Multiplicities of Representations on Homogeneous Spaces of Real SemiSimple Lie Groups

Toshio OSHIMA, Univ. of Tokyo

Let G be a connected real semisimple Lie group, K a maximal compact subgroup of G modulo the center of G and H a closed connected subgroup of G. Let $\mathcal{A}(G/H;\tau)$ denote the space of real analytic global sections of the associate bundle over G/H induced from a finite dimensional irreducible representation τ of H. By denoting $(\pi(g)f)(x) = f(g^{-1}x)$ for $g, x \in G$ and $f \in \mathcal{A}(G/H;\tau)$, the space $\mathcal{A}(G/H;\tau)$ is a G-module. If τ is trivial, we have naturally $\mathcal{A}(G/H) = \mathcal{A}(G/H;\tau)$.

Let \mathfrak{g} , \mathfrak{k} and \mathfrak{h} be the Lie algebras of G, K and H, respectively. We denote by \hat{G}_{ad} the set of equivalence classes of the irreducible Harish-Chandra modules of G and by dV the infinitesimal character of $V \in \hat{G}_{ad}$, which belongs to $\tilde{\mathfrak{j}}_c^*/W(\tilde{\mathfrak{j}})$. Here $\tilde{\mathfrak{j}}$ is a Cartan subalgebra of \mathfrak{g} and $W(\tilde{\mathfrak{j}})$ is a Weyl group of G corresponding to the complexification \mathfrak{j}_c of \mathfrak{j} .

Let P be a minimal parabolic subgroup of G with the Levi decomposition P = LN, \hat{L} the equivalence classes of the irreducible representations of L and E_{ξ} the Harish-Chandra module of the principal series of G induced from $\xi \in \hat{L}$.

Theorem 1 [Bien-Oshima]. i) Suppose $\mathfrak{g} = \mathfrak{h} + \operatorname{Lie}(P)$. Let ι be the natural projection of $\tilde{\mathfrak{j}}_c^*$ onto $\tilde{\mathfrak{j}}_c^*/W(\tilde{\mathfrak{j}})$. Then for $V \in \hat{G}_{ad}$

$$\dim \operatorname{Hom}_{(\mathfrak{g},K)}(V,\mathcal{A}(G/H;\tau)) \leq \\ \#\{\iota^{-1}(dV)\} \cdot \sum_{\substack{\xi \in \hat{L} \\ dE_{\xi} = dV}} \dim \operatorname{Hom}_{(\mathfrak{g},K)}(V,E_{\xi}^{*}) \cdot \dim \operatorname{Hom}_{P \cap H}(\tau,\xi).$$

ii) If (G, H) is algebraic and there is no open H-orbit in G/P, there exists $V \in \hat{G}_{ad}$ with

 $\dim \operatorname{Hom}_{(\mathfrak{g},K)}(V,\mathcal{A}(G/H)) = \infty.$

iii) If there exists a Borel subalgebra \mathfrak{b} of \mathfrak{g}_c with $\mathfrak{g}_c = \mathfrak{h}_c + \mathfrak{b}$, there exists a positive integer m with

$$\dim \operatorname{Hom}_{(\mathfrak{g},K)}(V,\mathcal{A}(G/H;\tau)) \leq m \dim \tau \quad for \ V \in \tilde{G}_{ad}.$$

Remark. Suppose (G, H) is algebraic with the complexification (G_c, H_c) . It is known that if there is no open H_c -orbit in the flag manifold G_c/B of G_c , then dim $\operatorname{Hom}_{(\mathfrak{g},K)}(V, \mathcal{A}(G/H))$ is not bounded for $V \in \hat{G}_{ad}$.

Example. Let G be the direct product of (1 + n) copies of $SL(2, \mathbb{R})$ and $H = \{(b_{s,t}, k_{\lambda_1 t}, \ldots, k_{\lambda_n t}); (s,t) \in \mathbb{R}^2\}$ with $b_{s,t} = \begin{pmatrix} e^t & s \\ 0 & e^{-t} \end{pmatrix}$ and $k_t = \begin{pmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{pmatrix}$. Then if $\lambda_1, \ldots, \lambda_n$ are linearly independent over \mathbb{Q} , dim Hom_(\mathfrak{g}, K) $(V, \mathcal{A}(G/H; \tau)) \leq 2$ for $V \in \hat{G}_{ad}$.

Hereafter we suppose H is the identity component of the group $G^{\sigma} = \{g \in G; \sigma(g) = g\}$ with an involutive automorphism σ of G satisfying $\sigma(K) = K$. Then H is a fundamental example satisfying the condition in the above 2).

