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Abstract. We introduce an extension of the generalized Riemann scheme
for Fuchsian ordinary differential equations in the case of KZ-type equations.
This extension describes the local structure of equations obtained by resolving

the singularities of KZ-type equations. We present the transformation of this
extension under middle convolutions. As a consequence, we derive the cor-

responding transformation of the eigenvalues and multiplicities of the residue
matrices of KZ-type equations under middle convolutions. We interpret the

result in terms of the combinatorics of single-elimination tournaments.

1. Introduction

A Fuchsian system

N :
du

dx
=

n−1∑
ν=1

A0ν

x− xν
u

for a column vector u of N unknown functions has singularities at n points x1, . . . ,
xn−1,∞ ∈ C ∪ {∞}. The local structure of the solution to N near a singularity
xν is characterized by the conjugacy class of the residue matrix A0ν ∈ M(N,C);
that is, by the eigenvalues and their multiplicities. The residue matrix at ∞ is
give by A0∞ = −(A01 + · · · + A0∞). The collection of the eigenvalues and their
multiplicities of the residue matrices is referred to as the (generalized) Riemann
scheme of N . The equation N is called rigid if it is irreducible and uniquely
determined by its Riemann scheme. If not, N has a finite number of accessory
parameters. For example, there are 188 rigid Fuchsian systems of order at most 8
as is listed in [7, §13.2.3].

Katz [4] showed that any rigid Fuchsian system N can be reduced to the triv-
ial equation u′ = 0 by a sequence of invertible transformations called additions and
middle convolutions. Haraoka [2] extended this result to Knizhnik-Zamolodchikov-
type (KZ-type) systems, proving that if N is rigid, it can be extended to a KZ-type
equation

M :
∂u

∂xi
=

∑
0≤ν<n
ν ̸=i

Aiν

xi − xν
u (i = 0, . . . , n−1)

by setting x0 = x and treating the singular points x1, . . . , xn−1 as variables. This ex-
tension is achieved via a generalization of the middle convolution to KZ-type equa-
tions. The middle convolution of N was explicitly described by Dettweiler-Reiter
[1] in terms of the residue matrices A0ν following Kat’z definition and Haraoka’s
result extends this to the KZ-type setting. These transformations, including permu-
tations of the variables x0, . . . , xn−1 and middle convolutions with respect to other
variables xi, preserve the KZ-type structure but do not necessarily the rigidity, in
fact, even if the original KZ-type equation has a rigid variable, the transformed
system may have none.
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Many known or and new multivariate hypergeometric functions arise with several
as solutions to KZ-type equations obtained via these transformations from the
trivial equation (cf. [5, 13]). Analyzing such equations via middle convolution proves
to be fruitful: in the case of Fuchsian ODE’s, most of the results in [7] are obtained
using this approach. Since the middle convolution is a microlocal transformation,
is is expected to induce corresponding of fundamental data describing singularities
such as the eigenvalues and their multiplicities of residue matrices: in the case of
ODE’s, this is explicitly described in [1]. This issue is resolved in [10, Remark 3]
for the case n = 4, corresponding to hypergeometric functions of two variables. In
this paper we study the problem for general n.

The local solution of M at the singularity xi = xj is determined by the eigen-
values and their multiplicities of the residue matrix Aij . At the singularity {x0 =
x1, x2 = x3}, the local behavior is characterized by the conjugacy class of the
commuting pair (A01, A23), and thus, by their simultaneous eigenvalues and their
multiplicities. At the singularity {x0 = x1 = x2}, the key data are eigenvalues and
multiplicities of the matrix A012 = A01 +A02 +A12 are important data character-
izing the local solution. In general, for I ⊂ Ln := {0, 1, . . . , n−1} with |I| > 1, we
define a generalized residue matrix AI as the sum of Aij for all {i, j} ⊂ Ln. A
maximal commuting family I of such matrices residue matrices is a maximal
subset of {AI | I ⊂ Ln, |I| > 1} in which all elements commute. We denote by
SpM the collection of simultaneous eigenvalues and their multiplicities of these
maximal commuting families (Definition 3.8) and call it the spectrum of of M.
There are (2n−3)!! such families, each consisting of n− 1 commuting matrices cor-
responding to the residue matrices along hypersurfaces defining a normal crossing
singularity after blowing up a singular point point (cf. §4).

The main result of this paper is that additions and middle convolutions applied
to M induce transformations on SpM, and we give explicit formulas for these
transformations (Theorem 5.1). For example, we need SpM to get the eigenval-
ues and their multiplicities of the residue matrix A12 of the equation obtained by
applying additions and middle convolutions several times to an original KZ-type
equationM (Remark 5.12).

By blowing up the singularities of the equation satisfied by Appell’s hypergeo-
metric series F1, we obtain 15 normal crossing singularities. The simplest KZ-type
equation M is the equation of rank 3 system with n = 4 satisfied by F1. In this
case SpM consists of (2n−3)!! = 15 decompositions into simultaneous eigenspaces
of residue matrices, where the simultaneous eigenvalues are multiplicity-free and
coincide with the characteristic exponents at the 15 singular points. Thus, SpM
serves as a generalization of the Riemann scheme of N to the KZ-type equationM
(cf. Example 7.5).

A KZ-type equationM with n = 3 naturally corresponds to a Fuchsian system N
with three singular points (cf. §7.3). Moreover, many multivariate hypergeometric
functions in n−2 variables arise as solutions to KZ-type equations M ([5], [10]).
When n = 4, each generalized residue matrix AI with |I| = 3 can be expressed
in terms of a residue matrix AJ with |J | = 2 (cf. Example 3.10 (i)). In this case,
SpM can be interpreted as simultaneous eigenspace decompositions of matrix pairs
at normal crossing singular points, and the transformation of SpM under middle
convolution is described in [10]. For n > 4, the structure of SpM is more intricate,
but the combinatorics of single-elimination tournaments provides insighats into its
organization.

In §2 some known results of combinatorics related to single-elimination tourna-
ments, such as the number of ways in tournament scenarios, are explained with
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a focus on the application to the structure of residue matrices of KZ-type equa-
tions. In particular, we introduce maximal families of commuting subsets of a
finite set which correspond maximal commuting residue matrices. The numbers
parametrized by n in this section can be referred to the data base [14].

In §3, after reviewing the integrability condition of a KZ-type equation, we in-
troduce SpM.

In §4, giving a local coordinate system, we define a resolution of the singular
point of a KZ-equation and show that the maximal commuting family of residue
matrices equals the set of residue matrices corresponding to the normal crossing
divisors which define a singular point in the blowing up.

In §5, we examine the transformation of residue matrices under the middle con-
volution of a KZ-type equation and give our main result Theorem 5.1 in this paper.
To state the theorem, we define transformations of maximal families of commuting
subsets of a finite set which correspond transformations of tournaments.

Theorem 5.1 can be applied to analyze hypergeometric functions with several
variables. Examples of the application with n = 4 are given in [10, §8], [13, §7], [5,
§5]. A solution to a rigid Fuchsian system N with more than 3 singular points can
be deeply analyzed through the KZ-equation obtained from N by the extension
of variables. For example, the ordinary differential equation satisfied by Jordan-
Pochhammer’s hypergeometric function is extended to a KZ-type equation satisfied
by Appell’s F1 or Lauricella’s FD. Moreover the theorem can be applied to KZ-type
equations with irregular singularities through their versal unfoldings (cf. [12]).

In §6, Theorem 5.1 is explained by examples with n = 4.
Under a fractional linear transformation, KZ-type equation M can be assumed

to have no singularity at infinity and in §7.1, we examine the middle convolution
of the equation. In §7.2, we study KZ-type equationM with fixed singular points.
In this case, SpM corresponds to single-elimination tournaments with a certain
restriction. The equation has only one variable, our result corresponds to that
in [1]. Accessory parameters and rigidity of a KZ-type equation and SpM for a
Fuchsian holonomic systemM are explained in §7.3.

2. Single-elimination tournaments

We consider single-elimination tournaments of n teams. In this paper tour-
naments always mean single-elimination tournaments. A tournament of 3 teams

distinguished by the labels 0, 1 and 2 are expressed by 0 1 2 . This chart means

that team 0 and team 1 play first and the winner of this game and team 2 play

the final game. If the teams are not distinguished, there are two patterns

and . In the case of the tournaments of n teams, the patterns correspond to
binary one-rooted trees with n−1 non-leaf nodes and n leaves figured in a plane.
The total number of them are given by the Catalan number Cn−1. In this case,
there are n−1 games and each game determines a final winner of some teams by a
sub-tournament.

A tournament of three teams is determined by the teams playing the first game
and there are 3 cases of the tournaments, which are described by

(2.1)
{
{0, 1}, {0, 1, 2}

}
,
{
{1, 2}, {0, 1, 2}

}
,
{
{0, 2}, {0, 1, 2}

}
These are the sets of games in the tournaments and each game is labeled by a set
of teams such that the game determines the final winner of the teams. Since the
final game corresponds to the set of all teams, we may express the tournaments by
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the games excluding the final games, which we call shortened expression. Namely,
the set of tournaments of three teams is

(2.2)
{
{0, 1}

}
,
{
{1, 2}

}
,
{
{0, 2}

}
in shortened expression.

If a tournament is changed to another tournament by a permutation of teams, we
think that these tournaments are isomorphic and call this isomorphic class a type
of the tournament. The number of isomorphic classes of tournaments of n teams is
the n-th Wedderburn-Etherington number and a tournament can be expressed by
n−1 subsets or n−2 proper subsets of the set of teams.

