MINIMAL POLYNOMIALS AND ANNIHILATORS OF
GENERALIZED VERMA MODULES OF THE SCALAR TYPE

HIROSHI ODA AND TOSHIO OSHIMA

ABSTRACT. We construct a generator system of the annihilator of a general-
ized Verma module of a reductive Lie algebra induced from a character of a
parabolic subalgebra as an analogue of the minimal polynomial of a matrix.

1. INTRODUCTION

In the representation theory of a real reductive Lie group G the center Z(g) of the
universal enveloping algebra U(g) of the complexification g of the Lie algebra of G
plays an important role. For example, any irreducible admissible representation 7
of G realized in a subspace FE of sections of a certain G-homogeneous vector bundle
is a simultaneous eigenspace of Z(g) parameterized by the infinitesimal character
of 7. The differential equations induced from Z(g) are often used to characterize
the subspace E.

If the representation 7 is small, we expect more differential equations correspond-
ing to the primitive ideal I, that is, the annihilator of 7 in U(g). For the study
of I; and these differential equations it is interesting and important to get a good
generator system of I,.

Let po be a parabolic subalgebra containing a Borel subalgebra b of g and let A
be a character of pg. Then the generalized Verma module of the scalar type is by
definition

(11)  Me(\) =Ul(g)/Jo(n) with Jo(X) = Y U(g)(X — A(X)).

Xe€po

In this paper we construct generator systems of the annihilator Ann(M@(/\)) of the
generalized Verma module Mg(\) in a unified way. If 7 can be realized in a space
FE of sections of a line bundle over a generalized flag manifold, the annihilator of
the corresponding generalized Verma module kills E.

When g = gl,,, [O2] and [O3] construct such a generator system by generalized
Capelli operators defined through quantized elementary divisors. This is a good
generator system and in fact it is used there to characterize the image of the Poisson
integrals on various boundaries of the symmetric space and also to define generalized
hypergeometric functions. A similar generator system is studied by [Od| for g = o,
but it is difficult to construct the corresponding generator system in the case of other
general reductive Lie groups. On the other hand, in [O4] we give other generator
systems as a quantization of minimal polynomials when g is classical.

Associated to a faithful finite dimensional representation m of g and a g-module
M, [O4] defines a minimal polynomial ¢, a(x) as is quoted in Definition 2.3 and
Definition 2.5l If g = gl,, and 7 is a natural representation of g, ¢ am(z) is char-
acterized by the condition g a(Fr)M = 0. Here F; = EU> 1<i<n is the matrix

1<j<n
whose (i, j)-component is the fundamental matrix unit E;; andigﬁen F. is identi-
fied with a square matrix with components in g C U(g). In this case g g (x) () is
naturally regarded as a quantization of the minimal polynomial which corresponds
1
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to the conjugacy class of matrices given by a classical limit of Mg(\). For example,
if pe is a maximal parabolic subalgebra of gl,,, the minimal polynomial g, a7 () ()
is a polynomial of degree 2.

For general m and g, the matrix F} is the image (p(EU)) of (E;;) under the

contragredient map p of m and then F is a square matrix of the size dim 7 with
components in g. For example, if 7 is the natural representation of o,,, then the
(i, j)-component of Fy equals 1(E;; — Ej;).

In [O4] we calculate the minimal polynomial g, a7 () (%) for the natural repre-
sentation 7 of each type of classical Lie algebra g and by putting

(1.2) Iio(N) = U(0)dnmom (Fr)ij + > UlgA,
0,J AeZ(g)NAnn Me (\)

it is shown that

(13)  Jo(N) =Ire(N) +J(Ne) with J(he) = Y U(g)(X — A(X))

Xeb
for a generic A. This equality is essential because it shows that ¢ ar,(x)(Fr)ij give
elements killing Mg (A) which cannot be described by Z(g) and define differential
equations characterizing the local sections of the corresponding line bundle of a
generalized flag manifold. Moreover (1.3) assures that Ir o(\) equals Ann(Me (X))
for a generic A (Proposition [3.11)).

In this paper, 7 may be any faithful irreducible finite dimensional representation
of a reductive Lie algebra g. In Theorem 2.24] we calculate a polynomial ¢ ¢(z; A)
which is divisible by the the minimal polynomial g, ar,(x) () and it is shown in
Theorem [2.29 that the former polynomial equals the latter for a generic A. If
po = b, this result gives the characteristic polynomial associated to m as is stated
in Theorem 2.33|, which is studied by [Go2]. We prove Theorem 2.24 in a similar way
as in [O4] but in a more generalized way and the proof is used to get the condition
for (1.3). Another proof which is similar as is given in [Go2] is also possible and
it is based on the decomposition of the tensor product of some finite dimensional
representations of g given by Proposition 2.27. The proof of Theorem [2.29/ uses
infinitesimal Mackey’s tensor product theorem which is explained in Appendix [Al

In §3 we examine (L.3) and obtain a sufficient condition for (1.3) by Theo-
rem [3.21. Proposition 3.25 and Proposition 3.27| assure that a generic A satisfies
this condition if 7 is one of many proper representations including minuscule rep-
resentations, adjoint representations, representations of multiplicity free, and rep-
resentations with regular highest weights. In such cases the sufficient condition is
satisfied if A is not in the union of a certain finite number of complex hypersurfaces
in the parameter space, which are defined by the difference of certain weights of
the representation 7. On the other hand, in Appendix Bl we give counter examples
for which our sufficient condition is never satisfied by any A. In Proposition [3.3| we
also study the element of Z(g) contained in I g(A).

A corresponding problem in the classical limit is to construct a generator system
of the defining ideal of the coadjoint orbit of g and in fact Theorem|3.28/is considered
to be the classical limit of Corollary 3.22.

If 7 is smaller, the two-sided ideal I; o(\) is better in general and therefore in
84 we give examples of the characteristic polynomials of some small 7 for every
simple g and describe some minimal polynomials, especially in each case where pg
is maximal. Note that the minimal polynomial is a divisor of the characteristic
polynomial evaluated at the infinitesimal character. In Proposition 4.12! we present
a two-sided ideal of U(g) for every (g,pe) and examine the condition (1.3) for
this ideal by applying Theorem [3.21. In particular, the condition is satisfied if the
infinitesimal character of Mg(\) is regular in the case when g = gl,,, 02,41, 5p,, OF
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G5. The condition is also satisfied if the infinitesimal character is in the positive
Weyl chamber containing the infinitesimal characters of the Verma modules which
have finite dimensional irreducible quotients.

Some applications of our results in this paper to the integral geometry will be
found in [O4, §5] and [OSw].

Acknowledgments. The referee gave the authors many helpful comments to make
the paper more accessible. The authors greatly appreciate it.

2. MINIMAL POLYNOMIALS AND CHARACTERISTIC POLYNOMIALS

For an associative algebra 2 and a positive integer N, we denote by M (N, )
the associative algebra of square matrices of size N with components in 2. We
use the standard notation gl,,, 0, and sp,, for classical Lie algebras over C. The
exceptional simple Lie algebra is denoted by its type Fg, F7, Eg, Fy or Gs.

The Lie algebra gl is identified with M(N,C) ~ End(CY) with the bracket
[X,Y] = XY — YX. In general, if we fix a base {v1,...,vx} of an N-dimensional
vector space V' over C, we naturally identify an element X = (X;;) of M (N, C) with

N
an element of End(V) by Xv; = > ;" X;jv;. Let E;; = (6,“6,”-) E”E% € M(N,C)
be the standard matrix units and put EJ; = Ej;. Note that the symmetric bilinear

form
(2.1) (X,Y)=Trace XY for X,Y €gly
on gly is non-degenerate and satisfies
(Eij> Euw) = (Eij, EJ,) = SivGju,
(2.2) X = Z<X’ Eji) Eij,
(Ad(¢9)X,Ad(9)Y) = (X,Y) ’ for X, Y € gly and g € GL(N,C).
In general, for a Lie algebra g over C, we denote by U(g) and Z(g) the universal

enveloping algebra of g and the center of U(g), respectively. Then we have the
following lemma.

Lemma 2.1 ([O4, Lemma 2.1]). Let g be a Lie algebra over C and let (m,CN) be
a representation of g. Let p be a linear map of gly to U(w(g)) satisfying

(2.3) p(IX,Y]) = [X,p(Y)] for X € m(g) and Y € gly,

that is, p € Hom,(q)(aly, U(m(g))).
Fiz q(x) € C[z] and put

F= (p(Eij))lgiS% € M(N,U(n(g))),
2.4 1<5<
. (Q”)lgz‘szv = q(F) € M(N,U(n(g)))-

J<N

Then

(2:5) (PAd@E)) ,icny ='9F'g™" Jor g€ GL(n,C)
1<5EN

and

N N
(26) [X,Qi] =D XpuiQuj — Y X;uQiv
v=1

p=1
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N N
= Y (X Ei)Qui = Y QudAX, By for X = (X ) ey € 7(0):
p=1 v=1 1<v<N

Hence the linear map gly — U(n(g)) defined by E;; — Qi; is an element of
Hom, () (8ly, U(n(9))). In particular, Y% | Qi € Z(x(g)).

Remark 2.2. The referee suggested that we should give the reader the following con-
ceptual explanation of Lemma 2.1: Since (gl )" ~ M (N, C)* is naturally identified
with M (N, C) via (2.1)), the linear 7(g)-homomorphism p : gl — U(w(g)) is con-
sidered as an element of (gly)* @ U(n(g)) ~ M(N,C)®@U(r(g)) =~ M(N,U(r(g))).
By this identification, the image of p equals ‘F and hence (2.5) holds almost im-
mediately. Also, (2.6)) is equivalent to the fact that (M(N,C) ® U(W(g)))ﬂ(g) is a
subalgebra of M(N,C) @ U(n(g)) ~ M(N,U(w(g))).

Now we introduce the minimal polynomial defined by [O4], which will be studied
in this section.

Definition 2.3 (characteristic polynomials and minimal polynomials). Given a Lie
algebra g, a faithful finite dimensional representation (7, C'V) and a g-homomorphism
p of End(CY) ~ gly to U(g). Here we identify g as a subalgebra of gly through
7. Let Z(g) denote the quotient field of Z(g). (Recall Z(g) is an integral domain.)
Put F = (p(E”)> e M(N,U(g)). We say qr(z) € Z(g)lz] is the characteris-
tic polynomial of F if it is the monic polynomial with the minimal degree which
satisfies

qr(F) =0
in M(N,Z(g) ®z(g) U(g)). Suppose moreover a g-module M is given. Then we
say gp . (2) € Clz] is the minimal polynomial of the pair (F, M) if it is the monic
polynomial with the minimal degree which satisfies

qF’M(F)M =0.

Remark 2.4. The uniqueness of the characteristic (or minimal) polynomial is clear if
it exists. Suppose g is reductive. Then the characteristic polynomial actually exists
by [O4] Theorem 2.6]. The same theorem assures the existence of the minimal
polynomial if M has a finite length or an infinitesimal character.

Definition 2.5. If the symmetric bilinear form (2.1)) is non-degenerate on 7(g), the
orthogonal projection of gl onto 7(g) satisfies the assumption for p in Lemma 2.1}
which we call the canonical projection of gly to m(g) ~ g. In this case we put F, =

(p(E”)) Then we call gg_ () (resp. ¢r, a(x)) in Definition 2.3 the characteristic
polynomial of 7 (resp. the minimal polynomial of the pair (7, M)) and denote it by
qr(z) (resp. ¢r m(z)).
Remark 2.6. For a given involutive automorphism o of gly, put

g={X €gly; o(X) =X}

and let 7 be the inclusion map of g C gly. Then p(X) = X++(X)

Hereafter in the general theory of minimal polynomials which we shall study, we
restrict our attention to a fixed finite dimensional representation (m, V') of g such
that
2.7) g is a reductive Lie algebra over C,

' 7 is faithful and irreducible.

Moreover we put N = dimV and identify V with CV through some basis of V.
The assumption of Definition [2.5/is then satisfied.
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Remark 2.7. i) The dimension of the center of g is at most one.

ii) Fix ¢ € GL(V). If we replace (m,V) by (79,V) with 79(X ) Ad(g)m(X) for
X € g in Lemma 2.1, F, € M(N,g) is naturally changed into ‘g=!F} ‘g under the
fixed identification V ~ C. This is clear from Lemma 2.1/ (cf. [O4, Remark 2.7 ii)]).
iii) Exceptionally the condition (2.7) will not be assumed in Definition [2.36] and
Proposition [2.37.

Definition 2.8 (root system). We fix a Cartan subalgebra a of g and let X(g) be
a root system for the pair (g,a). We choose an order in Y(g) and denote by ¥(g)™
and U(g) the set of the positive roots and the fundamental system, respectively.
For each root a € X(g) we fix a root vector X, € g. Let g = n® a @ n be the
triangular decomposition of g so that n is spanned by X, with a € X(g)™. We say
€ a* is dominant if and only if

(1, a)
* (o a)

Let us prepare some lemmas and definitions.

¢ {-1,-2,...} foranyacX(g)*t.

Lemma 2.9. Let U be a k-dimensional subspace of gly such that { , )|y is non-
degenerate. Let py be the orthogonal projection of gl to U and let {vy,...,vx}
be a basis of U with (va,vj) = 0 for 2 < j < k. Suppose that v € gly satisfies
(u,vj) =0 for2 < j <k. Then py(u) = fuvi)

(v1,v2)
The proof of this lemma is easy and we omit it.
Lemma 2.10. Choose a base {v;;i = 1,...,N} of V for the identification V ~

CN s0 that v; are weight vectors with weights w; € a*, respectively. We identify
g with the subalgebra w(g) of gly ~ M(N,C) and put ay = Zivzl CE;;. For

Fr=(F; 1<i<n We have
155N
N
= @i(Ej)Ej;,
j=1

ad(H)(Fij) = (w; — w;)(H)F;; (VH € a),
<F”,EW> £ 0 with i # j implies w; — w; = @, — @, € %(g),

a= Z(CF“- Cay, n= Z CF;, n= Z CF;

=1 w;—w; €5(g)t wy—w; €X(g)T

(2.8)

under the identification a* >~ a C ay >~ a; by the bilinear form (2.1)).

Proof. Note that H € a is identified with Z _,w;(H)E;; € ay C gly. Hence
ad(H)(E;j) = (w; — w;)(H)E;; and therefore ad( )(Fij) = (wi — w;)(H)F;;. In
particular we have F}; € a. Since

(H,Fy) = (H,Ey;) = ij Ej;, By) = w;(H) (YH € a),

we get Fy; = ;.

For each root «, the condition (X,);; = (Xa,Ej;) # 0 means w; — w; = a.
Hence if i # j and X € a+za62(g),a#w]'—wi CX,, then (E;;, X) = 0 and therefore
(Fi;, X) = 0. Hence F;; = 01if i # j and w; — w; ¢ X(g). On the other hand,
if w; —w; € ¥(g), we can easily get F;; = C Xy, o, for some C € C. Hence
(Fij, Byw) = 0if w; — wj # w, — w,,. |
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Through the identification of a* ~ a C ay in the lemma, we introduce the
symmetric bilinear form ( , ) on a*. We note this bilinear form is real-valued and
positive definite on 3 g (4 Rov.

Now we take a subset © C ¥(g) with © # ¥(g) and fix it.

Definition 2.11 (generalized Verma module). Put

ago ={H €a;a(H) =0, YaeO},
go ={X €g; [X,H]=0, VHEao},
mo ={X €go; (X,H) =0, VH €ae},

3(g)” ={o; —a € %(g)"},

Y(ge) ={a €X(g); o(H) =0, VH € ao},

S(ge)" = 2(ge) N2(8)", X(ge)” = {—a; a € X(go)"},
ne = > CXa, fo= > CX,,
a€X(g)T\Z(go) a€X(g)~\X(ge)
b=a+n, pe=ge +ne,

p=5 3 @ pO)=1 X o po=p-p(O)

a€eX(g)t a€X(ge) T

For A € a* which satisfies 2223; € {0,1,2,...} for a € O, let Ug ) denote the

finite dimensional irreducible gg-module with highest weight A. By the trivial
action of ng, we consider Uig 5 to be a pe-module. Put

(2.9) Me,n) =U(8) ®u(pe) Uo,n)-
Then Mg ) is called a generalized Verma module of the finite type.

Remark 2.12. i) pe is a parabolic subalgebra containing the Borel subalgebra b.
Po = me + ag + ne gives its direct sum decomposition.

ii) Every finite dimensional irreducible pg-module is isomorphic to Ui ) with a
suitable choice of A.

iii) Mg,y is nothing but the Verma module for the highest weight A € a*.

iv) Let up be a highest weight vector of Ug a). Then 1 ® uy is a highest weight
vector of M(g p). Moreover 1 ® uy generates Mg a) because

Me,n) = U(g) @upe) Uo,n) = Ulne) ®c U(pe) upe) Uo,r)
= U(ﬁ@) ®c U(@,A) = U(ﬁ@) Rc U(ﬁ N g@)uA = U(ﬁ)(l ® up).

Hence Mg 5 is a highest weight module and is therefore a quotient of the Verma
module Mg 4.

v) If (A, ) = 0 for each a € ©, then dim U(g n) = 1 and we have the character \g
of pe such that Xuy = Ag(X)up for X € po. Since

Ulg) =U(le) @ Y_ Ug)(X — Xe(X))

Xepo

is a direct sum and Mg ) = U(ne) ®c Cup, we have the kernel of the sur-
jective U(g)-homomorphism U(g) — Mg a) defined by D +— D(1 ® up) equals

D xepo UO) (X = Ao(X)).
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Definition 2.13 (generalized Verma module of the scalar type). For A € a§ define
a character Ag of pg by Ae(X + H) = A(H) for X € mg + ng and H € ag. Put

Jo(N) = Y Ug)(X - (X)),
Xepo

(2.10) J(e) = > Ulg)(X — Xe(X)),

Xeb
Meo(N) =U(g)/Jo(A), M(Xe)="U(g)/J(Xe).
Then Mg () is isomorphic to Mg, ), which is called a generalized Verma module

of the scalar type. If © = (), we denote Jy(A\) and My(A) by J(A) and M(N),
respectively.

