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5 Introduction
Radon transform
P. Funk (1916, Math. Ann.)

(20 C(5%) 3 f = (€= Ry(0) = [, (£(6))do)
v £(0) = e, cosf + €} sin 6 ({eg, ), €)} - orthonormal)

= C(8?/Zy) = C(52/ZLy)
P2(R) = S2/Z~: 2-dimensional real projective space

Grassmann manifolds
Grip(R™) := {V}, : k-dimensional subspaces C R"} (PP~ H(R) = Gry(R™))

11 - L1k
M°(n,k;R) = {Xz ( P ) e M(n,k;R); rankX:k}
Inl - Tpk
= M°(n, k:R)/GL(k,R) > (Z‘f) (z € M(n — k,k;R))
dim Gr,(R") = nk — k° = (n — k)k
RE: C(Grp(R™) 3 f — (REf)(x) € C(Gry(R™)) (0<k<l<n)

(RED@) = | O

xOt:k-dimensional subspaces

G = GL(n,R) transitively acts on Gri(R™) from the left.
For a point Gri(R™) (%)GL(I«,IR{) — (GL%’“’R)).



Put Py, = {g € G tg71(FTH)) = (F™)1. Then
Gri(R") = GL(n, R)/Pk’,n

Pen = {p = (gy1 g02> , 91 € GL(k,R), go € GL(n —k,R), y€ M(n — k,k;R)}

S
* Xk

D P :={ — € GL(n,R)}

%k %k e o o >3

B(G/PyniLy) = {f € B(G); f(zp) = f(x)|detgr|*|detgo|?2, Vp€ Pp,}

= {f € B(M°(n, k;R)); f(Xg1) = f(X)|detg1|™, Vg1 € GL(k,R)

(x = (:UZJ> 1<i<n € G C RnQ, z— tr7l X)
1<j<n
k —
= Ry lw) = /O(E)/O(k)xO(E—k) f(xk)dk

Studied by Gelfand, Helgason, Rubin, Grinberg, Gonzalez, Kakehi etc.
Problem. Characterize the image of R¥ !  (£+k < n)



Poisson transform

PI?,A : B(G/Pk,n; Ly)> fr— (Plr?’)‘f)(m) - /

o) f(zk)dk € B(G/K) (K =0(n))

G/K: a Riemannian symmetric space

aiil
Py B(G/P;Ly) :={f € B(G); f(g|"?t “*2 )
aAnl AaAn2 - ann
= f(g)|a11/*]a2|*2 - - - |ann|*"}

5[ (PAN@) = [ F(ek)dk € BG/K)

n

P
= PP, B(G/Py,; L)) — B(G/P; L)) = B(G/K)
The inverse map of PY: the boundary value map.

Problem. Characterize the image of P,?A I (In some cases, the boundary value
problem of a Hermitian symmetric space and its Shilov boundary)



Example 1. (n=2, k=1)

SL(2,R)/SO(2) ~ D := {2 € C; |2| < 1}, SL(2,R)/(P N SL(2,R)) ~ 8D and

2 _ D2 .59 2r g (1= |22\ do .
Pia=Px (D)9fH/O f(e™) 02 5 € AT M),

N G
' 4 0x2 = Oy?

A¢ {—-1,-2,-3,...} = 7?/% . B(0D) = A(D; M,) a topological G-isomorphism
(Helgason, 1970).

My >u=)\()\—|—1)u (z =2+ iy)



5 Differential Equations
For X € M(n,R), Eij L= (5pi5qj)1§p§nv xr = (CCZ]> 1<i<n € G and ¢ € COO(G), put

1<q<n 1<j<n
(X3) (@) 1= 2 p(zetX) By= Y wis
o)(x) = dtqb xe ‘t=0’ ij — Vzlxm@%/f
d d -
(r(QOB) @) = e )| _y= Jiee™ XN o w(By) = - Z %Vaxw
(n(X)$)(2) = (—(Ad(z"HX)¢) (), Ad(D)X = Xa ! € M(n,C
g = M(n,R) is a Lie algebra, [Eij el = €(65 L — 04 Ey;5)