We moreover consider types of tournaments indicating the final winner and we
call them win types. There is one type of the tournaments of 3 teams and there
are two win types of them.

0 1 2
=

1 0 2
=

2 0 1
6=

1 2 0 0 2 1
, ◦ ◦

The above left hand side shows the expression of the tournament and the thick
segment indicates that the two tournaments selecting two players of the game are
isomorphic by a suitable permutation of teams. The right hand side gives the
tournaments distinguished only by the final winner indicated by ◦.

In the case of tournaments of three teams there are one type, three cases of
tournaments, two patterns and two win types (1 type, 2 patterns, 3 tournaments,
2 win types).

We give examples of the tournaments of 4 and 5 teams in shortened form:

4 teams

0 1 2 3

: 1 pattern

: 4!
23 = 3 cases

◦
{{0, 1}, {2, 3}}

0 1 2 3

: 4 patterns

: 4!
2 = 12 cases

◦ ◦ ◦
{{0, 1, 2}, {0, 1}}

2 0 1 3 3 0 1 2 3 2 0 1

2 types, 5 (=1+4) patterns, 15 (=3+12) tournaments, 4 (=1+3) win types

0 1 2 3 4

: 2 patterns

: 5!
23 = 15 cases

◦ ◦{
{0, 1}, {0, 1, 2, 3}, {2, 3}

} 0 1 2 3 4

: 4 patterns

: 5!
22 = 30 cases

◦ ◦ ◦{
{0, 1, 2}, {0, 1}, {3, 4}

}

5 teams

0 1 2 3 4
◦ ◦ ◦ ◦

: 8 patterns

: 5!
2 = 60 cases{

{0, 1, 2}, {0, 1}, {0, 1, 2, 3}
}

3 types, 14 patterns, 105 (=15+30+60) tournaments, 9 (=2+3+4) win types

Moreover we have

Numbers of single-elimination tournaments
teams 2 3 4 5 6 7 8 9 n

patterns 1 2 5 14 42 132 429 1430 Tn = (2n−2)!
n!(n−1)!

win types 1 2 4 9 20 46 106 248 Wn

types 1 1 2 3 6 11 23 46 Un

tournaments 1 3 15 105 945 10395 135135 2027025 Kn = (2n− 3)!!

Here we denote the numbers of tournaments, types, win types, patterns by Kn,
Un, Wn and Tn, respectively, for the tournaments of n teams. Then we have the
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following recurrence relations.

Tn =

n−1∑
k=1

Tk · Tn−k, T1 = 1,(patterns)

Wn =

n−1∑
k=1

Wk · Un−k, W1 = 1,(win types)

Un =
1

2

(n−1∑
k=1

Uk · Un−k

(
+Un

2
if n is even

) )
, U1 = 1,(types)

Kn =
1

2

n−1∑
k=1

nCk ·Kk ·Kn−k, K1 = 1.(tournaments)

Consider a tournament of n teams. The players of the final game are the winner
of k teams and that of the other n−k teams with k = 1, . . . , n−1. They are
determined by the tournament of k teams and that of n − k teams. Considering
the chart of the tournament under a suitable permutation of teams, we have the
corresponding numbers of cases as follows.

n teams

k teams (n−k) teams

0, . . . , k−1 k, . . . , n

Tn ← Tk · Tn−k (1 ≤ k < n),

Wn ←Wk · Un−k (1 ≤ k < n),

Un ←

{
Uk · Un−k (1 ≤ k < n− k),
1
2Uk(Uk − 1) + Uk (k = n− k),

Kn ←

{
nCk ·Kk ·Kn−k (1 ≤ k < n− k),

nCk

(
1
2Kk(Kk − 1)

)
+
(
1
2nCk

)
Kk (k = n− k),

Hence, the recurrence relations of Tn and Wn are easily obtained because the first
k teams and the last n− k teams are distinguished. To get the recurrence relations
of Un and Kn, we may assume k ≤ n− k. Then taking care of the symmetry of the
first k teams and the last n − k teams when k = n − k, we have their recurrence
relations.

Consider a tournament of n+ 1 teams labeled by 0, 1, . . . , n. If the team n does
not participate the tournament, we delete the first game that the team is expected
to play and we naturally have a tournament of n teams as the following charts.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗n

n+1 teams

deletion

insertion ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗n

n teams

On the other hand, for a tournament of n teams labeled by 0, 1, . . . , n−1, we can
insert the first game of the team labeled by n in any one of 2n−1 vertical line
segments in the chart. Namely, the new game is the first game of one of n teams
or the opponent of the game is a winner of one of the games of the tournament of
n teams.

The pair of a chart of a tournament of n teams and one of its vertical line
segments and the chart of a tournament of n+1 teams corresponds to each other
by this operations, namely, deletion and insertion, respectively. Hence we have

(2.3) Kn+1 = (2n− 1)Kn.
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Moreover we have the following equalities by recurrence relations.

Kn = (2n− 3)!! =
1

2

n−1∑
k=1

nCk · (2k − 1)!! · (2n− 2k − 1)!!,

Tn =
(2n− 2)!

(n− 1)!n!
=

n−k∑
k=1

(2k − 2)!

(k − 1)!k!

(2(n− k)− 2)!

(n− k − 1)!(n− k)!
,

1 =
(
1−

∞∑
k=1

Unx
k
)( ∞∑

k=0

Wk+1x
k
)
.

Remark 2.1. (i) We say a deletion of a team is basic when the first game of the
team is also the first game of the opponent. An insertion of a team to a tournament
is called basic if the inserted game is the first game for the both players. Note
that the inversion of a basic deletion is a basic insertion and moreover at least
one basic deletion is possible for any tournament. Hence every tournament of n
teams is constructed by a successive application of basic insertions to a tournament
of two teams. Consequently, for given two tournaments of n teams, a successive
application of suitable n−1 pairs of a deletion and a basic insertion transforms one
of the tournaments to the other. Here we have only to look at the inserted games
in this procedure.

(ii) We consider the insertion which inserts a game played by the new team
and the winner of the original tournament, and call it a top insertion. Applying
successive top insertions to the game of two teams labeled by 0 and 1 we have a
tournament of n teams labeled by 0, . . . , n−1 whose n-th game is played by the
team with label n−1 and the selected team by the former games.

(iii) The 4 diagrams given just before Remark 5.12 show examples of transfor-
mations of a tournament by a pair of a deletion and an insertion. The last two
diagrams correspond to a basic insertion and a top insertion, respectively.

Let L be a finite set with |L| > 1. Here |L| denotes the cardinality of L.

Definition 2.2. I = {Iν | ν = 1, . . . .r} is a commuting family of L if |Iν | > 1 and
Iν ⊂ L for ν = 1, . . . , r and

Iν ∩ Iν′ = ∅ or Iν $ Iν′ or Iν % Iν′ for 1 ≤ ν < ν′ ≤ r.

Moreover if there is no commuting family I ′ of L satisfying I $ I ′, I is called a
maximal commuting family of L.

Let I be a maximal commuting family of L with |L| > 2. If there is an element
I0 of I with |I0| = |L| − 1, then I \ {L} is a maximal commuting family of I0. If
such L0 does not exist in I, there exist I1 and I2 in I which satisfy I1 ∩ I2 = ∅ and

I \ {L} = I1 ∪ I2, Ii := {I ∈ I | I ⊂ Ii} (i = 1, 2).

Then Ii are maximal families of Ii for i = 1 and 2. Thus we have the following
theorem.

Theorem 2.1. There is a natural bijection of the set of maximal commuting fam-
ilies of L onto the set of single-elimination tournaments of the teams labelled by
L.

Through the expression of the games of a tournament by the labels of the related
teams as in (2.1), a maximal commuting family I of L corresponds to a single-
elimination tournament of teams labeled by the elements of L. In particular

|I| = |L| − 1.(2.4)
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Definition 2.3. For a maximal commuting family I of L, we put

(2.5) Ĩ := I ∪
⋃
ν∈L

{
{ν}

}
and define

(2.6) b(I) = {b̄(I), b̄′(I)} (I ∈ I, b̄(I), b̄′(I) ∈ Ĩ)

so that I = b̄(I) t b̄′(I), namely,

b̄(I) ∩ b̄′(I) = ∅, b̄(I) ∪ b̄′(I) = I.

Suppose the tournament corresponding to I is finished. We consider that b̄ specifies
the losing side for each game in the tournament matches. Moreover, suppose i ∈ L
is the final winner. Then i 6∈ b̄(I) for I ∈ I. The map b̄ satisfying this condition is
denoted by bi.

Here, we give an example with L = {0, 1, 2, 3, 4} and

I =
{
{0, 1}, {0, 1, 2, 3}, {2, 3}, {0, 1, 2, 3, 4}

}
01 23

0123

01234

0 1 2 3 4
and

b({0, 1, 2, 3}) =
{
{2, 3}, {0, 1}

}
, b0({0, 1, 2, 3}) = {2, 3},

b({0, 1, 2, 3, 4}) =
{
{4}, {0, 1, 2, 3}

}
, b0({0, 1, 2, 3, 4}) = {4},

b({2, 3}) =
{
{2}, {3}

}
, b0({2, 3}) = {2}.