Definition 2.14 (Weyl group). Let W denote the Weyl group of ¥(g), which is

(B0
(o, )

generated by the reflections wy @ a* 3 p— p—2
a € U(g). Put

a € a* with respect to

Weo ={w € W; w((g)" \ B(go)) = Z(a)" \ X(go)},
W(©) ={we W;w(X(ge)”) € Z(g)"}.
Then each element w € W(0) is a unique element with the smallest length in the

right coset wWe and the map W(©) x Wg 3 (wy,wz) — wiwe € W is a bijection.
For w € W and u € a*, define

(2.11)

(2.12) w.pu=w(p+p) —p.
Here we note that Wg is generated by the reflections w, with a € © and
(2.13) (po,a) =0 for a€ X(go).

Definition 2.15 (infinitesimal character). Let D € U(g). We denote by D, the
element of U(a) which satisfies D — D, € nU(g) + U(g)n and identify Dy € U(a) ~
S(a) with a polynomial function on a*. Then Aq(p) = Aq(w.p) for A € Z(g),
pea,andweW.

Let 1 € a*. We say a g-module M has infinitesimal character p if each A € Z(g)
operates by the scalar Ay(p) in M. We say an infinitesimal character p is regular
if (uw+ p,a) #0 for any o € 3(g).

Remark 2.16. The generalized Verma module Mg ») in Definition 2.11] has infini-
tesimal character A. It is clear by Remark 2.12]iv).

Definition 2.17 (Casimir operator). Let {X;; i =1,...,w} be a basis of g. Then
put

Ay = iXiX;

with the dual basis {X}} of {X;} with respect to the symmetric bilinear form (2.1)
under the identification g C gl through 7 and call A, the Casimir operator of g
for .

Remark 2.18. As is well-known, A, € Z(g) and A, does not depend on the choice
of {XZ}

We may assume in Definition 2.17) that {X3,..., X/} and {X, 41,..., Xo} be

bases of go and ng + ne, respectively. Then X} € go for i =1,...,w’ and
(2.14) A9 =" XiX;
i=1

is the Casimir operator of gg for 7.
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Lemma 2.19. Fiz a basis {Hy,...,H.} of the Cartan subalgebra a of g.
i) Let {HY,..., H*} be the dual basis of {H1,...,H,}. Put Hy, = [X4,X_4]. Then

XoX_q .
Ar= > 5o ) +ZHH

a€X(g)

r 2X o X,  «a(Hu)H,
=y e Y ( )
i=1 aez(g)+ <Xa7X—O(> <HaaHOz>

2Xo0X_ o a(Hy)H,
= A@ E - N
w7t ((XQ,X_O) <Ha,Ha>)
aeX(g)\E(geo)

ii) Let M be a highest weight module of g with highest weight p € a*. Then A v =
(s pb + 2p)v for any v € M.

iii) Let v be a weight vector of m belonging to an irreducible representation of go
realized as a subrepresentation of m|go and let w denote the lowest weight of the
irreducible subrepresentation. Then

Z KaX-a v—l(ﬁ—wﬁ+w—2>v
X X_a) '~ 2 ’ prv-
a€X(g)T\Z(ge)

Here 7 denotes the lowest weight of .

iv) Fiz 3 € (g)* and put g(3) = CXg+ CX_pg+>.._, CH;. Let v be a weight
vector of m belonging to an irreducible representation of g(3) realized as a subrep-
resentation of T|g(gy and let w denote the lowest weight of the irreducible subrepre-
sentation. Let w + L3 be the weight of v. Then

XpX_ 5 -1
(2.15) o= —(e<w + Tﬁ,m)v.

v) Suppose g is simple. Let amayx is the mazimal root of X(g)* and let B( , ) be
the Killing form of g. Then

B(ama){a Qmax + 2p) =1.
Proof. i) Note that
(216) <Ha7Ho¢> = <Hon [XaaX—aD = <[HQ,XQ],X_Q> = O‘(Ha)<Xa,X_oé>

Since the dual base of {X,, H;; « € X(g), i = 1,...,r} equals {@fﬁ, HY ac€
¥(g), i =1,...,r}, the claim is clear.
ii) Let v, be a highest weight vector of M. Then

Arv, = ZH Hiv, + Z a(Ha)Ha

aes(g)+ <H°“Ha>
" a(Hy)u(Hy
=Y utmry Y ele),
i=1 aes(g)t aydda

Hence Ayv, = (i, it + 2p)v,, because H, is a non-zero constant multiple of o with
the identification a* ~ a by ( , ) and therefore Ayv = (u, u + 2p)v because M is
generated by v,,.

iii) Let vz be a lowest weight vector of 7. Then we have A vz = (7,7 — 2p)vz
and therefore A,v = (7,7 — 2p)v. Similarly we have A9v = (ww, @ — 2p(0))v.
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Let @’ be the weight of v. Then we have

XoX_q 1 1 6 ,
Z m’l] = §Aﬂ—’l] - iAﬂ.U + (w ,p@>U
aex(g)t\X(go)

1
= 5(7‘r7w,7_r+w72p>v.

Here we note that (@', pg) = (=, pe).
iv) By the same argument as above we have

2X5X 5 * )Hﬁ
S Y= G~
Hence
mv:<w,w—ﬂ>v—<w+w,w+w>v+<ﬂvw+€5>v

— (2w, B) + £(£ — 1)(B, B))v

v) Suppose 7 is the adjoint representation of the simple Lie algebra g. Then for
H € a we have

([(Xa, [X_o, H]], H)

(r(A)H),H) = Y

<Xa7Xfa>
a€X(g)
_ _<[Xfa,H]7[XowH]>
- aezz;g) (X Xoa)
= Y a(H)
a€X(g)
= (H, H).

Hence w(A;)(H) = H and B(max, ®max + 2p) = B(—Qmax, —Qmax — 2p) = 1. O

Definition 2.20 (weights). Let W(m) denote the set of the weights of the finite
dimensional irreducible representation 7 of g. For @ € W(x) define a real constant
1
3¢
Here 7 is the lowest weight of 7. Put Ry = {3, cq(y) Ma®; ma € {0,1,2,.. }}.
We define a partial order among the elements of W(w ) so that w < @’ if and only
if o' —w e Ry.
Moreover we put

(2.18)
We(m) = {w are the highest weights of the irreducible components of g, },

(2.17) D,;(w)==(T —w,T+w—2p).

We () = {w are the lowest weights of the irreducible components of 4, },
W(r)|ae = {@lae; @ € W(m)}.

Let p and p/ € W(m)|ao. Then we define p <g p' if and only if p/ — p €
{ZOLE‘IJ(Q)\G maa|a(_); mea € {0, ].,27. . .}}.

Remark 2.21. i) Wy(m) = Wy(rr) = W(r) and We(rr) = —We(n*). Here (7*,V*)
denotes the contragredient representation of (w, V') defined by

(2.19) (T (X)v*)(v) = —v* (7 (X)v) for X € g, v* € V* and v € V.
i) W(m)lae = {@lae; @ € We (1)} = {@]ae; @ € Wel(m)}.
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iii) Suppose w and @’ € W(m) and put @’ — @ = }_ ey (g Mac. Then @l <o
@' |qe if and only if m, > 0 for any a € ¥(g) \ ©. Hence 7|4, is the smallest
element of W(7)|4, . Note that o < w’ if and only if w <y @’.

Lemma 2.22. Let w and @’ € W(x).
i) Ifa=w'—w € ¥(g), then Dr(w) — Dr(w’) = (w,w’ — w).
ii) Suppose @' € We(m), w < @' and @|ae = @'|ae. Then Dy(w) < Dy(w').

Proof. ii) Note that
/ 1 / /
Dy(w) — Dr(w') = §<w —w,w+w —2p).

The assumption in ii) implies @’ — @ = ) .gmqa with m, > 0. Here at
least one of m, is positive. Hence (w’ — w,p) > 0. Since w’ are the lowest
weights of irreducible representations of gg, (a,w’) < 0 for a € ©. Thus we have

(X aco Mat, 2w =3 cogmaa —2p) <O0.
i) Put @« = w’ — w. Then

D1 () ~ Da(=') — (@, @' ~ @) = ~¢ (.2~ a),

which equals 0 if & € ¥(g) because w,(X(g)" \ {a}) = 2(g)T \ {a}. O

Now we give a key lemma which is used to calculate our minimal polynomial.

Lemma 2.23. Fiz an irreducible decomposition @}_,(m;,V;) of (|46, V) and a
basis {vi1,...,vim,} of Vi so that v; ; are weight vectors for a. Let w; ; and w; be
the weight of v; ; and the lowest weight of the representation m;, respectively.

Suppose w; ; = wy j. Then for a positive integer k with k > 2 and complex
numbers i, ..., l

k k—1
(E(FW - MU)>(i'»j’)(i,j) = (Vl:[l(Fw B uu))(i',j/)(id) (wl — M+ Dﬂ'(wl))

k—1
mod U(g)(me + ne) + Z C ( H(F” B MV))(s” ) (s,t)
v=1 ’ ’

(5,6),(s" s
Wslag <0Wilag
ws7t:w5//,t//

Proof. Note that w; ; = w; mod U(g)me. It follows from Lemma 2.10 that

Fis.1)(i,5) = 050t mod U(g)(me +ne)

if @ —wi; &3(8) \ X(ge)-
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Put F¢ = Hizl(F,r — f1,). Then Lemma 2.10 implies
(2.20)

k k—1
Farineig) ~ Fa g (@i — px)
- 2 (G sy Flsnn] mod U(g)(me +ne) +feU(g)

@s,t—wi,;€2(9) " \X(ge)

(E(s,0)(1,9)> Xa) 1
= Z <XomX7a> [F(i/vj/)(sat)’X_a]
2€5(8) M\ S (g0)

Ws,t=Wi,j— &

. Z <E(s,t)(i,j)7X&><E(s',t/)(s”7t”))X*Ot>

(X, X_a)
a€%(9)"\S(ge)
Ws,t=Wi,; —Q
wslﬁtl 7wsuyt// =«

k—1 k—1
. (553”5tt//F(i’,j’)(s’,t/) - 6ilsl6j't,F(s”,t”)(s,t))

(#,3)(5,5)

_ Z (B, 0,0)) Xa) (Elar gy (5,7 X =) iy
(Xar X_a) (st

1
= §<ﬁ—wi,7_r—|—wi —2pVFEY

a€x(g)"\=(ge)

ws,t:wsuw,,u:wi,jfoc

In the above the second equality follows from (2.8) and Lemma 2.9 with U = g.
The third equality follows from Lemma 2.1 with

X_a = Z <E(S/,t')(s”,t”)5X—Q>E(5//,t//)(s',t’)

wslyt/ 7‘(2511)1/// =

which follows from the identification g C gl together with the property of (, ).

Put XV = —*X for X € M(N,C) ~ gly. Let {v;;} be the dual base of {v; ;}
and consider the contragredient representation 7* of w. Then 7*(X) = XV for
X € g with respect to these basis. Then (X,Y) = (XY, YV) for X, Y € g and

Z XY X0, Z (Bsty(s ) XY ) Eligy(s,t)> Xar) -

(XY X3 (X7 X3)

—a

aeX(g)T\Z(go) aeX(g)T\Z(ge)

Ws,t=Wi,5 — &
Wt 1) =Wi,j

which is proved to be equal to D (w;)v] ; by Lemma 2.19/iii) because (7, @;, p) for
7 changes into (—7, —t;, —p) in the dual 7* with the reversed order of roots. This
implies the last equality in (2.20).

Note that if D € ngU(g) + U(g)(me + ne) satisfies [H, D] = 0 for all H € ag,
then D € U(g)(me + ne). Since the condition w; ; — ws: € X(g)" \ X(ge) implies
Wslao <O Wilae, We have the lemma. O

Theorem 2.24. Retain the notation in Definition 2.20. For w € a* we identify
Wlae With a linear function on agy by wlee (A) = (Ao, @) for A € a§. Put

Qro = {(w|a@,Dﬂ(w)); w € W@(?T)},
(2.21) oA =[] (z-pH-0).

(1,0)€EQr 0
Then gx,e(Fr; \)Meo(X) =0 for any A € a§.
Proof. For any D € U(g) there exists a unique constant T'(D) € C satisfying
T(D)=D mod aU(g) + Jo(N)
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because the dimension of the space Mg (A\)/nMg (M) equals 1. Notice that
Jo(N) = Y U(g)(H — A(H)) + U(g)(me + ne).
HeEaeg

Use the notation in Lemma 2.23. Since
ad(H)qﬂ-7@(Fﬂ-; )‘)(i',j’)(i,j) = (wlvvj/ — wl7j)(H)qﬂ7@(F7”)\)(z/,Jl)(%]) for H € a,

T(qﬂ,@(Fﬂ—; )‘)(i’,j/)(i,j)) =0 lf wi,j 7é wi/}j/.
Next assume w; ; = @y ;- and put

Qﬂ'v@ai = {(M,C) € Q?T,@; M S@ wi|a@}7
Ir0.i(T;A) = H (z —p(N) = 0O).

(1,C)EQR 0,1

Then q(Fr)ir,j6.5) € Jo(A) for any ¢(z) € Clz] which is a multiple of ¢ e i(z; A).
It is proved by the induction on w;|s, with the partial order <g. Take iy €
{1,...,K} so that w;, = 7. If i = iy then Lemma 2.10/ and Lemma 2.23 with
D, (w;) = D(7) = 0 imply our claim. If ¢ # iy then 7|4, <o @il|ae and therefore
deg, ¢r0,i(x; A) > 2. Hence we can use Lemma [2.23| again to prove our claim
inductively.

Thus we get the condition

(2.22) T(qr,0(Fr; N (ir,j1,5) = 0 for any (4,7) and (i, j').

Let V()) denote the C-subspace of U(g) spanned by g e (Fr;A)qr 1)
V() is ad(g)-stable by Lemma 2.1. The g-module

i,5) Then

My =V(A)Mo(N)
is contained in nMg(\) because putting uy = 1 mod Jg (),
My =VNU@)uy =U0)V(Nuy C Um)nU(g)uy = nMeo ().

On the other hand, since Mg(\) is irreducible if A belongs to a suitable open
subset of afy, My = {0} in the open set. If we fix a base {Y1,...,Y,,} of g, we
have the unique expression

G0 (Fei Nirjniig) = L QuNYY - Y mod Jo(A)

with polynomial functions @, (). All these @,(\) vanish on the open set and
therefore they are identically zero and we have V() C Jg(A) for any A. We have
then for any A

My = VONU(g)ux = U(g)V(Nuy = {0}, O

Theorem 2.24! is one of our central results since gr,e(2;A) = gr agn) (%) for
a generic A € ag. Before showing this minimality, which will be done in The-
orem 2.29, we mention the possibility of other approaches to Theorem 2.24. In
fact we have three different proofs. The first one given above has the importance
that the calculation in the proof is also used in §3/ to study the properties of the
two-sided ideal of U(g) generated by ¢r o(Fr;A);j. The second one comes from
a straight expansion of the method in [Gol] and [Go2] to construct characteristic
polynomials. In the following we first discuss it. The third one is based on infin-
itesimal Mackey’s tensor product theorem which we explain in Appendix [Al With
this method we shall get the sufficient condition for the minimality of ¢r e(x;A)
(Theorem 2.29)) and slightly strengthen the result of Theorem [2.24] (Theorem [2.31)).
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Definition 2.25. Let (7*,V*) be the contragredient representation of (m, V) and
{v},..., vy} the dual base of the base {v1,...,vn} of V. For a g-module M define
the homomorphism

Rz ary s M(N,U(g)) — End (M @ V")

of associative algebras by

N N
(2.23) h(.,r M) Zuj ® U = Z Z(Qijuj) ® v;

i=1 j=1
for u; € M and Q = (Q”) € M(N,U(g)). Then QM = 0, namely, Q;; € Ann(M)
for any i, j if and only if hr ar)(Q) = 0.
The following lemma is considered in [Gol] and [Go2].

Lemma 2.26. Let M be a g-module. For an element Zj\le u; @ v of M@ V™
with u; € M, we have

N N N

Y ©0)) =D An(ug) @] + 3y ® An(v]) = Ar (Y ©05).

j=1 j=1 Jj=1
In particular hiz ar)(Fr) € Endg(M @ V*).

Proof. Let {X1,...,X,} be a base of g and let {X7,..., X} be its dual base with
respect to (, ). Then

N N N
D An(ug) ® )+ D u; ® A(v]) = Ar(D_u; © )
j=1 =1 =1

N w N w
=— ZZXjuj ® X,v; — ZZXVUJ- ® X, v}
j=1lv=1 j=1lv=1
N w
= Z (X*u] ® Z X, Eij)vl + Xou; ® Z J>v;‘>
j=1lv=1 i=1
N N
=23 ) (p(Eij)uy) ® v}
i=1 j=1
Here we use the fact that Xv} = —ZZN:MX, E;j)vy for X € g because Xv; =
N
> iz (X, Eji)vi. U

Now we examine the tensor product M ® V* in the preceding lemma when M
is realized as a finite dimensional quotient of a generalized Verma module Mg(A).

Proposition 2.27 (a character identity for a tensor product). Put
S wew sgn(w)e A7)
Haez(g)+(e% - 6_%)

for A € a*. If (A,a) =0 for any « € O, then

(2.24) X XA = Y Maeo(@)Xatw
weW(r*)

XA =

by denoting
Ma o(w) = dim{v* € V*; Hv* = w(H)v* (VH € a), Xv* =0 (VX € go Nn)}.

Here xq~ is the character of the representation (7*,V*) and for u € a*, e* denotes
the function on a which takes the value ") at H € a.
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Proof. Tt is sufficient to prove (2.24) under the condition that (A, «) is a sufficiently
large real number for any o € ¥(g) \ © because both hand sides of (2.24) are
holomorphic with respect to A € a*. Put

a ={pea’; (ma)eR (YaeX(g)}

af ={p€ag (na) >0 (YaeS(g)h)}

X;\r = Z’wEW@ Sgn(g)ew(:\:p) )

Haez(g)+(€2 —e72)

Ew’eW@ sgn(w’)e“’/(mp(@))
Haez(g@)+(6% —e?)

