STABLE HYPERPLANE ARRANGEMENTS

TOSHIO OSHIMA

Abstract. We classify complex hyperplane arrangements \mathcal{A} whose intersection posets $L(\mathcal{A})$ satisfy $L(\mathcal{A}) = \pi_i^{-1} \circ \pi_i \big(L(\mathcal{A}) \big)$ for $i = 1, \ldots, n$. Here π_i denotes the projection from \mathbb{C}^n onto \mathbb{C}^{n-1} that forgets the coordinate x_i of $(x_1, \ldots, x_n) \in \mathbb{C}^n$, and $\pi_i \big(L(\mathcal{A}) \big) = \{\pi_i(S) \mid S \in L(\mathcal{A})\}$. We show that such arrangements \mathcal{A} arise as pullbacks of the mirror hyperplanes of complex reflection groups of type A or B.

1. Introduction

Let \mathcal{A} be a hyperplane arrangement in $V = \mathbb{C}^n$. That is, \mathcal{A} is a finite union of hyperplanes:

 $A \ni H := \{f_H(x) = 0 \mid x \in V\}$ where each $f_H(x)$ is a polynomial of degree 1.

If $0 \in H$ for every $H \in \mathcal{A}$, we say that \mathcal{A} is homogeneous.

Definition 1.1. We denote by L(A), or simply by \mathcal{L} , the set or poset of affine subspaces of V obtained as intersections of hyperplanes in A

$$\mathcal{L} = L(\mathcal{A}) := \Big\{ \bigcap_{H \in \mathcal{B}} H \neq \emptyset \mid \mathcal{B} \subset \mathcal{A} \Big\}$$

and put

$$\mathcal{L}^{(k)} = L(\mathcal{A})^{(k)} := \{ S \in L(\mathcal{A}) \mid \operatorname{codim} S = k \}, \quad \mathcal{L}^{(0)} = \{ V \}, \quad \mathcal{L}^{(1)} = \mathcal{A}.$$

For affine subspaces $S, S' \in \mathcal{L}$, we define

$$\begin{split} \mathcal{L}_{\subset S}^{(k)} &= L_{\subset S}^{(k)}(\mathcal{A}) := \{ T \in \mathcal{L}^{(k)} \mid T \subset S \}, \\ \mathcal{L}_{\supset S}^{(k)} &= L_{\supset S}^{(k)}(\mathcal{A}) := \{ T \in \mathcal{L}^{(k)} \mid T \supset S \}, \\ \mathcal{A}_{S} &:= \mathcal{L}_{\supset S}^{(1)} = \{ H \in \mathcal{A} \mid H \supset S \}. \end{split}$$

For a non-zero vector $v \in V$ and $S, S' \in \mathcal{L}$, we define

$$\langle v, S \rangle := \{ tv + y \mid t \in \mathbb{C}, \ y \in S \},$$

$$\mathcal{A}_v := \{ H \in \mathcal{A} \mid \langle v, H \rangle = V \},$$

$$\mathcal{A}_v^c := \mathcal{A} \setminus \mathcal{A}_v,$$

$$\operatorname{mc}_v \mathcal{A} := \mathcal{A} \cup \{ \langle v, S \rangle \mid \operatorname{codim} \langle v, S \rangle = 1, \ S \in L(\mathcal{A})^{(2)} \}.$$

$$H_1$$

$$H_2$$

$$H_3$$

We call $mc_v \mathcal{A}$ the *convolution* of \mathcal{A} by v.

Remark 1.2. (i) When we fix a coordinate $x = (x_1, \ldots, x_n)$ on \mathbb{C}^n , the *i*-th standard

basis $e_i := (0, \dots, 0, 1, 0, \dots, 0)$ will occasionally be denoted by x_i for brevity.

(ii) Let
$$S = H \cap H' \in \mathcal{L}^{(2)}$$
 with $H, H' \in \mathcal{A}$. Suppose

$$H = \{x \in \mathbb{C}^n \mid c_1 x_1 + \dots + c_n x_n + c = 0\}$$
 and $H' = \{x \in \mathbb{C}^n \mid c_1' x_1 + \dots + c_n' x_n + c' = 0\}.$

2020 Mathematics Subject Classification. Primary 52C35.

Key words and phrases. hyperplane arrangement, middle convolution, Pfaffian system.

Then $H \in \mathcal{A}_{x_i}$ if and only if $c_i \neq 0$. If $H, H' \in \mathcal{A}_{x_i}^c$, then $\langle x_i, S \rangle = S$.

