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Abstract. As a generalization of Riemann-Liouville integral, we introduce
integral transformations of convergent power series which can be applied to

hypergeometric functions with several variables.

1. Introduction

Suppose a function ϕ(x) satisfies a linear ordinary differential equation on P1.
Then the Riemann-Liouville integral (1) of ϕ(x) induces a middle convolution of the
differential equation defined by Katz [Ka]. The multiplication of ϕ(x) by a simple
function (x − c)λ induces an addition of the differential equation which is also
important. For example, any rigid irreducible linear Fuchsian differential equation
is constructed by successive applications of middle convolutions and additions from
the trivial equation u′ = 0. Hence we have an integral representation of its solution,
which is shown first by Katz [Ka] in the case of Fuchsian systems of the first order
and by the author [O1] in the case of single differential equations of higher orders.
Here the equation is called rigid if it is free from accessory parameters, namely,
the equation is globally determined by the local structure at the singular points.
Applying these transformations to linear ordinary differential equations on P1, we
study many fundamental problems on their solutions in [O1].

The rigid Fuchsian ordinary differential equation on P1 can be extended to a
Knizhnik-Zamolodchikov type equation (KZ equation in short, cf. [KZ]) regarding
the singular points as new variables. Haraoka [Ha] shows this by extending middle
convolutions on KZ equations and its generalization for equations with irregular
singularities is given by the author [O4, O5]. Then these transformations are
also useful to hypergeometric functions with several variables including Appell’s
hypergeometric functions (cf. [O3]).

These transformations do not give an integral representation of Appell’s hyper-
geometric series F4 but K. Aomoto gives an integral representation of F4, which
is written in [O1, §13.10.2]. We define integral transformations on the space of
convergent power series of several variables in §2 and study hypergeometric func-
tions with several variables, which extend a brief study of Appell’s hypergeometric
functions in [O1, §3.10]. The transformations are invertible and they are gener-
alizations of Riemann-Liouville integrals of functions with a single variable. On
the space of hypergeometric functions with several variables we have important
transformations such as the multiplications of suitable functions and coordinate
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2 TOSHIO OSHIMA

transformations. Note that a holonomic Fuchsian differential equation of several
variables has solutions of convergent power series times simple functions xλ1

1 · · ·xλn
n

at its normally crossing singular points (cf. [KO]). We study a combination of the
integral transformations and multiplications by these simple functions.

In §3 we show that the transformations defined in §2 give integral representa-
tions of Appell’s or Lauricella’s hypergeometric series and certain Horn’s hyperge-
ometric series with irregular singularities.

In §4 we show that our study gives a result related to the connection problem
on the solutions, which will be discussed in another paper and related to the study
by Matsubara [Ma, §3].

In §5 a combination of the integral transformations with coordinate transfor-
mations defined by products of powers of coordinate functions parametrized by
GL(n,Z). The transformations given in §5 are related to A-hypergeometric series
introduced by Gel’fand, Kapranov and Zelevinsky [GKZ]. The transformation

∞∑
m=0

∞∑
n=0

cm,nx
myn 7→

∞∑
m=0

∞∑
n=0

cm,n
(α)p1m+q1n(β)p2m+q2n

(γ)(p1+p2)m+(q1+q2)n

xmyn

of convergent power series is an example. Here p1, p2, q1 and q2 are non-negative
integers with ( p1 p2

q1 q2 ) ∈ GL(2,Z) and we put (a)k = a(a+ 1) · · · (a+ k − 1).
In §6 we study the transformation of differential equations corresponding to

the transformations of their solutions.
In §7 we study the transformation given in §5 which keeps the space of KZ

equations

M :


∂u

∂x
=

A01

x− y
u+

A02

x− 1
u+

A03

x
u,

∂u

∂y
=

A01

y − x
u+

A12

y − 1
u+

A13

y
u

and give the induced transformations of the residue matrices Ai,j defining the equa-
tions. The transformation is reduced to a coordinate transformation corresponding
to the coordinate symmetries described in [O3, §6] and a middle convolution of the
KZ equation. Hence we apply the result in [Ha, O3] to them. The hypergeometric
series

∞∑
m=0

∞∑
n=0

∏p
i=1(αi)m

∏q
j=1(βj)n

∏r
k=1(γk)m+n∏p

i=1(1− α′
i)m

∏q
j=1(1− β′

j)n
∏r

k=1(1− γ′
k)m+n

xmyn

with α′
1 = β′

1 = 0 is a typical example satisfying a KZ equation, which is a gener-
alization of Appell’s F1.

To the KZ equation we show Theorem 7.1 which gives an interesting correspon-
dence between simple solutions along a line (cf. Definition 7.3) and simple solutions
at a singular point where three singular lines meet.

In §8 we restrict our transformations in §7 to certain ordinary differential equa-
tions of Shlesinger canonical form. The transformation may be interesting since it
may change the index of rigidity defined by [Ka].

Several applications of the results in this paper will be given in other papers.

2. Integral transformations

The Riemann-Liouville transform Iµc ϕ of a function ϕ(x) is defined by

(1) (Iµx,cϕ)(x) = (Iµc ϕ)(x) :=
1

Γ(µ)

∫ x

c

ϕ(t)(x− t)µ−1dt.
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Here c is usually a singular point of an integrable function ϕ(x). Since∫ x

0

ϕ(t)(x− t)µ−1dt =

∫ 1

0

ϕ(xs)(x− xs)µ−1xds (t = xs)

= xµ

∫ 1

0

ϕ(sx)(1− s)µ−1ds,

the transformation

(2) (Kµ
xϕ)(x) :=

1

Γ(µ)

∫ 1

0

ϕ(tx)(1− t)µ−1dt

of a function ϕ(x) satisfies

Kµ
x = x−µIµ0 ,(3)

Kµ
xx

α =
Γ(α+ 1)

Γ(α+ µ+ 1)
xα.(4)

Definition 2.1. We extend the integral transform Kµ
x to a function ϕ(x) of

several variables x = (x1, . . . , xn) by

Kµ
xϕ(x) :=

1

Γ(µ)

∫
t1>0,...,tn>0
t1+···+tn<1

(1− t1 − · · · − tn)
µ−1ϕ(t1x1, . . . , tnxn)dt1 · · · dtn.

Note that∫ 1−s

0

tα(1− s− t)µ−1dt =

∫ 1−s

0

tα(1− s)µ−1(1− t
1−s )

µ−1dt

= (1− s)α+µ

∫ 1

0

tα(1− t)µ−1dt

=
Γ(α+ 1)Γ(µ)

Γ(α+ µ+ 1)
(1− s)α+µ

and hence∫
t1>0,...,tn>0
t1+···+tn<1

tα1 · · · tαn(1− t1 − · · · − tn)
µ−1dt

=

∫ 1

0

tα1
1 dt1

∫ 1−t1

0

tα2
2 dt2 · · ·

∫ 1−t1−···−tn−1

0

tαn
n (1− t1 − · · · − tn)

µ−1dtn

=
Γ(µ)Γ(αn + 1)

Γ(αn + µ+ 1)

∫ 1

0

tα1
1 dt1 · · ·

∫ 1−t1−···−tn−2

0

t
αn−1

n−1 (1− t1 − · · · − tn−1)
αn+µdtn−1

=
Γ(µ)Γ(αn + 1)

Γ(αn + µ+ 1)
× Γ(αn + µ+ 1)Γ(αn−1 + 1)

Γ(αn−1 + αn + µ+ 2)
× · · ·

· · · × Γ(α2 + · · ·+ αn + µ+ n− 1)Γ(α1 + 1)

Γ(α1 + · · ·+ αn + µ+ n)

=
Γ(µ)Γ(α1 + 1) · · ·Γ(αn + 1)

Γ(α1 + · · ·+ αn + µ+ n)
.

Therefore we have

(5) Kµ
xx

α =
Γ(α+ 1)

Γ(|α+ 1|+ µ)
xα

and

Kµ
xϕ(x1)x

α2−1
2 · · ·xαn−1

n

=
Γ(α2) · · ·Γ(αn)

Γ(α2 + · · ·+ αn + µ)
(Iα2+···+αn+µ

0 ϕ)(x1) · xα2−1
2 · · ·xαn−1

n

(6)
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Here and hereafter we use the notation

N = {0, 1, 2, , . . .},
m ≥ 0 ⇔ m1 ≥ 0, . . . ,mn ≥ 0,

|α| = α1 + · · ·+ αn, α+ c = (α1 + c, . . . , αn + c), m! = m1! · · ·mn!,

xα = xα = xα1
1 · · ·xαn

n , (c− x)α = (c− x1)
α1 · · · (c− xn)

αn ,

Γ(α) = Γ(α1) · · ·Γ(αn), (α)m =
Γ(α+m)

Γ(α)

(7)

for α = (α1, . . . , αn) ∈ Cn, m = (m1, . . . ,mn) ∈ Nn and the variable x =
(x1, . . . , xn).

The arguments in this section are valid when Reα1 > 0, . . . ,Reαn > 0 and
Reµ > 0 but the right hand side of (5) is meromorphic for α and µ and we define
Kµ

xx
α by the analytic continuation with respect to these parameters.
We will define the inverse Lµ

x ofKµ
x . Suppose 0 ≤ Re s < 1 and 0 < c < 1−Re s.

Then∫ c+i∞

c−i∞
t−α(1− s− t)−τ dt

t = (1− s)−τ

∫ c+i∞

c−i∞
t−α(1− t

1−s )
−τ dt

t

= (1− s)−α−τ

∫ c+i∞
1−s

c−i∞
1−s

t−α(1− t)−τ dt
t

= (1− s)−α−τ

∫ c+i∞

c−i∞
t−α(1− t)−τ dt

t

•
1

+∞•
c

•
0

c+i∞ c+i∞
1−s

= (1− s)−α−τ (−e−τπi + eτπi)

∫ ∞

1

t−α(t− 1)−τ dt
t

= (1− s)−α−τ · 2i sin τπ
∫ 1

0

( 1u )
−α( 1u − 1)−τ du

u (u = 1
t )

=
2πi(1− s)−α−τ

Γ(τ)Γ(1− τ)

∫ 1

0

uα+τ−1(1− u)−τdu

= 2πi
Γ(α+ τ)

Γ(τ)Γ(α+ 1)
(1− s)−α−τ .