Then y,« = Zmew(w*)mﬂ*ye(w»_cm by Weyl’s character formula and if w €
W(n*) satisfies mr- o(w) > 0, then A + w € a’ and

. sgn(w)ew (= +0(©) ,
XX H (e —e %)= 2owewe 582 )g ———elMtre Z sgn(w')e? P(©)
aeX(g)t Ha€2(96)+(62 —e?) w' €EWe

= Z sgn(w)e“’(Aer"’p)
weWeg

eMFTP mod g Zet.

peag\a’i

Xw =

For any w € W \ Wg there exists a € 3(g)~ \ Z(go) with wa € X(g)™ and then
the value —(w(A + p), wa) = —((A + p), ) is sufficiently large and therefore

Xolxa —=x3) J[ (e2—e2)e > ze

a€X(g)t peag\al
Hence
X* XA H (e2 —e 2) = E M o(w)e*T =+ mod E Ze
aeX(g)t wEWe (1) peEag\ak

and we have the proposition because x+xa Haez(g)Jr (€% —e~%)is an odd function
under W. (]

Lemma 2.28 (eigenvalue). Let (ma, Va) be an irreducible finite dimensional rep-
resentation of g with highest weight A. Suppose (A,a) = 0 for a € © and (A +
w,a) > 0 for w € We(r*) and o € ¥(g) \ ©. Then the set of the eigenvalues of
hz v, (Fr) € End(VA @ V*) without counting their multiplicities equals

1
{~{8,) + 5{n" — @7 + @ + 2p); @ € Wo(r")}

1 _
={(A,w)+ 5(7? —w, T+ w—2p); w € We(m)}.
Here we identify ™ with the highest weight of (7*, V™).

Proof. The assumption of the lemma and Proposition 2.27 imply

e — Z M0 (W) TA+w
wEWe (m)
and hence by Lemma 2.19 ii) and Lemma 2.26| the eigenvalues of 2h, v, (F) are
(M A+2p) + (™ " +2p) — (A+w, A+ w+2p) = —2(\, w) + (1" —w, 7" +w +2p)
with @ € We(7*). Since We (1) = —We(7*), we have the lemma. O
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Proof of Theorem [2.24] — the 2nd version. This proof differs from the previous one
in how to deduce the condition (2.22)). The rests of two proofs are the same.

Note that for fixed (4,7) and (i’,j') the value T(qre(Fr; ) j1).5)) depends
algebraically on the parameter A € ag. Since the set
S={Ae€ay; Mo+ w,a)€{0,1,2,...} for w € Wo(r")U{0} and o € ¥(g) \ O}
is Zariski dense in a§), we have only to show (2.22) for A € S. In this case we have
from Lemma 2.28 and the definition of g o (z;A),

h‘n’,\/}\@ (Qﬂ,G(Fﬂ'; )\)) = qﬂ',@(hﬂ',VA@ (FTF)7 )‘) =0.
Hence ¢r.0(Fr; N) (7,57 i,5) € Ann(Va,) for any (i, j) and (', ). On the other hand,
if we take a highest weight vector vy of V,, we get
@m0 (Fr; N (ir g1y (i.5) VA € T(qm,0 (Fres ) ir, 1) (i,5) JON + Vg

and therefore T'(¢r.0 (Fr; A)(ir,j1)(,5)) = O- O
Theorem 2.29 (minimality). Let A € ag.
i) The set of the roots of qx rie () (@) equals {(Xe, @) + Dx(w); @ € We(m)}.

ii) If each root of qr e (x; \) is simple, then qr o (23 N) = ¢r mo(r) (7). Hence we call
gr,0(x; ) the global minimal polynomial of the pair (m, Mo (\)).

Proof. 1) Fix an irreducible decomposition @;_; U; of the go-module V*|g,. Let
w; € a* be the highest weight of U;. With a suitable change of indices we may
assume wilae <o Wjlae implies i > j. Then putting V; = @, _, U, we get a
po-stable filtration
(0} =VoCVi G G V=V

Note that V;/V;_; ~ U; is an irreducible pg-module on which ng acts trivially.

Recall Mg(X) ~ M(@’)\(_)) = U(yg) QU (pe) U(@’)\(_)) and dimU(@,)\(_)) = 1. Hence
writing Cy instead of Uig o) We get by Theorem [A.1 of Appendix A

Mo(N) © V* = (U(g) @u(pe) Cr) @ V* = U(8) ®u(pe) (Cr @ V¥pe) -

Since Cy ®c - and U(g) ®u(pe) - = U(Ne) @c - are exact functors, putting M; =
U(8) ®u(po) (Cr ® V;) we get a g-stable filtration

{0} =My CM G- CMy=Mo(A\)@V”
with
(2.25) M;/M;_1 ~U(9) @u(pe) (Cr @ Us) = Mo rgt,)-
Now as a subalgebra of End (Mg(A) ® V*) we take
A={D; DM; C M; fori=1,...,k}.

Then by Lemma 2.26 and Lemma 2.19 ii) we have h(x ao(n)) (¢(Fr)) € A for any
polynomial g(z) € Clz]. Let n; : A — End (M;/M;_1) ~ End (M(e 1o +w.)) be a
natural algebra homomorphism. Then using Lemma [2.26/ and Lemma[2.19/ii) again
we get

1 (e, m6 (0) ()
(2.26) = %(x\e, e +2p) + %(—ﬁ, -7+ 2p) — %()\@ + @i, Ao + @i + 2p)
= (Mo, —w;) + D (—w;).
and therefore
Gr o () (Mo, =) + Dr(—=i)) = ¢ mto ) (i ((rat0(0) (Fr)))

=i (hx,mto(0) (@r,016 (1) (Fr)))
—0.
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Since {w;} = We(n*) = —We () we can conclude (Ao, w) + Dy (w) is a root of
the minimal polynomial for each @ € We(nw). Conversely Theorem [2.24 assures
any other roots do not exist.

ii) The claim immediately follows from i) and the definition of ¢, o(x; A). O

Remark 2.30. In general it may happen for a certain A that ¢r e (2; ) # ¢x mo ) (7).
Such example is shown in [O4] when g is 02, and A is invariant under an outer au-
tomorphism of g, which is related to the following theorem. It gives more precise
information on our minimal polynomials.

Theorem 2.31. Let A\ € aj,. Let We(m) = Wi\ U Wi UL be a division
of We(r) into non-empty subsets Wﬁ\ such that the relation Ao — w € {w.(Ao —
@'); w € W} holds for w, @’ € We(n) if and only if w,w’ € Wi for some £. For
each £ we denote by k; the mazimal length of sequences {w,@’,...,@w"} of weights

—t
i Wy such that the restriction of each weight to ag gives both strictly and linearly
ordered sequences:

w|a@ <e w’|a9 <g <o w”\a@.
i) (Ao, @) + Dr(w) = (Ao, w’) + Dp(w') if w, @’ € Wi for some ¢.
ii) Let q(x) € Clz] and suppose for each ¢ = 1,...,my, q(z) is a multiple of
(z — (Mo, @) — Dy(w))* with w € Wy. Then q(Fy)Me()) = 0.

Proof. 1) By the W-invariance of { , ) and the assumption, we have
Mo+p—wrotp—w) = <)\@+p—w',)\@+p—w/>,

which implies the claim.

ii) Use the notation in the proof of Theorem [2.29. Let M be a g-module and
€ a*. We say that a non-zero vector v in M is a generalized weight vector for
the generalized infinitesimal character p if for any A € Z(g) there exists a positive
integer k such that (A — Aq(u))"v = 0. We denote by (M), the submodule of M
spanned by the generalized weight vectors for the generalized infinitesimal character
p. Note that (M),) = (M), if and only if p = w.u’ for some w € W. By virtue
of (2.25) and Remark 2.16, Mo (A) ® V* is uniquely decomposed as a direct sum of
submodules in {(Me(A) ® V*)ag4w,); ¥ = 1,..., i}

For i =1,...,k using a pg-module

Vip=U; & o, U, C Vi,
Vi @ilag <0@vlag
define
M) = U(g) ®pe (Cr @ V) = U(ne) ® Cy @ Vjy.
It is naturally considered as a g-submodule of M; = U(fg) ® C) ® V;. If we define
the surjective homomorphism

T+ Myp = My — M /My =~ Mo xgtwy)s
then
(2.27) Ker 7p;) = > M.
Vi @ilag <0@ lag
Since M(@ )¢ +w,) has infinitesimal character A\e + w; we get

My = (M) (6o +w0) + Z My,;.

Vi @ilag <0 lag
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Therefore we get inductively

(2.28) My = (M) (rotei) + > (M) (o twn)-

Vi Wilag <e®@ulag

Notice that the g-homomorphism (g (x)) (Fr) leaves any g-submodule of Mg (\)®

V* stable. Then from (2.26) and (2.27)

(h(w,M@()\))<F7r) — (Ao, —mwi) — Dﬂ'(_wi)) (M) (ho+04)

c > My
Vi @ilag <e@ylag (No+w:)

= Z (M[V])()\@-l-w,,)

Vi @ilag <o lan otms)

= > (M) rot.)-

Vi Wilag <0@ulag >
Ao+tw, e{w.(Ao+w;); weW}

By the relation {w;} = We(n*) = —We(m) and the assumption of ii) we get
inductively
Iz, 160 (3) (@(Fr)) (M) (he +22:) = 4R 00 (3) (Fr)) (Mi)) o +2) = {0}
fori=1,...,k. Now our claim is clear because by (2.28) we have
Mo(\) @ V* =3 My = (My)o+m: O
i=1 i=1

Corollary 2.32. Let 7 be an involutive automorphism of g which corresponds to
an automorphism of the Dynkin diagram of g. Then 7(a) = a and 7(n) = n.
Furthermore we suppose 7(po) = po, or equivalently, 7(ag) = ag. For w € a*
we identify @|ae)- as a linear function on (ag)” by @|ag)-(A) = (Xe,w@) for
A€ (ay)". Put

Qr0.r = {(@l(ae) s Dx(w)); @ € We(m)},
%r,@,r(x; )\) = H (-’L’ — /J()\) — C)

(;UwC)EQﬂ',(-),-r
Then for X € (ag)” we have the following.
i) qﬂ-’@_’T(FW; )\)M@()\) =0.
ii) If each root of qr e - (x;N) is simple, then qr.e.r(2;A) = @r 1o\ ().

Proof. We naturally identify pg with an element in (a§)”. For a given pair of
weights w,w’ € We(m) with w|qse, <o @'|ae, choose the non-negative integers
{ma; o € ¥(g)\ O} so that @'[ag — @lae = X necw(g)o Matlas- Then @'ag(pe) —
@lao (PO) = X acw(gne Mal, po) > 0. It simply shows

(w|(a@)7' ) Dﬂ'(w)) 7é (w/|(u@)"' ’ Dﬂ'(wl)) .
Hence from Theorem 2.31/ we get i). Now ii) is clear from Theorem [2.29. (]
We will shift a* by p so that the action w.u = w(pu + p) — p for p € a* and
w € W changes into the natural action of W and then we can give the characteristic

polynomial as a special case of the global minimal polynomials. The result itself is
not new and it has already been studied in [Go2].
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Theorem 2.33 (Cayley-Hamilton [Go2]). The characteristic polynomial g(x) of
m is given by

(2.29) @)= [] (w o (mm+2p) — (=, w))

under the identification Clz] ® S(a*)V ~ Cla]® S(a)V ~ Z(g)[x] by the symmetric
bilinear form { , ) and the Harish-Chandra isomorphism:

Z(g) ~U@)"; A T(A),
T(A)(w) = Aa(p — p) for p € a™.
Here 7 is identified with its highest weight. In particular q.(x) € Z(g)[x].

Proof. Note that (m, 7+ 2p) = (7,7 — 2p). Let gr(x) be the element of Z(g)[z]
identified with the right-hand side of (2.29). Put V. =37, . Cgx(Fr)i; and Vo =
{Dq4; D € V}. Then Theorem 2.24 with © = () shows Q(u) = 0 for any p € a*
and @ € V,, which implies V, = {0}. Since V is ad(g)-stable, we have V = {0}
as is shown in [OIl Lemma 2.12]. Since the minimality of ¢.(z) follows from
Theorem 2.29, we get ¢ () = ¢ (). O

Corollary 2.34. i) Let g be a simple Lie algebra. Then the characteristic polyno-
mial of the adjoint representation of g is given by

1— B(a,a)
Qo () = H (m —a— f)
aex(g)u{0}
Here B( , ) denotes the Killing form of g.
ii) Suppose that the representation 7 is minuscule, that is, W(m) is a single

W -orbit. Then
(@)= J[ (@—=—(mp).
weW(r)

Proof. This is a direct consequence of Theorem 2.33] and Lemma 2.19 v). O

Corollary 2.35. Put ¢, (z) = 2™+ Az™ 4+ Ay 11+ A, with A; e Z(g)
and define

Fr=—F" ' ANF™ 2 oo A, ]y

T

Then

F Py = BBy =DMy =[] (—w -
weW(r)

In particular, Fy. is invertible in M (N, Z(g) ®z(5)U(g)) with the quotient field Z(g)
of Z(g)-

In the next definition and the subsequent proposition, we do not assume (2.7).
Namely, g is a general reductive Lie algebra and (7, V) denotes a finite dimensional
irreducible representation which is not necessarily faithful. Moreover we use the
symbol ( ;) for the symmetric bilinear form on a* defined by the restriction of the
Killing form of g.

(m, 7+ 2p) — (w, w)
2 )IN’

Definition 2.36 (dominant minuscule weight). We say a weight 7y, of 7 is dom-
inant and minuscule if

(Tmin, @) >0 for all a € ¥(g)*
and

(Tmin, Tmin) < (@, @) for all @ € W(r).
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If the highest weight of 7 is dominant and minuscule, then (7,V) is called a mi-
nuscule representation.

Proposition 2.37. Put ¥(g) = {a1,...,q,} and define oV = 2% for a € X(g).

a,o
Let (m,V) be a finite dimensional irreducible representation 0; g.> Let mpnin be a
dominant minuscule weight of .
i) If the highest weight of 7 is in the root lattice, then mymin, = 0.
il) Tmin 18 uniquely determined by w. Moreover if (',V') is a finite dimensional
wrreducible representation of g such that the difference of the highest weight of ©'
and that of 7 is in the root lattice of X(g), then Tmin = Ty, -

iii) w € W(n) is a dominant minuscule weight if and only if

(2.30) (w,a¥) € {0,1} for all a € %(g)™.

iv) If m is a minuscule representation, then W(mw) = Watmin-

v) Suppose g is simple. Let ¥(g)¥ = {a; a € X(g)} be the dual root system of
Y(g). Let B be the mazimal root of X(g)¥ and put B = >.._, n;). Define the
fundamental weights A; by (A;, a]V> = 0;5. Then m is a minuscule representation if
and only if its highest weight is 0 or A; with n; = 1.

Proof. For a € ¥(g) we denote by g* the Lie algebra generated by the root vectors
corresponding to  and —a. Note that g“ is isomorphic to sls.

i) Suppose the highest weight of 7 is in the root lattice. Put @w = >"_, m;(w@)a;
for w € W(m). Note that m;(w) are integers. Let wy € W (w) such that m;(wg) >
and Y., m;(wo) < >oi_, mi(w) for w € W(rr) satisfying m;(w) > 0 for i
1,...,r. The existence of wy is clear because m;(mw) > 0 for i = 1,...,r. Suppose
@ # 0. Since 0 < (wo, @o) = Y., mi(w@o){w@o, i), there exists an index k such
that (wg, ax) > 0 and my(wp) > 0. Hence wy — o, € W(m) by the representation
7| gor, which contradicts the assumption for @wg. Thus 0 = wg € W(nw) and i, =
0.

ii) — iv) Suppose the existence of « € 3(g)* with (myin, @) > 1. Then it follows
from the representation m|ge that mmin — @ € W(m) and (Tmin, Tmin) — (Tmin —
Oy Tmin — &) = 2(Tmin, @) — (@, @) > 0, which contradicts the assumption of mmiy.
Thus we have (2.30) for @ = mmin.

Suppose 7 is an irreducible representation of g with the highest weight w sat-
isfying (2.30). Suppose W(w) # Ww. Then there exist 4 € Ww and p/ € W(r)
such that ¢/ ¢ Ww with « := p— p/ € X(g). By the W-invariance we may assume
p = w and therefore i/ = w — a with « € X(g)™. Then by the representation mga
together with the condition (2.30) we have (ww,a") = 1 and p’ = w,w@, which is a
contradiction. Thus we have iv).

Let w and @’ be the elements of a* satisfying the condition (2.30). Then w” :=
w — @' satisfies (@, a") € {—1,0,1} for € X(g). Suppose that @” is in the root
lattice. Let wy € W' such that (g, a) > 0 for o € X(g)*. Since wy also satisfies
(2.30), the finite dimensional irreducible representation 7y with the highest weight
wy is minuscule by the argument above. Since wy is in the root lattice, wy = 0 by
i) and hence w = w’. Thus we obtain ii) and iii).

v) Let a € E(g)*. If we denote ¥ = 7 n;(a)ey, then n;(a) < n; for
i=1,...,r. Hence the claim is clear. O

| o

Remark 2.38. Equivalent contents of Proposition 2.37 are found in exercises of
[Bol], Ch. VI.

Restore the previous setting (2.7) on g and (7, V).

Proposition 2.39. i) Let V,, denote the weight space of V with weight w € W(w).
Define the projection map pe : W(m) — W(m)|ae by Po(w) = w|ae and put V(A) =
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Zweﬁgl(/\) Vo for A € W(n)|ag- Then

(2.31) v= & v
AEW(T)ag

is a direct sum decomposition of the gg-module V.
Let V(A) =V (A)1®-- - @V (A)g, be a decomposition into irreducible go-modules.
We denote by wy the dominant minuscule weight of (7|ge,V(A)1). Then

kA
(2.32) Vor =P Ve, NV(A): with dim Vi, NV(A); > 0.
i=1

In particular, V(A) is an irreducible go-module if dim Vo, = 1.
i) Put ¥(g) ={a1, -, .} and put ¥(g) \ © = {ai,,...,q;,}, define the map

Pe : X(g) - A
a=Ymia; — (miy,...,m)
and put
Le = {0} U{pe(a); a € X(g)},
> CX. if m#0,

—1
V(m) _ a€pg (m)

a+ Y CX, if m=0

a€pg'(m)

for m € Lg. Then

(2.33) g= P V(m)

meLlLeg

is a decomposition of the go-module g. If m # 0, then V(m) is an irreducible go-
module. On the other hand, V(0) = go is isomorphic to the adjoint representation
of go = ag®mg. Let © = O1UOU---LUOy be the division of © into the connected
parts of vertexes in the Dynkin diagram of U(g). Then mg = mg, ®me, B---Gme,
gives a decomposition into irreducible go-modules.

ili) Suppose that the representation (w, V') is minuscule. Put W™ = {w € W; wr =

w}. Here we identify m with its highest weight. Let {wn,...,wg} be a representative
system of W™\W/Wg such that w; € W(©). Then with the notation in i)
k
(2.34) V= @V(w;lﬂae)
i=1

gives a decomposition into irreducible go-modules. Moreover the geo-submodule
1

V(w; ' |ag) has highest weight w; 'n.
Proof. 1) Since a4, = 0 for a € ©, (2.31)) is a decomposition into ge-modules. Then
Proposition 2.37/ii) implies that @, is the minuscule weight for any (7o, V(A);)
and therefore the other statements in i) are clear.

ii) Note that o, |ag,- - @i, lae are linearly independent and go = V(0). Then
the statements in ii) follows from i).

iii) From i) each V(w; '7|se ) is an irreducible ge-module and

V(w;lﬂae) i) Z{Vuﬁlw; w e WﬂwiW@}

Since w; € W(©) we have w; "7 + a ¢ W(r) for a € %(ge)*t. It shows the highest
weight of V(w; '7|ee ) is w; 7. Since w; ' # w;lw if ¢ # j we have (2.34)). O
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We give the minimal polynomials for some representations in the following propo-
sition as a corollary of Lemma 2.19 v) and Proposition [2.39.