Indicating the losing side by a gap of segment in a tournament chart, we obtain
the following left chart. Then the players of each game is determined by b̄ as is
indicated in the following right chart. We denote the labels of the players of the
game corresponding to I ∈ I by Ib̄. Then

(2.7) Ib̄ := I \
⋃

I⫌J∈I

b̄(J),

0 1 2 3 4 0 1 2 3 4
01 23

03
04


{0, 1}b̄ = {0, 1},
{2, 3}b̄ = {2, 3},
{0, 1, 2, 3}b̄ = {0, 3},
{0, 1, 2, 3, 4}b̄ = {0, 4}.

3. Spectra of KZ-type equations

A system of the equations

M :
∂u

∂xi
=

∑
0≤ν≤n−1

ν ̸=i

Aiν

xi − xν
u (i = 0, . . . , n−1)(3.1)

with a vector u =

( u1
...

uN

)
and matrices Aij = Aji ∈M(N,C) is called a Knizhnik-

Zamolodchikov-type (KZ-type) equation of rank N (cf. [KZ]). HereM(N,C) denote
the space of square matrices of size N with elements in C and Aij is called the
residue matrix along xi = xj and they satisfy the integrability condition

[Aij , Akℓ] = 0
(
∀{i, j, k, `} ⊂ Ln

)
,(3.2)

[Aij , Aik +Ajk] = 0
(
∀{i, j, k} ⊂ Ln

)
,(3.3)

where i, j, k and ` are distinct indices. Here and hereafter we use the notation

Ln := {0, 1, . . . , n− 1}, L̃n := Ln ∪ {∞}, Li
n := Ln \ {i}.(3.4)
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Definition 3.1. General residue matrices are defined by

Ai∞ = −(Ai0 +Ai1 + · · ·+Ai,n−1) (i ∈ Ln),

Aii = A∅ = Ai = 0,

Ai1i2···ik :=
∑

1≤p<q≤k

Aipiq

(
{i1, . . . , ik} ⊂ L̃n

)
.

The matrix Ai∞ is called the residue matrices ofM along xi =∞.

This definition and the integrability condition implies the following lemma.

Lemma 3.2 ([10, §2]). (i)

n−1∑
i=0

Ai∞ = −2ALn
,

(ii) For subsets I and J of L̃n, we have

AI −AL̃n\I = ALn

(
I ⊂ Ln

)
,(3.5)

[AI , AJ ] = 0
(
I ∩ J = ∅ or I ⊂ J or I ⊃ J

)
,(3.6)

[ALn , AI ] = 0.(3.7)

Since [ALn , Aij ] = 0 for 0 ≤ i < j < n, we have the following corollary.

Corollary 3.3. Suppose the systemM is irreducible, namely, there is no nontrivial
proper subspace V ⊂ CN satisfying AijV ⊂ V for 1 ≤ i < j < n. Then

(3.8) ALn = κIN

with a suitable κ ∈ C.

Definition 3.4. The transformation ofM induced from the map u 7→ (xp−xq)
λu

is denoted by Ad
(
(xp − xq

)λ
), which transforms the residue matrix Apq to Apq + λ

and does not change the other residue matrices Aiν in (3.1).

IfM is irreducible, Ad
(
(xp − xq

)−τ)
mapsM to the equation with ALn

= 0.

Definition 3.5. A KZ-type equation M is called homogeneous if ALn
= 0. In

this case, we have

AI = AL̃n\I (I ⊂ Ln),

Ai∞ = AL̃n\{i} (i ∈ Ln).
(3.9)

Remark 3.6. Let I be a commuting family of subsets of L̃n. Then

{I ∈ I | ∞ 6∈ I} ∪ {L̃n \ I | ∞ ∈ I ∈ I}

is a commuting family of subsets of Ln.

Remark 3.7. Since the residue matrices are invariant by the coordinate transfor-
mation x0 7→ ax0 + b, we may specialize (x1, x2) = (0, 1) without loss of generality.
By this specialization the number of variables is reduced to n−2. Appell’s F1 and
F2 etc. are realized as solutions to certain KZ-type equations with n = 4 (cf. [5]).

Definition 3.8. The set
{
AI | I ∈ I} defined by the maximal commuting family

I of Ln is called a maximal commuting family of residue matrices ofM.

The result in the former section implies the following.

Corollary 3.9. (i) |I| = |L| − 1.
(ii) M has (2n− 3)!! maximal commuting families of residue matrices.
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Example 3.10. We give examples of maximal commuting families of residue ma-
trices. Here i, j, k, `,m, p, q are distinct indices. Since the maximal family of residue
matrices always contains ALn

, we give the family omitted ALn

(i) When n = 4, the families are

{Aij , Akℓ}, {Aij , Aijk}
(
{i, j, k, `} = {0, 1, 2, 3}

)
.

Moreover if M is homogeneous, we have A0∞ = A123 etc. and these W4 = 15
families cf. [10]) are

{Aij , Akℓ}
(
{i, j, k, `} ⊂ {0, 1, 2, 3,∞}

)
.

(ii) When n = 5, there are W5 = 105 maximal commuting families of residue
matrices (cf. [8, p.94]) :

{Aij , Akℓ, Aijkℓ}, {Aij , Aijk, Aℓm}, {Aij , Aijk, Aijkℓ}(
{i, j, k, `,m} = {0, 1, 2, 3, 4}

)
.

Moreover ifM is homogeneous, they are

{Aij , Akℓ, Apq}, {Aij , Aijk, Apq} ({i, j, k, `, p, q} = {0, 1, 2, 3, 4, 5,∞}).

Now we review the notation introduced by [10]. The (generalized) eigenvalues and
their multiplicities of a matrix A ∈M(N,C) is written by

[A] = {[λ1]m1
, . . . , [λr]mr

}

with m1 + · · ·+mr = N and
∏r

i=1(A− λi) = 0.
Sometimes we assume mi ≥ mj if λi = λj and moreover

rank

k∏
ν=1

(A− λν) = N − (m1 + · · ·+mk) (k = 1, . . . , r),

or A ∈M(N,C) is a limit of matrices satisfying this equality, but we do not assume
them in this paper.

When two matrices A, B ∈ M(N,C) commute to each other, we can consider
simultaneous eigenspace decompositions and we introduce the notation to the si-
multaneous eigenvalues and their multiplicities. For example, when

A =

(
0
0
0
−1

)
, B =

(
1
2
2
3

)
,

we have

[A] = {[0]3, [−1]1}= {[0]3,−1}, [B] = {[1]1, [2]2, [3]1}= {1, [2]2, 3}

and the simultaneous eigenvalues and their multiplicities are written by

[A : B] =
{
[0 : 1]1, [0 : 2]2, [−1 : 3]1

}
=

{
[0 : 1], [0 : 1]2, [−1 : 3]

}
.

In general, when [Bi, Bj ] = 0 (i, j = 1, .., k), we use the notation

[B1 : · · · : Bk] =
{
[λ1,1 : · · · : λk,1]m1

, · · · , [λ1,r : · · · : λk,r]mr

}
and for a positive integer p, we put

[B1 : · · · : Bk]p =
{
[λ1,1 : · · · : λk,1]pm1

, · · · , [λ1,r : · · · : λk,r]pmr

}
.

The matrices which commute to each other can be simultaneously transformed
to upper triangular matrices under a suitable base.
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Definition 3.11. Let Ln be the set of maximal commuting families of Ln. The
spectra ofM is defined by

SpM :=
{
[AI1 : · · · : AIn−1

] | I = {I1, . . . , In−1}
}
I∈Ln

,

Sp′M :=
{
[AI1 : · · · : AIn−2

] | I = {I1, . . . , In−2, Ln}
}
I∈Ln

.

In most cases, ALn
is a scalar matrix or 0 and we use Sp′M in place of SpM. For

example, the transformation used in [5, §5] keeps the homogeneity and therefore
we may assume ALn

= 0.

Remark 3.12. Let {I1, . . . , Ik} be a maximal commuting family of Ln. Then
[
∑

i ciAIi ] (ci ∈ C) is obtained from SpM. For example, since A01 + · · · + A0k =
A01···k −A1···k, we get [A01 + · · ·+A0k] from SpM (cf. [11], §7.4).

4. Blowing up of singular points

Note that the KZ-type equation (3.1) is written in the Pfaffian form

(4.1) du = Ωu, Ω =
∑

0≤i<j<n

Aijd log(xi − xj).

Let I = {I1, . . . , In−2, In−1 = Ln} be an element of Ln. Namely, I is a max-
imally commuting family of subsets of Ln = {0, 1, . . . , n−1}. Using the notation
given in Definition 2.3 and (2.7), we put

b(Ln) = {J, J ′}, J = {j0, . . . , jk}, J ′ = {j′0, . . . , j′k′},(4.2)

(Ii)b̄ = {ni, n
′
i}, ni, n

′
i ∈ Ln.(4.3)

Then k+k′ = n−2 and k ≥ 0, k′ ≥ 0, and J and J ′ correspond semi-final matches
of the tournament I. Note that ni and n′

i correspond to the players of the match
Ii, which are determined by the result of games of the tournament. Moreover b(Ln)
corresponds to the singular point

(4.4) xj0 = · · · = xjk and xj′0
= · · · = xj′

k′

of the KZ-type equation and the local coordinate system (xj1 , . . . , xjk , xj′1
, . . . , xj′

k′
)

with putting xj0 = 0 and xj′0
= 1 is valid in a neighborhood of the point. Note that

xjν − xj′
ν′

does not vanish at the neighborhood. We give a local coordinate system

which gives a resolution of the singular point as follows.

