COMMUTING FAMILIES OF SYMMETRIC DIFFERENTIAL OPERATORS

HIROYUKI OCHIAI^{**}, TOSHIO OSHIMA^{***} AND HIDEKO SEKIGUCHI^{***}

INTRODUCTION

Many commuting families of differential operators or completely integrable quantum systems have been constructed in connection with root systems (cf. [OP2] and references therein). Such families often have a certain symmetry in coordinates.

The radial parts of invariant differential operators on symmetric spaces give a good example of a commuting family of differential operators (cf. [HC]). In this case some parameters take only some discrete values determined by the dimensions of the root spaces for the symmetric spaces. On the other hand, [Sj] generalized them to complex parameters for the root system of type A_n . The same generalization was given by [H1], [H2], [HO], [Op1], [Op2] for general root systems. If the root system is of classical type, their operators give examples of the commuting families studied in this note (cf. Remark 3 iii)). Namely we shall determine all the families under the assumption of a symmetry in coordinates.

Let W be the Weyl group of type A_{n-1} with $n \ge 3$ or of type B_n with $n \ge 2$ or of type D_n with $n \ge 4$. We identify W with the group of the coordinate transformations

$$(x_1,\ldots,x_n)\mapsto (\varepsilon_1x_{\sigma(1)},\ldots,\varepsilon_nx_{\sigma(n)})$$

of \mathbb{R}^n , where σ are the elements of the *n*-th symmetric group \mathfrak{S}_n and

 $\begin{cases} \varepsilon_1 = \dots = \varepsilon_n = 1 & \text{if } W \text{ is of type } A_{n-1}, \\ \varepsilon_1 = \pm 1, \dots, \varepsilon_n = \pm 1 & \text{if } W \text{ is of type } B_n, \\ \varepsilon_1 = \pm 1, \dots, \varepsilon_n = \pm 1 \text{ and } \#\{i; \varepsilon_i = -1\} \text{ is even } & \text{if } W \text{ is of type } D_n. \end{cases}$

We examine the Laplacian

$$P = -\frac{1}{2} \sum_{1 \le j \le n} \frac{\partial^2}{\partial x_j^2} + V(x)$$

on \mathbb{R}^n with a W-invariant potential V(x) which has enough W-invariant commuting differential operators. To be precise we assume that there exist W-invariant differential operators P_1, \ldots, P_n with

$$P \in \mathbb{C}[P_1, \ldots, P_n]$$

^{*)}Department of Mathematics, Rikkyo University

^{**)}Department of Mathematical Sciences, University of Tokyo

and

$$[P_i, P_j] = 0$$
 for $1 \le i < j \le n$

such that

$$P_j = \sum_{1 \le i_1 < \dots < i_j \le n} \partial_{i_1} \cdots \partial_{i_j} + R_j \text{ with } \operatorname{ord} R_j < j \text{ for } 1 \le j \le n$$

or

$$P_j = \sum_{1 \le i_1 < \dots < i_j \le n} \partial_{i_1}^2 \cdots \partial_{i_j}^2 + R_j \text{ with } \operatorname{ord} R_j < 2j \text{ for } 1 \le j \le n$$

or

$$\begin{cases} P_n = \partial_1 \cdots \partial_n + R_n & \text{with } \text{ ord } R_n < n, \\ P_j = \sum_{1 \le i_1 < \cdots < i_j \le n} \partial_{i_1}^2 \cdots \partial_{i_j}^2 + R_j & \text{with } \text{ ord } R_j < 2j & \text{for } 1 \le j \le n-1, \end{cases}$$

if the type of W is A_{n-1} or B_n or D_n , respectively. Here $\mathbb{C}[P_1, \ldots, P_n]$ is the commutative algebra over \mathbb{C} generated by P_1, \ldots, P_n and for simplicity we put $\partial_i = \frac{\partial}{\partial x_i}$ and ord R_j are the orders of differential operators R_j .