Typeset by $\mathcal{A}_{\mathcal{M}}S$ -TEX

Let \hat{K} be the equivalence classes of the irreducible unitary representations of K. For $\delta \in \hat{K}$ we denote by $\mathcal{A}_{\delta}(G/H;\tau)$ the space spanned by $f \in \mathcal{A}(G/H;\tau)$ such that $\sum_{k \in K} \mathbb{C}\pi(k)f$ belong to δ under $\pi|_{K}$.

Let $\mathfrak{g} = \mathfrak{h} + \mathfrak{q} = \mathfrak{k} + \mathfrak{p}$ be the orthogonal decompositions of \mathfrak{g} with respect to the Killing form of \mathfrak{g} . Let \mathfrak{a} , \mathfrak{j} and $\tilde{\mathfrak{j}}$ be maximal abelian subspaces of $\mathfrak{p} \cap \mathfrak{q}$, \mathfrak{q} and \mathfrak{g} , respectively, so that $\mathfrak{a} \subset \mathfrak{j} \subset \tilde{\mathfrak{j}}$.

We denote by $U(\mathfrak{g})$ the universal enveloping algebra of \mathfrak{g}_c and by $Z(\mathfrak{g})$ the center of $U(\mathfrak{g})$. We identify $U(\mathfrak{g})$ with the ring of left invariant differential operators on G.

Suppose \mathfrak{u} is \mathfrak{a} , \mathfrak{j} or \mathfrak{j} . Then we denote by $S(\mathfrak{u})$ the symmetric algebra over the complexification \mathfrak{u}_c of \mathfrak{u} , by $W(\mathfrak{u})$ the Weyl group of the root system corresponding to the pair $(\mathfrak{g}_c, \mathfrak{u}_c)$ and by $I(\mathfrak{u})$ the set of the $W(\mathfrak{u})$ -invariant elements of $S(\mathfrak{u})$. Let $Z_{K\cap H}(\mathfrak{a})$ (resp. $N_{K\cap H}(\mathfrak{a})$) be the centralizer (resp. normalizer) of \mathfrak{a} in $K\cap H$. Then the quotient group $W(\mathfrak{a}; H) = N_{K\cap H}(\mathfrak{a})/Z_{K\cap H}(\mathfrak{a})$ is identified with a subgroup of $W(\mathfrak{a})$. Here we note that $Z(\mathfrak{g})$ is isomorphic to $I(\mathfrak{j})$.

The projection maps of \tilde{j} to $\mathfrak a$ and j to $\mathfrak a$ with respect to the Killing form induce the maps

$$p: Z(\mathfrak{g}) \simeq I(\mathfrak{f}) \to I(\mathfrak{a})$$
$$p': I(\mathfrak{f}) \to I(\mathfrak{a}).$$

Theorem 2 [Huang-Oshima-Wallach]. Put $\ell = \dim \mathfrak{a}$.

i) Suppose p is surjective. Let D_1, \ldots, D_ℓ be elements of $Z(\mathfrak{g})$ whose image under p generate $I(\mathfrak{a})$ as an algebra over \mathbb{C} .

For any $\lambda = (\lambda_1, \ldots, \lambda_\ell) \in \mathbb{C}^\ell$ the dimension of the space

$$\{u \in \mathcal{A}_{\delta}(G/H; \tau); D_j u = \lambda_j u \text{ for } j = 1, \dots, \ell\}$$

equals

$$[W(\mathfrak{a}): W(\mathfrak{a}; H)] \cdot \dim \delta \cdot \dim \operatorname{Hom}_{Z_{K \cap H}(\mathfrak{a})}(\delta, \tau^*).$$

ii) Suppose p' is surjective and dim $\tau = 1$. Then replacing D_1, \ldots, D_ℓ by ℓ elements of $U(\mathfrak{g})^{\mathfrak{h}} = \{D \in U(\mathfrak{g}); [X, D] = 0 \text{ for any } X \in \mathfrak{h}\}$ which generate $I(\mathfrak{a})$ through the Harish-Chandra homomorphism, we have the same claim as in i).

Note that the assumptions in the above theorems are satisfied if \mathfrak{g} is of classical type.

Corollary. For δ , $\delta' \in \hat{K}$ let denote by $\mathcal{A}_{\delta,\delta'}(G)$ the space of real analytic function on G whose right and left K-types are δ and δ' , respectively. If \mathfrak{g} is a normal real form of \mathfrak{g}_c , the dimension of the simultaneous eigenspace of the ℓ generators of $Z(\mathfrak{g})$ in $\mathcal{A}_{\delta,\delta'}(G)$ equals $\dim \delta \cdot \dim \delta' \cdot \dim \operatorname{Hom}_M(\delta^*, \delta')$. Here M is the centralizer of a maximal abelian subspace of \mathfrak{p} in K.