Definition 4.1. Define local coordinate system (X1, . . . , Xn−2) by

(4.5) xni − xn′
i
=

∏
Ii⊂Ij ̸=Ln

Xj .

Remark 4.2. We may assume ni ∈ b̄(Ii) and n′
i ∈ b̄′(Ii). Then the condition

|xni
− xν | ≤ ε|xni

− xn′
i
|, |xn′

i
− xν′ | ≤ ε|xni

− xn′
i
|

(ν ∈ b̄(Ii), ν′ ∈ b̄′(Ii), i ∈ Ln)
(4.6)

with 0 < ε� 1 corresponds to a neighborhood of the origin of the local coordinate
(X1, . . . , Xn−2). Considering I ∈ L satisfying (4.2), the following theorem gives a
resolution of the singular point (4.4).

Theorem 4.1. The 1-form Ω−
n−2∑
i=1

AIid log(Xi) is non-singular around the origin

of (X1, . . . , Xn−2).
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Proof. Under the notation in Lemma 4.3 for 1 ≤ i < j < n, the condition Ii,j ⊂ I
for I ∈ I is equals to {i, j} ⊂ I and therefore the lemma shows

(4.7) xi − xj = fi,j(X) ·
∏

Ii,j⊂Iν∈I\{Ln}

Xν .

Here fi,j is a polynomial of Xν satisfying Iν $ Ii,j . Note that the constant term of
fi,j equals 1 or −1. Hence

(4.8) d log(xi − xj) −
∑

{i,j}⊂Iν∈I\{Ln}

AId logXν

has no singularity around the origin. □

Lemma 4.3. Let I be a maximal commuting family of L = {0, . . . , n− 1} and b̄ is
a map of I given in Definition 2.3. Put

(4.9) xI := xnI
− xn′

I
with Ib̄ = {nI , n

′
I} ⊂ L

for I ∈ I. Moreover, for i, j ∈ L with i 6= j, we define Ii,j the minimal subset in I
containing both i and j. Then xI (I ∈ I) are linearly independent over C and

(4.10) xi − xj =
∑
I∈I

εIi,jxI with


εIi,j = 0 (I % Ii,j or I ∩ Ii,j = ∅),
εIi,j ∈ {1,−1} (I = Ii,j),

εIi,j ∈ Z (I $ Ii,j).

Proof. Put (Ii,j)b̄ = {k, `}. Note that the lemma is clear when |Ii,j | = 2. We will
prove (4.10) by the induction on the cardinality of Ii,j . We may assume i ∈ b̄(Ii,j)
and j ∈ b̄′(Ii,j) by swapping i and j if necessary. Similarly we may moreover assume
k ∈ b̄(Ii,j) and ` ∈ b̄′(Ii,j). Then i = k or Ii,k $ Ii,j . Moreover j = ` or Ij,ℓ $ Ii,j .
Since xi − xj = (xk − xℓ) + (xi − xk) − (xj − xℓ), the hypothesis of the induction
proves (4.10). Since the dimension of

∑
i,j∈L C(xi−xj) equals n−1 and |I| = n−1,

xI (I ∈ I) are linearly independent. □

Examples

Put Ω′ :=
n−2∑
i=1

AIid logXi in the theorem.

n = 4

x

y

0

0

1

1

Ω = Ax0
dx

x
+Ay0

dy

y
+Ax1

d(x− 1)

x− 1
+Ay1

d(y − 1)

y − 1
+Axy

d(x− y)

x− y
.

(x, y) = (0, 1) : 0 x y 1
x0x1x2x3

{
x1 − x0 = x = X,

x3 − x2 = 1− y = Y,{
X = x,

Y = 1− y,

{
dx
x = dX

X ,
dy
y = dY

Y ,

Ω′ = Ax0
dX

X
+Ay1

dY

Y
(|x|, |y − 1| � 1)
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(x, y) = (0, 0) :
0 x y 1
x0x1x2x3


x2 − x0 = y = Y,

x1 − x0 = x = XY,

x2 − x1 = y − x = (1−X)Y,{
X = x

y ,

Y = y,

{
dx
x = dX

X + dY
Y ,

d(x−y)
x−y = dY

Y + d(X−1)
X−1 ,

Ω′ = Ax0
dX

X
+Axy0

dY

Y
, Axy0 := Ax0 +Ay0 +Axy (|x| � |y| � 1).

Remark 4.4. In [5, 13], the local coordinate (X,Y ) = ( yx , y) is used for a desingular-
ization of the origin, where (X,Y ) is in a neighborhood of (∞, 0). This coordinate
transformation keeps KZ-type equations and the point (∞, 0) is a normal crossing
singular point of the equations.

n = 5

Ω = Ax0
dx

x
+Ay0

dy

y
+Az0

dz

z
+Ax1

d(x− 1)

x− 1
+Ay1

d(y − 1)

y − 1
+Az1

d(z − 1)

z − 1

+Axy
d(x− y)

x− y
+Ayz

d(y − z)

y − z
+Axz

d(x− z)

x− z
.

(x, y, z) = (0, 0, 1) :
0 x y z 1
x0x1x2x3x4


x2 − x0 = y = Y,

x1 − x0 = x = XY,

x4 − x3 = 1− z = Z,
X = x

y

Y = y,

Z = 1− z,

{
x− y = (X − 1)Y,

z = 1− Z,

Ω′ = Ax0
dX

X
+Axy0

dY

Y
+Az1

dZ

Z
(|x| � |y| � 1, |z − 1| � 1)

(x, y, z) = (0, 0, 0) :

0 x y z 1
x0x1x2x3x4


x3 − x0 = z = Z,

x2 − x0 = y = Y Z,

x1 − x0 = x = XY Z,
X = x

y ,

Y = y
z ,

Z = z,


y − z = (Y − 1)Z,

x− y = (X − 1)Y Z,

x− z = (XY − 1)Z,

Ω′ = Ax0
dX

X
+Axy0

dY

Y
+Axyz0

dZ

Z
(|x| � |y| � |z| � 1)

(x, y, z) = (0, 0, 0) :

0 x y z 1
x0x1x2x3x4


x3 − x0 = z = Z,

x1 − x0 = x = XZ,

x3 − x2 = z − y = Y Z,
X = x

z ,

Y = z−y
z ,

Z = z,


y = (1− Y )Z,

x− y = (X + Y − 1)Z,

x− z = (X − 1)Z,

Ω′ = Ax0
dX

X
+Ayz

dY

Y
+Axyz0

dZ

Z
(|x|, |y − z| � |z| � 1).
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5. Middle convolutions of KZ-type equations

The convolution m̃cx0,µM ofM (3.1) with µ ∈ C is defined by

M̃ :
∂ũ

∂xi
=

∑
0≤ν<n

Ãiν

xi − xν
ũ (0 ≤ i < n),

Ã0k =



k

0 · · · 0 · · · 0
... · · ·

... · · ·
...

k A01 · · · A0k +µ · · · A0n−1

... · · ·
... · · ·

...

0 · · · 0 · · · 0


∈M

(
(n− 1)N,C

)
(Dettweiler-Reiter [1]),

Ãij =



i j

Aij

. . .

i Aij +A0j −A0j

. . .

j −A0i Aij +A0i

. . .

Aij


∈M

(
(n− 1)N,C

)
(Haraoka [2]).

In particular, the compatibility condition ofM assures that of M̃.
We prepare a notation to give the definition of the middle convolution and ana-

lyze it.

Definition 5.1. For an integer n greater than 1 and a positive integer N , we define

L0
n = {1, 2, . . . , n−1}, Ln = {0, 1, 2, . . . , n−1},

ιj(v) := (v)j := j

 0...
v...
0

 ∈ C(n−1)N , ιj : CN ↪→ C(n−1)N (v ∈ CN , j ∈ L0
n),

ιI :=
∑
i∈I

ιi : CN ↪→ C(n−1)N , (v)I := ιI(v) ∈ C(n−1)N (v ∈ CN , I ⊂ L0
n),

VI := ιI(CN ) ' CN .

For the equationM given by (3.1), we define subspaces of C(n−1)N :

Ki := ιi(ker A0i) = i

 0...
kerA0i...

0

 ⊂ C(n−1)N ,

K∞ := ker Ã0∞
µ ̸=0
= ιL0

n

(
ker(A0∞ − µ)

)
=

{( v...
v

)
| A0∞v = µv

}
⊂ C(n−1)N ,

K := K∞ +

n⊕
i=1

Ki.

Here we remark that, if µ 6= 0, then ker Ã0∞ = ιL0
n

(
ker(A0∞ − µ)) and K is the

direct sum of K1, . . . ,Kn−1 and K∞.



14 TOSHIO OSHIMA

Since ÃIK ⊂ K, ÃI induce linear transformations on the quotient space C(n−1)N/K.
These linear transformation are expressed by matrices

ĀI ∈M
(
(n− 1)N − dimK,C

)
(5.1)

under a base of the quotient space.

Definition 5.2 ([1], [2]). The middle convolution M = mcx0,µM of M is
defined by

M :
∂ū

∂xi
=

∑
ν∈Ln\{i}

Āiν

xi − xν
ū (i ∈ Ln).