In this note, we assume that the coefficients of the differential operators are extended to holomorphic functions on a Zariski open subset Ω' of an open connected neighborhood Ω of the origin of the complexification \mathbb{C}^n of \mathbb{R}^n . Namely there exists a non-zero holomorphic function ϕ on Ω with $\Omega' = \{x \in \Omega; \phi(x) \neq 0\}$.

DETERMINATION OF THE COMMUTING FAMILIES

The first theorem says that the potential V(x) is only allowed to be a special function.

Theorem 1. Under the assumption in the introduction, we can conclude

$$V(x) = \sum_{1 \le i < j \le n} u(x_i - x_j)$$
 if W is of type A_{n-1} ,

$$V(x) = \sum_{1 \le i < j \le n} \left(u(x_i - x_j) + u(x_i + x_j) \right) + \sum_{1 \le j \le n} v(x_j)$$
 if W is of type B_n ,

$$V(x) = \sum_{1 \le i < j \le n} \left(u(x_i - x_j) + u(x_i + x_j) \right)$$
 if W is of type D_n .

Here u(t) and v(t) are following functions with complex numbers C_1, C_2, \ldots : If W is of type A_{n-1} with $n \ge 3$,

(1)
$$u(t) = C_1 \wp(t) + C_2.$$

If W is of type B_n with $n \ge 3$,

(2)
$$\begin{cases} u(t) = C_1 \wp(t) + C_2, \\ v(t) = \frac{C_3 \wp(t)^4 + C_4 \wp(t)^3 + C_5 \wp(t)^2 + C_6 \wp(t) + C_7}{\wp'(t)^2} \end{cases}$$

or

(3)
$$u(t) = C_1 t^{-2} + C_2 t^2 + C_3$$
 and $v(t) = C_4 t^{-2} + C_5 t^2 + C_6$

or

(4)
$$u(t) = C_1$$
 and $v(t)$ is any even function.

If W is of type D_n with $n \ge 4$, then u is (2) or (3). If W is of type B_2 , then (u(t), v(t)) is (2) or (3) or (4) or

(5)
$$\begin{cases} u(t) = \frac{C_3 \wp(\frac{t}{2})^4 + C_4 \wp(\frac{t}{2})^3 + C_5 \wp(\frac{t}{2})^2 + C_6 \wp(\frac{t}{2}) + C_7}{\wp'(\frac{t}{2})^2}, \\ v(t) = C_1 \wp(t) + C_2 \end{cases}$$

or

(6)
$$\begin{cases} u(t) = C_1 \wp(t) + C_2 \frac{\left(\wp(\frac{t}{2}) - e_3\right)^2}{\wp'(\frac{t}{2})^2} + C_3, \\ v(t) = C_4 \wp(t) + \frac{C_5}{\wp(t) - e_3} + C_6 \end{cases}$$

or

(7)
$$v(t) = C_1$$
 and $u(t)$ is any even function.

In the above theorem, $\wp(t)$ is the Weierstrass elliptic function $\wp(t|2\omega_1, 2\omega_2)$ with primitive half-periods ω_1 and ω_2 which are allowed to be infinity and e_3 is a complex number satisfying $\wp'^2 = 4(\wp - e_1)(\wp - e_2)(\wp - e_3)$ (cf. [WW]). In particular

$$\wp(t|\sqrt{-1}\pi,\infty) = \sinh^{-2}t + \tfrac{1}{3} \quad \text{and} \quad \wp(t|\infty,\infty) = t^{-2}.$$

Then we note that (u(t), v(t)) in (2) has 9 complex parameters including the periods.

Theorem 2. i) If W is of type B_n , the expression of V(x) by u and v is not unique and then we may assume that the coefficient of $\partial_1 \partial_2$ of P_2 equals $2u(x_1 - x_2) - 2u(x_1 + x_2)$ without changing the commuting algebra $\mathbb{C}[P_1, \ldots, P_n]$.

ii) If W is not of type A_{n-1} or if W is of type A_{n-1} and $\operatorname{ord} R_3 < 2$, then $\mathbb{C}[P_1, \ldots, P_n]$ is uniquely determined by u or (u, v).

iii) The commuting differential operators P_1, \ldots, P_n exist for P with the potential V(x) defined by u and v of the form (1), (2), (4), (5), (6) and (7) according to the type of W, where C_1, \ldots are any complex numbers.