Proposition 2.40. Retain the notation in Theorem [2.24 and Proposition 2.39.
i) (multiplicity free representation) Suppose dim Vi, =1 for any @ € W(x). Let A
be the lowest weight of (7|ge, V(A)) for A € W(m)|ao. Then

_ 1 _ _
gr0(z; ) = H x—()\@,A>—2<7T—A,7T+A—2p>>
(2 35) AEW(T)ag
' - 7, 7) — (A, A
= H I<)\®+/?7A>+<7_T7P><7r7r>2<>>-
AEW(T)ag,

ii) (adjoint representation) Suppose g is simple and © # 0. Let © = O, -1 Oy
be the division in Proposition 2.39ii). Let ol .. denote the mazimal root of the
simple Lie algebra meg, fori=1,...,¢. Put

Qo = {B(Amax: Umax +20(01)), -+ B(Apaxs Uinax +20(00)) }-

Let an, be the smallest root in pg'(m) for m € Lg \ {0} under the order in Defin-
ition [2.20. Then for the adjoint representation of g,

(2.36)  dapmuo(@;A) = (»”C - ;) I1 <9‘" B 120)

Cee

H <x—B()\@+p,am)_1_B(gm>am)).

meLe\{0}
iii) (minuscule representation) Suppose (w, V') is minuscule. Then with wy, ..., wg
in Proposition [2.39 iii),

k
(2.37) aro(@:3) = [] (= = (wi (e + po — p(©)) +p,m)).

i=1
Proof. Tt is easy to get i) and ii).
iii) Let we denote the longest element in We. Then the go-module V (w; 7|40 )
has lowest weight wew, L. The claim follows from the next calculation:

1
()\@,w@wflﬂ + 5(7? - @@wi_lﬂ', T+ w@wi_lw —2p)

= <)‘@ + P, U_}@wi_17T> + <p,7T>
= (wiwe(Ne + p) + p,7) = (wi(Ne + pe — p(©)) + p,m). O
3. TWO-SIDED IDEALS

Our main concern in this paper is the following two-sided ideal.
Definition 3.1 (gap). Let A € af. If a two-sided ideal Ig(X) of U(g) satisfies
(3.1) Jo(A) =Ie(A) + J(Ne),

then we say that Ig(\) describes the gap between the generalized Verma module
Mg () and the Verma module M (o).

It is clear that there exists a two-sided ideal Ig(\) satisfying (3.1) if and only if
(3.2) J@()\) = Ann(M@()\)) + J()\@).
This condition depends on A but such an ideal exists and is essentially unique for
a generic A (cf. Proposition 3.11, Theorem [3.12, Remark [4.14). The main purpose

in this paper is to construct a good generator system of the ideal from a minimal
polynomial.
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Definition 3.2 (two-sided ideal). Using the global minimal polynomial defined in
the last section, we define a two-sided ideal of U(g):

(3.3) Lol ZU Qaro(Fi Ny + > Ula Aa(Re)).
2 A€Z(g)
From Theorem 2.24 and Remark 2.16/ this ideal satisfies
(3.4) I..o(N) C Jo(N).
In this section we will examine the condition so that
(3.5) Jo(N) = Iz e(N) +J(Xe).

Proposition 3.3 (invariant differential operators). For A € Z(g) and a non-

negative integer k we denote by Agk) the homogeneous part of Ay with degree k and
put

(3.6) Tk — Z My ()",

weW(r)
Here m,(w) is the multiplicity of the weight @ of m and we use the identification
w € a* ~a C U(a). Let {A1,...,A.} be a system of generators of Z(g) as
an algebra over C and let d; be the degree of (A;)q fori =1,...,r. We assume
that (A4 )(dl) ..,(A,«)gd’") are algebraically independent. Suppose a subset A of
{1,...,r} satisfies

dk Zdengﬂ',@(ma)‘) kae {1,...,7‘}\147
(3.7) (d1) )y _ (i) pld) . ;
Cl(AD) Y,y (AN ] =C[(A)e , Ta ™51 e A, ke {l,...,r}\ A

Then
(3.8) I, ZU 9)¢r.0(Fri Nij + > U(g) A)a(Ne)).

i€EA
Proof. Note that 3, - U(8)gr.e(Fr; N)ij 3 Trace(FYgro(Fx;A)) if v > 0. On the

other hand, since Trace(Ft*qr o (Fr; )\))Eldk) — i) by Lemma, 2.23 with © = ()
if the integer ¢;, = dy — deg, (qm@(Fﬂ; )\)) is non-negative, the assumption implies
that for k ¢ A, A, may be replaced by Trace(F qxo(Fr;\)), which implies the
proposition. O

Lemma 3.4. Let V be an ad(g)-stable subspace of U(g) and let V=@ _ Vs be
the decomposition of V into the weight spaces V. with weight w € a*. Suppose
Dqy(Ae) =0 for D € V. Then the following three conditions are equivalent.

i) Jo(A) CcU(g)V+ J(Ae).

ii) For any a € © there exists D € V_,, such that D — X_, € J(Xo).

ili) For any o € O there exists D € V such that Dy(Ae — o) # 0.

Proof. Let U(g) = @_ U(g)= be the decomposition of U(g) into the weight spaces
U(g)w with weight @ € a*. Let u € a*. Since U(g) = U(n) ® J(u), to D € U(g),
there corresponds a unique D* € U (n) such that D — D#* € J(u). Here we note that
D € U(g)w implies D" € U()4 and that D* = Dy (u) € C whenever D € U(g)o.

Put V¥ = {D"; D € V}. Since ad(X)V C V for X € b, we have PD €
V + J(u) and therefore (PD)* € V* for every P € U(b) and D € V. Owing to
U(g) =U(n) ® U(b), we have

(3.9) {D*;D e U(g)V} =Um)V*».
Note that
(3.10) V*# = @{(Vw)“; w=— Z n,7y for some non-negative integers n., }.

YE¥(9)
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Suppose i). Let a € ©. Since X_, € Jo(N) \ J(Xe), there exists D € U(g)V
with D* = X_,. On the other hand, we can deduce (U(ﬁ)V’\e)ia = (V_y)te
from (3.10) because the assumption of the lemma assures (V)*® = 0. Hence from
(3.9) we may assume D € V_,. Thus we have ii).

It is clear that ii) implies i) because Jg(A) = J(Ae) + > _nco U(g) X —a-

Let o € O. Since ad(H)X_, = —a(H)X_, for H € a, we have Hy --- Hy X_, =
X_o(H1 —a(Hy)) -+ (Hy — a(Hy)) for Hy,...,H, € a. We also have X, X_, €
J(Xe) for v € X(g)" because Ao([Xa, X_o]) = 0 and [X,,X_,] € nif v # a.
Hence for any D € U(g)o,

(3.11) (ad(X_a)D)*® = [X_q, Da]*® = (Da(Xe) — Da(Xe — @) X_q.

Now it is clear that iii) implies ii).
Conversely suppose ii). Let @« € ©. Since V_, = ad(X_,)Vy, there exists
D € Vg with (ad(X_,)D)*® = X_, and we have iii) from (3.11). O

Remark 3.5. In the above lemma Ag — a = w,.Ae for a € O because (Ag, @) = 0.

By the Duflo theorem ([Dul), Ann(M(u)) = > nez(g) Ul9) (A = Aq(p)) for any

1 € a*. Then, by the following theorem, each Ann(M(u)) has the same ad(g)-
module structure.

Theorem 3.6 (the Kostant theorem [Koll]). There exists an ad(g)-submodule H
of U(g) such that U(g) is naturally isomorphic to Z(g) ® H by the multiplication.
For any finite dimensional g-module V, dim Homg (V,H) = dim V.

Similarly on the annihilators of generalized Verma modules we have

Proposition 3.7. Suppose Ao + p is dominant. Then for any finite dimensional
g-module V and ‘H in Theorem [3.6,
dim Homg (V, Ann(Me()))/ Ann(M(Xe)))
= dim Homg (V,H N Ann(Me()))) = dim V — dim V9
where V8 = {v € V; Xv =0 (VX € go)}.
Before proving the proposition, we accumulate some necessary facts from [BGGI,
[BG] and [J2].

Definition 3.8 (category O [BGG]). Let O be the abelian category consisting of
the g-modules which are finitely generated, a*-diagonalizable and U (n)-finite. All
subquotients of Verma modules are objects of O. For p € a* we denote by L(u)
the unique irreducible quotient of the Verma module M (u). There exists a unique
indecomposable projective object P(u) € O such that Homg(P(u), L(p)) # 0.

Proposition 3.9 ([BGGI, [BG]). i) If 4+ p is dominant, then P(u) = M(p) and

L oifp' =,

dim Homg (M (p), M (1)) =
ii) For any p, 1 € a*

L oifp' =,

0 if W # p.

iii) For any finite dimensional g-module V and p € a*, V. ® P(u) is a projective
object in O.

dim Homg (P(u), L()) = {
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Proposition 3.10 ([BGI, [J2]). Suppose u € a* and p+ p is dominant. Then the
map

(3.12) {I C U(g); two-sided ideal, I > Ann(M(n))} — {M C M(u); submodule}

defined by I — IM(p) is injective and hence Ann(M (p)/IM(p)) = I for any two-
sided ideal I with I D Ann(M(u)). The image of the map (3.12) consists of the
submodules which are isomorphic to quotients of direct sums of P(u') with

(u +p,B3)

(3.13) 2W €{0,—1,-2,...} for any B € X(g)" such that (u+ p, 3) = 0.
Proof of Proposition [3.7. We first show the map
(3.14) Homgy (V. H) > ¢ — ® € Homy (V@ M(Xe), M (o))

defined by ®(v®u) = ¢(v)u is a linear isomorphism. Since U(g) = H®Ann(M (Ae))
the map is injective. To show the surjectivity we calculate the dimensions of both
spaces. By Theorem 3.6 dim Homg (V,H) = dim V. On the other hand, note that

Homgy (V® M(Xe), M(Xe)) ~ Homg (M(Xe), M(Xe) ® V)

and there exist a sequence {yu1,..., e} C a* and a g-stable filtration

{0}=MyC M C--C My=Me)®V"
such that M;/M;_1 ~ M(u;) for i = 1,...,¢. Here the number of appearances
of Mg in the sequence {u1,...,ue} equals dim Vi = dim V| (cf. the proof of The-
orem 2.29). Since Ao + p is dominant, it follows from Proposition [3.9] i) that
dim Homg (M (Xe), M(Ae) ® V*) = dim V. Thus (3.14) is isomorphism.

Secondly, consider the exact sequence

0— Jo(N)/J(Ae) — M(Xe) — Me(A) — 0.
It is clear that under the isomorphism (3.14) the subspace

Homg (V,’H N Ann(Me(N))) C Homg (V,'H)
corresponds to the subspace

Homgy (V® M(Xe), Jo(N)/J(Ae)) C Homg (V& M(Xe), M(Xe)) .
Let us calculate the dimension of the latter space. By Proposition [3.9/1) and iii),
V ® M(Me) is projective and therefore
dim Homy (V ® M(Xe), Jo(N)/J(Xe))
= dim Homy (V ® M(Ae), M (X)) — dimHomy (V @ M(Xe), Me(X)).

Here we know
Homg (V & M(A6), Mo (X)) = Homg (M(Ae), Mo(A) © V*)
and there exist a sequence {y1,...,pur} C a* and a g-stable filtration
{0} =My C My G- C My = Mg(A) @ V"

such that M;/M;_1 ~ Mg, for i = 1,...,¢". The number of appearances of
Ao in the sequence {u1,...,ur} equals dim(V*)8e = dim V9@ (cf. the proof of
Theorem 2.29). Since the generalized Verma module Mg ,,,) is a quotient of M (y;),
Proposition 3.9/1) implies dim Homg (M (Xe), Me(A) ® V*) = dim V9. Thus the
proposition is proved. (Il
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Proposition 3.11 (Harish-Chandra homomorphism). Let I be a two-sided ideal
of U(g). Put V(I) ={p € a; Dy(pr) =0 (VD € I)}.
i) Fira € U(g). If u € V(I) and

(3.15) ZW ¢ {1,2,3,...},

then wq.pu € V(I).
ii) Suppose X € ag and

(3.16) Jo(\) = I+ J(e).

Then w. e & V(I) for w € We \ {e}.
iii) In addition to the assumption of ii), suppose Ao + p is dominant and

(3.17) I > Ann(M(Xe)).
Then I = Ann(Me (X)) and
(3.18) V(I) ={w.Xo; w e W(O)}.

Proof. i) Note that € V(I) if and only if I C Ann(L(p)). It is known by [JI] that
Ann(L(p)) € Ann(L(wg.p)) if (3.15) holds, which implies i).

i) Since I C Ann(Me (X)) C Ann(L(Xe)) we have Ao € V(I). Put W' = {w €
Wo \ {e}; w.dg € V(I)}. Then, by Lemma 3.4 with V = I, w, ¢ W’ for any
a € O. Suppose W' # ). Let w’ be an element of W’ with the minimal length.
Then there exists @ € © such that the length of w” = wyw’ is smaller than that of
w’. Then w” # e and

Q(w’.)\@ +pa) 2<w’p, a)

ay  fama) V

Hence by i), we have w”.u € V(I), which is a contradiction.

iii) It immediately follows from Proposition 3.10) that I = Ann(Me())). Since
Ann(M(Xe)) = Y Aez(g) U(g)(A = Aa(N0)), V) C {wre; w € W}. Let w =
w(O)we € W with w(0) € W(0O) and wg € Wo. Suppose w(0) # e. Then there
exists o € ¥(g) such that the length of wyw(O) is less than that of w(O). For this
root a we have w,w(©) € W(0) and w(0) ta, wg'w(©) ta € X(g)~ \ (go).
The assumption thereby implies

<w-)\(~) +p, a>
2 ¢ {1,2,3,...}.
Hence (wqw).Ae € V(I) provided that w.Ae € V(I), which assures
(3.19) V()N {(W(@)w@)./\@; we € Wo '\ {6}} =0

by ii) and the induction on the length of w(®). Similarly we can show that V(I) D
{w.Xe; we W(O)} if
A
(3.20) QM
(o, )

Let us remove the condition (3.20) by Proposition3.7. Since U(g) = H&Ann(M (Xe)),
we have only to show for each finite dimensional g-module V
(3.21)

(¢(v)) (wre) =0 (\w € Homg (V,H N Ann(Mo(N))) , Vv € V, Y € W(@)).

¢1{1,2.3,..} (YaeS(0)"\ ().

For D € U(g) we denote by D* a unique element of U(ng) such that D — D* €
Jo(X). Then ¢ € Homg (V, H) belongs to Homg (V,H N Ann(Me(X))) if and only
if p(v)* =0for v € V. Let k = dim Vj and take ¢1,. .., ¢y € Homg (V,H) so that
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they constitute a basis. Note that for v € V and i = 1,...,k, o;(v)* are U(ng)-
valued polynomials in A. Let £ = k —dim V®#©. Then by Proposition 3.7 there exist
an open neighborhood S C ag of the point in question and complex-valued rational
functions a;;(A) on S such that

a;(AN)e1 +azj(Np2 + - +ai(Ner (G=1,...,¢)

form a basis of Homg (V,H N Ann(M@()\))) for any A € S. Since generic A\ € S
satisfy (3.20), (3.21) holds for any A € S. O

On the existence of a two-sided ideal Ig()\) satisfying (3.1), we have

Theorem 3.12. Suppose Ao + p is dominant. Then the following four conditions
are equivalent.

i) If B € X(g)* \ X(go) satisfies (Ao + p, 3) =0, then (8,a) =0 for all a € ©.
iii) W(@).)\@ NWe. e = {)\@}.

iv) If we € Weo satisfies (W(@)w@).)\@ NW(O). o # 0, then we = e.

In particular, if Ao + p is reqular, these conditions are satisfied.
Proof. iv) = iii) is obvious.

iii) = ii). Suppose there exist f € X(g)" \ X(go) and a € O such that (Ao +
p,B3) =0 and (3,a) # 0. For v € ¥(go)™ we have

oo tpwsy) Qe +p) _ o (p)

(wgy, ws) (v (v,7)

which shows (3,v) < 0 and wg € W(©). In particular (8,«) < 0 and hence
wewg € W(O). Now we get (wowg).Ae = wq.Ae, a contradiction.

ii) = i). For each o € © we define the g-homomorphism M(Ae — a) — M(Xe)
by D mod J(Ae — @) — DX_, mod J(Ag). This is an injection and therefore we
identify its image with M (A — «). Note that

S Mo —a) = (Je) + 3 U@X 0 )/ (e) = Jo(N)/J (M)

acO ac®

€{1,2,...},

and we have a surjection P(Ag —a) — M (Ae — «) by Proposition [3.9]ii). Moreover
it is clear that the condition (3.13) with (u, ') = (Ae, Ae —«) holds for each « € ©.
Hence by Proposition/3.10/ we have a two-sided ideal I containing Ann (M (Ae)) such
that 1M (Xe) = Jo(A)/J(Xe). Then I = Ann(Mg())) and Jo(X) =1 + J(Xe).

i) = iv) follows from (3.18)) and (3.19). O

Remark 3.13. Through I o, we will get in §4 many sufficient conditions for (3.2),
which are effective even if Ag + p is not dominant.

Definition 3.14 (extremal low weight). For a simple root « € ¥(g), we call a
minimal element of {&w € W(r); (w, a) # 0} under the order < in Definition [2.20
an extremal low weight of ™ with respect to c.