If the ordinary differential equation with the variable x0 defined by M is irre-
ducible and µ is generic, mcx0,µM is also irreducible and it is proved by [1] that

(5.2) mcx0,µ′ ◦mcx0,µ = mcx0,µ+µ′ , mcx0,0 = id.

In most cases, the irreducibility of this ODE coincides with that of M (cf. [9]).

When n = 4, the convolution of A123 = A12 +A13 +A23 is

Ã123 =

A12 +A02 −A02 0
−A01 A12 +A01 0
0 0 A12

+

A13 +A03 0 −A03

0 A13 0
−A01 0 A13 +A01


+

A23 0 0
0 A23 +A03 −A03

0 −A02 A23 +A02


=

A0123 −A01 −A02 −A03

−A01 A0123 −A02 −A03

−A01 −A02 A0123 −A03

 ∈M(3N,C).

Let m be a positive integer smaller than n. Then

Ã1···m =



A0···m−A01 · · · −A0m

...
. . .

...
−A01 · · · A0···m−A0m

A1···m
. . .

A1···m


∈M((n− 1)N).

Lemma 5.3. Retain the notation in Definition 5.1. For I ⊂ Ln (|I| > 1) and
j, k ∈ L0

n and v ∈ CN , we have

ÃI(v)J = (AIv)J ∈ VJ (I ⊂ J ⊂ L0
n),

ÃI(v)j = (A0Iv)j − (A0jv)I (I 3 j),

ÃI(v)k = (AIv)k ∈ Vj (I 63 k),

[ÃI ] = [AI ]n−|I| ∪ [A0I ]|I|−1,

ÃI(v)j = (A0Iv)j ∈ Kj (v ∈ kerA0j , I 3 j),

ÃI(v)k = (AIv)k ∈ Kk (v ∈ kerA0k, I 63 k),

ÃI(v)L0
n
= (AIv)L0

n
∈ K∞ (v ∈ ker(A0∞ − µ)).

By the symmetry of coordinate (x1, . . . , xn), we have only to prove this lemma
in the case I = {1, . . . ,m}, but the lemma is clear by the above expression of AI .
Note that the last three equalities in the above follow from the relation [A0I , A0j ] =
[AI , A0k] = [AI , A0∞] = 0 (j ∈ I, k 6∈ I).
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Since Ã0···m = Ã1···k + Ã01 + · · ·+ Ã0m, we have

Ã0···m =



A01···m + µ A0,m+1 · · · A0,n−1

. . .
... · · ·

...
A01···m + µ A0,m+1 · · · A0,n−1

A1···m
. . .

A1···m


.

Then Ã0...n−1 is a block diagonal matrix with the diagonal element A0...n−1 + µ.

Lemma 5.4. (i) For I ⊂ L0
n and j, k ∈ L0

n and v ∈ CN , we have

Ã0I(v)j = ((A0I + µ)v)j ∈ V{j} (I 3 j),

Ã0I(v)k = (AIv)k + (A0kv)I (I 63 k),

[Ã0I ] = [A0I + µ]n−1−|I| ∪ [AI ]|I|,

Ã0I(v)j = ((A0I + µ)v)j ∈ Kj (v ∈ kerA0j , I 3 j),

Ã0I(v)k = (AIv)k ∈ Kk (v ∈ kerA0k, I 63 k),

Ã0I(v)L0
n
= (AIv)L0

n
∈ K∞ (v ∈ ker(A0∞ − µ)).

Here the last equality in the above follows from the relation

(5.3) (A0I + µ)v +
∑

ν∈L0
n\I

A0νv = AIv+
(n−1∑
ν=1

A0ν + µ
)
v = AIv − (A0∞ − µ)v.

Let I be a maximal commuting family of Ln. We denote by I0 the subset of I
consisting the elements containing 0. The elements of I0 are naturally ordered by
the inclusion relationship and they are labelled as I1,0 ⊂ I2,0 ⊂ · · · ⊂ Im,0 = Ln

with m = |I||.
Moreover we put Ik = {I ∈ I | I ⊂ Ik,0 \ Ik−1,0} and the elements of Ik are

labelled as Ik,ν with 0 < ν ≤ mk = |Ik| so that Ik,ν ⊃ Ik,ν′ implies Ik,ν ≤ Ik,ν′ .

Definition 5.5. We define labels and an order to the elements of a maximal com-
muting family I of Ln = {0, . . . , n−1}:

I0 := {I ∈ I | 0 ∈ I}
=

{
Ik,0 | 1 ≤ k ≤ m, I1,0 ⊂ I2,0 ⊂ · · · ⊂ Im,0},

Ik := {I ∈ I | I ⊂ Ik,0 \ Ik−1,0},
= {Ik,ν | ν = 1, . . . ,mk, Ik,ν ⊃ Ik,ν′ or Ik,ν ∩ Ik,ν′ = ∅ (ν ≤ ν′)},

Ik,ν ≤ Ik′,ν′
def,⇐⇒ k < k′ or (k = k′ and ν ≤ ν′),

I(ℓ) := Ik,ν with ` = |{I ∈ I | I ≤ Ik,ν}| (1 ≤ ` < n).

Here the numbers ` indicate the order of the elements of I. Namely,

I = {I(ℓ) | ` = 1, . . . , n−1}, I(1) < I(2) < · · · < I(n−1).

Thus a maximal commuting family I of Ln becomes a totally ordered set. Here we
note that the order is not uniquely determined. It may be easy to see this order if
I is expressed by a figure of the corresponding tournament of the teams labeled by
the elements of Ln where the team with the label 0 is the final winner.
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Example 5.6. In the case of the tournament 1 2 3 4 0 5 6 7 8 9 10

∞

,

I0 =
{
I1,0 = {0, 5, 6}, I2,0 = {0, 1, 2, 3, 4, 5, 6}, I3,0 = {0, 1, 2, . . . , 9, 10}

}
,

I1 =
{
I1,1 = {5, 6}

}
,

I2 =
{
I2,1 = {1, 2, 3, 4}, I2,2 = {1, 2}, I2,3 = {3, 4}

}
,

I3 =
{
I3,1 = {7, 8, 9, 10}, I3,2 = {7, 8}, I3,3 = {9, 10}

}
,

I1,0 < I1,1 < I2,0 < I2,1 < I2,2 < I2,3 < I3,0 < I3,1 < I3,2 < I3,3.

Now we recall the map b0 in Definition 2.3. The set of teams b0(I) is not
necessarily uniquely determined by a tournament. But if we identify b0(I) with
the teams failed the game labeled by I, the definition of b0 corresponds to the
tournament figure where the winner of each game is indicated. An example of the
figure is

(5.4) 1 2 3 4 0 5 6 7 8 9 10

∞

Here n = 11 and the corresponding b0(I(1)), b0(I(2)), . . . , b0(I(n−1)) are

{0,5,6}
{5, 6}

6
,
{5,6}
{5}
5

,
{0,1,2,3,4,5,6}
{1, 2, 3, 4}

4
,
{1,2,3,4}
{1, 2}

2
,
{1,2}
{1}
1

,
{3,4}
{3}
3

,
{0,1,...,10}
{7, 8, 9, 10}

10
,
{7,8,9,10}
{7, 8}

8
,
{7,8}
{7}
7

,
{9,10}
{9}
9

and the number under the set b0(I(i)) means that the corresponding team failed in
the game I(i).

Definition 5.7. Define subspaces of C(n−1)N as follows (cf. Definitions 2.3, 5.1).

W (ℓ) := WI :=

ℓ∑
ν=1

Vb0(I(ν)) (I = I(ℓ) ∈ I),

Ub0(I) :=
(
Uij

)
1≤i<n−1
1≤j≤n−1

∈ GL((n− 1)N,C) with

Uij =

{
EN (j ∈ b0(I(i))),

ON (j 6∈ b0(I(i))).

Here EN is the identity matrix and ON is the zero matrix in M(N,C).

Lemma 5.8. (i) For 0 6∈ I ∈ I, we have

VI ⊂WI .(5.5)

Vb̄(I), Vb̄′(I) ⊂WI .(5.6)

(ii) dimW (ℓ) = `N (` = 1, . . . , n−1)
(iii) Let I, K ∈ I and v ∈ CN . Putting J = b0(K), we have the following.

If 0 6∈ I, then

ÃI(v)J =

(AIv)J (I 6⊃ K),

(A0Iv)J −
(∑
ν∈J

A0νv
)
I

(I ⊃ K).
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If 0 ∈ I, then

ÃI(v)J =


(
(AI + µ)v

)
J

(I ⊃ K),

(AI\{0}v)J +
(∑
ν∈J

A0νv
)
I\{0} (I 6⊃ K).

(iv) ÃIW
(ℓ) ⊂W (ℓ) (I ∈ I, 1 ≤ ` < n).

Proof. Putting I = Ik,i, we will first prove (5.5) and (5.6) by the induction with
respect to i. Since I = b̄(I) t b̄′(I), we remark that (5.6) follows from (5.5). When
i = 1, (5.5) is clear because b0(Ik,0) = Ik,1. When i > 1, there exists J ∈ I
satisfying I ⊂ J ∈ Ik and I ∈ b(J) (cf. (2.6)). Then VI ⊂ WJ ⊂ WI by the
induction hypothesis for (5.6) with replacing I by J .

Hence
m∑

k=1

mk∑
ν=0

Vb0(Ik,ν) =

m∑
k=1

mk∑
ν=0

WIk,ν
=

m∑
k=1

(
Vb0(Ik,0) +

mk∑
ν=1

(Vb̄(Ik,i) + Vb̄′(Ik,i))
)

⊃
n−1∑
ν=1

V{ν} ' C(n−1)N .