Here the path of the integration of the above first line is (−∞,∞) 3 s 7→ c+ is and

we also use the path •
1

+∞ of the integration in the above.

Thus we have∫ 1
n+1+i∞

1
n+1−i∞

· · ·
∫ 1

n+1+i∞

1
n+1−i∞

t−α(1− t1 − · · · − tn)
−τ dt1

t1
· · · dtn

tn

= (2πi)n
Γ(αn + τ)

Γ(τ)Γ(αn + 1)

Γ(αn−1 + αn + τ)

Γ(αn + τ)Γ(αn−1 + 1)
· · · Γ(|α|+ τ)

Γ(α2 + · · ·+ αn + τ)Γ(α1 + 1)

= (2πi)n
Γ(|α+ 1|+ τ − n)

Γ(α+ 1)Γ(τ)
.

Definition 2.2. We define the transformation

(Lµ
xϕ)(x) :=

Γ(µ+ n)

(2πi)n

∫ 1
n+1+i∞

1
n+1−i∞

· · ·
∫ 1

n+1+i∞

1
n+1−i∞

ϕ(x1

t1
, . . . , xn

tn
)(1− |t|)−µ−n dt1

t1
· · · dtn

tn

=
Γ(µ+ n)

(2πi)n

∫∣∣ 2s1
n+1−1

∣∣=1

· · ·
∫∣∣ 2sn

n+1−1
∣∣=1

ϕ(s1x1, . . . , snxn)

× (1− 1
s1

− · · · − 1
sn
)−µ−n ds1

s1
· · · dsn

sn
.
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In the above, we mainly consider the case when ϕ(x) = xλφ(x) with a conver-
gent power series φ(x). Then we have

(8) Lµ
xx

α =
Γ(|α+ 1|+ µ)

Γ(α+ 1)
xα.

When n = 1, we have

(Lµ
xϕ)(x) =

Γ(µ+ 1)

2πi

∫ 1
2+i∞

1
2−i∞

ϕ(xt )(1− t)−µ−1 dt
t

=
sin(µ+ 1)π · Γ(µ+ 1)

π

∫ ∞

1

ϕ(xt )(1− t)−µ−1 dt
t

=
1

Γ(−µ)

∫ 1

0

sµϕ(s)(x− s)−µ−1ds

= I−µ
0 (xµϕ).

In general, we have

Lµ
x(ϕ(x1)x

α2−1
2 · · ·xαn−1

n ) =
Γ(α2 + · · ·+ αn + µ)

Γ(α2) · · ·Γ(αn)

× (I−α2−···−αn−µ
x1,0

xα2+···+αn+µ
1 ϕ(x1))x

α2−1
2 · · ·xαn−1

n .

(9)

Definition 2.3. We define two transformations

Kµ,λ
x := x1−λKµ

xx
λ−1 and Lµ,λ

x := x1−λLµ
xx

λ−1(10)

which act on the ring O0 of convergent power series of x = (x1, . . . , xn).

We have

Kµ,λ
x xα =

Γ(λ+α)

Γ(|λ+α|+ µ)
xα and Lµ,λ

x xα =
Γ(|λ+α|+ µ)

Γ(λ+α)
xα.

Theorem 2.1. Putting

u(x) =
∑
m≥0

cmxm =

∞∑
m1=0

· · ·
∞∑

mn=0

cmxm ∈ O0 (cm ∈ C).

Kµ,λ
x u(x) =

∑
m

cKmxm and Lµ,λ
x u(x) =

∑
m

cLmxm (cKm, cLm ∈ C),

we have

cKm =
Γ(λ)

Γ(|λ|+ µ)

(λ)m
(|λ|+ µ)|m|

cm,(11)

cLm =
Γ(|λ|+ µ)

Γ(λ)

(|λ|+ µ)|m|

(λ)m
cm.(12)

By the analytic continuation with respect to the parameters the transformations
Kµ,λ

x and Lµ,λ
x are well-defined if

λν /∈ Z≤0 (ν = 1, . . . , n)(13)

and

|λ|+ µ /∈ Z≤0,(14)

respectively. Namely, we may consider that Kµ,λ
x and Lµ,λ

x are defined by Theo-
rem 2.1 by using (11) and (12). Hence if (13) and (14) are valid, Kµ,λ

x and Lµ,λ
x

are bijective on O0 and the map Kµ,λ
x ◦ Lµ,λ

x is the identity map.
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Proposition 2.4. By the equations (6) and (9) we have

Kµ,λ
x ϕ(x1) =

Γ(λ2) · · ·Γ(λn)

Γ(λ2 + · · ·+ λn + µ)
x
−|λ|−µ+1
1 I

|λ|−λ1+µ
x1,0

xλ1−1
1 ϕ(x1),(15)

Lµ,λ
x ϕ(x1) =

Γ(λ2 + · · ·+ λn + µ)

Γ(λ2) · · ·Γ(λn)
x1−λ1
1 I

−|λ|+λ1−µ
x1,0

x
|λ|+µ−1
1 ϕ(x1).(16)

3. Some hypergeometric functions

Under the notation (7) we note that

(1− |x|)−λ =
∑
m≥0

(λ)|m|

m!
xm and e|x| =

∑
m≥0

xm

m!
.

Lauricella’s hypergeometric series (cf. [La, Er]) and their integral representations
are given as follows (cf. Theorem 2.1).

FA(λ0,µ,λ;x) :=
∑
m≥0

(λ0)|m|(µ)m

(λ)mm!
xm

=
Γ(λ)

Γ(µ)
Kλ1−µ1,µ1

x1
· · ·Kλn−µn,µn

xn
(1− |x|)−λ0

=
Γ(λ)

Γ(λ0)
Lλ0−|λ|,λ
x (1− x)−µ

(17)

FB(λ,λ
′, µ;x) :=

∑
m≥0

(λ)m(λ′)m
(µ)|m|m!

xm =
Γ(µ)

Γ(λ)
Kµ−|λ|,λ

x (1− x)−λ′
,(18)

FC(µ, λ0,λ;x) :=
∑
m≥0

(µ)|m|(λ0)|m|

(λ)mm!
xm =

Γ(λ)

Γ(µ)
Lµ−|λ|,λ
x (1− |x|)−λ0 ,(19)

FD(λ0,λ, µ;x) :=
∑
m≥0

(λ0)|m|(λ)m

(µ)|m|m!
xm =

Γ(µ)

Γ(λ)
Kµ−|λ|,λ

x (1− |x|)−λ0 .(20)

When n = 2, namely, the number of variables equals 2, the functions FD,
FA, FB and FC are Appell’s hypergeometric series F1, F2, F3 and F4 (cf. [AK]),
respectively. Moreover we give examples of confluent Horn’s series (cf. [Ho, Er]):

Φ2(β, β
′; γ;x, y) :=

∞∑
m=0

∞∑
n=0

(β)m(β′)n
(γ)m+nm!n!

xmyn

=
Γ(γ)

Γ(β)Γ(β′)
Kγ−β−β′,β,β′

x,y ex+y,

(21)

Ψ1(α;β; γ, γ
′;x, y) :=

∞∑
m=0

∞∑
n=0

(α)m+n(β)m
(γ)m(γ′)nm!n!

xmyn

=
Γ(γ)Γ(γ′)

Γ(α)
Lα−γ−γ′,γ,γ′

x,y (1− x)−βey,

(22)

Ψ2(α; γ
′, γ′;x, y) :=

∞∑
m=0

∞∑
n=0

(α)m+n

(γ)m(γ′)nm!n!
xmyn

=
Γ(γ)Γ(γ′)

Γ(α)
Lα−γ−γ′,γ,γ′

x,y ex+y.

(23)

When n = 1, (17), (18), (19) and (20) are reduced to an integral representation
of Gauss hypergeometric series. In fact, putting (λ0,µ,λ) = (α, β, γ) in (17), we
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have

F (α, β, γ;x) =

∞∑
m=0

(α)m(β)m
(γ)mm!

xm

=
Γ(γ)

Γ(α)
Kγ−α,α

x (1− x)−β

=
Γ(γ)

Γ(α)Γ(γ − α)

∫ 1

0

tα−1(1− t)γ−α−1(1− tx)−βdt

(24)

and Kummer function is

1F1(α; γ;x) :=

∞∑
n=0

(α)n
(γ)n

xn

n!

=
Γ(γ)

Γ(α)
Kγ−α,α

x ex =
Γ(γ)

Γ(α)Γ(γ − α)

∫ 1

0

tα−1(1− t)γ−α−1etxdt.

(25)

4. A connection problem

Integral representations of hypergeometric functions are useful for the study of
global structure of the functions. Rigid linear ordinary differential equations on the
Riemann sphere with regular or unramified irregular irregularities are reduced to
the trivial equation by successive applications of middle convolutions and additions.
These transformations correspond to the transformations of their solutions defined
by Riemann-Liouville integrals and multiplications by elementary functions such as
(x− c)λ or er(x) with rational functions r(x) of x.

In [O1, Chapter 12] and [O6], analyzing the asymptotic behavior of the Rie-
mann Liouville integral when the variable x tends to a singular point of the function,
we get the change of connection coefficients and Stokes coefficients under the in-
tegral transformations and finally such coefficients of the hypergeometric function
we are interested in.

In this section a generalization of this way of study is shown in the case of
several variables, which will be explained by using F1. Since

F1(a, b, b
′, c;x, y) =

Γ(c)

Γ(b)Γ(b′)
Kc−b−b′,b,b′

x,y (1− x− y)−a,

Proposition 2.4 implies

F1(a, b, b
′, c;x, 0) =

Γ(c)

Γ(b)
x1−cIc−b

0 xb−1(1− x)−a.