If $H \in \mathcal{A}_{x_i}$ and $H' \in \mathcal{A}_{x_i}^c$, then $\langle x_i, S \rangle = H'$.

If $H, H' \in \mathcal{A}_{x_i}$, then

$$\langle x_i, S \rangle = \{ x \in \mathbb{C}^n \mid c_i'(c_1x_1 + \dots + c_nx_n + c) = c_i(c_1'x_1 + \dots + c_n'x_n + c') \}.$$

Definition 1.3. A non-zero vector $v \in V$ is said to be parallel to $S \in L(A)$, or equivalently that S is called v-closed if and only if $\langle v, S \rangle = S$. If $\langle v, S \rangle \neq S$, v is transversal to S.

 \mathcal{A} is called v-closed if and only if $\langle v, S \rangle \in L(\mathcal{A})$ for every $S \in L(\mathcal{A})^{(2)}$.

If there exist n linearly independent vectors $v_1, \ldots, v_n \in \mathbb{C}^n$ such that \mathcal{A} is v_i closed for each i, we say that \mathcal{A} is *stable*. Equivalently, in the coordinate system
defined by $\{v_i\}$ we have

$$\operatorname{mc}_{x_i} \mathcal{A} = \mathcal{A}$$
 $(i = 1, \dots, n).$

Example 1.4. (i) The braid arrangement

$$\mathcal{A} = \bigcup_{1 \le i < j \le n} \{ (x_1, \dots, x_n) \in \mathbb{C}^n \mid x_i = x_j \}$$

is a stable hyperplane arrangement, which corresponds to mirror hyperplanes of the reflection group of type A_{n-1} .

(ii) The arrangement of mirror hyperplanes of the reflection group of type D_n

$$A = \{x_i = \pm x_j \mid 1 \le i < j \le n\} \quad (n \ge 4)$$

is not stable, which is contained in the stable hyperplane arrangement of type B_n

$$\tilde{\mathcal{A}} = \mathcal{A} \cup \{x_i = 0 \mid 1 \le i \le n\}.$$

(iii) Under the coordinate system
$$(x,y)$$
 of \mathbb{C}^2 , $\mathcal{A} = \{\{x = y\}, \ \{x + y = 1\}, \ \{x + y = 2\}\} \subset \mathbb{C}^2$, $\mathcal{L}^{(2)} = \{(\frac{1}{2}, \frac{1}{2}), \ (1,1)\},$ $\operatorname{mc}_x \mathcal{A} = \mathcal{A} \cup \{\{y = \frac{1}{2}\}, \ \{y = 1\}\}.$

There exists no stable arrangement $\tilde{\mathcal{A}}$ satisfying $\tilde{\mathcal{A}} \supset \mathcal{A}$.

The purpose of this paper is to give a classification of stable hyperplane arrangements. Moreover, in $\S4$, we determine the vectors v for which a stable hyperplane arrangement \mathcal{A} is v-closed. We note that the definition of stable arrangements shares features with that of fibre-type arrangements (cf. [1]).

Lastly in this introduction, we explain the motivation for this paper.

A Pfaffian system with logarithmic singularities along hypersurface arrangement A is given by

(1.1)
$$\mathcal{M}: du = \Omega u, \ \Omega = \sum_{H \in \mathcal{A}} A_H d \log f_H \quad (\Omega \wedge \Omega = 0)$$

where A_H are constant square matrices of size N and u is a vector of N unknown functions Each A_H is called the *residue matrix* of \mathcal{M} along H, and the condition $\Omega \wedge \Omega = 0$ is the integrability condition of \mathcal{M} . Then the convolution of \mathcal{M} with respect to the variable x_i and a parameter $\mu \in \mathbb{C}$ produces a new Pfaffian system

(1.2)
$$\widehat{\mathcal{M}} = \widehat{\mathrm{mc}}_{x_i,\mu} \mathcal{M} : d\widehat{u} = \widehat{\Omega}\widehat{u}, \ \widehat{\Omega} = \sum_{H \in \mathrm{mc}_{x_i} \mathcal{A}} \widehat{A}_H d\log f_H.$$