Since
m∑

k=1

(mk+1) = n−1,
m∑

k=1

mk∑
ν=0

Vb0(Ik,ν) is a direct sum decomposition of C(n−1)N ,

which implies (ii).
Then Lemma 5.3 and Lemma 5.4 show (iii). In particular we have (iv). □

Definition 5.9. Let L be a finite set. For i ∈ L and nonempty subsets I and J of
L, we define

mdi,J (I) :=

{
I ∪ {i} (I ⊃ J),

I \ {i} (I 6⊃ J),
mei,J(I) :=

{
1 (i ∈ I ⊃ J),

0 (i 6∈ I or I 6⊃ J).

Remark 5.10. (i) If i ∈ I ⊃ J or i 6∈ I 6⊃ J , then mdi,J(I) = I.

(ii) Let K = I(ℓ) ∈ I. Then ÃI induces a linear transformation on the quotient
space W (ℓ)/W (ℓ−1) ' Vb0(K) ' CN , which is identified with AK

I given by (5.7).
(iii) If the elements of a family {Iν | ν = 0, 1, . . . , r} of subsets of L commute

with each other (cf. (2.2)) and |Iν | > 1 (ν = 1, . . . , r), so do the elements of
{I0 ∪ {i}} ∪ {mdi,I0(Iν) | (ν = 1, . . . , r)}.

We have the following theorem from Lemma 5.3, Lemma 5.4 and Lemma 5.8.

Theorem 5.1. (i) Let I be a maximal commuting family of Ln = {0, 1, . . . , n−1}.
Put I = {I(1), . . . , I(n−1)}. Let I ∈ I. Then under the notation in Definition 5.9,
we have

[ÃI ] = [AI∪{0} + µ]|I|−1 t [AI\{0}]n−|I|,

[ÃI(1) : · · · : ÃI(n−1) ] =
⊔
J∈I

[AJ
I(1) : · · · : AJ

I(n−1) ],

[ÃI(1) : · · · : ÃI(n−1) ]|Kj
= [A

{j}
I(1) : · · · : A

{j}
I(n−1) ]|kerA0j

(j ∈ L0
n),

[ÃI(1) : · · · : ÃI(n−1) ]|K∞ = [ALn

I(1) : · · · : ALn

I(n−1) ]|ker(A0∞−µ)

with denoting

(5.7) AK
I := Amd0,K(I) +me0,K(I) · µ.

(ii) By a conjugation, ÃI(i) are simultaneously changed into upper triangular

block matrices U−1
b0(I)ÃI(i)Ub0(I).
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Remark 5.11. (i) In the above theorem, we have

(5.8) AJ
Ln

= Aj
0···n−1 = µ+A0···n−1 and ALn

Ln
= AL0

n

and therefore we often omit the term ÃLn
in [ÃI(1) : · · · : ÃI(n−1) ].

Moreover we remark

A0∞ = AL0
n
−ALn

and Corollary 3.3 and

(5.9) mcx0,µ = Ad
(
(xp − xq)

−λ
)
◦mcx0,µ ◦Ad

(
(xp − xq)

λ
)

(1 ≤ p < q ≤ n−1).

(ii) The generalized Riemann scheme

(5.10)
{
[Āij ] | {i, j} ⊂ L̃n

}
of the residue matrices mcx0,µM is obtained by Theorem 5.1 and SpM.

We examine the relation between the theorem and tournaments. We write I
by the corresponding tournament and the team with label i by (i). The theorem
gives the transformation of SpM using AK

I in (5.7) for I ∈ I. The corresponding

transformation mdK
x0,I of the tournament I is an insertion of (0) after the deletion

of (0). The deleted game is replaced by the preceding game. The inserted game
which is the first game of (0) is as follows.

• (AJ
I )I∈I : the new game is played with the winner of the game J and the

preceding game of the opponent is replaced by the new game.
• (Aj

I |kerA0j
)I∈I : the new game is played with (j) as a basic insertion.

• (A∞
I |ker(A0∞−µ))I∈I : the new game is played with the winner of the tour-

nament as a top insertion. Here we put A∞
I = ALn

I .

We show the above by diagrams using examples:

1 2 3 4 0 5 6 7 8 9 10

∞

• •← md0,J−−−−−→
J={3,4} 1 2 3 4 0 5 6 7 8 9 10

•

∞

J = {3, 4} : {3, 4} → {0, 3, 4}, {1, 2, 3, 4} → {0, 1, 2, 3, 4}, {0, 5, 6} → {5, 6}

1 2 3 4 0 5 6 7 8 9 10

∞

•
•
↖ md0,J−−−−−−−−−−−→

J={0,1,2,3,4,5,6} 0 1 2 3 4 5 6 7 8 9 10

∞

•

J = {0, 1, 2, 3, 4, 5, 6} : {0, 5, 6} → {5, 6}

1 2 3 4 0 5 6 7 8 9 10

∞

•
•

←
md0,{j}−−−−−→
j=3 1 2 0 3 4 5 6 7 8 9 10

•

∞

j = 3 : {3, 4} → {0, 3, 4}, {1, 2, 3, 4} → {0, 1, 2, 3, 4}, {0, 5, 6} → {5, 6}, +{0, 3}

1 2 3 4 0 5 6 7 8 9 10

∞

•
•

↑ md0,Ln−−−−−→
j=∞ 0 1 2 3 4 5 6 7 8 9 10

•

∞

j =∞ : {0, 5, 6}→{5, 6}, {0, 1, . . . , 6} → {1, . . . , 6}, {0, 1, . . . , 10}→{1, . . . , 10}
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Remark 5.12. Middle convolutions mcx0,µ, additions Ad
(
(xi − xj)

λ
)
and permu-

tations of suffices {0, 1, . . . , n−1} define transformations on the space of KZ-type
equations. The change of spectra SpM is obtained by Theorem 5.1.

We examine the necessary data ofM to get [A12] of a equation which is obtained
by a successive application of these transformation to the original KZ-type equation
M. Since [Ã12|K1

] = [A012|kerA01
], we need [A01 : A012] considering additions.

Considering more permutations, we need [A12 : A123] and [A23 : A123] in general.
Considering a middle convolution with respect to x0, we moreover need [A01 : A012 :
A0123] and [A01 : A23 : A0123]. These considerations correspond to the following
diagram.

1 2 → 0 1 2 → 0 1 2 3 2 3 1 0 → 0 1 2 3 4 2 3 1 0 4 2 3 4 1 0

These changes of patterns correspond to basic insertions. Since any tournament
is obtained by a successive application of basic insertions (cf. Remark 2.1), we need
SpM in general.

On the other hand, convolutions, additions and permutations of suffixes define
transformation on the space {[AI ] | I ⊂ Ln} which does not contain simultane-
ous eigenspace decompositions. To get the eigenspace decomposition of a residue
matrix or a commuting family of residue matrices of the equation obtained by ap-
plying middle convolutions and additions to an original KZ-type equation M, the
necessary data contained in SpM is depend on the procedure of the application,
for example, whether kerAj is zero or not. It may be good to check the necessary
data for the real calculation, simultaneous eigenspace decompositions of families of
commuting residue matrices of M For example, we refer to [10, Theorem 4.1] or
§7.2 when the middle convolutions are restricted only on some variables.

6. Examples

The transformation of SpM by a middle convolution of M is obtained by
Theorem 5.1. Since the transformation is symmetric with respect to the suffices
{1, . . . , n−1} of the variables (x0, . . . , xn−1), we have only to examine the trans-
formation of the maximal commuting families of residue matrices corresponding to
the representatives of win types. In the cases n = 3, 4, 5, 6, 7, . . ., the number of
the win types are Wn = 2, 4, 9, 20, 46, . . ., respectively.

In this section, we assume n = 4 and examine W4 = 4 cases. The results are kept
valid by permutations of suffixes {1, 2, 3}. Note that the total number of maximal
commuting families of residue matrices equals K4 = 15. For simplicity, we assume
M is homogeneous. Then A0123 = 0 and Ã0123 = µ.

1. 0 1 2 3 I =
{
{0, 1}, {0, 1, 2}, {0, 1, 2, 3}

} b0−→
{
{1}, {2}, {3}

}
U =

1 0 0
0 1 0
0 0 1

 , V = U−1 =

1 0 0
0 1 0
0 0 1

 , Ã∗ → V Ã∗U

Ã01 =

A01+µ A02 A03

0 0 0
0 0 0

→
A01+µ A02 A03

0 0 0
0 0 0


Ã012 =

A012+µ 0 A03

0 A012+µ A03

0 0 A12

→
A012+µ 0 A03

0 A012+µ A03

0 0 A12
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[Ã01 : Ã012] = {[A01 + µ : A012 + µ], [0 : A012 + µ], [0 : A12]}

[Ã01 : Ã012]|K1 = [A01 + µ : A012 + µ]|kerA01

[Ã01 : Ã012]|K2
= [0 : A012 + µ]|kerA02

[Ã01 : Ã012]|K3
= [0 : A12]|kerA03

[Ã01 : Ã012]|K∞ = [0 : A12]|ker (A0∞−µ)

Here Ãij , U and V are block matrices.