Since 7 is a faithful representation, m(X_,) is not zero and therefore an extremal
low weight w,, with respect to a always exists but it may not be unique. The main
purpose in this section is to calculate the function

(3.22) 4y D A (qﬂ,@(Fw; A)wawa)a(ke - a)

on ag. If for any a € © there exists w, such that the value of the corresponding
function (3.22)) does not vanish, Lemma [3.4 assures (3.5).
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Lemma 3.15. Fiz « € ¥(g) and let w, be an extremal low weight of © with
respect to o For A =3 5cq g maB € a* put [N =3 5cq 4 ms- Then there exists
{71,.--,7x} C U(g) with vk = « such that the following (3.24)—(3.30) hold by
denoting

(3.23) W = Wa — Z Yo

i<v<K

(3.24) K =|w, — 7|+ 1 and wy =7,

(3.25) (wiy ) <0 fori=1,... K,

(3.26) (@i, ) =01if1<i<j<K,

(3.27) (vi:75) # 0 if and only if |i — j| < 1,

(3.28)  A{wi,...,wx_ 1} ={& e W(r); @ < w4},

( ) w; 18 an extremal low weight of ™ with respect to v; fori=1,... K,
(3.30)

the multiplicity of the weight space of the weight w; equals 1.

The sequence Y1, . ..,VKk 18 unique by the condition wy,...,wx € W(r). The part
of the partially ordered set of the weights of ™ which are smaller or equal to w, is
as follows:

(3.31) w1 =T 5wy L tog e IETL, ok = we X2,

Proof. Let~y1,...,vk be asequence of ¥(g) satisfying (3.24), vk = o, and wy, ..., wk €
W(n) under the notation (3.23). The existence of such a sequence is clear. We shall
prove by the induction on K that such a sequence is unique and that it satisfies
(3.25)~(3.29).

By the minimality of w, we have (w;, ) = 0 for ¢ = 1,..., K — 1. Hence
(i, o) = (wip1—wi, ) =0fori=1,..., K—2and (yk_1,0) = (Wq — WK -1, Q) =
(Wa, ) < 0. Thus we get v; # a for i = 1,..., K — 1. Moreover w, — v; ¢ W(m)
fori=1,..., K — 2 because (wy — Vi, @) = (Wa, @) # 0 and w, is minimal. This
means {w’ € W(n); @' < wo} = {wrg_1}U{w’ e W(n); @’ < wr_1}.

Suppose (wr-—1,Yx-1) = 0. Then wr_1 — yx-1 € W(w) because wx_1 +
VYK—1 = @Wo € W(r). Hence (wr_1 — Yk—1,a) = —{vk_1,a) > 0, which contra-
dicts with the minimality of w,. Thus we get (wx_1,v7Kk-1) <O0.

Suppose wx 1 is not an extremal low weight with respect to yx_1. Then there
exists an extremal low weight o’ with respect to yx_1 such that @’ < @wg_1. Then
W(r) 2 @' + yk-1 < wo and (@’ + yx-1,0) = (Yk—1,a) = 0 by the minimality
of w,. It is a contradiction. Hence wg _1 is an extremal low weight with respect
to YK —1-

Now by the induction hypothesis we obtain the uniqueness and (13.25)—(3.29).
Note that (3.30) follows from the uniqueness and the following lemma because
V = U(n)vz with a lowest weight vector vz of 7. O

Lemma 3.16. U(n) is generated by {X.; v € ¥(g)} as a subalgebra of U(g).

Proof. Let U denote the algebra generated by {X,; v € ¥(g)}. It is sufficient to
show that Xz € U for f € X(g)*, which is proved by the induction on |3| as
follows. If |3 > 1, there exists v € ¥(g) such that 3/ = 8 —~v € X(g)". Then
Xp = C(X, X3 —XpXy) with a constant C € C. Hence the condition X, X5 € U
implies Xg € U. 0

Remark 3.17. By virtue of (3.27) the Dynkin diagram of the system {vy1,...,vx}
in Lemma 3.15/is of type Ax or B or Ck or Fy or G2 where 7; and g correspond
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to the end points of the diagram. Note that
(3.32) (mym) <0and (m,v;) =0fori=2,..., K.

Conversely if a subsystem {vi1,...,v7x} C ¥(g) satisfies (3.27) and (3.32)) then
T+ + -+ vK—1 is an extremal low weight with respect to vx. Hence we have
at most three different extremal low weights of m with respect to a fixed a € ¥(g).

The next lemma is studied in [O4] Lemma 3.5]. It gives the solutions for the
recursive equations which play key roles in the calculation of (3.22)).

Lemma 3.18. For k =0,1,... and £ = 1,2,..., define the polynomial f(k,€) in
the variables s1,...,S0—1, 41, M2, - - - TECursively by

1 if k=0,
—
FOk— 1,0 — ) + zllsyﬂk—w if k>l

Moreover for k = 1,2,... and ¢ = 1,2,..., define the polynomial g(k,l) in the

(3.33) Fk,0) =

variables t,s1, ..., S0—1, b1, 2, - . . TECursively by
1 if k=1
(3.34) g(k, 0) = ¥ k=1
Then the following (3.35)—(3.37) hold.
(3.35) f(k,0) =0 for k>,
-1
(3.36) FO=10) = [T (e = o+ 50),
v=1
-1 k
(3.37) g(k,0) = H(t — py + 8y) H (t — ) for k>4
v=1 v=0+1
Now recall (2.20) with © = (. Let Ft € U(a) be the element in (2.20) corre-
sponding to the weight w; for i = 1, ..., K under the notation in Lemma/3.15. Then

Lemma [3.15] and Lemma 2.19/iv) with £ =1, 8 = @; —w, € 2(g)T (1 < v < i)
and @ = w, show that (2.20) is reduced to
(3.38) Ff— FE ' (w; — ux + D))
= Z (w,, @i —@,)FX 1 mod U(g)n.
1<v<i

Since (w;, Ae) = (wi, Ao —a) for i =1,..., K — 1, (3.38)) inductively implies
(339)  (Fp),(he) = (Ff),(Ae —a) fori=1,...,K—1and k=0,1,....
From (3.26) we have

<wV7wi - wu> - <wl/7’yu +--- 4+ %‘—1> = <wl/)71/>
and hence
Fﬁ-uﬂ - Fk= Fiﬁ_ﬁﬂ (@is1 — bk + Dr(wis1))

+ F N, wip1 — @i) — Fjy (@i — ik + Dr(w;i)) mod U(g)n

= (Fﬁfﬁﬂ - Fﬁil)(wiﬂ — Mkt Dw(“z‘ﬂ)) + Fi’fl%‘-

The last equality above follows from Lemma 2.22 1) with w = w; and @’ = w44
because v; = w;+1 — w; € U(g). Hence by the induction on k& we have

FililiJrl =F} mod U(g)n+ U(g)y-
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Now consider general © C ¥(g). Define integers ng, ni,...,nr with ng = 0 <
ny < ---<ny = K such that

{ni,...onpa={vel{l,.... K =1} ¢ 6}.
If ng_1 < v < ng, then v, € ©, which implies (v,,A\g) = 0 and hence
(Flic-i-lu—&-l) (o) = (Ffu)a()‘(%)-

We note that wpyt1lae <6 @Wnit1lae <O "+ <O @Wnp_1+1|ae and
{@nga1s- o, @ny_ 41} = {@ € We(n); @ < wa}.

Put pe = (wn,_,+1,Ae) + Dx(wn,_,+1) for £ =1,..., L. Since HZL:I(Q? — pe) is
a divisor of ¢r o(x; A), we can take pp for { =L+1,L+2,...,L =deg, ¢r0(x;\)

s0 that gre(z;A) = [T, (@ — pe).
For k=0,1,...,L  and £ =1,2,..., L we define

f(k E) ( ne_1+1,n,_ 1+1) ()\@) == (FT]fl/,ni) ()\@)

Then putting

S¢ = Z (@vs W),

ne_1<v<ny

we have from (3.38) with i =ny_1 +1
-1
f(k‘l7£) = f(k - 17£)(M€ - /J'k) + Zsjf(k - 1).])
j=1

From (3.39) and (3.38) with ¢ = ny, = K we also have

(FI]gK)u(/\@ - Oé) = (Flk(;(l)u(/\G - a)(<waa)\® - Ot> + D‘n’(wa) - Mk)
K-1

L—1
X sfk-1a) | Y @) | fk- 1D,

v=np_1+1

Hence by Lemma [2.22 1)

— (Fik) (Mo — @)
(@Wa, @)
:f<’f‘17L)‘(F”€5<1)u<A@_“)(<w Ao — ) + Dy(a) — )
<wa,o¢> as T o
+ f(k—1,L).

Now applying Lemma |3.18 to

f(k,L) — (FKK) (Ae —a)

<wow a)

g(k’ L) =
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with ¢ = (w4, Ao — @) + D (w,), we obtain
(qw,@(Fw? )‘)wawa) ()‘9 - a)
a

= (FK/K)a ()\e - 04)
= —(wq, @) Ll—f((wa,)\@ —a) + Dp(wa) — e + Se)

— =
o~
g
8
j>
@
|
L
+
]
3
g
2
|
=
~
~——

(1, C)EQR, 0\ Y
Here we put w), = w, +a € W(r) and
(3.40) 7% = {(@laos Dr(w)); @ € We(n), w < wo}
for @y € W(r). To deduce the last equality, we have used
e — S¢ = (wWn,, Ao) + Dr(wn,+1) ifl1<e<L-—1.

Definition 3.19. Suppose a € © and w, is an extremal low weight of m with
respect to a. Put w!, = w, + o € W(mr) and

{w1,...,ox} ={w e W(n); @ < w,}
with @ < wy < -+ < wg and define ng =0< ny < --- <nr < K so that
{wno-‘rl’ “ee 7wnL+1} = {w € W@(T&'); w < wa}

Under the notation in Definition 2.20 and (3.40), define

B41) rem,W= [[  (Qe.w—n+Duwl) - C)
(1,C)E0 0\
L
TT((e. e = @) = (00 0) + Da(@a) = Dal@nisn) ).

If there is no extremal low weights with respect to a other than w,, we use the
simple symbol r,(A) for rq, o, (A).

Remark 3.20. In the above definition we have the following.

i) If the lowest weight 7 is an extremal low weight of 7 with respect to «, then
L=0.

ii) The second factor

L
H<<)\@7wa - wnl> - <a7wa> + Dﬂ'(wa) - D‘Il'(w’ﬂiJrl))
i=1
is not identically zero because @p,|ae <6 @n;+1lao <6 Walao-
iii) For w and @’ € W(m)
(w/7 w/> - <w7 w>

(3.42) (Mo, —w@') + Dr(w) — Dr(@') = Mo + p,w — @) + 5
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iv)Put v, =wpq41 —w, forv=1,..., K —1land yx = a. If
(3.43) _glmn ) (: Lo mn ) i, 1) =1,
(Yo, T0) (Yo, 1)

then (w,, wy>7= (Tyt1, Tyg1)-
v) Suppose ?fggi; = —1 and the Dynkin diagram of the system {vi,...,vk} is of
type Ak or of type Bi with short root vx or of type Go with short root 7. Then

it follows from Lemma [3.15/ and Lemma 2.22/1) that

(3.44) (Ao, @a — @n,) — (@, @a) + Dr(w@a) — Dr(w@n,+1)
= (Mo, Wo — Wn,) + Dr(wa) — Dx(wp,)
=(Xe +p@a —@n,) = (Ao + 0, M, + - +7K-1)
fori=1,...,L.

Theorem 3.21 (gap). Let w, be an extremal low weight with respect to o € ©.
Then

X o€l,oN)+J(Ne) ifraw,(A) #0.
If for all o € © there exists an extremal low weight w,, with respect to a such that
Ta,m, (A) # 0, then
Jo(A) = Ire(N) + J(Xe).

By Proposition 3.111iii) we have the following corollary.

Corollary 3.22 (annihilator). If Ag + p is dominant and if for all « € © there
exists an extremal low weight w, with respect to a such that 7o, (A) # 0, then
I‘ﬂ?@()‘) = AHH(M@(A))

Remark 3.23. It does not always hold that for each o € © there exists an extremal
low weight w, with respect to a such that the function r, o_(A) is not identically
zero. In fact we construct counter examples in Appendix B. However this condition
is valid for many 7 as we see below.

Recall the notation in Proposition 2.39.

Lemma 3.24. Suppose w, is an extremal low weight with respect to a € ©. The
function 1o o, (A) is not identically zero if the space

V(wa|u@) = Z Ve

’WEW(TF); wln@ :walu@
1s irreducible as a go-module.

Proof. In this case we have plo, # @glae for (1, C) € Qre \ 27 and the first
factor of (3.41)) is not identically zero. O

Proposition 3.25. Use the notation in Lemma [3.15] and suppose yx = a € O.
The function 1y, =, () is not identically zero if either one of the following conditions
is satisfied.

1) {717"'771(} Co.

ii) The connected component of the Dynkin diagram of © containing « is orthogo-
nal to 7. O\ {v,...,vk} is orthogonal to {v1,...,vx—1}. Moreover the Dynkin
diagram of the system {v1,...,VK—1} s of type Ax_1.

Proof. 1) Since @wqlae = Tlae and V(7|4 ) is an irreducible ge-module, the claim
follows from Lemma [3.24.
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ii) Suppose @ € We () satisfies @|ao = @alae- Then we can write

K
w=T + Zmi% + Z ngf
i=1 BEO\ {1, 7ic}
with non-negative integers m; and ng. Put
©" = {~i; m; > 0},
0" = {B; ng > 0},
and define
V=Y Vi@ € + > LB}
Beo'UO"
Since V” is an irreducible go/ue~-module with lowest weight 7 and {0} C V, C V7,
each connected component of the Dynkin diagram of the system ©' U ©” is not
orthogonal to 7.

Suppose yx € O'. Then the condition ii) implies @’ = {71, ..., vk} and therefore
w), = wq + @ < w. However it is clear dimV,, =1 and @), ¢ We(r). Thus we
have w!, < w. In this case, by Lemma 2.22ii), we have D(w!) < D(w).

Suppose vk ¢ ©’. Then ©’ is orthogonal to ©” and hence we have the direct
sum decomposition

gerver = aeruer O mer O mer.
Since w is the lowest weight of a meg~-submodule of V', which is an irreducible mg: @

me-module, ©” must be empty. On the other hand, we see ® = {y1,...,vk'}
with K’ < K. Now we can find each weight @’ of the gg,-module V' is in the form

<7Tr7’71>
{(v,m)
and its multiplicity is one (cf. Example4.2]ii)). Fix v € V5 \{0}. Takei=1,..., K’

so that m; > m;y1. Then X_ v # 0 and therefore v; ¢ ©. Since @|ay = Walae,
we conclude ¢ = K’ and mys = 1. It shows

>my>mh > >mh >0

K/
w =7 + Zm;’yi with — 2
i=1

w=7+ " +VK < Ta-
Thus we have proved the function (3.41) is not identically zero. (]

Remark 3.26. The condition i) of the proposition is satisfied if the lowest weight 7
(or equivalently, the highest weight ) of (m, V) is regular.

Proposition 3.27. i) (multiplicity free representation) Suppose dimVy, = 1 for
any w € W(r). Then for any extremal low weight w, with respect to a € O, the
function 14 o, (N) is not identically zero.

ii) (adjoint representation) Suppose g is simple and 7 is the adjoint representation
of g. Suppose a € ©. If the Dynkin diagram of V(g) is of type A,, then we have
just two extremal low weights w, with respect to a. If the diagram is not of type
A,., then we have a unique w,. In either case, there is at least one w, such that
Ta,mwe (A) is not identically zero.

iii) (minuscule representation) Suppose (w,V') is minuscule. Then for any o € ©
there is a unique extremal low weight w, with respect to a. Moreover the function
ro(A) is not identically zero.

Proof. i) Thanks to Proposition 2.39 i), V(wq4|ae) is an irreducible go-module.
Hence our claim follows from Lemma [3.24.

ii) The lowest weight of the adjoint representation is —amax. Hence by Re-
mark3.17/we can determine the number of extremal low weights from the completed
Dynkin diagram of each type, which is shown in §4.
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Note that W(r) = X(g) U {0}. Suppose w, ¢ X(go). Then Proposition [2.39ii)
assures the irreducibility of V(wqlqee ). Hence 74 o, (A) is not identically zero.
Suppose @, € X(go). Take {y1,...,7x} C ¥(g) as in Lemma [3.15/ and put

Wi:_amax"',yl—i_"'—’—,)/i—l fOI‘i:l""’K'

Let ©; denote the connected component of the Dynkin diagram of © containing
vx = a. Then we can find an integer K’ € {1,..., K—1} such that {y1,...,vx/} C
U(g)\ ©1 and {yk/41,...,7x} C O1. Then it follows from Lemma [3.15 that the
root vectors X, for i = 1,..., K’ are lowest weight vectors of m|ms . These
lowest weight vectors generate the irreducible mg,-submodules belonging to the
same equivalence class because {71, ...,Yk/—1} is orthogonal to ©7. On the other
hand, we have w1 € We(m). Then it follows from Proposition 2.39 ii) that
WK1 € E(gel)i. Since wg — WK'+1 = —VK' € E(g), [X*WKUA’XWK’] 7é 0.
It shows the equivalence class above is not the class of the trivial representation.
Hence ©; is not orthogonal to @ = w;. Now we can take another extremal low
weight @/, with respect to a which satisfies the condition i) of Proposition [3.25.
iii) Since a minuscule representation is of multiplicity free, we have only to show
the uniqueness of wy. Let [g,g] = g1 @ - -+ @ gm be the decomposition into simple
Lie algebras. Then 7|4 4) is a tensor product of faithful minuscule representations
of g; for i = 1,...,m. Hence, from Proposition 2.37 v), each connected component
of the Dynkin diagram of ¥(g), which corresponds to some ¥(g;), has just one root
~ which is not orthogonal to 7. Now the uniqueness follows from Remark 3.17. O

We conclude this section with a discussion of the commutative case. Consider

F. = Fij) 1<i<n as an element of M(N,S(g)). Then we have
1<GEN

Theorem 3.28 (coadjoint orbit). Put
Q,r,@ = {@|4e; @ € Wo(n)}

o)) = [[ (z—u),
(3.45) HEQ~
fo(\) = I e =ww).
o 1 €Qr 0, pFAN

Then if Fo(N) # 0,

> 5@)are(Fri N+ Y S@)(f (o)) = {f € S@): faacye = 0}-

i,j fel(e)
Here I(g) is the space of the ad(g)-invariant elements in the symmetric algebra S(g)

of g and G a connected complex Lie group with Lie algebra g.