The middle convolution $\operatorname{mc}_{x_i,\mu} \mathcal{M}$ of \mathcal{M} is defined (see [3]) as an irreducible quotient of $\widehat{\mathcal{M}}$, and the corresponding transformation of solutions is realized by a Riemann-Liouville integral. Here the middle convolution of \mathcal{M} generalizes the operation introduced for ordinary differential equations in [4, 2]. An addition of \mathcal{M} is the

transformation induced by the gauge change $u \mapsto (\prod_{H \in \mathcal{A}} f_H^{\lambda_H})u$ with parameters $\lambda_H \in \mathbb{C}$. A wide class of systems can be generated from a given system by successive additions and middle convolutions. For example, any Fuchsian ordinary differential equation without an accessory parameter can be obtained from the trivial equation u' = 0 (cf. [4]). In particular, applying convolution to an addition of the trivial system (with $A_H = 0$), for generic parameters λ_H , v, and μ , yields an irreducible Pfaffian system whose singular locus equals $mc_v \mathcal{A}$. If \mathcal{A} is stable, these transformations may be analyzed while keeping the singular locus fixed. When \mathcal{A} is the braid arrangement, the system is of KZ-type and the corresponding transformations were studied by [5]. The non-stable case will be treated in [6].

2. Classification of stable hyperplane arrangements

We first examine the property of being "v-closed," defined in the previous section, which will be used in [6].

Lemma 2.1. (i) Let $S \in \mathcal{L}$ and $T, T' \in \mathcal{L}_{\subset S}^{(\operatorname{codim} S + 1)}$ with $T \neq T'$. Then $\mathcal{A}_T \cap \mathcal{A}_{T'} = \mathcal{A}_S$.

- (ii) The arrangement $mc_v \mathcal{A}$ is v-closed.
- (iii) For $S \in \mathcal{L}$, the subspace S is v-closed if and only if $\mathcal{A}_S \subset \mathcal{A}_v^c$.
- (iv) Let $H \in \mathcal{A}_v$ and $S \in \mathcal{L}$. If S is v-closed, then $H \cap S \neq \emptyset$, and

$$\mathcal{A}_{H\cap S}\cap \mathcal{A}_v^c = \mathcal{A}_S.$$

(v) Assume that A is v-closed and that $S \in \mathcal{L}$ is not v-closed. Let $H \in \mathcal{A}_S \cap \mathcal{A}_v^c$. Then

(2.2)
$$S = H \cap \langle v, S \rangle \quad and \quad \langle v, S \rangle = \bigcap_{H' \in \mathcal{A}_S \cap \mathcal{A}_v^c} H'.$$

In particular, the poset \mathcal{L} is v-closed.

Proof. Let $T, T' \in \mathcal{L}_{\subset S}^{(\operatorname{codim} S + 1)}$. If there exists $H \in (\mathcal{A}_T \cap \mathcal{A}_{T'}) \setminus \mathcal{A}_S$, then $T, T' \subset H \cap S \subsetneq S$, which implies $T = T' = H \cap S$. This proves (i).

Let $H, H' \in \operatorname{mc}_v \mathcal{A}$ with $\operatorname{codim}\langle v, H \cap H' \rangle = 1$. If $H \notin \mathcal{A}$, then $\langle v, H \cap H' \rangle = H$, which proves (ii).

Let $H \in \mathcal{A}$. For any $y \in H$, we have $v + y \in H$ if and only if $H \in \mathcal{A}_v^c$. Hence $S \in \mathcal{L}$ is v-closed if and only if $\mathcal{A}_S \subset \mathcal{A}_v^c$, which establishes (iii).

Suppose that $H \in \mathcal{A}_v$ and $S \in \mathcal{L}$ is v-closed. Since $\langle v, H \rangle = \mathbb{C}^n$ and $\langle v, S \rangle = S$, it follows that $H \cap S \neq \emptyset$. Let $H' \in (\mathcal{A}_{H \cap S} \cap \mathcal{A}_v^c) \setminus \mathcal{A}_S$. Then $H' \cap S = H \cap S$ and $\mathcal{A}_{H' \cap S} \subset \mathcal{A}_v^c$, which contradicts the assumption that $H \in \mathcal{A}_{H \cap S}$. This completes the proof of (iv).

Under the assumption of (v), let $S \in \mathcal{L}^{(k)}$ with $k \geq 2$, and suppose $S = H \cap H_2 \cap \cdots \cap H_k$. Set $H'_j := \langle v, H \cap H_j \rangle \in \mathcal{A}^c_v$. Then $H \cap H_j = H \cap H'_j$ for $j = 2, \dots, k$. Hence $S = H \cap H'_2 \cap \cdots \cap H'_k$ and $\langle v, S \rangle = H'_2 \cap \cdots \cap H'_k$, which proves (v).