The equalities (3) and (24) show F1(a, b, b
′, c;x, 0) = F (b, a, c;x) but first we do not

use this fact.
We pursue the changes of the Riemann scheme under the procedure given by

Proposition 2.4 (cf. [O1, Chapter 5]). They are the change when we apply Ic−b
0 to

xb−1(1−x)−a and the change when we multiply the resulting function by Γ(c)
Γ(b)x

1−c,

which are

xb−1(1− x)−a :

{
x = 0 1 ∞
b− 1 −a a− b+ 1

}
Ic−b
0−−−→

x = 0 1 ∞
0 0 b− c+ 1

c− 1 c− a− b a− c+ 1


×Γ(c)

Γ(b)
x1−c

−−−−−−−→

x = 0 1 ∞
1− c 0 b
0 c− a− b a

 .(26)
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Then F1(a, b, b
′, c;x, 0) is characterized as the holomorphic function in a neighbor-

hood of 0 with the Riemann scheme (26) and F1(a, b, b
′, c; 0, 0) = 1.

Since F1(a, b, b
′, c;x, y) satisfies a system of differential equations with singu-

larities x = 0, 1,∞, y = 0, 1,∞ and x = y in P1×P1, we have a connection relation

F1(a, b, b
′, c;x, y) = (− 1

x )
aCaf

a
1 (x, y) + (− 1

x )
bCbf

b
1(x, y)(27)

in a neighborhood of (−∞, 0) × {0} in P1 × P1. Here fa
1 (x, y) and f b

1(x, y) are
holomorphic in a neighborhood of [−∞, 0)× {0} and fa

1 (−∞, 0) = f b
1(−∞, 0) = 1

and the connection coefficients Ca and Cb are given by those of F1(a, b, b
′, c;x, 0),

namely,

Ca =
Γ(c)Γ(b− a)

Γ(b)Γ(c− a)
and Cb =

Γ(c)Γ(a− b)

Γ(a)Γ(c− b)
.(28)

Remark 4.1. We note that the general expression [O1, (0.25)] of the connec-
tion coefficient of Gauss hypergeometric function is simple and easy to be specialized
(cf. [O2]). Moreover the connection formula

F (a, b, c;x) = (− 1
x )

aCaF (a, a− c+ 1, a− b+ 1; 1
x )

+ (− 1
x )

bCbF (b, b− c+ 1, b− a+ 1; 1
x )

follows from
x = 0 1 ∞
0 0 a; x

1− c c− a− b b

 =


x = 0 1 ∞
a 0 0; 1

x

b c− a− b 1− c


= (−x)a


x = 0 1 ∞
0 0 a; 1

x

1− (a− b+ 1) c− a− b a− c+ 1

 .

We explicitly calculate (27) in the following way.

F1(a, b, b
′, c;x, y) =

∞∑
m=0

∞∑
n=0

(a)m+n(b)m(b′)n
(c)m+nm!n!

xmyn

=

∞∑
n=0

(a)n(b
′)n

(c)nn!
yn

∞∑
m=0

(a+ n)m(b)m
(c+ n)mm!

xm =

∞∑
n=0

(a)n(b
′)n

(c)nn!
ynF (a+ n, b, c+ n;x)

=

∞∑
n=0

(a)n(b
′)n

(c)nn!

(
(−x)−a−nΓ(c+ n)Γ(b− a− n)

Γ(b)Γ(c− a)
F (a+ n, a− c+ 1, a− b+ n+ 1; 1

x )

+ (−x)−bΓ(c+ n)Γ(a− b+ n)

Γ(a+ n)Γ(c− b+ n)
F (b, b− c− n+ 1, b− a− n+ 1; 1

x )
)

= (− 1
x )

aF a
1 + (− 1

x )
bF b

1 ,

F a
1 =

∑ Γ(c)(a)n(b
′)nΓ(b− a− n)(a+ n)m(a− c+ 1)m

Γ(b)Γ(c− a)(c)n(a− b+ n+ 1)mm!n!
( 1x )

m(− y
x )

n

=
∑ Γ(c)(a)m+n(b

′)nΓ(a− b+ 1)Γ(b− a)(a− c+ 1)m
Γ(b)Γ(c− a)Γ(a− b+ n+ 1)(a− b+ n+ 1)mm!n!

( 1x )
m( yx )

n

=
∑ Γ(c)Γ(a− b+ 1)Γ(b− a)(a)m+n(b

′)n(a− c+ 1)m
Γ(b)Γ(c− a)Γ(a− b+ 1 +m+ n)m!n!

( 1x )
m( yx )

n

=
∑ Γ(c)Γ(b− a)(a)m+n(b

′)n(a− c+ 1)m
Γ(b)Γ(c− a)(a− b+ 1)m+nm!n!

( 1x )
m( yx )

n

=
∑ Γ(c)Γ(b− a)(a)m+n(a− c+ 1)m(b′)n

Γ(b)Γ(c− a)(a− b+ 1)m+nm!n!
( 1x )

m( yx )
n
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=
Γ(c)Γ(b− a)

Γ(b)Γ(c− a)
F1(a, a− c+ 1, b′, a− b+ 1; 1

x ,
y
x ),

F b
1 =

∑ Γ(c)(b′)nΓ(a− b+ n)(b)m(b− c− n+ 1)m
Γ(a)Γ(c− b+ n)(b− a− n+ 1)mm!n!

( 1x )
myn

=
∑ Γ(c)(b)m(b′)nΓ(a− b+ n)Γ(b− c− n+ 1)(b− c− n+ 1)m(− 1

x )
m(−y)n

Γ(a)Γ(c− b)Γ(b− c+ 1)(a− b+ n− 1) · · · (a− b+ n−m)m!n!

=
∑ Γ(c)(b)m(b′)nΓ(a− b+ n−m)Γ(b− c− n+ 1 +m)(− 1

x )
m(−y)n

Γ(a)Γ(c− b)Γ(b− c+ 1)m!n!

=
∑ Γ(c)(b)m(b′)nΓ(a− b)(a− b)n−m(b− c+ 1)m−n

Γ(a)Γ(c− b)m!n!
(− 1

x )
m(−y)n

=
Γ(c)Γ(a− b)

Γ(a)Γ(c− b)
G2(b, b

′, a− b, b− c+ 1;− 1
x ,−y).

Here

(29) G2(α, β, γ, δ;x, y) :=

∞∑
m=0

∞∑
n=0

(α)m(β)n(γ)n−m(δ)m−n

m!n!
xmyn

and we have

fa
1 (x, y) = F1(a, a− c+ 1, b′, a− b+ 1; 1

x ,
y
x ),

f b
1(x, y) = G2(b, b

′, a− b, b− c+ 1;− 1
x ,−y)

(30)

in (27).

Remark 4.2. The argument above is justified since F1(a; b, b
′; c;x, y) satisfies a

differential equation which has regular singularities along the hypersurface defined
by y = 0 in {(x, y) ∈ C2 | Rex < 0} or Kummer’s formula

F (α, β, γ;x) = (1− x)−αF (α, γ − β, γ; x
x−1 ).

We give an answer to a part of connection problem of Appell’s F1 which satisfies
a KZ equation of rank 3 and the equation allows the coordinate transformations
on (P1)5 corresponding to the permutations of 5 coordinates. By the action of
this transformation we get Kummer type formula for F1 and solve the connection
problem for F1. Note that the singularity of the origin is not of the normally
crossing type but for example, the map (x, y) 7→ ( 1x ,

y
x ) is one of the coordinate

transformations and the blowing up of the origin naturally corresponds to this
coordinate transformation. This enables us to get all the analytic continuation of
F1 in P1 × P1 in terms of F1 and G2 as is given in the above special case (cf. §7).
Another independent solution f c

1 of the equation at (∞, 0) is characterized by the
fact that the analytic continuation of f c

1 in a suitable neighborhood of (−∞, 0)×{0}
is a scalar multiple of f c

1 and then f c
1 is expressed by using F1 as in the case of

(− 1
x )

afa
1 . This will be discussed in another paper with more general examples.

5. More transformations

In this section we examine transformations of power series obtained by a suit-
able class of coordinate transformations and the transformations Kµ,λ

x and Lµ,λ
x .

For a coordinate transformation x 7→ R(x) of Cn we put

(Tx→R(x)ϕ) = ϕ(R(x))

for functions ϕ(x).
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Definition 5.1. Choose a subset of indices {i1, . . . , ik} ⊂ {1, . . . , n}. Then we
put y = (xi1 , . . . , xik). For µ ∈ C and λ ∈ Ck we define

Kµ,λ
y,x→R(x) := T−1

x→R(x) ◦K
µ,λ
y ◦ Tx→R(x),

Lµ,λ
y,x→R(x) := T−1

x→R(x) ◦ L
µ,λ
y ◦ Tx→R(x).

Let p =
(
pi,j

)
1≤i≤n
1≤j≤n

∈ GL(n,Z). We denote

xp = xp = (xp∗,1 , . . . , xp∗,n) =
( n∏
ν=1

xpν,1
ν , . . . ,

n∏
ν=1

xpν,n
ν

)
,

pm = (p1,∗m, . . . , pn,∗m) =
( n∑
ν=1

p1,νmν , . . . ,

n∑
ν=1

pn,νmν

)(31)

with m = (m1, . . . ,mn) ∈ Zn. Then T−1
x→xp = Tx→xp−1

We examine the transformations Kµ,λ
y,x→xp and Lµ,λ

y,x→xp under the assumption

(32) piν ,j ≥ 0 (1 ≤ ν ≤ k, 1 ≤ j ≤ n).