2. 1 2 0 3 I =
{
{0, 1, 2}, {1, 2}, {0, 1, 2, 3}

} b0−→
{
{1, 2}, {1}, {3}

}
U =

1 1 0
1 0 0
0 0 1

 , V = U−1 =

0 1 0
1 −1 0
0 0 1

 , Ã∗ → V Ã∗U

Ã012 =

A012+µ 0 A03

0 A012+µ A03

0 0 A12

→
A012+µ 0 A03

0 A012+µ 0
0 0 A12


Ã12 =

A012−A01 −A02 0
−A01 A012−A02 0
0 0 A12

→
A12 −A01 0

0 A012 0
0 0 A12


[Ã012 : Ã12] = {[A012 + µ : A12], [A012 + µ : A012], [A12 : A12]}

[Ã012 : Ã12]|K1 = [A012 + µ : A012]|kerA01

[Ã012 : Ã12]|K2
= [A012 + µ : A012]|kerA02

[Ã012 : Ã12]|K3
= [A12 : A12]|kerA03

[Ã012 : Ã12]|K∞ = [A12 : A12]|ker (A0∞−µ)

AJ
I (cf. Theorem 5.1)

J\I 0̃12 1̃2 0̃123
012 012+µ 12 µ
12 012+µ 012 µ
0123 12 12 µ

j\I 0̃12 1̃2 0̃123
1 012+µ 012 µ
2 012+µ 012 µ
3 12 12 µ
∞ 12 12 µ

Remark 6.1. The simultaneous eigenspace decomposition of
(
ÃI

)
I∈I is obtained

by AJ
I in Theorem 5.1. The above left table is the (n−1) × (n−1) matrix whose

(J, I)-element with I ∈ I and J ∈ I is the suffix K of AK = AJ
I . Moreover 012+µ

in the table means A012 + µ. Then K contains 0 if and only if I ⊃ J and the term
“+µ” exists if and only if 0 ∈ I ⊃ J . Here the last column corresponding to Ã0123

is omitted. Similarly, the above right table shows A
{j}
I and ALn

I which describe(
ÃI |Kj

)
I∈I and

(
ÃI |K∞

)
I∈I , respectively.

3. 1 2 3 0 I =
{
{0, 1, 2, 3}, {1, 2, 3}, {1, 2}

} b0−→
{
{1, 2, 3}, {1, 2}, {1}

}
U =

1 1 1
1 1 0
1 0 0

 , V = U−1 =

0 0 1
0 1 −1
1 −1 0

 , Ã∗ → V Ã∗U
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Ã123 =

−A01 −A02 −A03

−A01 −A02 −A03

−A01 −A02 −A03

→
A123 −A01 −A02 −A01

0 0 0
0 0 0


Ã12 =

A012−A01 −A02 0
−A01 A012−A02 0
0 0 A12

→
A12 0 0

0 A12 −A01

0 0 A012


[Ã123 : Ã12] = {[A123 : A12], [0 : A12], [0 : A012]}

[Ã123 : Ã12]|K1
= [0 : A012]|kerA01

[Ã123 : Ã12]|K2 = [0 : A012]|kerA02

[Ã123 : Ã12]|K3
= [0 : A12]|kerA03

[Ã123 : Ã12]|K∞ = [A123 : A12]|ker (A0∞−µ)

4. 0 1 2 3 I =
{
{0, 1}, {0, 1, 2, 3}, {2, 3}

} b0−→
{
{1}, {2, 3}, {2}

}
U =

1 0 0
0 1 1
0 1 0

 , V = U−1 =

1 0 0
0 0 1
0 1 −1

 , Ã∗ → V Ã∗U

Ã01 =

A01+µ A02 A03

0 0 0
0 0 0

→
A01+µ A03 +A02 A02

0 0 0
0 0 0


Ã23 =

A23 0 0
0 A023−A02 −A03

0 −A02 A023−A03

→
A23 0 0

0 A23 −A02

0 0 A023


[Ã01 : Ã23] = {[A01 + µ : A23], [0 : A23], [0 : A023]}

[Ã01 : Ã23]|K1
= [A01 + µ : A23]|kerA01

[Ã01 : Ã23]|K2 = [0 : A023]|kerA02

[Ã01 : Ã23]|K3
= [0 : A023]|kerA03

[Ã01 : Ã23]|K∞ = [0 : A23]|ker (A0∞−µ)

Case 1

Ã 0̃1 0̃12
01 01+µ 012+µ
012 0 012+µ
0123 0 12
1 01+µ 012+µ
2 0 012+µ
3 0 12
∞ 0 12

Case 3

Ã 1̃23 1̃2
0123 123 12
123 0 12
12 0 012
1 0 012
2 0 012
3 0 12
∞ 123 12

Case 4

Ã 0̃1 2̃3
01 01+µ 23
0123 0 23
23 0 023
1 01+µ 23
2 0 023
3 0 023
∞ 0 23

We show a computer program displaying the result in this section which uses
functions in a library [6] of the computer algebra Risa/Asir. Then the result
including the figures of tournaments is displayed through a PDF file created by
TEX.

N=4; /* N-2=2 variables HG */

T=os_md.symtournament(N|to="T"); /* T: types */

for(S="";T!=[];T=cdr(T)){ /* R: win types */

R=os_md.xytournament(car(T),0|verb=21,winner="all");
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for(;R!=[];R=cdr(R)){

C=car(R);

S=S+"\\raisebox{-2mm}{" /* S: source of TeX */

+os_md.xytournament(C[0],0|teams=C[1],winner=0) /* figure */

+"}\\qquad"+rtostr(C[4])+"\\ $\\to$ \\ "+rtostr(C[3])

+os_md.midKZ(C[2],C[3]); /* spectra */

}

}

os_md.dviout(S); /* display */

In the above program

• In the first line, the number of variables n = 4 is given by N=4.
• In the 2-nd line, all the types T for N teams are obtained.
• In the 4-th line, all win types I are obtained in R.
• From 5-th line, Sp(mcx0,µM) and the findings as presented in this section
are transformed into a source text S in TEX and in the last line it is displayed
using a PDF file transformed from the source text.

Remark 6.2. The top insertion imbeds the tournaments of n−1 teams in those
of n teams. The image of this imbedding is the tournaments of n teams with
b0(Ln) = {n−1}. This corresponds to the KZ-type equation M with Ai,n−1 = 0
(0 ≤ i ≤ n− 2). Hence our result of KZ-type equations with n−1 variables follows
from that of KZ-type equations with n variables.

The first two examples in this section correspond to this imbedding and the
results for n = 3 are obtained by omitting b0({0, 1, 2, 3}) = {3}. Namely, we get
them by the first 2× 2 blocks of the matrices in these examples. Moreover we omit
the term K3 and the last terms of the simultaneous eigenspace decompositions. The
term A012 can remain.

7. Further considerations

7.1. Infinite point. KZ-type equation M in §3 is considered to be defined on
the configuration space of n+1 points of P1. By a linear fractional transformation
transforming the infinite point to a finite point, we have a KZ-type equation with
n+1 variables which has no singularity at infinite point. Then all the singular points
are finite points and it may be easier to understand a symmetry among singular
points. If the original equation has n−1 variables, the resulting KZ-type equation
has n variables and is characterized by the condition

(7.1) Ai∞ :=

n−1∑
ν=0

Aiν = 0 (0 ≤ i < n)

on the residue matrices Aij . Hence we assume the following.

Definition 7.1. ∞ is a pseudo-singular point, namely, there exist µi ∈ C such
that

(7.2) Ai∞ = µi (0 ≤ i < n).

Here µi mean scalar matrices.

If we apply Ad
(
(x0 − x1)

λ(x0 − x2)
λ(x1 − x2)

−λ
)
to M, A0∞ is changed into

A0∞ − λ and Ai∞ for i 6= 0 are unchanged. Hence the KZ-tye equation with a
pseudo-singular infinite point can be changed to a equation satisfying (7.1). We



KZ-TYPE EQUATIONS AND TOURNAMENTS 23

examine the middle convolution of Ãi∞. Note that

Ã0∞ = −
n−1∑
ν=1

A0ν =


−A01 − µ −A02 · · · −A0,n−1

−A01 −A02 − µ · · · −A0,n−1...
...

. . .
...

−A01 −A02 · · · −A0,n−1 − µ

 ,

Ã1∞ = −
n−1∑
ν=0

A1ν =


A0∞ +A1∞ +A01 − µ 0 · · · 0

A01 A1∞ · · · 0
...

...
. . .

...
A01 0 · · · A1∞

 .

Hence for the variable x0, the middle convolution of the KZ-type equation M
satisfying (7.2) is defined by mcx0,µ0

. Then

Ã0∞(v)L0
n
=

(
(A0∞ − µ)v

)
L0

n
, Ã1∞(v)L0

n
=

(
(A01 +A1∞)v

)
L0

n
,

Ã0∞ = 0 mod K∞, Ãi∞ = µi mod Ki (1 ≤ i < n),

and therefore

K∞ = VL0
n
, A0∞ = 0, Ai∞ = µi (0 < i < n)(7.3)

and mcx0,µ0M also has a pseudo-singular infinite point.