Proof. Let {v;; i = 1,...,N} be a base of V such that each v; is a weight vector
with weight ww;. Then

0 if (@; — @;, he) # 0,
H;teﬁw,e\{mla@}«wi’ Ao) — p(N))dEF;; if (w; — @, Ae) = 0.
For a € ¥(g) \ X(go) there exists a pair of weights of m whose difference equals

a and therefore 7g(A) # 0 implies (a, Ag) # 0, which assures that the centralizer
of \g in g equals go. Since

go = Z CFy;

i=j or w;—w; is a root of ge

Aqr.0(Fr; Nijlre = {

and [H, Fj;| = (w; — w;)(H)F;; for H € a, we can prove the theorem as in the
same way as in the proof of [O4, Theorem 4.11]. O
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Remark 3.29. There is a natural projection preo : Qre — Q,r,@. We say that
w e Qm@ is ramified in the quantization of ¢r e to qr e if 13;1@(;1) is not a single
element. 7

If 7 is of multiplicity free, then there is no ramified element in Q, g (cf. Proposi-
tion[2.39/1)). In this case, consider g as an abelian Lie algebra acting on S(g) by the
multiplication and define the g-module Mg(A) = S(8)/ X xcpe, S(8)(X — Ao (X))
Then taking a “classical limit” as in [O4], we can prove G o(Fr; \)MJ(A) = 0.
Moreover if 7g(A) # 0, the polynomial G o(x;A) is minimal in the obvious sense.

4. EXAMPLES

In this section we give the explicit form of the characteristic polynomials of
some small dimensional representations 7 of classical and exceptional Lie algebras
g. (As in the previous sections, we always assume that g and 7 satisfy (2.7).) In
some special cases we also calculate the global minimal polynomials. Note that if
¢r(x) = [ <; <) (x —w; — C;) with suitable w; € a* and C; € C is the characteristic
polynomial, then the global minimal polynomial ¢ e(z,)\) for a given © equals
[Lic/(x — (@i, Ao + p) — C;) with a certain subset I of {1,...,m}.

It is clear that if the dimension of 7 is small, then the degree of ¢ o(xz, ) is
small, which means the corresponding ideal I; ¢(A) is generated by elements with
small degrees. In such a case, for an extremal low weight w, of m with respect to
a € O, the degree of the polynomial r, o (A) defined by (3.41) is also small and
hence the assumptions on A of Theorem [3.21! and Corollary [3.22 become very weak.

Lemma 4.1 (bilinear form). Let (, ) be a symmetric bilinear form on a* and let
a* = af @ al be a direct sum of linear subspaces with (a%,a%) = (af,a3) = 0. If
there exists C € C\ {0} such that

(i) =Clp, i’y (Y, o' € ay),

then

(0, )?

(@, )

C= > m(w)

weW(r)
Here m(w) denotes the multiplicity of the weight w € W(w).

for a € ai such that (o, ) # 0.

Proof. Let H, € a correspond to « by the bilinear form ( , ). Then we have
C(a,a) = C*{a,a) = C* Trace m(H,)?

=C* Y me(@) (@)’ = > me(w)(a, @) O

weW(r) weEW(r)

In the following examples €1, €2,... constitute a base of a vector space with
symmetric bilinear form ( , ) defined by (e;,¢;) = d;;. We consider a* a subspace
of this space where 1 — €4 etc. are suitable elements in ¥(g) (cf. [Bo2)]).

C equals the constant C' in the above lemma for a; = an|g, g]. C% is the similar
constant in the case when a; is the center of g. Then we can calculate ( , ) under
the base {e1,€2,...} by the above lemma.

Example 4.2 (4,,_1).

Qg Qp—2 Qp—1 1 1 1 1
R
\IJ:{a1 =€&1 —€&2y...,0p_1 :€n,1—€n}

p=S0 (2 - (v-1))e, = YT Y,
i) g :g[n
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T =} ::51+---+6k:/\kw1 (minuscule, k =1,...,n—1)
dimwkz(Z)

k(n—k
(. p) = EH

W(wg) ={ev, + - +e; 1<y < <y, <n}

Coy, = %21§u1<~--<uk§n(5m oty e —e2)’ = (Z:f)

Clwk = %21§u1<-~<uk§n(5m tet ey, En)g = k(z:i)
(eivey) = R (G5 (ndy — 1) + 7)

kl(n—k)!
Qwy, (95) = H1§i1<---<ik§n (33 - (5i1 +ot Eik) - 2((7572))! )
ii) g = gl,
V =V, := {the homogeneous polynomials of (z1,...,z,) with degree m}

m = mey (multiplicity free, m =1,2,---)

W(mer) = {mie1+ -+ mpep; mi+---+my, =m, m; € Z>o}

dimme, = o Hy, = (77 = ey

Crmer = 3 Xomy gty —m (MIEL + -+ M, e1 — €2)2

=3 2heo me:o(k‘ —2mq)? o Hp .

= 3 T k(k + 1) (k +2) {2

= s heo Rk + 1) (k+2)(m +n — (k+3)) - (m+n— (k+n—1))

- _ (m+n)!
— (nADIm-1)!
2
Cre, = % Zm1+-~+mn:m(m1€1 +o A MpEn, el et en)? = m Hy,
_ (n+m=1)!_ m(m+1)---(m+n—1)
- (m—=1)In! - ! m
+n—1)="_  m?
me, (I) = Hm1+~~+mn:m (SC - Z?:l m;e; — m(m nQCanZLl mi )
m;EL>q 1
i) g = s,

T = w1 + Wn—1 = €1 — &, (adjoint)

dim(wy + w@,) =n? -1

Cwl+w7l71 =2n

(wl + wn—lvp) =n-—1

Geor 1 (T) = (T — %) H1§i<j§n((x - nz_nl)2 — (& — 5j)2)

In [O4] we choose ¥/ = {a) = €3 —&1,...,a0,_1 =&n —€n—1} as a fundamental
system of gl,, and then T = w; is the lowest weight of the natural representation =
of gl,,. For a strictly increasing sequence

(41) ng=0<m<---<npr=n

we put n = n; —n;_1 and © = Ui:l Un,_ <v<n, o} and study the minimal
polynomial ¢ e(z;A) in [O4] for A = (\;) € C¥ ~ a§. Define p’ = —p and put

L
(4.2) 5\1514—---—1—5\”5”:,0'—1—2)%( Z 5,,).

k=1 ng_1<vng

The partially ordered set of the weights of 7 is as follows

Then We () = {Eng+1,---1&ny_,+1} and Theorem 2.24] says

1
gro(@ ) = [[ (- — 5(61 — Eny141,E1 F Eny_ 41— 20"))

= ﬁ(xf Al — N—1)

o>~
Il
ol

e
Il
—_
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and it follows from Remark [3.20 that
L —

Tag()\): H (5\1+1 Any_1+41 H

v=k+1 v=1
in Definition 3.19/if ng—; < ¢ < ng. This result coincides with [O4, Theorem 4.4].
Note that if \ satisfies the condition:
(4.3) (A +p',B) =0 with 8 € (g) = Vo' €O (3,d/) =0,

then r4/(X) # 0 for each o’ € ©.
Let 7, be the minuscule representation wy, in i) and we here adopt the funda-
mental system ¥’ as above. The decomposition

(4.4) Teog lgo = @ Ty, ke

ki+--+kr=Fk
0<k;<n) (j=1,...,L)

is a direct consequence of Proposition 2.391). Here 7y, ., denotes the irreducible
representation of gg with lowest weight Zf=1(€nj_l+1 + -+ en,_,+k;). Then by
Proposition 2.40 i) we have

n El& k\(n — k)!
Gy (@A) = II (9” =222 ilenEn i) - m)

ki+-+kr=Fk i=1 j=1v=1
0<k;<nj (j=1,...,L)
L
ki —k
- I1 (x—C’" n—le]A+n31+ 5 )
o+t =k =1

0<k;<n) (j=1,...,L)

L J—
+C;k(k—1)z ACYEN S 1+ 2 n))
j=1

with C = ("_k(_nlf)i()]f_l)' To deduce the final form we have used the relation
L ’

2
Lo e YL,
Zj:l ninj—1 = 2 .

Remark 4.3. Put gy = [ge,8e6]. Then the irreducible decomposition of 7T1m-|g'9 is
not of multiplicity free if and only if there exist an integer K and subsets I and J
of {1,..., L} such that

K=Y nj=)Y nj<k K<n-—kandI#J
iel jeJ
This is clear from (4.4) because 7y, ..k, gy, = Tr;,.. &, g, if and only if k; = k; or
(ki, k) = (0,n}) or (n},0) fori=1,...,L.

Example 4.4 (B,). g = 02,41

a2 Ap—1CQn 1 2 2
o—O0—-:-—0—=0 oO—O0—++-+-—0——=0 ’I’LZS
U= {al =€1 —€2,...,Qn_1 =&n—-1 —En, Qn :En}

p=Yi i(n—v+ie, =Y, La,
i) m = wy = e; (multiplicity free)

dimw; =2n+1

(wi,p) =n—3
Cw, = Y (Fe,,61)2 +(0,61)? =2
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G () = (@ = H) [T, (2 — 2274)% — &)

ii) 7 =@y, := 3(e1 4+ - - - + &,) (minuscule)

dim zo,, = 2"
(w p) @2n-1)+(2n—3)+-+1 _ n?

4 4
Co, = (te1 £+ +e,,e1)2=2"
2
e, (T) = Hclzihu en=+1 (37 - %(6151 +-o+cengn) — 72:}+2)

iii) m = @y := &1 + &2 (adjoint) --- s is not a fundamental weight if n = 2.

dimws = n(2n + 1)

Cm, =4n—2

(w2, p) =2n — 2

E1 =W — Qg — ++* — Qp

Gz () = (& = ) [licicjen (@ = 9575)* = (& — €)*) (& — 3575)% — (e +
DI (- 8207 2

Choose ¥/ = {a} =e2—¢€1,...,al,_1 =& —€n_1, &), = —&,} as a fundamental

system. Then the partially ordered set of the weights of the natural representation
7 of 09,41 is shown by

€] —> €9 — > s Eng Enpdl ———> e — e, 0
al, ay,_q O/nk+1 a;lk O‘;L,efl o
— —Ep ———> e _E’ﬂk+1 _Enk ...... — —€1.

Here we use the same notation as in (4.1) and (4.2)). Put © = U/?:1 Un,_ <venian

and © = © U {a/,}. Then
We () = {Engt1s--sEnp_141s —Enp_1r--+s —Eny by
W@(W) = WC:) (W) U {07 _5n}‘

Hence by Theorem [2.24

1
qr,0(T3A) = (33 - 1(51751 - 20/))
L
: H( 51 - gnj71+1751 + Enj,1+1 - 2/)/))
Jj=

—

L
H(m+ =) 51 +€n,, 61 — —2p’)>

ji=
L
n )‘j nj,l) ( >‘j 2n — TLj)
2)1:11(96 >~ 2 )\ A
l

/
—Enp_1+1:€1 T Enp_141 — 210 ))

—

8

(
4@ ) = (2 -

83

L—1 1 1
(17 — 5N (e en e e - 20/))
j=1
= 1 1
(35‘1'5/\] 4(€1+€nj,€1 —2[)))
j=1

) T4 - - 25
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Moreover if ng_1 < i < ng,

0 = T (= A0) T (e o)
v=1 v=k+1
L
()\z+1 — %) ,E<5\i+1 + )\ny>
L= - Lo )
= 5 11 </\z - /\n,,) UZI;[JFI (/\7,+1 )\n,,,l-&-l)
L
(A, + >\1+1) E(Am T )
k— L _
22L_2ra;,(:)()‘) = 1<)‘i - j‘nu) H (j\i—i-l - m 1+1> H i+1 T j‘nu),
v=1 v=k+1 v=1
2212 -(/\)—L_l()\ ~A )LH_I(HX ) = (= H( ~A )
a0 - 1 n Ny 1 2 n, | — n., .

Here we denote r4()\) corresponding to © and © by rq.e(A) and r, g()), respec-
tively. Note that r, ()) # 0 for o’ € © under the condition (4.3) for ©. Moreover

suppose A+ p is dominant. Then A\; + Aiyq = 2\ 11 — 1 = 2% 1#0
and hence ro g(A) # 0 for o € © under the condition (4.3).

Example 4.5 (C,,). g = sp,,

a1 oo Qp—1 00 2 2 2 1
o—0—++-—0<&=0 e—0 0 —---—0<&=0 n>2
U={a;=¢e1—¢€2,...,0p-1 =En_1— Ep, Qp = 265}

=50y +1)e, = S0 ey + 25,

i) m# = wy := &1 (minuscule)

dimw; =2n

Cwl = Z(i&/,é‘l)Q =2

(w1,p) =n

G, (2) = [Ii2y (2 = 3)% = €))
ii) m = 2wy = 2¢; (adjoint)

dim 2wy = n(2n + 1)

Cle = 4(n + 1)

(21, p) = 2n

Q2w (T) = (93*%) Hz 1 ((;1:— 2&.2)2*25?) H1§i<jgn((x*iZI}l)Z*(gifsjP) ((z—
%)2 — (e +¢5) )

Choose ¥/ = {a) = e2—¢1,...,Q0,_1 = €n—En_1, &, = —2¢,} as a fundamental
system. The partially ordered set of the weights of the natural representation m of
sp,, is shown by

a alb -1 ay, g 41 Qg
E] — Eg — =+ Snk gnk+1 ...... En
’ ’ ’ ’ ’ ,
a, Q1 X +1 Xy Xy —1 )
— —Ep ——— e LN _Enk+1 _ank ...... — —£€1.

Under the same notation as in the previous example, we have

W@(ﬂ) = {5n0+17 s €np 41 TEnp gy 75”1}7
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We(m) = We () U {—en}.

If ng_1 < i < nyg, it follows from Theorem 2.24, and Remark [3.20 that

L L—1
A niq Ai 2n—n;+1
4r.6(7 ) H(xf >3 )H<z >~ > )

J=1 Jj=1
L
/\j nj—1 )\j 27’L—le +1
q”’G’(x’A)_j_l(x_ 2 2 ><x+ 2 2 )
k—1 L L
22L 17"04’ 6()\) = (5\1 - j\n,,) H (71+1 - j\nl,,lJrl) H (5\7,'+1 + )\n, )7
v=1 v=k+1 v=1
k—1 L L—1
22L727"0/_7 A\ = (5\2' - j\ny) H (_1+1 - S\n,,_1+1) (5\i+1 + A, ),
! v=1 v=k+1 v=1
L-1 L—1
22172 o) = [T Aw TT (A = A, )-
v=1 v=1
If the condition (4.3) holds, then we have ro/ ¢(\) # 0 and r,, g(A) # 0 for o/ € ©.
Moreover suppose (A, a/,) = 0 and A + p’ is dominant. In this case A, = —1 and

A, = g Atplenen) # 0. Hence 7o/ o(A) # 0 under the condition (4.3)

(En—Eny €n—En,)

for ©.
Example 4.6 (D,). g = 02,
a1 Qo Q2 Qp_1 1 2 2 1
06 o000 n>4
l |
Qy, 1
U={a;=¢€1—€2,..., Qn1 =Ep—1—En, &p =Epn—1+6En}

p= Zzzl(n _ Z/)E,, _ Z:;f y(2n—2u—1) a, + 7L(n4—1) (an71 + an)

i) # = w; := &; (minuscule)
dimw; =2n
Cw1 = E(ié‘u,é‘l)Q =2
(@1,0) =n—1

G, () = T2, (& — 251)* — &)

i) Wp_1 1= %(51 +---+ep-1—¢,) (minuscule)
i) m=
@y =11+ ep1 En) (minuscule)
dim w,_; = dimw, = 27!
Co, , =Cwx, = (te1 £+ Fe,,e)2 =271

(@Wn—1,p) = (@, p) = ML)
oo, (1) = Hclzcil,c.,.fn:ﬂ(w — Lere1 4 -+ cnen) — Mo )
1 Cn=—7—"
o, () = Hm:iﬂ,..c.@l:ﬂ(x — L(erer 4 -+ enen) — Hnl)
P

ili) m = wy := €1 + €2 (adjoint)
dimwy = n(2n — 1)
081+82 = 4(” - 1)
(wo2,p) =2n—3
ey () = (2 — %) H1gi<jgn(($ - iZ:i)Q —(&i— 53‘)2) ((x - 421:::2)2 — (& +5j)2)
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Note that the coefficient of e1e5---&, in the polynomial > ¢ —+1,.. c,=+1(c161 +

crep=1
<o+ cpen)™ of (e1,...,6n) does not vanish. Hence
(4.5) Z(g) = C[Trace F2 ,Trace Fy , ..., Trace F;(I”_l), Trace F ].
Choose ¥/ = {a) = g3 —e1,...,a0,_ 1 = €p —€n_1,0Q), = —€, — En_1} as a

fundamental system. Then the partially ordered set of the weights of the natural
representation 7w of 0, is shown by

0/1 0/2 0‘:1—2 04171
E] —> Eg — =+ En—1 En
’ !
l a;, l a,
’ ’ ’ ’
[} QX2 2 Qo
—Ep ——— —€Ep_] —— —— —€9 — —€1.

Use the notation as in (4.1) and (4.2). Put © = Uﬁ:l Uni <ven ot fag,_ €
0, we also put © = O U {a/,}.
Then

L-1 L L—-1 L—-1
oo = D @D e oo =P e P,
=0 j=1 =0 =1

Here m. denotes the irreducible representation of ge or gg with lowest weight e.
Hence if ni_1 < i < ng,

L
. _ )\j nj—1 ﬁ 2n — n; — 1
gr0(z; ) = (x 5 5 ) (z + 5~ o5 )

j=1
qﬂ_,é(x;)\) :jljl <.’L‘— % o nj2—1) jljll <x—|— % — 271—271,]—1> ,

k—1 L L

22L71Ta/ @(A) — (/_\l — Xn,,) H (S‘i—i-l — S\ny_1+1> H ()\1—0—1 + >\n,,>7
v=1 v=k+1 v=1
k-1 L L-1

22L_27"a; 5(\) = (5\2 - S\n,,) H (5\114-1 — A, 1+1> (>\z+1 + )\m,)’
v=1 v=k+1 v=1

L—-1
22[1727’5%,(:)()‘) _ ( l)Lfl Vl_[:1 </\n — )\nl,) ()\nfl — An,,)

If (\,a/) = 0and i+ 1 = ngp < n, then \ixy + Ap, = 2(M\iz1 + \n). Hence
Tor6(A) # 0 for o/ € © under the condition (4.3) for ©.