Remark 2.2. Under the projection

$$\pi_i: \mathbb{C}^n \to \mathbb{C}^{n-1}, \quad (x_1, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_n) \mapsto (x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n),$$

we have

$$L(\operatorname{mc}_{x_i} A) = L(A) \cup \bigcup_{S \in L(A)} \pi_i^{-1} (\pi_i(S)).$$

Hence A is stable if and only if

$$L(\mathcal{A}) = \pi_i^{-1}(\pi_i(L(\mathcal{A})))$$
 for all $i = 1, \dots, n$.

We now study the condition under which \mathcal{A} is x_i -closed. Throughout this section, a coordinate transformation of (x_1, \ldots, x_n) will usually mean a transformation of the form

$$(2.3) x_i \mapsto a_i x_{\sigma(i)} + b_i \quad (j = 1, \dots, n),$$

where $a_j, b_j \in \mathbb{C}$, $a_j \neq 0$, and σ is a permutation of the indices. Such transformations preserve stability.

Lemma 2.3. Suppose that A is stable. Then there exists a decomposition of the set of indices

(2.4)
$$\{1, \dots, n\} = \bigsqcup_{j=1}^{m} I_j$$

such that

$$A_{x_i} \cap A_{x_{i'}} \neq \emptyset$$
 if and only if there exists I_i with $i, i' \in I_i$.

Proof. Suppose that $A_{x_1} \cap A_{x_2} \neq \emptyset$, $A_{x_2} \cap A_{x_3} \neq \emptyset$, and $A_{x_1} \cap A_{x_2} \cap A_{x_3} = \emptyset$. Then

$$\{x_2 = c_1 x_1 + h_1(x_4, \dots, x_n)\}, \{x_2 = c_3 x_3 + h_3(x_4, \dots, x_n)\} \in \mathcal{A}$$

for some non-zero constants c_1 , c_3 and suitable functions h_1 and h_3 . Since \mathcal{A} is x_2 -closed, we have

$$A_{x_1} \cap A_{x_3} \ni \{c_1x_1 + h_1 = c_3x_3 + h_3\} \in A.$$

Thus, if $A_{x_i} \cap A_{x_j} \neq \emptyset$ and $A_{x_j} \cap A_{x_k} \neq \emptyset$, then $A_{x_i} \cap A_{x_k} \neq \emptyset$. This proves the lemma.

According to the decomposition (2.4), the arrangement A can be written as

(2.5)
$$\mathcal{A} = \bigcup_{1 \leq j \leq m} \bigcup_{H \in \mathcal{A}_j} \pi_j^{-1}(H),$$
$$\pi_j : \mathbb{C}^n \to \mathbb{C}^{\#I_j}, \quad (x_1, \dots, x_n) \mapsto (x_{\nu})_{\nu \in I_j},$$

where each A_j is a stable hyperplane arrangement in $\mathbb{C}^{\#I_j}$. Conversely, for a given decomposition (2.4), the arrangement A defined by (2.5) is stable if and only if each A_j is a stable hyperplane arrangement in $\mathbb{C}^{\#I_j}$.

To classify stable arrangements, we may assume that A is *indecomposable*; namely,

$$(2.6) \mathcal{A}_{x_i} \cap \mathcal{A}_{x_i} \neq \emptyset (1 \le i < j \le n).$$

We will give representatives of such arrangements under suitable coordinate transformations of the form (2.3).

Note that the following lemma is straightforward.

Lemma 2.4. Let $a, b \in \mathbb{C}$ with $a \neq 0$, and define

$$\pi: \mathbb{C}^n \to \mathbb{C}^{n-1}, \quad (x_1, \dots, x_{n-2}, x_{n-1}, x_n) \mapsto (x_1, \dots, x_{n-2}, ax_{n-1} + bx_n).$$

Then, for a hyperplane arrangement \mathcal{A}' in \mathbb{C}^{n-1} , the inverse image $\pi^{-1}(\mathcal{A}')$ is a stable hyperplane arrangement in \mathbb{C}^n if and only if \mathcal{A}' is stable.

Definition 2.5. A hyperplane arrangement \mathcal{A} in \mathbb{C}^n is said to be *reducible* if $\mathcal{A} = \pi^{-1}(\mathcal{A}')$ for some arrangement \mathcal{A}' in \mathbb{C}^{n-1} as in Lemma 2.4, under a suitable coordinate system (x_1, \ldots, x_n) . If \mathcal{A} is not reducible, we say that \mathcal{A} is *reduced*.