U¢(g): the universal enveloping algebra (D g) ~ a subalgebra of D(G) (the ring
of differential operators on GG) generated by X (X €g). (e=1)

Definition 2. En,k,)\ L= {P c U(g), W(P)B(G/Pk,n, L)\) = O}

Fact. i) The image of the Radon transform R, Poisson transform 73,?)\, a
Penrose transform or Whittaker integrals, intertwining operators etc. (

or a certain cohomology space of sections of a
line bundle over the complexification of G/ Py, ,,) satisfies the differential equations
given by E,, ;. .



i) Epra>~a([) Ad(g)Jg)

geG
k n
Jka= >, UW@E;+ > U@E;— )+ >, U@(E;;— )
i i=1 j=k+1
1>k or 3<k

by a:U(g) > XY — (-Y)(—X)>U(g) (anti-automorphism, X,Y € g)

Problem. Find a good generator system of E, . .
Fact. Emk,A IS @ quantization of the defining ideal of the conjugacy class of the

matrices Ap(A\1,Ap) = (Al*lk N IO > in M(n,C).
24n—k

Quantize characteristic polynomials, minimal polynomials, elementary divisors in
the linear algebra!

Theorem 3 (Minimal Polynomial). The quantization of the minimal polynomial
(x — A1) (x — Xo) of Ap(A1,A2) equals (x — A1)(z — ke — Ap) and for a generic A
a(E, 1)) is generated by

<«E—Xﬂmbkem&0j,Zﬂ%—kh—{n—@&»
¢ 1=1

Here E = (Ez]) 1<i<n = X0 € M(n, U(g)) with X = (CBZ]) 1<i<n» 0 = (8%) 1<i<n -
1<j<n 1<j<n Y71<<n

Cor. \y — X2 ¢ {1,2,3,...} = the image of P}, is characterized by this system
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Remark. rank(Ag(A1,X2) — A1) <n—k = (n— k-4 1)-minors of A.(A\1,X2) — A1
vanish. (e = 0)

Theorem 4 (minors, elementary divisors). Assume 2k < n (for simplicity).
M—dogfe -, (n—k)e} =
(B ) = <det ( i — O+ (v —n+k— 1)6)5zwy)1<u<n_k+l,
1<v<n—k+1

det (E/ = (Ao + (v — 1)6)57/ >1<,,L<k—|-1>
1<v<k+1

M — Ay €{ke,--- ,(n—Fk)e} =

d
a(Epp2) = <£ det ( my —(t+M+Ww—mn+k-— 1)6)5%],/) 1<pu<n— k—|—1|

1<v<n—k+1 t=0
det (E/ ) — ()\2 -+ (V — 1)6)57// >1<M<k+1>
1<v<k+1
Here O (classical)
€ —
1  (quantum)
det( ) ZS|gn(O')AU(1)1AO.(2)2 I = {’I:]_,...,’I:n_k_]_} etc.

This also characterizes the image of Pk y under the same condition.



Fact. R% is lifted to the G-map

R : B(G/Pypni Loo) — B(G/Pyp; Li o)

Theorem 5 ([O, 1996]). 0 < k < k+¢ < n = RY is a topological G-isomorphism
onto

{(D<(33ij) 1§i§€) c B(MO(n,£;R));
1<j<n

d(xg) = |detg|_k¢(m) for g e GL({,R),

7 (1)
det(W) 1§M§k+1<b(a;) =0 (Capell type)
wiv’ 1<p<k41

for 1§i1<"'<ik+1§n, 1§j1<"'<jk_|_1§£}.

§ Generalization

The elementary divisors for every element A of M(n,C) U3HZHOn

the annihilator of any generalized Verma module of the scalar type for gl(n)
(with its classical limit) ([O, Adv. in Math., 2005]).

Classical limits: the nilpotent conjugacy class (a generator system of its defin-
ing ideal) by Kostant (regular nilpotent) and Weyman (any nilpotent, 1989;
conjectured by Tanisaki).