Now suppose a;,_; ¢ ©. Thennp_1 =n—1. If \, =0, then ¢}, o(Fr; \)Meo(\) =
0 by Corollary [2.32 with

L—1
AL, n—1 A miq Ai 2n—n; —1
/ . _ _ _ _ 09 Y M
qm@(x,)\)f <x 5 5 ) |:| <x 5 5 )(er > 5 >

The analogue of 7,/ () in this case is

k—1 L-1 L—1
e =220 TT (v =2n) TT (e = Xeiin) TT (R + 20, )-
v=1 v=k+1 v=1

If i +1 = ng then Aip1 + A, = 2(Ais1 + \p). Hence r’a, 5(\) # 0 for o' € © under
the condition (4.3).
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Let 74, _, be the half spin representation o, in ii) and we here use the fun-
damental system ¥’ defined above.

Teon 1 |9(—) = @ Thyyeskry oo |Q(Z) = @ Tk1,..kr

(k1,...kr)EKe (k1,.sk)EKg
where
Ko ={(k1,....,kr) € Z";0<k; <n) (j=1,...,0L),
n—ky—--—kr =1 mod 2},

Kg = {(k1,..., k) € Ko; kr, > n, — 1} (Note o,_; € © and nf, > 1)
and 7y, .., is the irreducible representation of ge or gg with lowest weight
L
j=1
Then for © = © or ©
n(n—1)
IR | N R =
(K1, k) EK o

1 L

(gnj—l"l‘l +oet Enj_atk; T Enyatk4+1 T T 6’%‘)'

N =

(an—l"l‘l +ooet j\nj—l'f‘kj - an—l"l‘kj"rl - )‘n;))
1

2TL

j
If n}, > 1, then

o) = 11 2t

Ta!
(k:l,...,kL)GK@/
(F1,skn)#(nf,nlmp —1)

L
(Gt Ryt 4 Any) = R ).
j=1
Example 4.7 (Eg).
a1 Q3 Q4 05 Qg 1 2 3 2 1

O

O O [e;
l L
(65) l

U ={a; = 3(e1 +es) —2(eat+esteates+es+er),as =ce1 462,03 =
€2 — &1, 0y =E3 — &2, 015264—537046265—64}
p=ca+2e3+3e4+4es+4(eg—e7—eg) = 8 +1lag +15a3+21as+ 1505 + 8ag

wy = Z(eg — 7 — €6) (minuscule)
we := 5(es — 7 —€6) + &5  (minuscule)
dimwl = dnan =27

Cw, =Cry =06 (see below)

(@1, p) = (6, p) =8

Iw, (x) = HweWEGwi (x—w— %) fori=1and6.

i) 7 =ty = %(51 +egtestestes—e6—er+es) (adjoint)
dimwsy =78
C., = 24
(w27p) =11
Gy = (7 — %) HQEZ(EG)(J: —a- %)
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Expressing a weight by the linear combination of the fundamental weights <,
we indicate the weight by the symbol arranging the coefficients in the corresponding
position of the Dynkin diagram. For example, w = Z?Zl m;w; is indicated by the
symbol my m3%4m5m6. Moreover for a positive integer m we will sometimes write
m in place of —1271.

Let m be the minuscule representation w; in i). Then the partially ordered set
of the weights of 7 is shown by the following. Here the number j beside an arrow

represents —a;.

0 10000
0
N1
1 11000
0
.3
2 01100
0
\ 4
3 00}10
/20 N\b
4 00010 00011
1 1
NS /20 N6
5 00111 00001
1 1
J4 0 N6 2
6 01101 00101
0 1
/3 N6 4
7 11001 01111
0 0
1 N6 3 \/5
8 10001 11011 01010
0 0 0
N6 1 NS 3
9 10011 11110
0 0
NS 1 N\ 4
10 10110 10100
0 1
N4 T N2
11 11100 10000
1 1
3 N2 U1
12 01000 11000
1 1
N2 /38
13 01100
1
/4
14 00110
0
/5
15 00011
0
/6
16 00001
0

The type Aj corresponding to {1, as, ..., ag} is contained in type Eg. The high-
est weights of the restriction (Eg, 7)| 4, are twy = 10800, W5 — Wy = Wl W3W1TT] =
00010 and @ —tws = wowswswewswsws(ws —ww2) = 10000. Here we put w; = wa, .

1 1
Hence (g, 7)|a; = 2(A5,@1) + (A5, @4) and O, = Cg = 2(?:1) + (gj) =6.

Now use the fundamental system ¥’ = {of = —aq,...,a5 = —ag}. Then the
lowest weight 7 of 7 equals w;. Putting ©; = ¥’ \ {a}}, we have

We, (1) = {10800, 11800, 10801},
We, (1) = {10800, 00010, 10000},
1 1

We, (1) = {10800, oiéoo, 11801, 01(1)00},
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We, (m) = {10000, 00110, 01101, 10100, 00110},

0.(m) = {10000, 00110, 01301, 10100, 00310}
We, (m) = {10800, 00(1)11, 01810, 00811},

We, () = {10800’ 00(1)01, 00801}.

If we identify ag, with C by Ae, = Aw; and put # —A =}, mia; for A € W(r),
then Proposition 2.40 i) implies

(46) qr,0; (1’, >‘) = H (l‘ - (<ﬁ-awz> mA<aZa wz >\ Zm[\ a]7p>)

AEWe, () J

Since (a;,w;) = (o, p) = 3(a;,05) = § and

<wl,wl>:§7 <wth>—é7 <wl,W3>—%,
(w1, @) = (@1, ws) = 2, (@1, w6 = ¢,
we get
)
o= (e D)= 2) e -2
18 1 1 1 7
trn(aiN) = (= 5N) (2= gA =) (o 52— ) (4 52 2).
st~ e e ifer Yoo
= (= D)o~ - o e -
Gr,06(T;A) (ﬂc—%A)(Hl—lS)\—%)( +§)\—§ .
Example 4.8 (E7).
a; a3 a4 a5 Qg Qf 2 3 4 3 2 1
O O o
i l
Qg 2

U = {041 = %(514-68)— %(52+€3+€4+€5+€6+57),a2 = €1 +&9,x3 =
€2 — €1, x4 =E3 —E2, 5 = &4 —E3, Qg = E5 — 547047—56_55}

p = €2+ 2e3 + 34 + 4es + deg — %57 + 1758 =170, + 4 042 + 33as + 48y +
%a5+26a6+22f7a7

) m=wr:=¢eg+ %(58 — €7) (minuscule)
dim wy; = 56.

Cw, =12 (see below)
(W7,p) = 22i 0

o7 (SL‘) = HWGWE7W7 (.’L‘ - w— §)

ii) m = wy := g — 2 (adjoint)

dimw; =133
Cw, =36
(whp) =17

G, (2) = (T — %) Haez(E7)(33 o %)



44 HIROSHI ODA AND TOSHIO OSHIMA

Let 7 be the minuscule representation wr in i). Then the diagram of the partially
ordered set of the weights of 7 is as follows.

0 008001
N7
1 000011
0
\. 6
2 000110
0
N5
3 001100
0
\ 4
4 01}000
/2 N3
5 010000 110000
N3 /2 Nl
6 111000 100000
4 N1 2
7 101100 101000
) Nl /4
8 100110 111100
/6 N1 /5 N3
9 100011 118110 010100
ST N1 /6 N3 a
10 100001 118011 011110
N1 a N3 a N4
11 11801 016011 00}010
N3 a N4 /612
12 015001 00}111 000010
1
N4 ST 12XE
13 00%101 000111 009101
1
2] X§  Xil2
14 000101 009111 001101
1 1
X8 12,/7 N 4
15 00?010 001111 013001
1
2l /6 N4 Y N\ 3
16 001010 011011 110001
1 0 0
N4 /6 N3 Y N1
17 011110 110011 100001
0 0 0
/5 N3 a Nl Va
18 010100 110110 100011
0 0 0
N3 a N1 a
19 111100 100110
0 0
/4 N1 e
20 10}000 106100
/2 Nl /4
21 100000 11}000
1
Nl /2 N3
22 110000 01?000
1
3 /2
23 011000
1
\ 4
24 003100
N\ H
25 008110
\\ 6
26 008011

27 000001
0
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Here we use the similar notation as in Example 4.7.

The type Ag corresponding to {1, as, ..., a7} is contained in type E7. The high-
est weights of the restriction (F7, )| 4, are twy = ()080017 W3—TWy = WolW4WsWeW7TT7 =

= 000010 and wq — w9
1

OIQOOO, W — Wy = w2w4w3w1w5w4w3(W3 — ?Dz) =
WaWWsWeWrwawaWswe(we — we) = 100000. Therefore (E7,m)|a, = (As,ws) +
1

6—1

(Ag, @2) + (A, @s5) + (Ag, @1) and Coop = (57)) + (371) + (521) + (
Now use ¥/ = —W¥ and put ©; = U'\ {a}}. Then

6—1
2—1

6—1
5—1

6—1

171) =12.

We, () = {000001, 10000, 109001},
W@2 {000001 010000 000010 100000}
W()3 {000001 010000 010100 110001 010000}
W@4 {000001 011000 101100 001010 011001 101000 001100}
We, () = {000001, 001100, 100110, 000101, 010100, 000110},
0 0 0 1 0 0
Weo, (1) = {008001, 008110, 108011, 00(1)010, 008011},
We, (1) = {008001, 008011, 108001, 008001}.
From (4.6) with (o, w;) = (a4, p) = %(ai7ai> = ﬁ and
(w7, 1) = % (w7, wa) = é (w7, w3) = é, (w7, w4) = i
5 1 1
(w7, ws) oYL (w7, we) = 6’ (w7, w7) = g
we have
e (@) = (2 - T12A> (= %)( * 112’\ %)
o= (o ) (e B ) (e b )
N 1 A N T [ e
%764@6;”:(%‘—?)(ﬂff—%A 1))
(rp-Dlrp-De o)
e = (2= 50) (= - ) (e 52— 5) (g )
(35
ot~ (1= )= - D Do - Do - ),
1 1 1 1 5 1 9
tron(@id) = (2= ) (= 52— 13) (o + 332 =) (s 57 1)-
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Example 4.9 (Eyg).

a7 a3 Q4 (6% (6733 a7 Qg 2 4 6 5 4 3 2
O l O O l L ]
(65 3

U ={a; = 3(c1+es) —2(eat+esteates+ee+er),as =ce1 462,03 =
€3 — €1, Qi = €3 — €2, A5 = €4 — €3, Qg = €5 — £4, Q7 = £¢ — €5, A8 = E7 — 6}

p = €2+ 2e3 + 364 + 4e5 + Seg + b6e7 + 2365 = 461 + 68y + 91z + 135a4 +
1105 + 84ag + 5T7a7 + 29ag

1) T = max := €7 + €5 (adjoint)
dim Qmax = 248 (mamax (0) = 8)
Cap = 60

(Ctmax, p) = 29
Qo (@) = (= 5) o py (# —a — )

Let 7 be the adjoint representation .y and apmax = Zle n;ay, that is, n; = 2,
ng = 3,.... Put ©; = U\ {a;} for i = 1,...,8. The irreducible decomposition
of g as a ge,-module is given by Proposition 2.39/ ii). In this case Lg, in the
proposition equals {—n;, —n; + 1,...,n;}. Suppose m € Lg, \ {0}. Then V(m) is
a minuscule representation since Fg is simply-laced. Let w; (j = 1,...,8) be the
fundamental weights. If we write the lowest weight and the highest weight of V' (m)
by am = Z?Zl c;wj and o, = Z?Zl cjw; respectively, we clearly have

1 ifm#1,—n,, , -1 ifm# —1,n;,
C; = G = .
2 ifm=1, -2 ifm=-1

)

and apym = —a’ ,. Since we know the highest weights and the lowest weights of

minuscule representations of ge, by the previous examples, starting with amax =
wg = 0080001, we can determine ay, and o, for m € Lg, \ {0} step by step. For

example, suppose ¢ = 4. Then Lo, = {—6,—5,...,6} and we have

0080001 h.w.

Vv (6) _ — 0011000 — ay = 0110000 is a weight of V(5)
001T000 L. 0 1
01}0000 h.w.
e 101 — oy = 1111000 i ight of V(4
V(5) 1010000 L. — 010000 Qy s 000 is a weight of V'(4)
10(1)1000 h.w.
V(4): 11(1)1000 — 01(1)0001 —ay = 00}1001 is a weight of V(3)
0110001 lw.
0
00}0100 h.w.
V(3) : ¢ 0011001 — 0010010 — ay = 0111010 is a weight of V(2)
_ 1
0010010 Lw.
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01(1)0010 h.w.

V(2): 01%1010 — 10(1)0100 —ay =11 } 1100 is a weight of V(1)
1010100 l.w.
0
10}0001 h.w.
1111100
URE
0121000 l.w.
1

On the other hand, the non-trivial irreducible subrepresentations of V' (0) corre-
spond to the connected parts of Dynkin diagram of ©;. If 2?:1 cjwo; is a lowest
weight of such subrepresentations, then ¢; = 1. Hence, if i = 4, the lowest weights
of the non-trivial irreducible subrepresentations of V' (0) are

1110000, 0010000, 0011001.
0 2 0

Thus we get
We, () = {00(1)10007 1010000, 01(1)0001, 0010010, 10(1)0100, 0121000}
1 1 1
u{0}u {ﬁ(l)OOOO, 0010000, 00(1)1001}
2
u {—10}00017 —01(1)00107 —00}01007 —10%1000, —01}0000, —0080001}.

Put Ae, = Aw;. Then, by (2.36), we have

Qﬂ',®4($§)\):(l'—%)(m 2)( _%)\_1%>
'(I_Tlf_%)(x_ﬁ E) %‘%)( 50" %)
(oDl i) e )
(1) (i 1) (e )

Similarly we get
We, (1) = {1080001, 2180000} u{oju {1080010} U {—10(1)00007 —0080001},
We, (1) = {10(1)0000, 00(1)0010, 00%0000} u{otu {10(1)0001}
U {700(1)0100, 701(%0000, 70080001},
We, () = {01(1)0000, 1180001, 01801007 12(1)0000} u{0}u {?1800007 01(1)0001}
U {—1180010, —0181000, —11(1)0000, —0080001}7
We, (1) = {0081100, 01810007 00(1)10017 1081010, 00(1)2100}
u{oju {10(1)1000, 0081101}
U {—01810017 —00(1)1010, —1081100, —00(1)1000, —0080001}7
We, (1) = {0080110, 00(1)01007 10801017 0081210} u{0} U {01801007 0080111}

U {—00(1)0101, —1080110, —0081100, —0080001},
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We. () = {0000011, 1000010, 0000121} U {0} U {0000010, 0000012}
0 0 0 1 0
U {71080011, 70080110, 70080001},
We, () = {0080001, 0080012} u{o}u {1080001} U {—0080011, —0080001},
e . 1 3 1. 23 1.1
Gr0, (3 A) = (x - 5) (x 10) ( 307 %) (x 600 5)
' <$ + @A 670)< 30A)
o = (=) =) (=35~ )3 Do)
13 1 1
'@+@”w0&+m;10@+m0
Ir.05(7;A) = (7 — 5
O3 (* (x 12)(“7 15)( 60)3 L s 1 1
(x‘ﬁA‘ﬁ)(—‘*—a) 75 -2 3)
1 1
(o= - g ) )
i =(e- Do e B - Ble- -
NP A Y O T B YA
( 20 10)( 53) 2)1( 601 60)
(e D) )i B )
1 11 9
Gro(T;A) = (2 — =
6 (“”” 12)(:”14 30)( 1 20)3 o o
) D3 - 2)
'(”*@A‘éﬁ( Eﬁ*‘@( %A‘%ﬂ( w@
1 3 7 1 19 1 2
gm0 (25) = (x - 5) (m - E)( 15)( 207 20) (m 300~ §)
1 11 1 1
(m‘@A‘JE @A a%g*xmi mZ( mﬁ)
teenoiN) = (2= 3) (7= ) (o 552 50) (o 52— 5)

(2 ) (4 550
Example 4.10 (Fy).

o] Qg Qa3 Oy 2 3 4 2

N— A ‘ /—\ A

U = {oq — &9 — &3, Q9 =E&3 — &y, g =&y, Oy = %(51 —52—83—54)}
p=1ler + Sex+ 2e3 4 fe4 = 8o + 150 + 21az + 11ay

i) m=wy :=¢€1 = a1 + 2a3 + 3as + 2a4 (dominant short root)
dim wy = 26 (Mg, (0) = 2)
Co, = Zizl(:tsl,,slf + 13 (te1 teatezteq,e)?=2+1L =6
(W4,p) =1

qw4(f£) = (21' - 1) H aeX(Fy) (l’ L %)

‘ﬁ|<‘amax|
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i) m = wy := &1 + &2 (adjoint)

dimw; = 52

Co. =18

(wlap) =3

G, (2) = (2 = $) ] aesry) (2 —a—3) 11 pesry (-0 3)

Ialz‘amax‘ |B‘<|O‘max‘
Let 7 be the representation wwy in i). Then the diagram of the partially ordered
set of the weights of 7 is as follows. Here the weight 00)00 is the only weight with
the multiplicity 2 and hence indicated by [00)00].

0 00)01
N 4
1 00)11
N3
2 01)10
\ 2
3 11)10
710 N3
4 10)10 10)11
N3 1 N4
5 1111 10)01
20 N4 1
6 01)11 11)01
730 N4 2
7 00)12 01)21
N4 /3
8 [00)00]
J4 N3
9 00)12 01)21
N34 N2
10 01)11 11)01
N2 4 N
11 1111 10)01
730 N1 4
12 10)10 10)11
N3
13 1110
/2
14 01)10
/3
15 00)11
/4
16 00)01

We, (7) = {00)01, 10)10, 10)01},

We,(m) = {00)01, 11)10, 01)11, 11)01, 01)10},

We, () = {00)01, 01)10, 10)11, 00)12, 00)00, 01)21, 10)10, 00)11},
We, () = {00)01, 00)11, 10)01, 00)00, 00)12, 00)01}

2
e e b D)
1 1 1 5 5
el w)e-g)

1 7

(r=1) (e =)+ grg) (e A 1)
)
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'(x—i—%)\—l)(x—k%)\—%).