Since (
T−1
x→xpTx→(t1x1,...,tnxn)Tx→xpϕ

)
(x) = ϕ

(
x1

n∏
ν=1

tpν,1
ν , . . . , xn

n∏
ν=1

tpν,n
ν

)
,

we have(
Kµ,λ

(xi1
,...,xik

),x→xpϕ
)
(x)

=
1

Γ(µ)

∫
t1>0,...tk>0
t1+···+tk<1

tλ−1(1− |t|)µ−1ϕ
(
x1

k∏
ν=1

t
piν ,1
ν , . . . , xn

k∏
ν=1

t
piν ,n
ν

)
dt,

(33)

(
Lµ,λ
(xi1

,...,xik
),x→xpϕ

)
(x) =

Γ(µ+ k)

(2πi)k

∫ c+i∞

c−i∞
· · ·

∫ c+i∞

c−i∞
tλ−1(1− |t|)−µ−k

× ϕ
( x1∏k

ν=1 t
piν ,1
ν

, . . . ,
xn∏k

ν=1 t
piν ,n
ν

)dt1
t1

· · · dtk
tk

with c = 1
k+1 .

(34)

We note that (32) assures that these transformations are defined on O0.

Proposition 5.2. Denoting

(pm)i1,...,ik =
( n∑
ν=1

pi1,νmν , . . . ,

n∑
ν=1

pik,νmν

)
,

we have

Kµ,λ
(xi1

,...,xik
),x→xpx

m =
Γ(λ+ (pm)i1,...,ik)

Γ(|λ+ (pm)i1,...,ik |+ µ)
xm,(35)

Lµ,λ
(xi1 ,...,xik

),x→xpx
m =

Γ(|λ+ (pm)i1,...,ik |+ µ)

Γ(λ+ (pm)i1,...,ik)
xm.(36)

We give some examples hereafter in this section.
Let (p1, . . . , pn) be a non-zero vector of non-negative integers. Suppose the

greatest common divisor of p1, . . . , pn equals 1. Then there exists p =
(
pi,j

)
∈

GL(n,Z) with p1,j = pj and

Kµ,λ
x1,x→xpxm =

Γ(λ)

Γ(λ+ µ)

(λ)p1m1+···+pnmn

(λ+ µ)p1m1+···+pnmn

xm.
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In particular we have

Kµ,λ

x1,x→(x1,
x1

x2
,...,

x1

xn
)
xm =

Γ(λ)

Γ(λ+ µ)

(λ)m1+···+mn

(λ+ µ)m1+···+mn

xm,(37)

FD(λ0,λ, µ;x) =
Γ(µ)

Γ(λ0)
Kµ−λ0,λ0

x1,x→(x1,
x1

x2
,...,

x1

xn
)
(1− x)−λ (cf. (20)).(38)

Here we note that the coordinate transformation x 7→ (x1,
x1

x2
, . . . , x1

xn
) gives a trans-

formation of KZ equations of n variables (cf. [O3, §6]).

Let p =

(
p1 p2
q1 q2

)
∈ GL(2,Z) with p1, p2, q1, q2 ≥ 0. Put p̃ = p ⊗ In−2 ∈

GL(n,Z). Then

K
µ,(λ1,λ2)

(x1,x2),x→xp̃x
m =

Γ(λ1)Γ(λ2)

Γ(λ1 + λ2 + µ)

(λ1)p1m1+p2m2
(λ2)q1m1+q2m2

(λ1 + λ2 + µ)(p1+q1)m1+(p2+q2)m2

xm,

L
µ,(λ1,λ2)

(x1,x2),x→xp̃x
m =

Γ(λ1 + λ2 + µ)

Γ(λ1)Γ(λ2)

(λ1 + λ2 + µ)(p1+q1)m1+(p2+q2)m2

(λ1)p1m1+p2m2(λ2)q1m1+q2m2

xm.

Successive applications of these transformations to (1 − |x|)−λ or (1 − x)−λ

or e|x|,. . . , we have many examples of integral representations of power series
whose coefficients of xm

m! are expressed by the quotient of products of the form
(λ)p1m1+···+pnmn

.
The series

(39) ϕ(x, y) =

∞∑
m=0

∞∑
n=0

∏K
ν=1(aν)m+n

∏M
ν=1(bν)m

∏N
ν=1(cν)n∏K′

ν=1(a
′
ν)m+n

∏M ′

ν=1(b
′
ν)m

∏N ′

ν=1(c
′
ν)n

xm

m!

yn

n!

with the condition

(K +M)− (K ′ +M ′) = (K +N)− (K ′ +N ′) = 1.

is an example. Then Appell’s hypergeometric functions F1, F2, F3 and F4 corre-
spond to (K,M,N ;K ′, N ′, N ′) = (1, 1, 1; 1, 0, 0), (1, 1, 1; 0, 1, 1), (0, 2, 2; 1, 0, 0) and
(2, 0, 0; 0, 1, 1), respectively. In general ϕ(x, y) may have several integral expressions
as in the case of F1 and F2. The series (39) with M = M ′ + 1, N = N ′ + 1 and
K = K is a generalization of Appell’s F1, which will be given in §7 as an example.

The series

Kγ2−β2,β2
x · (1− x)α2 ·Kγ1−β1,β1

x (1− x)−α1

=
Γ(β1)Γ(β2)

Γ(γ1)Γ(γ2)

∞∑
m=0

∞∑
n=0

(α1)m(α2)m(β1)m(β2)m+n

(γ1)m(γ2)m+nm!n!
xm+n

(40)

of x ∈ C satisfies a Fuchsian differential equation with the spectral type 211, 211, 211
(cf. [O1, §13.7.5] and Remark 7.5) and the coefficients of xk is not simple.

6. Differential equations

In this section we examine the differential equations satisfied by our invertible
integral transformations of a function u(x) in terms of the differential equation sat-
isfied by u(x). We denote by W [x] the ring of differential operators with polynomial
coefficients and put W (x) = C[x]⊗W [x]. Then W [x] is called a Weyl algebra.

First we review the related results in [O1]. The integral transformation u 7→
Iµc u given by (1) satisfies

I−µ
c ◦ Iµc = id(41)

Iµc ◦ ∂ = ∂ ◦ Iµc and Iµc ◦ ϑ = (ϑ− µ) ◦ Iµc(42)

under the notation

(43) ∂ = d
dx , ϑ = x∂.
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Hence for an ordinary differential operator P ∈ W [x], we define the middle convo-
lution mcµ(P ) of P by

(44) mcµ(P ) := ∂−m
∑
i,j

ai,j∂
i(ϑ− µ)j ∈ W [x].

Here we first choose a positive integer k so that

(45) ∂kP =
∑

i≥0, j≥0

ai,j∂
iϑj ([ai,j , x] = [ai,j , ∂] = 0)

and then we choose the maximal positive integer m so that mcµ(P ) ∈ W [x]. The
number k can be taken to be the degree of P with respect to x. Then we have

(46) Pu = 0 ⇒ (mcµ(P ))Iµc u = 0.

The transformation u 7→ f(x)u of u(x) defined by a suitable function f(x)
induces an automorphism Ad(f) of W (x). Namely Ad(f) is called an addition and
defined by

(47) Ad(f)∂ = ∂ − ∂(f)
f and Ad(f)x = x.

Hence ∂(f)
f should be a rational function. Then f(x) can be a function (x− c)λ or

f(x) = er(x) with a rational function r(x).
There is another transformation RP of P ∈ W (x) \ {0} where we define RP =

r(x)P with r(x) ∈ C[x] \ {0} so that r(x)P ∈ W [x] has the minimal degree with
respect to x. Then RP is called the reduced representative of P . When we consider
mcµ(P ), we usually replace P by RP .

Let Pu = 0 be a rigid Fuchsian differential equation on P1. Then it is proved
in [O1] that P is obtained by successive applications of Ad(f) and mcµ ◦ R to ∂
and hence we have an integral representation of the solution to this equation and
moreover its expansion into a power series.

In a similar way, the author [O1, §13.10] examines Appell’s hypergeometric
functions using the integral transformation

Jµ
x (u)(x) :=

∫
∆

(1− s1x1 − · · · − snxn)
µu(s1, . . . , sn)ds(48)

=
1

x1 · · ·xn

∫
∆′
(1− t1 − · · · − tn)

µu( t1
x1
, . . . , tn

xn
)dt (tj = sjxj)

with certain regions ∆ and ∆′ of integrations and get integral representations of

Appell’s hypergeometric functions. For example, we put u(x) = xβ−1
1 xβ′−1

2 (1−x1−
x2)

γ−β−β′−1 and ∆ = {(s1, s2) | s1 ≥ 0, s2 ≥ 0, 1− s1 − s2 ≥ 0} to get Appell’s F1

and put u(x) = xλ1−1
1 (1 − x1)

λ2−1x
λ′
1−1

2 (1 − x2)
λ′
2−1 and ∆ = {(s1, s2) | 0 ≤ s1 ≤

1, 0 ≤ s2 ≤ 1} to get Appell’s F2 .
We show there the commuting relations

Jµ
x ◦ ϑj = (−1− ϑj) ◦ Jµ

x ,

Jµ
x ◦ ∂j = xj(µ− ϑ1 − · · · − ϑn) ◦ Jµ

x ,
(49)

which correspond to (42) and imply the following proposition and then we get the
differential equations satisfied by Appell’s hypergeometric functions.

In general, we have the following proposition.

Proposition 6.1 ([O1, Proposition 13.2]). For a differential operator

P =
∑

α,β∈Nn

cα,β∂
αϑβ
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we have

Jµ
x

(
Pu(x)

)
= Jµ

x (P )Jµ
x

(
u(x)

)
,

Jµ
x (P ) :=

∑
α,β∈Nn

cα,β

( n∏
k=1

(
xk(µ− ϑ1 − · · · − ϑn)

)αk
)
(−ϑ− 1)β.

Here the sums are finite and we use the notation.

∂x = ∂
∂x , ∂y = ∂

∂y , ϑx = x∂x, ϑy = y∂y, ∂i =
∂

∂xi
, ϑi = xi∂i.(50)

Comparing the definition of integral transformations we have the following.

Proposition 6.2. The integral transformations defined in §2 is expressed by
Jµ
x as follows.

