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Introduction

Many commuting families of differential operators or completely integrable quan-
tum systems have been constructed in connection with root systems (cf. [OP2] and
references therein). Such families often have a certain symmetry in coordinates.

The radial parts of invariant differential operators on symmetric spaces give a
good example of a commuting family of differential operators (cf. [HC]). In this case
some parameters take only some discrete values determined by the dimensions of
the root spaces for the symmetric spaces. On the other hand, [Sj] generalized them
to complex parameters for the root system of type An. The same generalization
was given by [H1], [H2], [HO], [Op1], [Op2] for general root systems. If the root
system is of classical type, their operators give examples of the commuting families
studied in this note (cf. Remark 3 iii)). Namely we shall determine all the families
under the assumption of a symmetry in coordinates.

Let W be the Weyl group of type An−1 with n ≥ 3 or of type Bn with n ≥ 2
or of type Dn with n ≥ 4. We identify W with the group of the coordinate
transformations

(x1, . . . , xn) 7→ (ε1xσ(1), . . . , εnxσ(n))

of Rn, where σ are the elements of the n-th symmetric group Sn and ε1 = · · · = εn = 1 if W is of type An−1,
ε1 = ±1, · · · , εn = ±1 if W is of type Bn,
ε1 = ±1, · · · , εn = ±1 and #{i ; εi = −1} is even if W is of type Dn.

We examine the Laplacian

P = −1

2

∑
1≤j≤n

∂2

∂x2j
+ V (x)

on Rn with a W -invariant potential V (x) which has enough W -invariant commut-
ing differential operators. To be precise we assume that there exist W -invariant
differential operators P1, . . . , Pn with

P ∈ C[P1, . . . , Pn]
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and
[Pi, Pj ] = 0 for 1 ≤ i < j ≤ n

such that

Pj =
∑

1≤i1<···<ij≤n

∂i1 · · · ∂ij +Rj with ordRj < j for 1 ≤ j ≤ n

or

Pj =
∑

1≤i1<···<ij≤n

∂2i1 · · · ∂
2
ij +Rj with ordRj < 2j for 1 ≤ j ≤ n

or 
Pn = ∂1 · · · ∂n +Rn with ordRn < n,

Pj =
∑

1≤i1<···<ij≤n

∂2i1 · · · ∂
2
ij +Rj with ordRj < 2j for 1 ≤ j ≤ n− 1,

if the type of W is An−1 or Bn or Dn, respectively. Here C[P1, . . . , Pn] is the
commutative algebra over C generated by P1, . . . , Pn and for simplicity we put
∂i =

∂
∂xi

and ordRj are the orders of differential operators Rj .
In this note, we assume that the coefficients of the differential operators are

extended to holomorphic functions on a Zariski open subset Ω′ of an open connected
neighborhood Ω of the origin of the complexification Cn of Rn. Namely there exists
a non-zero holomorphic function ϕ on Ω with Ω′ = {x ∈ Ω ; ϕ(x) ̸= 0}.

Determination of the commuting families

The first theorem says that the potential V (x) is only allowed to be a special
function.

Theorem 1. Under the assumption in the introduction, we can conclude

V (x) =
∑

1≤i<j≤n

u(xi − xj) if W is of type An−1,

V (x) =
∑

1≤i<j≤n

(
u(xi − xj) + u(xi + xj)

)
+

∑
1≤j≤n

v(xj) if W is of type Bn,

V (x) =
∑

1≤i<j≤n

(
u(xi − xj) + u(xi + xj)

)
if W is of type Dn.

Here u(t) and v(t) are following functions with complex numbers C1, C2, . . . :
If W is of type An−1 with n ≥ 3,

(1) u(t) = C1℘(t) + C2.

If W is of type Bn with n ≥ 3,

(2)

u(t) = C1℘(t) + C2,

v(t) =
C3℘(t)

4 + C4℘(t)
3 + C5℘(t)

2 + C6℘(t) + C7

℘′(t)2
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or

(3) u(t) = C1t
−2 + C2t

2 + C3 and v(t) = C4t
−2 + C5t

2 + C6

or

(4) u(t) = C1 and v(t) is any even function.

If W is of type Dn with n ≥ 4, then u is (2) or (3).
If W is of type B2, then (u(t), v(t)) is (2) or (3) or (4) oru(t) =

C3℘(
t
2 )

4 + C4℘(
t
2 )

3 + C5℘(
t
2 )

2 + C6℘(
t
2 ) + C7

℘′( t2 )
2

,

v(t) = C1℘(t) + C2

(5)

or 
u(t) = C1℘(t) + C2

(
℘( t2 )− e3

)2
℘′( t2 )

2
+ C3,

v(t) = C4℘(t) +
C5

℘(t)− e3
+ C6

(6)

or

(7) v(t) = C1 and u(t) is any even function.

In the above theorem, ℘(t) is the Weierstrass elliptic function ℘(t|2ω1, 2ω2) with
primitive half-periods ω1 and ω2 which are allowed to be infinity and e3 is a complex
number satisfying ℘′2 = 4(℘− e1)(℘− e2)(℘− e3) (cf. [WW]). In particular

℘(t|
√
−1π,∞) = sinh−2 t+ 1

3 and ℘(t|∞,∞) = t−2.

Then we note that (u(t), v(t)) in (2) has 9 complex parameters including the periods.