The extremal low weights of m with respect to ¥’ are as follows:
Wa), = W4 — Qg — A3 — Q2 =1 + ag + 203 + ay,
Wa, =wy — a4 —az = a1 + 2o + 2a3 + ay,
W), = W1 — Q4 = a1 + 209 + 3az + ay,
Wa,, = W4 = a1 + 202 + 3az + 204.
None of them is a member of X(gg) U {0} for any © C ¥’. Hence by Proposi-

tion 2.39/i) and Lemma 3.24} the functions rq/(A) (7 = 1,2,3,4) are not identically
Z€ro.

Example 4.11 (G3).

a1 Q2 3 2
o& o o& o—e
\I/:{Oq 261—82,022—251—|—62+83}

p = —€1 — 2e9 + 3e3 = by + 3z

i) m = := —e3 + €3 = 221 + ao (multiplicity free)
dimw; =7
Coy = 5(21<icjeslei —gj, 61 —€2)* 4+ (0,61 — £2)) = 6

(wlvp) =5
G, (T) = (w - 1) H1§i<j§3(($ - %)2 —(&i — 8j)2)
i) m = wq := —&1 — €2 + 263 = 31 + 2a (adjoint)
dimwy = 14
Coy = 24
(WQ,p) =9
Geos () = (2 = §) [T aen(ay) (z—a—3) ] ses(as) (= =5 31)

|a|=]amax| [8]<|amax|
Consider the representation m with the highest weight w;. Then as is shown in
[FH], the weights of 7 are indicated by

€9 — €3 i>€1—<€3 a—2>—€1+<€2 2500 a—1>€1—62 a—2>—61 +e3 a—1>—€2+53
and therefore
W{al}(ﬂ) = {eg — €3, —€1 + €2, —€1 + €3},
W{az}(ﬂ') = {52 — €3, &1 — €3, 0, &1 — &2, —&2 +53}.
For A € a§ we put Ag = A1 + Agws. Then Ay = 0 (resp. Ay = 0) if © = {ay}
(resp. {ao}) and

) = () o ) o g o

)
B - )

' ( A1 (Bag + as, p)) (z A1 (4o + 2a9, p))

6 6 3 6

o+ 3) e+ TR )T )3 -3)

Moreover, from Remark [3.20, we get

Tay(A) = (Ao +p, (—@1 + 1) — (w1 + a1 + a2))

Ar {as} ({E; )\)
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. <)\@ + p, (—wl + 041) — (—wl + 31 + 2a2)>
= 2<>\@ + Ps 062><A@ + P, + O[2>

= é()\z +1)(3X2 + 4),
rax (V) = (o (=1 + a1) = (—=m1)) — (a2, ~m1 + )

. ((A@, (—w1+a1+a2) —0) + (—w1 + a1 + Oéz,al))
. <)\@ + p, (—ZU1 +a; + 042) — (—w1 + 3aq + a2)>
“(de +p, (w1 + a1 + ) — (=1 + 4oy + 20a3))

=2 (Do +pa)) (o + 5301 +20)) (Do + 30 + )

= i O+ D+ 2P +8),

Here we have used the following relations:
<p, 30&1 + 20[2>
3 )
3
(—m1+ a1 +az,an) = —(ar, ) = —W-

Note that a3 + ag,3a1 + 209,301 + ag € X(g) and 74, (A) # 0 if the condition ii)
of Theorem [3.12/ (we do not assume here that Ag + p is dominant) is satisfied.

Let S(a)™) denote the space of the elements of the symmetric algebra over a
whose degree are at most m. Note that

(Trace F2™), = 2(e1 — €2)?™ + 2(5 — £3)*™ + 2(e1 — £3)*™  mod S(a)?m~1
=2(e; — 52)2’” +2(e1 + 282)2m +2(2e1 + 52)2m
mod S(a)(e1 + g2 +¢€3),
(Trace F2), = 12(e? + e160 + £2) mod S(a)) + S(a)(e1 + 2 + £3),

— (g, —w1 + 1) = —{ag,a1) =

1
(Trace F}), = 1((Trace F2))? mod S(a)® + S(a)(e1 + 2+ €3).
Moreover (Trace F¢)q and ((Trace Fﬁ)u)3 are linearly independent in

S(a)/ (S(a)<5> 4 S(a)(e1 + 2 + 53)).
Thus we have
(4.7) Z(g) = C[Trace F2, Trace F?)].

Proposition 4.12. We denote by «; the elements in U(g) which are specified by
the Dynkin diagrams in the examples in this section.
For a € ¥(g) define A, € a* by

A 1 ifpg=
(4.8) 2< 0(76> _ Zfﬂ O[,
(8,8) 0 ifBe¥(g))\{a}
Let 7%, be the irreducible representation of g with the lowest weight —A, and let A},
be the highest weight of 7.
i) Suppose g = gl,,, sl,,, 5p,, or 09,41 and w is the natural representation of g. Then

(3.5) holds for any © if the infinitesimal character of the Verma module M(\g) is
regular, that is

(4.9) (o +p.a) 0 (Vo€ S(g)).
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If Ao +p is dominant, then (3.5) is equivalent to (3.2). Moreover in Proposition 3.3
we may put A = {i; d; < deg, g0}

ii) Suppose g = G2 and 7 is the non-trivial minimal dimensional representation of
g. Then the same statement as above holds.

iii) Suppose g = 09, with n > 4 and 7 is the natural representation of g.

Suppose © D {ap_1,a,}. Then (3.5) holds if Ao + p is regular and (3.5) is
equivalent to (3.2) if Ao + p is dominant.

Suppose ON{an_1,an} =0 and (Mg, an—an,_1) = 0. In this case we may replace
qr,0(z; ) in the definition of Ire by q, o(z;A) given in Example 4.6. Then the
same statement as the previous case holds. Note that deg, ¢} ¢ = deg, ¢ro — 1.

In other general cases, (3.5) holds if the infinitesimal character of M(Aeg) is
strongly regular, that is, Ae + p is not fized by any non-trivial element of the Weyl
group of the non-connected Lie group O(2n,C). In particular, if ©ON{ap_1,an} =0,
then (3.5) holds under the conditions (4.9) and

(4.10) Qe +p,20;+ -+ 20—+ ap_1 +ay) #0
fori=2,...,n—1 satisfying a;—1 € © and «o; ¢ O.
Suppose © N {ap—1,,} = {an_1}. Then
(4.11) Jo) = Lo + Iy 6(N) + (%)
if (4.9), (4.10) and

(412) (Ae+pw+Aa, , —n_1)#0

for any w e We(r, ) satisfying @ > an_1 — Aa,_,

—1
hold.

In Proposition 3.3 we may put r =n and Aq,...,A,_1 are invariant under the
outer automorphism of g corresponding to €, — —e,, and A = {i;d; < deg, g0} U
iv) Suppose g = E,, with n =6, 7 or 8 (¢f. Example 4.7, 4.8, [4.9). For «; € ¥(g)
put

ay ifi=1 or3, Q; ifi=1 or?2,
(4.13) (o) =Qqas ifi=2, Qi =< ag + ag ifi =3,
an  if i >4, i+, ifi >4,

Here 1(ay) satisfies #{0 € ¥(g); (t(ay), ) <0} <1 and & is the smallest root with
&> aand & > u(a). Let X € agy. If (4.9) holds and moreover X satisfies

(4'14) 2<)‘@ +p,w+ AL(a) - d> 7é <w> w> - <AL((X)7 AL((X))
for a € © and w € We (1, )) satisfying @ > & — Ay,

(a
then
(4.15) Jo(N) = > In:e(\)+J(Ne).
a€L(O)

In particular, under the notation in Definition [2.20 the condition

(Xe + p, 1)

(4.16) 220 TP I
<AL(a) y AL(a)>

¢ [-1,0]
fora€® and p € Ry with 0 < p < Ay +Aj ) — @

a

assures (4.14). Moreover, if m = 7}, or m,

. we may put A = {i; d; < deg, qr.0}
in Proposition 3.3.
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v) Suppose g = Fy. For a; € ¥U(g) put

fi<9 Q; ifi=1 or4,
o1 ifi , R e
(4.17) Wog) =4+ 1= i =< ar+ay ifi=2,
ay  ifi >3, oo
as+ay ifi=3.

Then the same statement as iv) holds for m = w,, (cf. Example 4.10).

Proof. The statements i) and iii) are direct consequences of [O4, Theorem 4.4] (or
Theorem 3.21) and Theorem [3.12. The statement ii) is a consequence of Exam-
ple 4.11.

Suppose g is Eg, E7, Eg, Fy or Go and 7 is a minimal dimensional non-trivial
irreducible representation of g. Then in Proposition [3.3] it follows from [Me] that
the elements >y, my(w)w® (i = 1,...,n) generate the algebra of the W-
invariants of U(a) (For G2 we confirm it in Example [4.11)) and hence we may put
A= {i; d7 < degz q‘fﬁ@}'

Suppose g is Fg, E7, Eg or Fy. Fix a € ©. Then Theorem 13.21 assures X_, €
Iﬂfm:@()‘) + J(Xo) if ra,w, (A) # 0. Here rq o, () is defined by (3.41) with = =
Tl a0d Wa = —Ay(q) + (& — a). Then the assumption of Remark [3.20/ v) holds

and therefore the second factor HiL:1 (+++) of Ta,m, (A) in (3.41) does not vanish
under the condition (4.9). On the other hand, w € W(?T;"(a)) which does not
satisfy @ < —A,(q) + & always satisfies @ > —A () + & because {y1,...,7x} in
Remark 3.20/ is of type Ax and (A,(4),3) = (vi,5) = 0fori=1,...,K — 1 and
Be€W(g)\{7,-..,7x}. Hence (4.14) assures that the first factor of 74 o, (A) does
not vanish. Thus we have X_, € I”f(ay@()‘) + J(Ao). It implies (4.15)). It is clear

that (4.14) follows from (4.16) since (A, (a), Ay(a)) = (@, @) for @ € W(m},)). O

(a

Remark 4.13. Suppose g = gl,, or g is simple. In the preceding proposition we
explicitly give a two sided ideal Io () of U(g) which satisfies Jg(A) = Ie(A)+J(Ae)
if at least

(4.18) Re(de + p,a) >0 for a € ¥(g).
In particular, this condition is valid when A = 0.

Remark 4.14. Suppose g = gl,,. Then in [O2] the generator system of Ann(M@ ()\))

is constructed for any © and A through quantizations of elementary divisors. It
shows that the zeros of the image of the Harish-Chandra homomorphism of Ann (Mg (X))
equals {w.Ag; w € W(O)} and proves that (3.2)) holds if and only if (4.19) does
not valid for any positive numbers j and k which are smaller or equal to L. Here

we note that this condition for (3.2)) follows from this description of the zeros and
Lemma 3.4/ and the following Lemma with the notation in Example 4.2l

Lemma 4.15. Letng = 0 < ny < ng < --- < np = n be a strictly increas-
ing sequence of mon-negative integers. Let X\ = (A1,...,AL) € CL. Define X =
A,y An) €C™ by

— n —

=X+ w-1)—

ifng_1 <v<ng

and put

Ap = {)‘nk—1+17 Anjg 1425+ Ank}'
Then there exists v with nj_1 < v < n; satisfying (v,v + 1)\ € W(O)X if and only
if there exists k € {1,...,L} such that

(419) Ak A; 0, Ay ¢ Ap and (1€ A\ Ay, 1’ € A = (' = ) (k = ) > 0).
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Here (i,7) € &, is the transposition of i and j and
W(O)={0€ &,; o(i) < o(j) if there exists k with ny_1 <i < j <ny},
Ol = (Ho-1(1)s -+ Ho—1(n)) for p=(p1,...,pn) € C".
Proof. Suppose (4.19). Then there exists m such that

j<k,1<m<n;—nj_1and ng_1 +n; —nj—1 —m < ny,
Anj_ 14 = Ay 4v—m form <v <nj; —n;

or

J>k, 1<m<nj—nj_yand np —m+1>ng_q,
Anj_14v = Angtv—m for 1 <v <m.

Defining o € W(O) by

o= nj_1+m,nj_1+m+1) H (nj—1+v,ng_1 +v—m),

m<v<n;—nj;_1

or

o=(mj1+mmni+m+1) [[ (ma+vm+v—m),
1<v<m

respectively, we have (v,v + 1)\ = 05\_6 W(O)A with v = n;j_1 +m.
Conversely suppose (v,v + 1)\ = o\ for suitable v € {n;_1 +1,...,n; — 1} and
o € W(O). Put
{617 s agm} = {f’ L < Nnj—1 and S\Z = 5\nj_1+1}a
(ol } = {05 0 >nj and Ay = Ay, }
and define
Egz&—i—(nj—nj,l—l) if i <m,
éi:@—(nj—nj_l—l) 1f12m+2,
Em-‘rl =nNj-1 + ]-7 Z;n+1 = ny.
Assume that (4.19) is not valid for any k. Then for i € [ := {1,...,m +m' + 1},
there exist integers N; with ny, , < ¢; < ¢; < ny, and therefore Ay, = An;_y+1 and
e = A
Note that #I; < m + 1 and #I3 < m’ by denoting

L ={iel;ol;)<n;}and I ={i € I; o({;) > n;}.

Since o(¢;) < o(l}), we have I; U Iy = I and therefore #I; = m+ 1 and #I, = m/.
Then there exists ig with n; 1 < o(fs,) < nj. Since [1NI = ), we have o (¢ ) < nj,
which implies o=(¢') = £;, + V' —njq —1forn;y <v' < ny. It contradicts to

the assumption (v,v + 1)\ = o A. O

Remark 4.16. Suppose g = gl,, and 7 is its natural representation. Then the
condition 74(A) # 0 for any a € © is necessary and sufficient for (3.5) (cf. [O4]
Remark 4.5]). Under the notation in the preceding lemma, it is easy to see that
the condition is equivalent to the fact that

ApnA; #0, Aj ¢ Ay, and (au € A;\ Ar, 3 € Ay such that (i — p)(k — ) > o)

does not hold for any positive numbers k and j smaller or equal to L.
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APPENDIX A. INFINITESIMAL MACKEY’S TENSOR PRODUCT THEOREM

In this appendix we explain infinitesimal Mackey’s tensor product theorem fol-
lowing the method given in [Ma].

Let g be a finite dimensional Lie algebra over C and p a subalgebra of g. Let
V and U be a U(g)-module and a U(p)-module, respectively. We denote by V|,
and Indj U the restriction of the coefficient ring U(g) to U(p) and the induced
representation U(g) ®y(p) U in the usual way.

Theorem A.1 (infinitesimal Mackey’s tensor product theorem). The map defined
by

(A1) U(g) @u(p) (UecVl]p) = (Ulg) @up) U) @V,

' D ®U(p) (U Xc ’U) — D - [(1 ®U(p) u) Qc U]

gives a canonical U(g)-module isomorphism
(A.2) Ind$(U ®@c V) ~ (Ind§ U) ®c V.
To prove this we need two lemmas.

Lemma A.2. Let R be a ring and R-Mod the category of left R-modules. For
M,N € R-Mod consider Fy : - — Hompg(M,-) and Fy : - — Hompg(N,-), which
are functors from R-Mod to the category of abelian groups. Suppose that Fy; and
Fn are naturally equivalent, namely, there exists an assignment A — T4 for each
object A € R-Mod of an isomorphism 74 : Hompg(M, A) — Hompg (N, A) such that
Fn(f)oTa =710 Fuy(f) for each f € Hompg(A, B). Then M ~ N as R-modules.
Proof. Define ¢ = 75" (idy) € Homp(M,N) and ¢ = mp/(idpr) € Hompg(N, M).
Then @ ot = Fn(9)(¢) = Fn(¢) o Tar(idnr) = 7v o Far () (idar) = 7w () = idw -
Similarly 1 o ¢ = idp; . Hence M ~ N. O

Lemma A.3. Let (m;,V;) (i = 1,2,3) be U(g)-modules. We consider Home (Va, V3)
as a U(g)-module by X® = m3(X)o® —Pomy(X) for ® € Home(Va, V) and X € g.
Then naturally

Homyy(g) (Vi ®c Va2, V3) ~ Homy () (V1, Home (V2, V3)).

Proof. We have only to define the mapping ¢ — ® from the left-hand side to the
right-hand side by (®(v1)) (v2) = p(v1 @ v2) for v1 € V4 and v € Va. O

Proof of Theorem |A.1. Lemma |A.3/implies the following isomorphism for a given
U(g)-module A:
Homy ) ((U(8) ®u(p) U) @c V, A) ~ Homy ) (U(g) @u(p) U, Home(V, A))
~ HomU(p) (U, HomﬁC(VhJ’AlP))
~ Homy (p) (U @c Vlp, Alp)
~ Homy(q) (U(Q) Qu(p) (U ®c V|p)>A) :

It gives a natural equivalence between Fy(g)e,,,0)acv and Fu(g)ay ) (Uecv],)
under the notation of Lemma |A.2| with R = U(g). Hence by Lemma |A.2, we have
(A.2). It is easy to see the isomorphism is explicitly given by (A.1). O

APPENDIX B. UNDESIRABLE CASES

In this appendix we give counter examples stated in Remark [3.23. Let g = s,
and use the notation in §2 and §3. Suppose the Dynkin diagram of the fundamental
system ¥ = {aq,...,a,_1} is the same as in Example 4.2, Let {A1,...,A,_1} be
the system of fundamental weights corresponding to ¥. Let 7 be the irreducible
representation of g with lowest weight 7 = —mj1A; — maAs. Here my and my are
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positive integers. Then the multiplicity of the weight @’ := T + a1 + ag € W(n)
equals 2.

Now take © = U\ {az} = {a1,a3,04,...,0,_1}. Since the multiplicity of
the weight 7 + az is 1, both @’ and 7 + a2 belong to We(m). On the other
hand, by Remark 3.17, the weight w,, , =7+ a2 + a3+ -+ + ap_2 is a unique
extremal low weight of 7 with respect to a,_1. Note that {w € We(r); w <

Wa,_, } = {7, T+ az} and the weight w], =7 + as+ az + -+ a,_1 satisfies

@y, Jae = @ae = (T + 02)|ae # Tlae. Moreover, it follows from Lemma 2,22
my+1
Dr(w') = Da(ft + a2) = ~(7 + az, ) = — > — (a1, 1),
! = n—3
Dw(wan,l) — Dr(T+ ) = —(a,a3) — -+ — (p—2,Qp—1) = 5 (a1, a1).

It shows the first factor of the function (3.41) with (o, ws) = (@pn—1,w@a,_,) is
identically zero if n = mj + 4.
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