Kµ
x =

1

Γ(µ)
T
x→(

1
x1

,...,
1
xn

)
◦ x1 · · ·xn · Jµ−1

x

with ∆′ =
{
(t1, . . . , tn) | t1 > 0, . . . , tn > 0, t1 + · · ·+ tn < 1

}(51)

and

Lµ
x =

Γ(µ+ n)

(2πi)n
J−µ−n
x ◦ T

x→(
1
x1

,...,
1
xn

)
◦ x1 · · ·xn

with ∆′ =
{
(t1, . . . , tn) | Re t1 = · · · = Re tn = 1

n+1

}
.

(52)

For p ∈ GL(n,Z) we put q = p−1. Then

Tx→xp(xj) = xp∗.j =

n∏
ν=1

xpν ,j
ν and Tx→xp(∂i) =

n∑
j=1

qi,j
xj

xpj,i
∂j .

In particular

T
x→(

1
x1

,...,
1
xn

)
(xj) =

1
xj
, T

x→(
1
x1

,...,
1
xn

)
(∂j) = −x2

j∂j

and

T
x→(

1
x1

,...,
1
xn

)
◦ x1 . . . xn =

1

x1 · · ·xn
◦ T

x→(
1
x1

,...,
1
xn

)

and thus we have the following lemma.

Lemma 6.3. Defining

ũ(x1, . . . , xn) :=
1

x1···xn
u( 1

x1
, . . . , 1

xn
),

P̃ = P˜ :=
∑

aα(
1
x1
, . . . , 1

xn
)
∏
ν

(−x2
ν∂ν − xν)

βν(53)

for P =
∑

aα(x)∂
α ∈ W (x),

we have

P̃ u = P̃ ũ,(54)

x̃j =
1
xj
, ∂̃j = −x2

j∂j − xj = −xj(ϑj + 1), ϑ̃j = −ϑj − 1.(55)

Hence Proposition 6.1, Proposition 6.2 and Lemma 6.3 show

Kµ
x ◦ ϑj = ˜(−1− ϑj) ◦Kµ

x = ϑj ◦Kµ
x ,(56)

Kµ
x ◦ ∂j =

(
xj(µ− 1− ϑ1 − · · · − ϑn)

)̃
◦Kµ

x

= 1
xj
(ϑ1 + · · ·+ ϑn + µ+ n− 1) ◦Kµ

x .
(57)
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Similarly we have Lµ
x ◦ ϑi = ϑi ◦ Lµ

x and

Lµ
x ◦ xj(ϑj + 1) = (xj(ϑ1 + · · ·+ ϑn + µ+ n)) ◦ Lµ

x .(58)

These relations can be checked by applying them to xα. For example, it follows
from (8) that

Lµ
x ◦ xj(ϑj + 1)xα = Lµ

x(αj + 1)xjx
α

= (αj + 1)
Γ(|α|+ µ+ n+ 1)

Γ(α1 + 1) · · ·Γ(αj + 2) · · ·Γ(αn + 1)
xjx

α

=
(|α|+ µ+ n)Γ(|α|+ µ+ n)

Γ(α+ 1)
xjx

α

= xj(ϑ1 + · · ·+ ϑn + µ+ n)Lµ
x(x

α).

We also note that (56) is directly given by

(ϑiK
µ
xu)(x) =

1

Γ(µ)

∫ 1

0

(1− |t|)µ−1tixi(∂iu)(tx)dt = (Kµ
xϑiu)(x)

and the equality

∂
∂ti

(
(1− |t|)µ−1u(tx)

)
= −(µ− 1)(1− |t|)µ−2u(tx) + (1− t)µ−1xi(∂iu)(tx)

shows

xiK
µ
x∂i = (µ− 1)Kµ−1

x

and therefore

µ

∫ 1

0

(1− |t|)µ−1u(tx)dt = xi

∫ 1

0

(1− |t|)µ(∂iu)(tx)dt

= xi

∫ 1

0

(1− |t|)µ−1(1− t1 − · · · − tn)(∂iu)(tx)dt,

xiK
µ
x∂iu = µKµ

xu+

n∑
ν=1

1

Γ(µ)

xi

xν

∫ 1

0

(1− |t|)µ−1(xν∂iu)(tx)dt

= µKµ
xu+

n∑
ν=1

xi

xν
Kµ

x∂ixνu−Kµ
xu

= (µ− 1)Kµ
xu+

n∑
ν=1

Kµ
x∂νxνu

= (µ+ n− 1)Kµ
xu+

n∑
ν=1

ϑνK
µ
xu,

which implies (57).
Thus we have the following theorem.

Theorem 6.1. Suppose u(x) satisfies Pu(x) = 0 with a certain P ∈ W (x).
i) Putting

Q = RP =
∑

α,β∈Nn

aα,βx
α∂β.(59)

we choose γ ∈ Zn so that

∂γQ =
∑

α,β∈Nn

cα,β∂
αϑβ (cα,β ∈ C).(60)
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Then we have Kµ
x (∂

γQ)Kµ
xu(x) = 0 with

(61) Kµ
x (
∑

cα,β∂
αϑβ) := R

∑
cα,β

( n∏
k=1

( 1
xk

(ϑ1 + · · ·+ ϑn + µ+ n− 1))αk

)
ϑβ.

ii) Putting

(62) Q = RP̃ ,

we choose γ ∈ Zn so that (60) holds. Then we have Lµ
x(∂

γQ)Lµ
xu(x) = 0 with

(63) Lµ
x(
∑

cα,β∂
αϑβ) := R

∑
cα,β

( n∏
k=1

(
xk(µ− ϑ1 − · · · − ϑn)

)αk
)
(−ϑ− 1)β.

Remark 6.4. i) In Theorem 6.1 i), γ = (γ1, . . . , γn) can be taken by

γj = max{0, αj − βj |a(α1,...,αn),(β1,...,βn) 6= 0} (1 ≤ j ≤ n).

ii) If P ∈ W [x, y] in Theorem 6.1, it is clear that the theorem is valid under
the assumption cα,β ∈ W [y].

iii) Suppose u(x) ∈ O0 satisfies P1P2u(x) = 0 with P1, P2 ∈ W [x] and {u ∈
O0 | P1u = 0} = {0}. Then P2u(x) = 0.

iv) Without the assumption (32) we can define transformations Kµ,λ
x,x→xp and

Lµ,λ
x,x→xp on O0 by (35) and (36). Even in this case the results in this section are

clearly valid.

We will calculate some examples. By the integral expression

F1(λ0, λ1, λ2, µ;x, y) =
Γ(µ)

Γ(λ1)Γ(λ2)
Kµ−λ1−λ2,λ1,λ2

x,y (1− x− y)−λ0

= C1

∫
s>0, t>0
s+t<1

(1− s− t)µ−λ1−λ2−1sλ1−1tλ2−1(1− sx− ty)−λ0dsdt

corresponding to (20) and (33), we calculate the system of differential equations
satisfied by F1(λ0, λ1, λ2, µ;x, y) as follows. Putting

h := xλ1−1yλ2−1(1− x− y)−λ0 ,

we have

Ad(h)∂x = ∂x − λ1−1
x − λ0

1−x−y ,

Ad(h)∂y = ∂y − λ2−1
y − λ0

1−x−y ,

Ad(h)(ϑx + ϑy) = ϑx + ϑy − λ0

1−x−y − (λ1 + λ2 − λ0 − 2),

Ad(h)(ϑx + ϑy − ∂x) = ϑx + ϑy − ∂x + λ1−1
x − (λ1 + λ2 − λ0 − 2).

Hence we put

Q := RAd(h)(ϑx + ϑy − ∂x)

= (ϑx + 1)(ϑx + ϑy − λ1 − λ2 + λ0 + 2)− ∂xϑx + λ1 − 1

and we have

Kµ−λ1−λ2
x (Q) = x(ϑx + 1)(ϑx + ϑy − λ1 − λ2 + λ0 + 2)

− (ϑx + ϑy + µ− λ1 − λ2 + 1)(ϑx − λ1 + 1),

Ad(x1−λ1y1−λ2)Kµ
x (Q) = x(ϑx + λ1)(ϑx + ϑy + λ0)− (ϑx + ϑy + µ− 1)ϑx

= x
(
(ϑx + λ1)(ϑx + ϑy + λ0)− ∂x(ϑx + ϑy + µ− 1)

)
.
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Hence F1(λ0, λ1, λ2, µ;x, y) is a solution of the system

{
(ϑx + λ1)(ϑx + ϑy + λ0)− ∂x(ϑx + ϑy + µ− 1)u1 = 0,

(ϑy + λ2)(ϑx + ϑy + λ0)− ∂y(ϑx + ϑy + µ− 1)u1 = 0.
(64)

Next we consider the integral representation

F1(λ0, λ1, λ2, µ;x, y) =
Γ(µ)

Γ(λ0)
Kµ−λ0,λ0

x,(x,y)→(x,
x
y )
(1− x)−λ1(1− y)−λ2

= C ′
1

∫ 1

0

tλ0−1(1− t)µ−λ0(1− tx)−λ1(1− ty)−λ2dt

corresponding to (38). Since

T
(x,y) 7→(x,

x
y )

: ∂x 7→ 1
x (ϑx + ϑy), ∂y 7→ − y

xϑy, ϑx 7→ ϑx + ϑy, ϑy 7→ −ϑy,

we have

∂x
Ad((1−x)−λ1 (1−y)−λ2 )−−−−−−−−−−−−−−−→ ∂x − λ1

1−x

T(x,y)→(x, x
y

)

−−−−−−−−→ 1
x (ϑx + ϑy)− λ1

1−x

Ad(xλ0−1)−−−−−−−→ 1
x (ϑx + ϑy)− λ0−1

x − λ1

1−x

R−→ (1− x)(ϑx + ϑy − λ0 + 1)− λ1x

∂x−→ (∂x − ϑx − 1)(ϑx + ϑy − λ0 + 1)− λ1(ϑx + 1)

Kµ−λ0
x−−−−→ (∂x + µ−λ0

x − ϑx − 1)(ϑx + ϑy − λ0 + 1)− λ1(ϑx + 1)

Ad(x1−λ0 )−−−−−−−→ (∂x + µ−1
x − ϑx − λ0)(ϑx + ϑy)− λ1(ϑx − λ0)

T(x,y)→(x, x
y

)

−−−−−−−−→ ( 1x (ϑx + ϑy) +
µ−1
x − ϑx − ϑy − λ0)ϑx − λ1(ϑx − λ0)

= ∂x(ϑx + ϑy + µ− 1)− (ϑx + λ1)(ϑx + ϑy + λ0).