It is clear that an arrangement \mathcal{A} given by the decomposition (2.5) is reduced if and only if each \mathcal{A}_i is reduced.

Remark 2.6 (Trivial case). Assume that $\#\mathcal{L}^{(2)} = 1$. Let $\mathcal{L}^{(2)} = \{S\}$. Then it follows from the following Lemma 2.7 that

$$\widehat{\mathcal{A}} := \operatorname{mc}_{x_1} \operatorname{mc}_{x_2} \cdots \operatorname{mc}_{x_n} \mathcal{A} = \mathcal{A} \cup \{ \langle x_i, S \rangle \mid \operatorname{codim} \langle x_i, S \rangle = 1, \quad i = 1, \dots, n \}$$

is stable, and moreover $L^{(2)}(\widehat{A}) = \{S\}.$

Lemma 2.7. Suppose that $\mathcal{L}^{(2)} = \{S\}$. Then $S \subset H$ for every $H \in \operatorname{mc}_v \mathcal{A}$ and every non-zero vector $v \in V$.

Proof. Let $H \in \mathcal{A}$. Since $\mathcal{L}^{(2)} \neq \emptyset$, there exists $H' \in \mathcal{A}$ with $H \cap H' \neq \emptyset$, and so the assumption implies $S = H \cap H'$, and hence $S \subset \langle v, S \rangle \cap H$.

Example 2.8. The hyperplane arragements

$$\mathcal{A} = \{x_i = \pm 1 \mid i = 1, \dots, 4\} \cup \{x_i = x_{i+2} \mid i = 1, 2\} \subset \mathbb{C}^4,$$

$$\mathcal{A}' = \{\{x_1 + x_2 + x_3 = 0\}, \{x_1 = \pm 1\}, \{x_2 + x_3 = \pm 1\}\} \subset \mathbb{C}^3,$$

$$\mathcal{A}'' = \{\{x_1 + x_2 + x_3 = 0\}, \{x_1 = x_2\}, \{2x_1 + x_3 = 0\}, \{2x_2 + x_3 = 0\}\} \subset \mathbb{C}^3$$

are stable. But \mathcal{A} is decomposable, \mathcal{A}' is reducible and $\#L^{(2)}(\mathcal{A}'')=1$.

We now state the main result of this note.

Theorem 2.1. Let \mathcal{A} be a stable, reduced, and indecomposable hyperplane arrangement in \mathbb{C}^n . Assume that $\#\mathcal{L}^{(2)} > 1$, namely, \mathcal{A} is non-trivial. Then, under a suitable coordinate system (x_1, \ldots, x_n) , there exist a positive integer m, a non-negative integer n, and non-zero complex numbers n, n, such that n has the following form. Set

$$\Omega := \left\{ e^{\frac{2\pi k \sqrt{-1}}{m}} \mid k = 1, \dots, m \right\},
\mathcal{A}_c := \left\{ \left\{ x_i = \omega \alpha_j \right\} \mid \omega \in \Omega, \ i = 1, \dots, n, \ j = 1, \dots, r \right\},
\mathcal{A}_0 := \left\{ \left\{ x_i = 0 \right\} \mid 1 \le i \le n \right\}.$$

If n = 2, then $r \ge 1$ and

$$\mathcal{A} = \{ \{ x_1 = \omega x_2 \} \mid \omega \in \Omega' \} \cup \mathcal{A}_c \cup \mathcal{A}_0, \quad where \ 1 \in \Omega' \subset \Omega.$$

If $n \geq 3$, then

$$\mathcal{A} = \mathcal{A}'$$
 with $m = 1$ and $n > 3$, or $\mathcal{A} = \mathcal{A}' \cup \mathcal{A}_c \cup \mathcal{A}_0$,
 $\mathcal{A}' := \{ \{ x_i = \omega x_j \} \mid \omega \in \Omega, \ 1 \le i < j \le n \}.$

Remark 2.9. (i) When n=2 in Theorem 2.1 and $\Omega'=\{\omega_1,\ldots,\omega_L\}$, we may assume that

$$\Omega = \{\omega_1^{k_1} \cdots \omega_L^{k_L} \mid k_1, \dots, k_L \in \mathbb{Z}_{\geq 0}\}.$$

(ii) Examples of stable arrangements in \mathbb{C}^2 with coordinates (x,y):

3. Proof of Theorem 2.1

Proof of Theorem 2.1 for n = 2. Choose $(a, b) \in \mathcal{L}^{(2)}$. Since \mathcal{A} is x_i -closed, we have $\{x_1 = a\}, \{x_2 = b\} \in \mathcal{A}$. By the assumption of the theorem, we may therefore assume that, under a suitable coordinate system (x, y) of \mathbb{C}^2 ,

$${x = 0}, {y = 0}, {x = 1}, {y = 1}, {x = y} \in A.$$

In this case, the condition $\{x = c\} \in \mathcal{A}$ equals $\{y = c\} \in \mathcal{A}$.

