<a= ;a; >0 forl1<j<mnanday---a,=1,, (23)
an
1
_ To1 1
N = . .. ;xijERfOr1§j<i§n ,
xnlx'rﬂ"'l
tj::% forj=1,...,n—1,
3

the Riemannian symmetric space G/ K is identified with the product manifold
n(n—1)

N x A with the coordinate (ty, ;) € (0,00)" ' xR~ 2z . Then the Lie algebra
of the solvable group of N A is spanned by the elements
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1—1 n
0 0

El:( tu)( m’i) for1<j<i< )

J Vl;[] axij+l/:%+1a: o, orl<sgyp<is<n

- i . .
Ej;=FE;jj— 2(Enn+-+Eu) forl<i<nand1<j<n,

n

Eiiini:ﬁifl_ﬁi fOl“lSiS’l’L, 190:?9n+1=0.

. (n42)(n—1)
The coordinate (ty,x;;) € R 2

realization of G/K.

Let U(g) be the universal enveloping algebra of the complexification g of
the Lie algebra of G. Then if G = SL(n,R), the ring D(G/K) is naturally iso-
morphic to the center U(g)“ of U(g) and U(g)“ is generated by the elements
Lo, ..., L, which are given by

can be used for local coordinate of the

det(Eij + ("5 —i — A)0s;) = Ly — Lyt A+ -+ + (=1)"A\"

for A € C (cf. [Cal]). Here det(A4;;) = EGEG" sgn(o)Ag1)1 - Ag(n)n and
U(g)% is generated by the algebraically independent (n — 1)-elements which
are the coefficients of A* for k=0,1,...,n — 2.
Let € be a Lie algebra of SO(n), which is generated by the elements E;; —
Eji fOI‘lSZ<jS’I’L
Since
Ei+1 Ep

_ _ 1 _ 1y
A2_det(E21 E%)—(El—&-z)(Ez 5) — Eo1 Eo

= (E1 + 3)(E> — 3) — E3; mod U(g)t

=—(— 3?1202 =—*(0} +92) — 1+ with ¥=1tZ,

we see that D(SL(2,R)/SO(2)) = C[t>(Z5 + Z5)]. Here SL(2,R)/SO(2)
is realized in the upper half plane {x + it; (¢t,z) € (0,00) x R} and A, has
regular singularities along the real axis. On the other hand, the explicit form
of the vector field Lx defined by the translation e *X -p for s € R, X € g
and p € SL(2,R)/S0O(2) is given by

Lg, = —0., Lp, =9+ 20,, Lg,, =220 — (t* — 2%)0,.
When G = SL(3,R), we have

det FEsq Ey— A FEo3 = (El +1-— )\)(EQ - )\)(E3 —1- )\)
E3 Esp E3—1-A

+ FE21E39FE13 4+ E31E19F23 — (F11 + 1 — M) E32FEa3 — Eo1 E1o(E3 —1— )
— E31(Ey — \)Ey3 = Az — Agh — X3

with
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Az = (E1 +1)Ey(Es — 1) + Ey EsFE13 + E31 E19E03
— (By + 1)EspEo3 — By E1o(Es — 1) — E31 EyEns
= (B, +1)Ey(Es — 1) — (Ey + 1)E%, — (B3 — 1)E3, — (B, — 1)E3,
+ 2FE51E39FE3; mod U(g)t
= —(01 — 1)(91 — ¥2) (P2 — 1) + 20313(0x + y0-) 0, -
+ (0 — 1)t302 — (V1 — V2 — 1)E5307 — (92 — 1)t3 (0 + y02)?
Ay =Ey(E3 — 1)+ (Ey 4+ 1)(E3 — 1) + (E1 + 1) Ey
— E32Ea3 — Eo1 By — Es1 B3
=FEy(Es— 1)+ (E1+1)(Es—1)+ (E1+ 1)Es
- E§2 - E§1 - E§1 mod U(g)t
=—(01 —1)* + (91 — 1)(2 — 1) — (V2 — 1)?
— 1505 — 111302 — t1(0, + y0.)?,

T =1T9, Y= T3 and z = x31.

Then D(SL(3,R)/SO(3)) = C[A3, Ay, where A and A, are the last expres-
sions of Az and As in the above, respectively. This expression of invariant
differential operators on SL(3,R)/SO(3) is given by [O1] to obtain the Pois-
son integral representation of any simultaneous eigenfunction of the operators
on the space, where such representation is first obtained in the space with the
rank larger than one. In fact 4A; and 8A; + 8 A3 are explicitly written there
under the coordinate (s,t,u,v,w) with (s,t,u,v,w) = (t3,t2,2,y, 2), which

corresponds to a local coordinate system in the realization given in [OS].
When G = SL(n,R) the second order element Loy of U(g)% is

Ly = Z (B + nTH —i)(Ej + nT—Fl —j) — EjiE;j)
1<i<j<n
S Wi =900 - 9)
1<i<j<n
j—1 9 n 5 12
P> (Htg) (ax.. + > f”w'ﬁ) mod Uf(g)t,
1<i<j<n v=i L v

9y = 9; — Lol

and D(G/K) = C[La, ..., L,] satisfying

0*(Ek) = Z (é’l’l*l _gil)(gizfl _giQ)"'(éikfl _gik)v
1<y <ip <+ <ip<n
=&~ Ln{i)
for k=2,...,n.
We will examine more examples. For a in (23) we have
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Ad(ail)Eij = aEijafl = ai_lajEij = tijEij,

titiyr -t if i <3j
—1 sli+1 j—1 =7
g =00y = {t—lt—l et >

i G+t Js
Ult= Y  Ul@(By—Ej).