If W is of type A_{n-1} , the commuting differential operators are given by

$$P_{k} = \sum_{0 \le j \le [\frac{k}{2}]} \frac{1}{2^{j} j! (k-2j)!} \sum_{\sigma \in \mathfrak{S}_{n}} \sigma \left(u(x_{1}-x_{2})u(x_{3}-x_{4}) \cdots u(x_{2j-1}-x_{2j})\partial_{2j+1}\partial_{2j+2} \cdots \partial_{k} \right)$$

for k = 1, ..., n (cf. [OP2] and [OS]).

If W is of type B_n and

$$u(t) = C_5 \wp(t), \quad v(t) = \sum_{j=1}^4 C_j \wp(t+\omega_j) - \frac{C_0}{2}$$

with complex numbers C_0, \ldots, C_5 and $\omega_3 = -(\omega_1 + \omega_2)$ and $\omega_4 = 0$, then the commuting operators are given by

$$P_n(C_0) = \sum_{k=0}^n \frac{1}{k!(n-k)!} \sum_{\sigma \in \mathfrak{S}_n} \sigma\Big(q_{\{1,\dots,k\}} \Delta^2_{\{k+1,\dots,n\}}\Big)$$

(cf. [O]), where

$$\begin{split} \Delta_{\{1,\dots,k\}} &= \sum_{0 \le j \le [\frac{k}{2}]} \frac{1}{2^{k-j} j! (k-2j)!} \sum_{w \in W(B_k)} \varepsilon(w) w \Big(u(x_1 - x_2) u(x_3 - x_4) \cdots \\ & \cdot u(x_{2j-1} - x_{2j}) \partial_{2j+1} \partial_{2j+2} \cdots \partial_k \Big), \\ q_{\{1,\dots,k\}} &= \sum_{I_1 \amalg \cdots \amalg I_{\nu} = \{1,\dots,k\}} T_{I_1} \cdots T_{I_{\nu}}, \quad q_{\varnothing} = 1, \\ T_{\{1,\dots,k\}} &= (-C_5)^{k-1} \Big(\frac{C_0}{2} T^0_{\{1,\dots,k\}} (1) - \sum_{j=1}^4 C_j T^0_{\{1,\dots,k\}} (\wp(t+\omega_j)) \Big), \\ T^0_{\{1,\dots,k\}} (\psi) &= \sum_{I_1 \amalg \cdots \amalg I_{\nu} = \{1,\dots,k\}} (-1)^{\nu-1} (\nu-1)! S_{I_1}(\psi) \cdots S_{I_{\nu}}(\psi), \\ S_{\{1,\dots,k\}} (\psi) &= \sum_{w \in W(B_k)} w \Big(\psi(x_1) \wp(x_1 - x_2) \wp(x_2 - x_3) \cdots \wp(x_{k-1} - x_k) \Big). \end{split}$$

Here $W(B_k)$ and $W(D_k)$ are the Weyl groups of type B_k and D_k , respectively, $W(B_k)$ and $W(D_k)$ and \mathfrak{S}_k are realized as groups of coordinate transformations of \mathbb{R}^k . For $w \in W(B_k)$, $\varepsilon(w) = 1$ if $w \in W(D_k)$ and -1 otherwise, the sums for I_1, \ldots, I_{ν} run over all the partitions of $\{1, \ldots, k\}$, and for a subset I of $\{1, \ldots, n\}$, we define $\Delta_I = \sigma(\Delta_{\{1,\ldots,k\}})$ etc. by $\sigma \in \mathfrak{S}_n$ and k = #I with $\sigma(\{1,\ldots,k\}) = I$.

Expanding $P_n(C_0)$ into a polynomial function of the parameter C_0 , the operators P_j are given by the coefficients of C_0^{n-j} in the expansion. In fact we have $[P_n(C_0), P_n(C'_0)] = 0.$

If W is of type D_n , we have only to put $C_1 = C_2 = C_3 = C_4 = 0$ and $P_n =$ $\Delta_{\{1,\ldots,n\}}$ in the above definition. See [OO] for other cases of type B_2 .