Thus we also get the system (64) characterizing F1(λ0, λ1, λ2, µ;x, y).
We have similar calculations for other Appell’s hypergeometric series as follows.

F2(λ0;µ1, µ2;λ1, λ2;x, y) =
Γ(λ1)Γ(λ2)

Γ(µ1)Γ(µ2)
Kλ1−µ1,µ1

x Kλ2−µ2,µ2
y (1− x− y)−λ0

= C2

∫ 1

0

∫ 1

0

sµ1tµ2(1− s)λ1−µ1−1(1− t)λ2−µ2−1(1− sx− ty)−λ0 ds
s

dt
t ,

∂x
Ad(xµ1−1yµ2−1(1−x)λ1−µ1−1(1−y)λ2−µ2−1)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ ∂x − µ1−1

x + λ1−µ1−1
1−x

R−→ x(1− x)∂x + (λ1 − 2)x− (µ1 − 1)

∂x−→ ∂xx(−ϑx + λ1 − 2) + ∂x(ϑx − µ1 + 1)

J−λ0
x,y−−−→ −ϑx(ϑx + 1 + λ1 − 2) + x(−λ0 − ϑx − ϑy)(−1− ϑx − µ1 + 1)

= x
(
(ϑx + µ1)(ϑx + ϑy + λ0)− ∂x(ϑx + λ1 − 1)

)



INTEGRAL TRANSFORMATIONS OF HYPERGEOMETRIC FUNCTIONS 17

and

F3(λ1, λ2;λ
′
1, λ

′
2;µ;x, y) =

Γ(µ)

Γ(λ1)Γ(λ2)
Kµ−λ1−λ2

x,y (1− x)−λ′
1(1− y)−λ′

2

= C3

∫
s>0,t>0
s+t<1

sλ1tλ2(1− s− t)µ−1(1− sx)−λ′
1(1− ty)−λ′

2 ds
s

dt
t ,

∂x
RAd(xλ1−1yλ2−1(1−x)−λ′

1 (1−y)−λ′
2 )−−−−−−−−−−−−−−−−−−−−−−−−−→ x(1− x)∂x + (λ1 − λ′

1 − 1)x− (λ1 − 1)

∂x−→ ∂xx(−ϑx + λ1 − λ′
1 − 1) + 1

x (ϑx + ϑy + µ− λ′
1 − λ2 − 1)(ϑx − λ1 + 1)

Ad(x1−λ1y1−λ2 )−−−−−−−−−−−→ −(ϑx + λ1)(ϑx + λ′
1) + ∂x(ϑx + ϑy + µ− 1)

and

F4(µ, λ0;λ1, λ2;x, y) =
Γ(λ1)Γ(λ2)

Γ(µ)
Lµ−λ1−λ2,λ1,λ2
x,y (1− x− y)−λ0

= C4

∫ 1
3+i∞

1
3−i∞

sλ1tλ2(1− s− t)λ1+λ2−µ−2(1− sx− ty)−λ0 ds
s

dt
t ,

∂x
Ad((1−x−y)−λ0 )−−−−−−−−−−−→ ∂x − λ0

1−x−y

∂x − ϑx − ϑy − λ0

(
(∂x − ϑx − ϑy − λ0)(1− x− y)−λ0 = 0

)
Ad(xλ1−1yλ2−1)−−−−−−−−−−−→ ∂x − λ1−1

x − (ϑx + ϑy + λ0 − λ1 + 1− λ2 + 1)
1
xyT

(x,y) 7→( 1
x

, 1
y

)

−−−−−−−−−−→ −x(ϑx + 1)− (λ1 − 1)− (λ1 − 1)x+ ϑx + ϑy − λ0 + λ1 + λ2

∂x−→ −∂xx(ϑx + λ1) + ∂x(ϑx + ϑy − λ0 + λ1 + λ2)

Ad(Lµ−λ1−λ2
x,y )

−−−−−−−−−−→ ϑx(−ϑx − 1 + λ1)

+ x(λ1 + λ2 − µ− 2− ϑx − ϑy)(−ϑx − ϑy − λ0 + λ1 + λ2

∂x−→ −∂xx(ϑx + λ1) + ∂x(ϑx + ϑy − λ0 + λ1 + λ2)

Lµ−λ1−λ2
x,y−−−−−−−→ ϑx(−ϑx − 1− λ1)

+ x(λ1 + λ2 − µ− 2− ϑx − ϑy)(−ϑx − ϑy − λ0 + λ1 + λ2 − 2)

Ad(x1−λ1y1−λ2 )−−−−−−−−−−−→ x
(
(ϑx + ϑy + µ)(ϑx + ϑy + λ0)− ∂x(ϑx + λ1 − 1)

)
.

Here C1, C
′
1, C2, C3 and C4 are constants easily obtained from the integral formula

in §2 with putting x = y = 0. Hence


u2 = F2(λ0;µ1, µ2;λ1, λ2;x, y),

u3 = F3(λ1, λ2;λ
′
1, λ

′
2;µ;x, y),

u4 = F4(µ, λ0;λ1, λ2;x, y)

(65)
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are solutions of the system{(
(ϑx + µ1)(ϑx + ϑy + λ0)− ∂x(ϑx + λ1 − 1)

)
u2 = 0,(

(ϑy + µ2)(ϑx + ϑy + λ0)− ∂y(ϑy + λ2 − 1)
)
u2 = 0,

(66) {(
(ϑx + λ1)(ϑx + λ′

1)− ∂x(ϑx + ϑy + µ− 1)
)
u3 = 0,(

(ϑy + λ2)(ϑx + λ′
2)− ∂y(ϑx + ϑy + µ− 1)

)
u3 = 0,

(67) {(
(ϑx + ϑy + µ)(ϑx + ϑy + λ0)− ∂x(ϑx + λ1 − 1)

)
u4 = 0,(

(ϑx + ϑy + µ)(ϑx + ϑy + λ0)− ∂y(ϑy + λ2 − 1)
)
u4 = 0.

(68)

Remark 6.5. The above systems are directly obtained from the adjacent re-
lations of the coefficients of Appell’s hypergeometric series. Here we get them by
the transformations of systems of differential equations corresponding to integral
transformations of functions discussed in this paper so that it can be applied to
general cases.

7. KZ equations

A Pfaffian system

du =
∑

0≤i<j≤q

Ai,j
d(xi − xj)

xi − xj
u(69)

with an unknown N vector u and constant square matrices Ai,j of size N is called
a KZ (Knizhnik-Zamolodchikov type) equation of rank N (cf. [KZ]), which equals
the system of the equations

M :
∂u

∂xi
=

∑
0≤ν≤q
ν 6=i

Ai,ν

xi − xν
u (i = 0, . . . , q)(70)

with denoting Aj,i = Ai,j . The matrix Ai,j is called the residue matrix of M at
xi = xj . Here we always assume the integrability condition

(71)

{
[Ai,j , Ak,ℓ] = 0 (∀{i, j, k, ℓ} ⊂ {0, . . . , q}),
[Ai,j , Ai,k +Aj,k] = 0 (∀{i, j, k} ⊂ {0, . . . , q}),

which follows from the condition ddu = 0. Here i, j, k, ℓ are mutually different
indices:

Definition 7.1. Using the notation

Ai,i = A∅ = Ai = 0, Ai,j = Aj,i (i, j ∈ {0, 1, . . . , q + 1}),

Ai,q+1 := −
n∑

ν=0

Ai,ν ,

Ai1,i2,...,ik :=
∑

1≤ν<ν′≤k

Aiν ,iν′ ({i1, . . . , ik} ⊂ {0, . . . , q + 1}),

we have

(72) [AI , AJ ] = 0 if I ∩ J = ∅ or I ⊂ J with I, J ⊂ {0, . . . , q + 1}.
The matrix Ai,j is called the residue matrix of M at xi = xj and xq+1 corre-

sponds to ∞ in P 1
C.

We note that any rigid irreducible Fuchsian system

(73) N :
du

dx
=

q∑
i=1

Bi

x− xi
u
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can be extended to KZ equation M with x = x0 and Bi = A0,i, which follows from
the result by Haraoka [Ha] extending a middle convolution on KZ equations.

We assume that M is irreducible at a generic value of the holomorphic parame-
ter contained in M. Then it is shown in [O3, §1] that A0,...,q is a scalar matrix κIN
with κ ∈ C and by the gage transformation u 7→ (xq−1 − xq)

−κu we may assume
that M is homogeneous, which means

(74) Ai0,...,iq = 0 (0 ≤ i0 < i1 < · · · < iq ≤ q + 1).

Then the symmetric group Sq+2 which is identified with the permutation group of
the set of indices {0, 1, . . . , q + 1} naturally acts on the space of the homogeneous
KZ equations (cf. [O3, §6]) :

x0

x

x1

y1

x2

y2

xq−2

yq−2

xq−1

1

xq

0

xq+1

∞
(0, 1) : x ↔ y1,
(i, i+ 1) : yi ↔ yi+1 (1 ≤ i ≤ q − 3),
(q − 2, q − 1) : (x, y1, . . . , yq−1, yq−2) ↔ ( x

yq−2
, y1

yq−2
, . . . ,

yq−1

yq−2
, 1
yq−2

),

(q − 1, q) : (x, y1, . . . , yq−1, yq−2) ↔ (1− x, 1− y1, . . . , 1− yq−1, 1− yq−2),
(q, q + 1) : (x, y1, . . . , yq−1, yq−2) ↔ ( 1x ,

1
y1
, . . . , 1

yq−1
, 1
yq−2

).