1<i<j<n
Hence
Ad(a™Y)(Bij — Ej0)* + (Byj — Eji)?
— (tij +t;;') Ad(a™")(Eij — Eji) - (Eij — Eji)
(3 — VEyEji + (t;7 — ) Ej i
= (tij — ti; )2 EjiBij + (£ — 1)(Bi — Ejj),
Ad(a™")(Eij — Eji) - Eij — ti; B, = =t Eji Eyj.

Thus we have
2

_
EjiEij = 5 (B — Ejj)
)
t2.
K3 71 2 2
o B 5 5B
ij

tij(lJFt?j) _
ETEEAE Ad(a")(Eij — Eji) - (Eij — Eji)

=157 — tiy Ad(a™")(Eij — Eji) - Eyj.

25

(25)

Let (w,Vy) be a finite dimensional representation of a closed subgroup
H of G and C*(G; V) denote the space of Vg-valued C*°-functions on G.
Then the space of C*-sections C*°(G/H;w) of the G-homogeneous bundle

associated to w is

{f € C%(G; V) ; flgh) = w ™" (h)f(g) for Vh € H}.

Consider the case when H = K. Because of the decomposition G = KAK
the function f € C*°(G/K;w) is determined by its restriction on KA and by
the natural map K x A — K A the restriction can be considered as a function

f on K x A. Then the action of the differential operator Ly to f is

_ ~ o ) tf.
L= Z ((?91‘—1 —9i)(0j1 — ;) — 1 —]t2. (i1 — 9 — 951 +95)
1<i<j<n 5
t2.
% 1 5 )
ij
tii(1+ tfj)

oy AdeTE B @By - Ey)
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at (k,a) € K x A, which follows from (24). Here the induced representation
of the Lie algebra £ of K is also denoted by w.
Let (9, V5) be an irreducible representation of K. Then the d-component
of C*(G/K;w) is an element f € V @ C*°(G/K;w) which satisfies
d . ix
Ef (e 9)

= (0(X
= (6x))
for X € . Hence the function f is determined by its restriction f on A and
the action of the operator Ls to f is

Ly = Z ((751‘—1

1<i<j<n

. - t?
— i) (01 — V)

_ ﬁ(ﬂi_l — 9 — 9,1 +9;)
ij
t2.
— m((s(El - Eji)z —+ W(E” - Eji)Q) (26)
ij
(14 t3;)
(1—1t3)

0(Eij — Eji) @ w(Eij — Eji))'

Note that the operator P = Lo satisfies the assumption of C_orollary 2.3.
When G is SL(2,R) or its universal covering group and f is an eigenfunc-
tion of Lg, we can put w(E12 — E91) = v/—1k and 6(E12 — Eo1)
for certain numbers k and m and
1 1+ t(k — mt)(m — kt)
) Ep—— 9
( + 4 1-—t2 +

(1—1¢2)2
Putt=e* and u = f. Then ¢ = —di and

= —v/—1Im

1N -
~(A+5)*) =0,
2
k+m)?
u”—l—cothm-u’—( u u= A+ 1)u,
4sinh®z  4sinh® 2 (+1)
v (k+m—-1(k+m+1)
dz?

km

km 2
v+ v=(2A+ 1) .
sinh? 22 sinh? 2 ( )
. L1

by denoting v = sinh? x - u and 5+:+1%

Then for & = sinh™ z -sinh™ 2 2z -v and w = — sinh? z we have

d?v k—m-+2

1—w) Y (7

w(l —w) qu? +

do k k
5 (k+2)w Tu 5 A 2+)\+ =0
and hence f is a linear combination of the functions

. k—m k+m
sinh 2 z-cosh 2

k—m
2

+1; — sinh? z),
. —k k+m m m—k . 2
sinh” = z-cosh 2z z-F(% — X § +A+1,75% 4 1; —sinh z)
Thus it is clear that the non-zero real analytic solution f defined in a neigh-

borhood of the point z = 0 exists if and only if k —m € 2Z. Here F(«, 3,7; 2)
denotes the Gauss hypergeometric function (cf. [W])
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Next we assume H = N and w is a character of N. Then there exist
complex numbers ¢y, ..., c,_1 such that

w(eEISKJ'Sn S'ijE'ij) — oV~ Uersizt+en—15n-1,n)

The element f € C*°(G/N;w) is determined by the restriction f = f|x.4 and
it follows from (25) that the operation of L to f is