Theorem 2. i) If W is of type Bn, the expression of V (x) by u and v is not unique
and then we may assume that the coefficient of ∂1∂2 of P2 equals 2u(x1 − x2) −
2u(x1 + x2) without changing the commuting algebra C[P1, . . . , Pn].

ii) If W is not of type An−1 or if W is of type An−1 and ordR3 < 2, then
C[P1, . . . , Pn] is uniquely determined by u or (u, v).

iii) The commuting differential operators P1, . . . , Pn exist for P with the poten-
tial V (x) defined by u and v of the form (1), (2), (4), (5), (6) and (7) according to
the type of W , where C1, . . . are any complex numbers.

If W is of type An−1, the commuting differential operators are given by

Pk =
∑

0≤j≤[ k2 ]

1

2jj!(k − 2j)!

∑
σ∈Sn

σ
(
u(x1 − x2)u(x3 − x4) · · ·

· u(x2j−1 − x2j)∂2j+1∂2j+2 · · · ∂k
)
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for k = 1, . . . , n (cf. [OP2] and [OS]).
If W is of type Bn and

u(t) = C5℘(t), v(t) =
4∑

j=1

Cj℘(t+ ωj)−
C0

2

with complex numbers C0, . . . , C5 and ω3 = −(ω1 + ω2) and ω4 = 0, then the
commuting operators are given by

Pn(C0) =
n∑

k=0

1

k!(n− k)!

∑
σ∈Sn

σ
(
q{1,... ,k}∆

2
{k+1,... ,n}

)
(cf. [O]), where

∆{1,... ,k} =
∑

0≤j≤[ k2 ]

1

2k−jj!(k − 2j)!

∑
w∈W (Bk)

ε(w)w
(
u(x1 − x2)u(x3 − x4) · · ·

· u(x2j−1 − x2j)∂2j+1∂2j+2 · · · ∂k
)
,

q{1,... ,k} =
∑

I1⨿···⨿Iν={1,... ,k}

TI1 · · ·TIν , q∅ = 1,

T{1,... ,k} = (−C5)
k−1

(C0

2
T 0
{1,... ,k}(1)−

4∑
j=1

CjT
0
{1,... ,k}(℘(t+ ωj))

)
,

T 0
{1,... ,k}(ψ) =

∑
I1⨿···⨿Iν={1,... ,k}

(−1)ν−1(ν − 1)!SI1(ψ) · · ·SIν (ψ),

S{1,... ,k}(ψ) =
∑

w∈W (Bk)

w
(
ψ(x1)℘(x1 − x2)℘(x2 − x3) · · ·℘(xk−1 − xk)

)
.

Here W (Bk) and W (Dk) are the Weyl groups of type Bk and Dk, respectively,
W (Bk) and W (Dk) and Sk are realized as groups of coordinate transformations
of Rk. For w ∈ W (Bk), ε(w) = 1 if w ∈ W (Dk) and −1 otherwise, the sums for
I1, . . . , Iν run over all the partitions of {1, . . . , k}, and for a subset I of {1, . . . , n},
we define ∆I = σ(∆{1,... ,k}) etc. by σ ∈ Sn and k = #I with σ({1, . . . , k}) = I.

Expanding Pn(C0) into a polynomial function of the parameter C0, the oper-

ators Pj are given by the coefficients of Cn−j
0 in the expansion. In fact we have

[Pn(C0), Pn(C
′
0)] = 0.

If W is of type Dn, we have only to put C1 = C2 = C3 = C4 = 0 and Pn =
∆{1,... ,n} in the above definition. See [OO] for other cases of type B2.

Remark 3. i) If (u, v) is of the form (3), Pj do not exist in general and we need
operators of higher order (cf. [OP2]).

ii) If (u, v) is given by (4), then C[P1, . . . , Pn] equals the totality of Sn-invariants
in C[− 1

2∂
2
1 + v(x1), . . . ,− 1

2∂
2
n + v(xn)].

iii) If 2ω1 =
√
−1λ−1π and ω2 = ∞ with λ ̸= 0, (2) is reduced to{

u(t) = C ′
1 sinh

−2 λt+ C ′
2,

v(t) = C ′
3 sinh

−2 λt+ C ′
4 sinh

−2 2λt+ C ′
5 sinh

2 λt+ C ′
6 sinh

2 2λt+ C ′
7.
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The commuting differential operators studied by Heckman-Opdam correspond to
this case with C ′

5 = C ′
6 = 0. Moreover if ω1 = ω2 = ∞, then (2) is reduced to{
u(t) = C ′

1t
−2 + C ′

2,
v(t) = C ′

3t
−2 + C ′

4t
2 + C ′

5t
4 + C ′

6t
6 + C ′

7.

iv) Some results stated in this note were announced in [Sh]. The precise state-
ments and arguments will be given in [OS], [O] and [OO].

v) Replacing ∂i, xj , [ , ] and ord by
√
−1pi, qj , the Poisson bracket { , }

and the degree for p, respectively, we have the same statements as in Theorem 1
and Theorem 2, and moreover the operators P1, . . . , Pn give the integrals of the
Hamiltonian corresponding to the Laplacian P (cf. [OP1] for completely integrable
classical systems).
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KôkyûRoku 816 (1992), 155-168. (Japanese)

[WW] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Fourth Edition, Cam-

bridge University Press, 1927.

5