Here we put (x0, . . . , xq+1) = (x, y1, . . . , yq−1, 1, 0,∞) by a transformation P1 3
x 7→ ax+ b which keeps the residue matrices Ai,j .

For simplicity we assume n = q−1 = 2 and put (x0, x1, x2, x3, x4) = (x, y, 1, 0,∞).
Then (74) means

(75) A01 +A01 +A03 +A12 +A13 +A23 = 0

and the five residue matrices A01, A01, A03, A12 and A13 uniquely determine the
other five residue matrices A23 and Ai4 with 0 ≤ i ≤ 3 and the action of S5 is
generated by the 4 involutions

(x0, x1, x2, x3, x4) → (x, y, 1, 0,∞),

x0 ↔ x1 → (x, y) ↔ (y, x),

x1 ↔ x2 → (x, y) ↔ (xy ,
1
y ),

x2 ↔ x3 → (x, y) ↔ (1− x, 1− y),

x3 ↔ x4 → (x, y) ↔ ( 1x ,
1
y ).

In particular, the KZ system is determined by the equation

M :


∂u

∂x
=

A01

x− y
u+

A02

x− 1
u+

A03

x
u,

∂u

∂y
=

A01

y − x
u+

A12

y − 1
u+

A13

y
u.

(76)

Remark 7.2. The coordinate transformations corresponding to the involutions

(x0, x1, x2, x3, x4) ↔ (x2, x1, x0, x4, x3) → (x, y) ↔ (x, x
y )

(x0, x1, x2, x3, x4) ↔ (x0, x2, x1, x4, x3) → (x, y) ↔ ( yx , y)

give the local coordinates of the blowing up of the singularities of the equation (76)
at the origin:
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(x, y) 7→
S5 3

(y, x)

x0 ↔ x1

(xy ,
1
y )

x1 ↔ x2

(1− x, 1− y)

x2 ↔ x3

( 1x ,
1
y )

x3 ↔ x4

y = 0

y = 1

y = ∞

x = 0 x = 1 x = ∞

x = y
↓

↑
(x, y) ↔ (x, x

y )

{|x| < ϵ, |y| < C|x|} ↔ {|x| < ϵ, |y| > C−1}
x = y = 0 ↔ x = 0

Now we review the result in [DR, DR2, Ha] by using the transformations
defined in this paper. The convolution of the KZ equation (70) corresponds to the
transformation defined by

(m̃cµu)(x, y) :=

Iµ+1
x,0

u(x,y)
x−y

Iµ+1
x,0

u(x,y)
y

Iµ+1
x,0

u(x,y)
x

 =


1

Γ(µ+1)

∫ x

0
(1− t)µ u(t,y)

t−y dt
1

Γ(µ+1)

∫ x

0
(1− t)µ u(t,y)

y dt
1

Γ(µ+1)

∫ x

0
(1− t)µ u(t,y)

t dt

 .

We put K̃µ
x = x−µ ◦ m̃cµ and K̃µ,λ

x = x−λ ◦ K̃µ
x ◦ xλ. Then

(K̃µ,λ
x u)(x, y) =

Kµ+1,λ
x

xu(x,y)
x−y

Kµ+1,λ
x

xu(x,y)
x−1

Kµ+1,λ
x u(x, y)

 .(77)

Putting ũ = K̃µ,λ
x u for a solution u of the KZ equation (70), we have the KZ

equation

∂ũ

∂xi
=

∑
0≤ν≤3
ν 6=i

Ãi,ν

xi − xν
ũ(78)

satisfied by ũ.
Since this equation is reducible in general, we consider the reduced equation

M̄ :
∂ū

∂xi
=

∑
0≤ν≤3
ν 6=i

Āi,ν

xi − xν
ū.(79)
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The residue matrices Ãi,j and Āi,j are obtained from the results in [DR, DR2, Ha]:

Ã01 =

µ+A01 A02 A03 + λ
0 0 0
0 0 0

 , Ã02 =

 0 0 0
A01 µ+A02 A03 + λ
0 0 0

 ,

Ã03 =

−µ− λ 0 0
0 −µ− λ 0

A01 A02 A03

 , Ã04 =

−A01 + λ −A02 −A03 − λ
−A01 −A02 + λ −A03 − λ
−A01 −A02 −A03

 ,

Ã12 =

A12 +A02 −A02 0
−A01 A12 +A01 0
0 0 A12

 , Ã13 =

A13 +A03 + λ 0 −A03 − λ
0 A13 0

−A01 0 A01 +A13

 ,

Ã14 =

A23 − µ− λ 0 0
A01 A02 +A03 +A23 0
A01 0 A02 +A03 +A23

 ,

Ã23 =

A23 0 0
0 A03 +A23 + λ −A03 − λ
0 −A02 A02 +A23

 ,

Ã24 =

A01 +A13 +A03 A02 0
0 A13 − µ− λ 0
0 A02 A01 +A13 +A03

 ,

Ã34 =

A12 +A01 +A02 + µ 0 A03 + λ
0 A12 +A01 +A02 + µ A03 + λ
0 0 A12

 .

(80)

Here we denote A01 = A0,1 etc. for simplicity.
Then the subspace

L :=

 kerA01

kerA02

kerA03 + λ

+ ker(Ã04 − µ− λ)

=

 kerAy

kerA1

kerA0 + λ

+ ker

Ay + µ A1 A0 + λ
Ay A1 + µ A0 + λ
Ay A1 A0 + µ+ λ

(81)

of C3N satisfies Ãi,jL ⊂ L. We define Āi,j the square matrices of size 3N − dimL
which correspond to linear transformations induced by Ãi,j , respectively, on the
quotient space C3N/L.

It is known that if the equation (73) is irreducible, then the corresponding
ordinary differential equation defined by Ā0,1, Ā0,2 and Ā0,3 is irreducible (cf. [DR])
and so is the equation 

∂ū

∂x
=

Ā01

x− y
ū+

Ā02

x− 1
ū+

Ā03

x
ū,

∂ū

∂y
=

Ā01

y − x
ū+

Ā12

y − 1
ū+

Ā13

y
ū.

(82)

Note that if λ and µ are generic, we have

L =

kerA01

kerA02

0

 .

Next we examine the transformations

K̃µ,λ
y := T(x,y) 7→(y,x) ◦ K̃µ,λ

x ◦ T(x,y) 7→(y,x),

K̃µ,λ
x,y := T(x,y) 7→(x, xy ) ◦ K̃µ,λ

x ◦ T(x,y) 7→(x, xy ).
(83)



22 TOSHIO OSHIMA

Note that (x, y) 7→ (y, x) and (x, y) 7→ (x, x
y ) correspond to (x0, x1, x2, x3, x4) 7→

(x1, x0, x2, x3, x4) and (x0, x1, x2, x3, x4) 7→ (x2, x1, x0, x4, x3), respectively. Hence

the KZ equations satisfied by K̃µ,λ
y u and K̃µ,λ

x,y u are easily obtained from their

definition and the equation satisfied by K̃µ,λ
x u. We consider the equation satisfied

by K̃µ,λ
x,y u.
Putting

(84) ũ(x, y) = (K̃µ,λ
x,y u)(x, y) =

 T(x,y) 7→(x, x
y

)K
µ+1,λ
x

x
x−yu(x, xy )

T(x,y) 7→(x, x
y

)K
µ+1,λ
x

x
x−1u(x,

x
y )

T(x,y) 7→(x, x
y

)K
µ+1,λ
x u(x, xy )

 ,

the residue matrices of KZ equation satisfied by ũ(x, y) are given by

Ã01 =

A01 +A02 −A02 0
−A12 A01 +A12 0
0 0 A01

 , Ã02 =

 0 0 0
A12 A02 + µ A24 + λ
0 0 0

 ,

Ã03 =

A03 A02 0
0 A14 − µ− λ 0
0 A02 A03

 , Ã04 =

A04 +A24 0 0
0 A04 +A24 + λ −A24 − λ
0 −A02 A02 +A04

 ,

Ã12 =

A12 + µ A02 A24 + λ
0 0 0
0 0 0

 , Ã13 =

A04 − µ− λ 0 0
A12 A13 0
A12 0 A13

 ,

Ã14 =

A14 +A24 + λ 0 −A24 − λ
0 A14 +A24 0

−A12 0 A12 +A14

 ,

Ã23 =

−A12 + λ −A02 −A24 − λ
−A12 −A02 + λ −A24 − λ
−A12 −A02 −A24

 , Ã24 =

−µ− λ 0 0
0 −µ− λ 0

A12 A02 A24

 ,

Ã34 =

A01 +A02 +A12 + µ 0 A24 + λ
0 A01 +A02 +A12 + µ A24 + λ
0 0 A01



(85)

and the invariant subspace to define the required residue matrices Āi,j is

L =

 kerA12

kerA02

kerA24 + λ

+ ker(Ã23 − µ− λ)

=

 kerB1

kerA1

kerA24 + λ

+ ker

B1 + µ A1 A24 + λ
B1 A1 + µ A24 + λ
B1 A1 A24 + µ+ λ

 ⊂ C3N .

(86)

Lastly in this section we give an example of hypergeometric series characterized
by a KZ equation. Namely, applying

(87)

p∏
i=2

K̃
−α′

i−αi,αi
x

q∏
j=2

K̃
−β′

j−βj ,βj

y

r∏
r=1

K̃
−γ′

k−γk,γk
x,y



INTEGRAL TRANSFORMATIONS OF HYPERGEOMETRIC FUNCTIONS 23

to a solution of the equation du = α1u
dx
x−1 + β1u

dy
y−1 , we get a KZ equation (76)

with the generalized Riemann scheme (see [O3, §4] for its definition)
A01 A02 A03 A04 A12

[0]pq+(p+q−1)r [0]pr+(p+r−1)q [α′
i]q+r [αi]q+r [0]qr+(q+r−1)p

[−α′′ − β′′]r [−α′′ − γ′′]q βj + γ′
k β′

j + γk [−β′′ − γ′′]p

A13 A23 A14 A24 A34

[β′
j ]p+r [γk]p+q [βj ]p+r [γ′

k]p+q [0]pq+qr+rp−(p+q+r)+1

αi + γ′
k αi + βj α′

i + γk α′
i + β′

j [−α′′ − β′′ − γ′′]2
[−α′′ − β′′]r−1

[−β′′ − γ′′]p−1

[−α′′ − γ′′]q−1


,

(88)

α′′
i := αi + α′

i, β′′
j := βj + β′

j , γ′′
k := γk + γ′

k, α′
1 = β′

1 = 0,

α′′ =

p∑
i=1

α′′
i , β′′ =

q∑
j=1

β′′
j , γ′′ =

r∑
k=1

γ′′
k ,

1 ≤ i ≤ p, 1 ≤ j ≤ q, 1 ≤ k ≤ r (p ≥ 1, q ≥ 1, r ≥ 1).