> Wi =00 —05)+ Y (7 +V=1eiti(Biis1 — Eig14)). (27)
1<i<j<n 1<i<n
Hence if G = SL(2,R), the eigenfunction f of Lo of the §-component of
C>*(G/N;w) with 6(E13 — E21) = v/—1m satisfies
(—(19 — L2 —emt+ (M + %)2)1% ~0

and hence 2 At 1
Ul — (8- am ARy )~ 0
If we put u(z) = e2 (fla(e™")), then

u// _ (0%6—21-

—cme " )u=(A+ 3)%u.
Denoting W (+£2c¢;1t) = f|a(t), we have the Whittaker equation (cf. [W])

Y 2 )W:O'

8 Completely integrable quantum systems

A Schrédinger operator
P= — +R ey Ty
2 )

of n variables is called completely integrable if there exist n algebraically in-
dependent differential operators Py such that
[P,,Pj]=0 for 1<i<j<n and PeC[P,...,P,].
Under the coordinate system (1, ...,¢,) with
ty =e"1 72 Lty =ePr T, = 6P

the Schrodinger operators P which belong to D, and have elements @ € D,
satisfying
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n 64
QZZ@?+QI with ord Q' < 4
k=1 "k

are classified in [O8] and proved to be completely integrable (cf. [O7] and [O09]).
They are reduced to the Schréodinger operators with the potential functions
R(z1,...,xy,) in the following list.

E Ch (sinhf2 Litti 4 ginh 2 L% )
2 2
1<i<j<n

n (Trig-BC,,-reg)
+ ) (Cosinh™? zy, 4+ Cysinh ™2 %),

k=1
Z Cysinh™> 255 4 Z(Czerk + C3e*™), (Trig-A,_1-bry-reg)
1<i<j<n k=1
n—1
Cy ) et 4 Cre™ =+ 4 Cysinh ™ 2 4 Cysinh ™2 a,
i=1
(Toda-D,,-bry)
n—1
C1 ) e mist 4 Che™ + Cyen. (Toda-BC,,)

i=1

Here C7, Cy and C3 are any complex numbers.

We can generalize the Schrodinger operators in terms of root systems
(cf. [OP]). Let X be an irreducible root system with rank n, X% a positive
system of X and ¥ C X a fundamental system of ¥*. Then X is identified
with a finite subset of a Euclidean space R™ and

"L 92 Co :
P=Y 2ot Y —Sr s (CaeC Ca=Caitlal=Id)  (29)
k=1 aex+ S 2
and
~ & (o,2)
P=Y" pra +> el (29)
k=1 ac¥

are Schrodinger operators of Heckman-Opdam’s hypergeometric system (cf.
[HO]) and Toda finite chain (cf. [To]) corresponding to the fundamental system
¥, respectively. They are in D, under the coordinate system

tr =el®® for k=1,...,n

with ¥ = {a1,...,a,} and known to be completely integrable.
If X is of type BC,,, then

Yt ={e;—ej, ex, 2e;1<i<j<n 1<k<n}



Commuting differential operators with regular singularities 29

and the Schrodinger operators (28) and (29) correspond to (Trig-BC),-reg) or
(Toda-BC,,). If X is of other classical type, the operators also correspond to
special cases of (Trig-A,_1-bry) or (Toda-D,,-bry) or (Toda-BC,).

The potential functions R(z) of known completely integral quantum sys-
tems which may not have regular singularities at infinity are expressed by
functions with one variable. If PQ and P3 are operators of order 4 and 6 with
the highest order terms Y, _, 8 BaT and Y, a 520 respectively, this is proved

by [Wa] in general. We will examlne this in the case when n = 2.

Theorem 8.1. Let { be a positive integer. Suppose the differential operators

0? 0?
P = 87 + W + R( )
m L 30)
az—i—g (
Z rm— [ + Z Sivj ({E, y) 7 j
e ay itj<m—2 Oz 9y’

satisfy [P, Q] = 0 and 0,,(Q) ¢ Clo(P)]. Here R(x,y) and S; j(x,y) are square
matrices of size £ whose components are functions of (z,y) and ¢; € C. Put

(657 ~a) Lo = [Tt~ @1
or o0& ! N Y v

v=1
with suitable (a,,b,) € C?\ {0} satisfying a,b, # aub, for u # v. Here m,
are positive integers and my + --- +mp = m. Then

L m,—1

= Z Z (byx + ayy) Ry i(avx — byy) (32)

v=1 i=0
with m square matrices of size £ whose components are functions R, ;(t) of
the one variable t.

Proof. The coefficients of

m+1
3xm T=70y7

28w5m,2,j,j + 28y5m,1,j)j,1 = cj(m — j)awR + Cj+1(j + 1)8,/R

in the expression [P, Q] for (30) show

for j =0,...,m — 1. Hence the theorem follows from the following equation.
m—1
=2 8j8m7 m—2—j,j T a.»jﬂlﬂaglflfjsm—l—j,j—l)
]:O
m—1 o )
=2 (—1)38;8;"717J (cj(m — §)0 R+ cj1(j + 1)0yR)
j=0
m—1 . ) . m—1 ) . )
= 3 (- esm = IO IR+ Y (e + )OO IR
j=0 j=0
m

— ((5% T%) Z i§m7i7'i> L:ay772_8m R. m|
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