If $\#(\mathcal{A}_{x_1} \cap \mathcal{A}_{x_2}) = 1$, then the theorem follows immediately with m = 1. Hereafter we assume $\#(\mathcal{A}_{x_1} \cap \mathcal{A}_{x_2}) > 1$.

Now suppose $\{y = x + c\} \in \mathcal{A}$ for some $c \neq 0$. If $\{x = d\} \in \mathcal{A}$, then $\{y = c + d\} \in \mathcal{A}$ and hence $\{x = c + d\} \in \mathcal{A}$. By iteration, we obtain $\{x = nc + d\} \in \mathcal{A}$ for $n = 0, 1, 2, \ldots$, which would imply $\#\mathcal{A} = \infty$. Thus, under a suitable coordinate transformation, we may instead assume that $\{y = \alpha_1 x\} \in \mathcal{A}$ with $\alpha_1 \neq 0, 1$.

Hence we assume that

 $H_1 = \{y = x\}, \quad H_2 = \{y = \alpha_1 x\}, \quad H_3 = \{y = \alpha_2 x + \alpha_3\}, \quad H_4 = \{x = 1\} \in \mathcal{A}.$ Here we do not necessarily assume $H_3 \neq H_1$ or $H_3 \neq H_2$.

If $\{x=z\} \in \mathcal{A}$ for some $z \in \mathbb{C}$, then $\{x=z\} \cap H_2 = \{(z,\alpha_1z)\} \in \mathcal{L}$, so $\{y=\alpha_1z\} \in \mathcal{A}$ and therefore $\{x=\alpha_1z\} \in \mathcal{A}$. Similarly, $\{x=z\} \in \mathcal{A}$ implies $\{x=\alpha_2z+\alpha_3\} \in \mathcal{A}$. The desired conclusion then follows directly from Lemma 3.1. \square

Lemma 3.1. Let $\alpha_j \in \mathbb{C}$ (j = 1, 2, 3) satisfy $\alpha_1 \alpha_2 (\alpha_1 - 1) \neq 0$, and define

$$T_1(z) = \alpha_1 z,$$

$$T_2(z) = \alpha_2 z + \alpha_3.$$

Suppose there exists a finite set $F \subset \mathbb{C}$ such that $0 \neq z \in F$ and $T_1(F) = T_2(F) = F$. Then $\alpha_3 = 0$, and there exists an integer $m \geq 2$ such that

(3.1)
$$\alpha_1^m = \alpha_2^m = 1 \quad and \quad F \supset \left\{ e^{\frac{2\pi k \sqrt{-1}}{m}} z \mid k = 1, \dots, m \right\}.$$

Proof. Let $a \in F$ be such that $|a| \ge |p|$ for all $p \in F$. Note that at least one of a or $T_1(a)$ is not a fixed point of T_2 . Since $\#F < \infty$, there exists $m \in \mathbb{Z}_{>1}$ such that $\alpha_1^m = \alpha_2^m = 1$. For $k = 1, 2, \ldots, m$, we then have $|\alpha_1^k \alpha_2 a + \alpha_3| \le |a|$, hence $|a + \alpha_1^{-k} \alpha_2^{-1} \alpha_3| \le |a|$. Since $\alpha_1 \ne 1$ and $\alpha_1^m = 1$, this inequality holds only when $\alpha_3 = 0$, which proves (3.1).

We next prepare a lemma that reduces the proof of the theorem to lowerdimensional cases.

Lemma 3.2. Let A be a hyperplane arrangement in \mathbb{C}^n with coordinates (x_1, x_2, \dots, x_n) and $n \geq 3$. Fix an integer m with 1 < m < n and a point $p \in \mathbb{C}^{n-m}$. Define

$$V' := \{(x_1, \dots, x_n) \mid (x_{m+1}, \dots, x_n) = p\},\$$

and call

$$\mathcal{A}' := \{ H \cap V' \mid H \in \mathcal{A} \} \setminus \{ \emptyset, V' \}$$

a specialization of A. For i = 1, ..., m, A' is x_i -closed whenever A is x_i -closed. Moreover, if A is reduced, then so is A'.