7.2. Fixed singular points. We examine the KZ-type equation

M :
∂u

∂xi
=

∑
0≤ν≤n−1

ν ̸=i

Aiν

xi − xν
u+

m∑
q=1

Biq

xi − yq
u (i = 0, . . . , n− 1)(7.4)

which have fixed singular points y1, . . . , ym together with xi = xj .
We may assumeM has a pseudo-singular infinite point without loss of generality.
For {i1, . . . , ip} ⊂ {0, . . . , n− 1} and {j1, . . . , jq} ⊂ {n, . . . ,m+ n− 1}, put

Ai1,...,ip;j1,...,jq :=
∑

1≤ν<ν′≤p

Aiν iν′ +
∑

1≤ν≤p
1≤ν′≤q

Biνjν′−n+1.

We may think that we put yj = xn−1+j for j = 1, . . . ,m. Note that

Ai1,...,ip;j1,...,jq = Ai1,...,ip,j1,...,jq −Aj1,...,jq .

Here the terms Ajνjν′ in the above right hand side are cancelled.
The integrability condition ofM is

[Aij , Akℓ] = [Ai;q, Aj;q′ ] = [Aij , Ak;q] = 0,

[Aij , Aijk] = [Aij , Aij;q] = [Ai;q, Aij;q] = 0.
(7.5)

Here i, j, k, ` ∈ Ln and q, q′ ∈ {n, n+1, . . . , n+m1} are distinct numbers. Since

[A01, A01···k;q] = [A01,
∑

0≤i<j≤k

Ai,j +A01;q +
k∑

i=2

Ai;q] = 0 etc., we have

[AI , AJ ] = 0 (I ∩ J = ∅ or I ⊂ J or I ⊃ J),

[AI , AJ;q] = 0 (I ∩ J = ∅ or I ⊂ J),

[AI;q, AJ;q′ ] = 0 (I ∩ J = ∅ and q 6= q′)

(7.6)

for I, J ⊂ {0, 1, . . . , n− 1} and {q, q′} ⊂ {n, n+ 1, . . . , n+m− 1}.
Hereafter in §7.2, we assume (7.2).
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Definition 7.2. For a pair of finite sets (L,L′) with L ∩ L′ = ∅, a maximal
commuting I of (L,L′) is defined as follows. Namely, I = {I(ν) | ν ∈ L′},

(7.7) Ln =
⊔
j∈L′

Sj

and I(j) are maximal commuting family of Sj ∪ {j}, respectively.
Moreover putting L′ = {r1, . . . , rm}, we define

(7.8) Î := I ∪
m⋃
j=2

{Ŝj}, Ŝj :=

j⋃
ν=1

(
Sν ∪ {ν}

)
.

Here n are numbers of the variables and the fixed points, respectively, and n =
|S1|+ · · ·+ |Sm|.

We can consider the middle convolution of M with respect to any one of the
variables x0, . . . , xn−1 and the resulting change of the eigenspace decompositions
of residue matrices are obtained from Theorem 5.1. We consider residue matrices
in (7.3) and those corresponding to I and define the base of the matrices by Î. In
particular, if n = 1, this coincides with the result given in [1].

Remark 7.3. The tournament corresponds to Î is characterized as follows. The
team (n + m − j) and the team (n + m − 1 − j) will face in a match j−1 games
before the final if they have won the preceding matches (j = 1, . . . ,m).

Example 7.4. The representatives of the maximal commuting family of (L,L′) =
({0, 1, 2}, {3, 4, 5}) under the permutations of the elements of L and those of L′ are

1 + 1 + 1 :
{
{0, 3}, {1, 4}, {2, 5}

}
,

2 + 1 + 0 :
{
{0, 3}, {1, 4}, {0, 2, 3}

}
,
{
{0, 1}, {2, 3}, {0, 1, 4}

}
,

3 + 0 + 0 :
{
{0, 1}, {2, 3}, {0, 1, 2, 3}

}
,
{
{0, 1}, {0, 1, 2}, {0, 1, 2, 3}

}
,{

{0, 1}, {0, 1, 3}, {0, 1, 2, 3}
}
,
{
{0, 3}, {0, 1, 3}, {0, 1, 2, 3}

}
.

When S3 = {0, 1, 2} and S4 = S5 = ∅, we have 4 families indicated by 3+ 0+ 0 (=
|S1| + |S2| + |S3|) in the above because W3+1 = 4. The numbers of maximal
commuting families are 3K4 = 45, 3! · 3K3 = 54, 6 according to the cases 3+ 0+0,
2 + 1 + 0, 1 + 1 + 1, respectively. The total number of them equals 105.

0 3 1 4 2 5{
{0, 3}, {1, 4}, {2, 5}

} 0 3 2 1 4 5{
{0, 3}, {1, 4}, {0, 2, 3}

} 0 1 2 3 4 5{
{0, 1}, {2, 3}, {0, 1, 2, 3}

}
Example 7.5. Suppose n = 1. Then there are m maximal commuting families of
(L,L′). For example, when m = 4, we have

{
I
}
=

{{
{0, 1}

}
,
{
{0, 2}

}
,
{
{0, 3}

}
,
{
{0, 4}

}}
, Î = ̂{{0, 3}} : 1 2 0 3 4

Remark 7.6. Suppose m = 1. The integrability condition of the KZ-type equation
M equals to that of the extended KZ-type equation with n+1 variables which are
imposed on residue matrices Aij (0 ≤ i < j ≤ n). Hence the KZ-type equation
adding the partial derivation with respect to the variable xn = y1 satisfies the
integrability condition. On the other hand, the product of a solution to the extended
equation and any function of xn satisfies the original equation. Hence the dimension
of the solutions to the original equation with variables (x0, . . . , xn) is infinite.
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7.3. Spectra and Accessory parameters. Suppose n = 1 and m = 2. Then we
have the Fuchsian ststem

(7.9) N :
du

dx0
=

A01

x0 − x1
u+

A02

x0 − x2
u

with three singular points x1, x2 and ∞. Putting

(7.10) A12 = −A01 −A02,

namely, A12 = A0,∞, the equation N is extended to the KZ-type equationM with
the three variables (x0, x1, x2). Conversely, we may assume (7.10) for the irreducible
KZ-type equation with n = 3 (cf. Definition 3.5).

In general, N is not necessarily rigid and has 2r accessory parameters (r =
0, 1, . . .). For example, A01 and A02 are generic matrices in M(3,C), N has 2 ac-
cessory parameters. Since additions and middle convolutions are invertible transfor-
mations which dos not change the number of accessory parameters, we get KZ-type
equations with n variables which have 2r accessory parameters (n = 3, 4, . . .). Con-
versely, we know the number of accessory parameters of a KZ-type equation if it
can be transformed into a KZ-type equation with three variables.

We define that a KZ-type equation M is rigid if the equation is uniquely de-
termined by SpM with no accessory parameter. It is an interesting problem to
examine that a KZ-type equation is transformed into another KZ-type equation by
a successive application of the transformations we have considered. In particular,
the problem is quite interesting if the equations are rigid and so is the problem
determining irreducible KZ-type equations which cannot be reduced the rank by
any application of these transformations.

A KZ-type equation M obtained by applying these applications to the trivial
equation u′ = 0 is rigid. In this case, owing to symmetries of SpM, we may get
several relations between the solutions to the equation as in the case of Kummer’s
relation for Gauss hypergeometric functions (cf. [5, Remark 5.17]).

In general, for a holonomic system M, we blow up its singular locus to normal
crossing singular points and get commuting residue matrices attached to normal
crossing divisors (cf. [3]). The spectra SpM is the set of conjugacy classes of
commuting residue matrices at the normal crossing singular points. When the
commuting matrices are semisimple, the conjugacy class are the set of simultaneous
eigenvalues and their multiplicities.

7.4. Semilocal monodromy. For example, [11] calculates [Ã03 + Ã04] from [A0i]
and [A03 + A04] etc. in the case L = {0} and L′ = {1, 2, 3, 4}. Here we examine to

calculate [Ã03 + Ã04] in the case L = {0, 1, 2} and L′ = {3, 4, 5}. Formally we have
A03 +A04 = A034 −A34 and we may calculate as if A34 etc. exist.

This corresponds to the tournaments such that the teams (3) and (4) play the
final game and so do the teams (4) and (5) if they have won the former games.
Moreover we may restrict to the tournaments such that teams (3) and (4) play a
semi-final or quarter final game if they have won the preceding games.

For {0, 1, 2} ⊃ I1 ⊃ I2, ÃI134 − ÃI234 is expressed by residue matrices in (7.4).

To get the eigenspace decomposition of ÃI134− ÃI234 from the residue matrices Aij

of (7.4), we examine the tournaments containing the games corresponding to I134
and I234 and apply Theorem 5.1 to maximal commuting residue matrices expressed
by the tournaments. Then the simultaneous eigenspace decompositions containing
the residue matrices AI′

134
and AI′

234
with I ′1 ⊃ I ′2 appear but we have only to

calculate the eigenspace decompositions containing the matrices AI′
134
− AI′

234
. In

this case, we may have I ′1 = I ′2 even if I1 % I2.
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7.5. single-elimination tournaments. The following table shows the relation
between KZ-type equations and single-elimination tournaments discussed in this
paper.

KZ-type equation with n variables Tournament of n teams

Family of maximal commuting residue matrices Tournament
Spectra of a KZ-type equation Set of all tournaments

Singular points Semi-final matches
Local coordinate for desingularization Result of a tournament before semi-final

Variable of middle convolution Winner of tournament
Base of upper triangulation of the family Result of all matches

Middle convolution Deletion and insertion of the winner
Kernels to define middle convolution Basic/Top insertion of the winner
With other m fixed singular points Divide n teams into m groups
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