(89)

Here, for example, the eigenvalues of the square matrix A01 of size R = pq+qr+rp
are 0 with multiplicity pq + (p + q − 1)r and −α′′ − β′′ with multiplicity r. If the
parameters αi, βj , γk, α

′
i, β

′
j , γ

′
k are generic, the matrices Ai,j are semisimple and

the KZ equation is irreducible.
Note the hypergeometric series

ϕ(x, y) =

∞∑
m=0

∞∑
n=0

∏p
i=1(αi)m

∏q
j=1(βj)n

∏r
k=1(γk)m+n∏p

i=1(1− α′
i)m

∏q
j=1(1− β′

j)n
∏r

k=1(1− γ′
k)m+n

xmyn

with α′
1 = β′

1 = 0

(90)

is a component of a solution of this KZ equation (cf. (77)).
The Riemann scheme (88) is obtained by [O3, Theorem 7.1] and (87). The

precise argument and a further study of the hypergeometric series (90) will be
given in another paper.

The index of the rigidity of this KZ equation with respect to x equals

IdxxM = (R− q)2 + q2 + (R− r)2 + r2 + 2(p(q + r)2 + qr)− 2R2

= 2− 2(q − 1)(r − 1)(q + r + 1)
(91)

and hence the ordinary differential equation with respect to the variable x is rigid
if and only if r = 1 or q = 1.

If p = q = r = 1, the corresponding KZ equation (78) is given by (85) with

(A01, A02, A03, A04, A12, A13, A14, A23, A24, A34, λ, µ)

= (0, α1, 0,−α1, β1, 0,−β1,−α1 − β1, α1 + β1, γ1,−γ1 − γ′
1)

and if follows from (84) that the equation has a solution with the last component

ϕ(x, y) = F1(γ1, α1, β1, 1− γ′
1;x, y).

We define a simple local solution to (76) at the origin, which includes the
solution we have just considered.

Definition 7.3. We define that a local solution to the equation (76) near the
origin have a simple monodromy if the analytic continuation of the solution in a
neighborhood of the origin spans one dimensional space. We simply call the solution
a simple solution at the origin. We also define that a local solution of the equation
to (76) near the line x = 0 have a simple monodromy and call it a simple solution
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along x = 0 if the analytic continuation of the solution in a neighborhood of x = 0
spans one dimensional space.

By the correspondence between the equations (76) and (70) with q = 3 and
moreover a transformation by S5 we define a local solution at xi = xj = xk and
a local solution at xs = xt to the equation (70) with q = 3 when {i, j, k, s, t} =
{0, 1, 2, 3, 4}.

Here, for example, the path of the analytic continuation in the latter case,
namely along x = 0, is in {(x, y) ∈ P1 × P1 | |x| < ϵ, 0 < |x| < ϵ|y|} with a small
positive number ϵ.

Then we have the following theorem.

Theorem 7.1. Suppose {i, j, k, s, t} = {0, 1, 2, 3, 4} as above. To the equation
(70) with q = 3 there is one to one correspondence between a simle solution at
xi = xj = xk and a simple solution along xs = xt.

Proof. The coordinate (x, x
y ) is a local coordinate of a blowing up of the sin-

gularities of the equation (70) around the origin. Then the origin corresponds to the
line x = 0. This coordinate transformation corresponds to the map (x0, x1, x2, x3, x4)
7→ (x2, x1, x0, x4, x3), which is explained in Remark 7.2. Since x2 = x4 corresponds
to x0 = x3, we have the theorem when (i, j, k, s, t) = (0, 1, 3, 2, 4). Note that the
coordinate ( yx , y) gives the same conclusion. Then the symmetry S5 proves the
theorem. □

This theorem says that an eigenvalue of A24 with free multiplicity corresponds
to a simple solution at x0 = x1 = x3 which is the origin in (x, y) coordinate. Hence
at the origin we have pq independent simple solutions of the KZ equation with the
Riemann scheme (88) if the parameters are generic.

Remark 7.4. The space of local solutions at a normally crossing singular point
defined by xi = xj and xs = xt under the above notation is spanned by simple
solutions if the parameters are generic (cf. [KO]).

Remark 7.5. The transformation

O0 3 u =
∑

cm,nx
myn 7→ (1− x)−a(1− y)−bu =

∑
(a)i(b)jcm,nx

i+myj+n

induces the transformation (A02, A12) 7→ (A02 + a,A12 + b) of the equation (76).
Then the coefficients of the resulting power series may be complicated (cf. (40)).

Remark 7.6. The transformation of residue matrices induced by K̃λ
x , K̃

λ
y and

the K̃λ
x,y and the calculation of Riemann scheme (88) for given p, q and r etc. are

supported by the functions m2mc and mc2grs in the library [O7] of the computer
algebra Risa/Asir. For example, by the commands

R=os_md.mc2grs(0,["K",[4,3,2]]);

os_md.mc2grs(R,"get"|dviout=1,div=5);

we get (88) on a display in the case (p, q, r) = (4, 3, 2). This is enabled by using a
PDF file output by functions in the library under the computer algebra. Here div=5
indicates to divide the Riemann scheme by 5 columns into two parts as in (88)
and R is a list of simultaneous eigenspace decomposition at 15 normally crossing
singularities of the corresponding KZ equation. The algorithm for the calculation
is given by [O3, Theorem 7.1]. Moreover by the command

os_md.mc2grs(R,"rest"|dviout=1);

we get the Riemann scheme of the induced equations on the 10 singular hypersur-
faces corresponding to eigenvalues of 10 residue matrices. If "spct" is indicated
in place of "rest", a table of spectral types with respect to the variables xi for
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i = 0, . . . , 4 and the indices of rigidities are displayed. If “dviout=-1” is indicated
in place of dviout=1, the result is given by a TEX source in place of displaying the
result on a screen. If “|dviout=1” is not indicated, the result is given in a format
recognized by Risa/Asir.

8. Fuchsian ordinary differential equations

In this section we consider a Fuchsian differential equation

N :
du

dx
=

Ay

x− y
u+

A1

x− 1
u+

A0

x
u(92)

with regular singularities at x = 0, 1, y and ∞. Here the residue matrices Ay, A1

and A0 are constant square matrices of size N . If (92) is irreducible and rigid or

dim
(
Z(Ay) ∩ Z(A1) ∩ Z(A0)

)
= 1(93)

and

dimZ(Ay) + dimZ(A1) + dimZ(A0) + dimZ(Ay +A1 +A0)− 2N2 = 2,(94)

the equation (92) is constructed by successive applications of middle convolutions
and additions to the trivial equation u′ = 0. Here Z(A) denotes the space of the
centralizer in M(N,C) for A ∈ M(N,C) and the left hand side of (94) is the index
of the rigidity of the equation. We note that middle convolutions can be replaced
by the transformation of equations induced by K̃µ

x with additions.
We assume that the equation (92) can be extended to the compatible equation

∂u

∂y
=

Ay

x− y
u+

B1

y − 1
u+

B0

y
u.(95)

If the equation (92) is rigid, it extends to the compatible equation and moreover if
the equation satisfies (93), the matrices B0 and B1 are uniquely determined by (92)
up to the difference of scalar matrices. We can apply the transformations induced
by K̃µ

y and K̃µ
x,y to (92). Note that these transformations may change the index of

rigidity as was shown in the last section.
The transformations induced by K̃µ

x , K̃
µ
y and K̃µ

x,y are given by the following
(96), (97) and (98), respectively, with calculating the induced matrices of the residue
matrices on C3N/L.

dũ

dx
=

(
Ay+µ A1 A0

0 0 0
0 0 0

)
x− y

ũ+

(
0 0 0
Ay A1+µ A0

0 0 0

)
x− 1

ũ+

(
−µ 0 0
0 −µ 0
Ay A1 A0

)
x

ũ,

L =

(
kerAy

kerA1

kerA0

)
+ ker

(
Ay+µ A1 A0

Ay A1+µ A0

Ay A1 A0+µ

)
,

(96)

dũ

dx
=

(
Ay+µ B1 B0

0 0 0
0 0 0

)
x− y

ũ+

(
A1+B1 −B1 0
−Ay A1+Ay 0
0 0 A1

)
x− 1

ũ+

(
A0+B0 0 −B0

0 A0 0
−Ay 0 A0+Ay

)
x

ũ,

L =

(
kerAy

kerB1

kerB0

)
+ ker

(
Ay+µ B1 B0

By A1+µ B0

By A1 B0+µ

)
,

(97)

dũ

dx
=

(
Ay+A1 −A1 0
−B1 Ay+B1 0
0 0 Ay

)
x− y

ũ+

(
0 0 0
B1 A1+µ A24

0 0 0

)
x− 1

ũ+

(
A0 A1 0
0 A14−µ 0
0 A1 A0

)
x

ũ,

L =

(
kerB1

kerA1

kerA24

)
+ ker

(
B1+µ A1 A24

B1 A1+µ A24

B1 A1 A24+µ

)
.

(98)
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Here

A14 = −Ay −B0 −B1,

A24 = −(A02 +A12 +A23) = (A01 +A02 +A03 +A12 +A13)−A02 −A12

= A01 +A03 +A13 = Ay +A0 +B0.
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