A ~ A@,)\ —

Jo (M)

E@()\) :

A0

dpp () =

=1

m(x) =d, (:E)/d

L

‘() =] (=

j=1

1($)

(elementary divisors),

—Aj - nj_le) (minimal polynomial)

Ve
~

/

(M 0
Anq )‘QIn’Q
A3zq A3zo )\31 A c M(n,C); Aij S M(n;,n;, C)
\ A Aro AL3 Ly )
L
> Y UW@(E; — Awdij) (no =0, ny:=n 4+ +ny),
v=1n,_1<i<ngy,
ny,—1<J<ny
M Ad(g)Jo(N) («— Construct its generator system!),
geGL(n,C)
z(z—e)---(z—(@—l)e) if £> 0,
1 if £ <0,
L (n}—l—m—n) ¢ _ L ,
H (a: —Aj — nj_le) (dy,(z): characteristic polynomial),



The quantization of the minimal polynomial gg(xz) is defined and calculated
for any simple Lie algebra g and its non-trivial finite-dimensional representation

(w,CN) and for the generalized Verma module Mg()) of the scalar type ([O],
[O-Oda, J. of Lie Theory, 2006]).

w: the projection of M(IN;C) to g with respect to
(X, V)= TraceXY (X,Y € M(N,C))

Er = <W(Eij))1§z'§zv, e M(N,;U(g)),
1<j<N

QW,@(EW)M@(A) = 0.

Theorem 6 ([O], [Oda-O, J. of Lie Theory, 2006]).
7. the lowest weight of .

Po =lo + 1o
W(r): the set of the weights of (x,CN).
W=(x): the set of the lowest weights of (x|, CN).

/
1,_ _
QT(',@(x) = H <£B— (A, o) —§<7T—w,7r—|—w—2pe>>
weW=(r)

the natural representation if g is classical,
T =
the minimal dimensional representation if g is exceptional.



Degree of minimal polynomial for the natural representation

2 2 2 2
O O O O
3 3 2 3 3
] ® ® ® [ ([ ® ® (—
N\ / N\ /
3 3 3 3 3 3 3 2
O ® « e« —0——>0 O O ce e O <—0
3 3 3 2 3 3 3 3
@) ® i ® ©) ® O /Q
[
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3. Applications.
Radon transformation.

1. We can generalize Gelfand’s hypergeometric functions based on the Radon
transformations on projective spaces.

2. The image of the Radon transforms of the functions {0 C Vl(kl) C VQ(kQ) C R"}

to those of {0 C U%El) C Uéez) C R™} is characterized by our system (not by the
differential equations defined by Kakehi etc. They are K-invariant operators
restricting K-spectrum).

3. Radon transformations are special cases of intertwining operators between
degenerate principal series.
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Poisson transformation.

1. Our system characterize the image for the generic eigenvalues.

(< The infinitesimal character doesn’t satisfy integral condition

or G is of Type A, B, C or BC and the infinitesimal character is in an open Weyl
chamber or ).

2. If the symmetric space is realized with a boundary G/Pg (such as Satake
compactification) and a simultaneous eigenfunction of the invariant differential
operator has a natural weighted boundary value on G/Pg (in the sense of [Ben
Said-Oshima-Shimeno, Int. Math. Res. Not., 2003]), then the function auto-
matically satisfies our system.

3. We can generalized to the space of sections of an associated line bundle on
a Riemannian symmetric space.

4. Suppose p > q and the boundary is U(p,q)/P, with p > q (Here the Levi part
of P, (1<k<gqg—1)is U(p—gq) x GL(g — k) x T¥). Then g-stable generators
defined from minimal polynomials are generated by 2k + 1-th order operators.
But we have K-stable generators with degree 2k.

GL(p+q) D (GL(p) GL(q)) , dgor.(t) : @ polynomial, g (E) = (‘é g) = BorC



Whittaker models (Realization in Ind§(w))
w . a unitary character of the maximal nilpotent subgroup of G.

The regularity condition of w for the existence (or multiplicity) of Whittaker
models for a degenerate principal series Ind%@(r) of G

with a generic parameter is obtained
by using our system.

For example, when G = GL(n,R)

“(the partition <= non-vanishing parts of w) is dual of (the partition < the Levi
part of Pg)”

< the Whittaker model with moderate growth is of multiplicity free.

In this case, the Whittaker vector is reduced to the usual Whittaker function
& Pg is maximal.

This is the end of my Talk.
Thank youl!