Proof. For $H_1, H_2 \in \mathcal{A}$, set $H'_j := H_j \cap V'$ for j = 1, 2. Assume $H'_j \neq \emptyset$ and $H'_j \neq V'$ for j = 1, 2, and further that $H'_1 \neq H'_2$ but $H'_1 \cap H'_2 \neq \emptyset$. Write

$$H_j = \{(x', x'') \in \mathbb{C}^n \mid f_j(x') = g_j(x'')\}, \quad H'_j = \{x' \in \mathbb{C}^m \mid f_j(x') = g_j(p)\},$$

where $f_j(x')$ and $g_j(x'')$ are affine linear polynomials in $x' = (x_1, \ldots, x_m)$ and $x'' = (x_{m+1}, \ldots, x_n)$, respectively, satisfying $f_j(0) = 0$. The assumptions imply that f_1 and f_2 are linearly independent over \mathbb{C} . It then follows that

$$\langle x_i, H_1' \cap H_2' \rangle = \langle x_i, H_1 \cap H_2 \rangle \cap V' \qquad (i = 1, \dots, m).$$

which proves the claim of the lemma. Note that $\dim H'_j = m-1$ holds precisely when $f_j \neq 0$ and $f_j(0) = 0$.

Remark 3.3. A stable hyperplane arrangement \mathcal{A} in Theorem 2.1 with r > 0 and $n \geq 2$ can be viewed as a suitable specialization of a stable homogeneous hyperplane arrangement. For example, by setting $x_3 = 0$ and $x_4 = 1$ in $\{\{x_i = x_j\} \subset \mathbb{C}^4 \mid 1 \leq i < j \leq 4\}$, we obtain the hyperplane arrangement $\{\{x_1 = x_2\}, \{x_i = 0\}, \{x_i = 1\} \mid i = 1, 2\}$ in \mathbb{C}^2 .

The following lemma is the key step in proving the theorem for the case $n \geq 3$.

Lemma 3.4. Under the assumption of Theorem 2.1, we have

$$\mathcal{A}_{x_i} \cap \mathcal{A}_{x_i} \cap \mathcal{A}_{x_k} = \emptyset \quad \text{for } 1 \leq i < j < k \leq n.$$

Proof of Theorem 2.1 for $n \geq 3$ assuming Lemma 3.4. We know that $A_{x_i} \cap A_{x_j} \neq \emptyset$ while $A_{x_i} \cap A_{x_j} \cap A_{x_k} = \emptyset$ for distinct indices $i, j, k \in \{1, ..., n\}$. Hence, we may assume that $\{x_i = x_{i+1}\} \in \mathcal{L}^{(2)}$ for i = 1, ..., n-1. It then follows that $\{x_i = x_j\} \in \mathcal{L}^{(2)}$ for all $1 \leq i < j \leq n$. Applying Lemma 3.2 together with the case n = 2, we obtain the theorem.

Indeed, if $\#(\mathcal{A}_{x_1} \cap \mathcal{A}_{x_2}) = 1$, then the result corresponds to the case m = 1. If there exist two hyperplanes $H_1, H_2 \in \mathcal{A}_{x_1} \cap \mathcal{A}_{x_2}$, we may assume $H_1 \cap H_2 \subset \{x_1 = x_2 = 0\}$, and the theorem follows immediately. Note that if $\{x_1 = a_2x_2\}$, $\{x_2 = a_3x_3\} \in \mathcal{A}$, then $\{x_1 = a_2a_3x_3\}$ and $\{x_1 = a_2a_3x_2\} \in \mathcal{A}$, and therefore $\mathcal{A} \supset \mathcal{A}'$ with m > 1.

Now we prove Lemma 3.4, starting with the case n=3.

Lemma 3.5. Let \mathcal{A} be a stable hyperplane arrangement in \mathbb{C}^3 . Suppose $\mathcal{A}_{x_1} \cap \mathcal{A}_{x_2} \cap \mathcal{A}_{x_3} \neq \emptyset$.

- (i) Then $\{\{x_1 = c_1\}, \{x_2 = c_2\}\} \not\subset A \text{ for any } c_1, c_2 \in \mathbb{C}.$
- (ii) Moreover, if $\{x_1 = c_1\} \subset \mathcal{A}$ or $\#\mathcal{L}^{(2)} > 1$, then \mathcal{A} is reducible.