Remark 3. i) If (u, v) is of the form (3), P_j do not exist in general and we need operators of higher order (cf. [OP2]).

ii) If (u, v) is given by (4), then $\mathbb{C}[P_1, \ldots, P_n]$ equals the totality of \mathfrak{S}_n -invariants in $\mathbb{C}[-\frac{1}{2}\partial_1^2 + v(x_1), \dots, -\frac{1}{2}\partial_n^2 + v(x_n)].$ iii) If $2\omega_1 = \sqrt{-1}\lambda^{-1}\pi$ and $\omega_2 = \infty$ with $\lambda \neq 0$, (2) is reduced to

$$\begin{cases} u(t) = C'_{1} \sinh^{-2} \lambda t + C'_{2}, \\ v(t) = C'_{3} \sinh^{-2} \lambda t + C'_{4} \sinh^{-2} 2\lambda t + C'_{5} \sinh^{2} \lambda t + C'_{6} \sinh^{2} 2\lambda t + C'_{7}. \end{cases}$$

The commuting differential operators studied by Heckman-Opdam correspond to this case with $C'_5 = C'_6 = 0$. Moreover if $\omega_1 = \omega_2 = \infty$, then (2) is reduced to

$$\begin{cases} u(t) = C_1' t^{-2} + C_2', \\ v(t) = C_3' t^{-2} + C_4' t^2 + C_5' t^4 + C_6' t^6 + C_7'. \end{cases}$$

iv) Some results stated in this note were announced in [Sh]. The precise statements and arguments will be given in [OS], [O] and [OO].

v) Replacing ∂_i , x_j , [,] and ord by $\sqrt{-1}p_i$, q_j , the Poisson bracket $\{, \}$ and the degree for p, respectively, we have the same statements as in Theorem 1 and Theorem 2, and moreover the operators P_1, \ldots, P_n give the integrals of the Hamiltonian corresponding to the Laplacian P (cf. [OP1] for completely integrable classical systems).

References

- [HC] Harish-Chandra, Representations of semisimple Lie groups IV, Amer. J. Math. 77 (1955), 743-777.
- [H1] G. J. Heckman, Root system and hypergeometric functions II, Comp. Math. 64 (1987), 353-373.
- [H2] _____, An elementary approach to the hypergeometric shift operators of Opdam, Invent. Math. 103 (1991), 341-350.
- [HO] G. J. Heckman and E. M. Opdam, Root system and hypergeometric functions I, Comp. Math. 64 (1987), 329-352.
- [O] T. Oshima, Completely integrable systems with a symmetry in coordinates, preprint, 1994, UTMS 94-6, Dept. of Mathematical Sciences, Univ. of Tokyo.
- [OO] H. Ochiai and T. Oshima, Commuting families of differential operators invariant under the action of a Weyl group II, in preparation.
- [Op1] E. M. Opdam, Root system and hypergeometric functions III, Comp. Math. 67 (1988), 21-49.
- [Op2] _____, Root system and hypergeometric functions IV, Comp. Math. 67 (1988), 191-209.
- [OP1] M. A. Olshanetsky and A. M. Perelomov, Classical integrable finite dimensional systems related to Lie algebras, Phys. Rep. 71 (1981), 313-400.
- [OP2] _____, Quantum integrable systems related to Lie algebras, Phys. Rep. **94** (1983), 313-404.
- [OS] T. Oshima and H. Sekiguchi, Commuting families of differential operators invariant under the action of a Weyl group, preprint, 1993, UTMS 93-43, Dept. of Mathematical Sciences, Univ. of Tokyo.
- [Sj] J. Sekiguchi, Zonal spherical functions on some symmetric spaces, Rubl. RIMS Kyoto Univ. 12 Suppl. (1977), 455-459.
- [Sh] H. Sekiguchi, Radial parts of Casimir operators on semisimple symmetric spaces, RIMS KôkyûRoku 816 (1992), 155-168. (Japanese)
- [WW] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Fourth Edition, Cambridge University Press, 1927.