Proof. We may assume $H := \{x_1 + x_2 + x_3 = 0\} \in \mathcal{A}$. Suppose $\{x_1 = c_1\}, \{x_2 = c_2\} \in \mathcal{A}$. Then, by translation, we may further assume $c_1 = c_2 = 0$. Since $(x_1 + x_2 + x_3) - x_1 = x_2 + x_3$, we have $\{x_2 + x_3 = 0\} \in \mathcal{A}$. If $\{nx_1 = x_2\} \in \mathcal{A}$ (which holds for n = 0), then the relations

 $(x_1+x_2+x_3)+(nx_1-x_2)=(n+1)x_1+x_3, \quad (n+1)x_1+x_3-(x_2+x_3)=(n+1)x_1-x_2,$ imply $\{(n+1)x_1=x_2\}\in\mathcal{A}$, contradicting $\#\mathcal{A}<\infty$. Thus we have (i).

If $\{x_1 = c_1\} \subset \mathcal{A}$, then $\{x_2 + x_3 = -c_1\} \subset \mathcal{A}$, and (i) implies that \mathcal{A} is reducible. In fact, if $H' := \{a_1x_1 + a_2x_2 + a_3x_3 = a_0\} \in \mathcal{A}$ with $a_2 \neq a_3$, then $\langle x_1, H \cap H' \rangle = \{(a_2 - a_1)x_2 + (a_3 - a_1)x_3 = a_0\} \in \mathcal{A}$, and moreover $\{x_2 = c_2\}$, $\{x_3 = c_3\} \in \mathcal{A}$ with suitable c_2 and c_3 .

Now suppose $\#\mathcal{L}^{(2)} \geq 2$. Since \mathcal{A} is stable, we have $\#\mathcal{A}_{x_i}^c \geq 1$ for i = 1, 2, 3. Assume $\#\mathcal{A}_{x_i}^c = 1$ for i = 1, 2, 3 and write $\mathcal{A}_{x_i}^c = \{\{H_i\}\}$. Then for $S \in \mathcal{L}^{(2)}$, we have $S \subset H_i$ for all i = 1, 2, 3. Since $\mathcal{A}_{x_1}^c \cap \mathcal{A}_{x_2}^c \cap \mathcal{A}_{x_3}^c = \emptyset$, it follows that $S = H_1 \cap H_2 \cap H_3$, hence $\mathcal{L}^{(2)} = \{H_1 \cap H_2 \cap H_3\}$ and $\#\mathcal{L}^{(2)} = 1$. Thus we may assume $\#\mathcal{A}_{x_3}^c \geq 2$.

Write

$$\mathcal{A}_{x_3}^c = \{ \{ x_1 + ax_2 = c_i \} \mid i = 1, 2, \dots \},\$$

where $a \neq 0$ and $c_1 \neq c_2$. Since $\{x_1 + x_2 + x_3 = 0\} \subset \mathcal{A}$, it follows from Lemma 3.2, Lemma 3.5 (i), and the theorem for n = 2 that a = 1, and hence \mathcal{A} is reducible. \square

Lemma 3.6. Let \mathcal{A} be a reduced hyperplane arrangement in \mathbb{C}^n with $n \geq 4$. Put $x = x_1, y = x_2, z = x_3, w = x_4, x' = (x_5, \ldots, x_n)$. If

$${x + y + z = h_0}, {w = h_1}, {y + az + w = h_2}$$

belong to A, then A is not stable. Here h_i are affine linear polynomials in x'.

Proof. If a=0, then it follows from Lemma 3.5 with the specialization $x_4=\cdots=x_n=0$ that \mathcal{A} is not stable. If a=1, then $\{x-w=h_0-h_2\}\in\mathcal{A}$ because \mathcal{A} is y-closed, and \mathcal{A} is not stable as in the case a=0.

Thus we may assume $a \neq 0, 1$. Then, from the relations

$$ax + (a - 1)y - w = a(x + y + z) - (y + az + w) \qquad (z\text{-closed}),$$

$$x + (1 - a)z - w = (x + y + z) - (y + az + w) \qquad (y\text{-closed}),$$

$$x + (1 - a)z = (x + (1 - a)z - w) + w \qquad (w\text{-closed}),$$

$$ax + (a - 1)y = (ax + (a - 1)y - w) + w \qquad (w\text{-closed}),$$

$$(a - 1)y + (a^2 - a)z - w = (ax + (a - 1)y - w) - a(x + (1 - a)z) \qquad (x\text{-closed}),$$

$$ax + (a - a^2)z + w = (ax + (a - 1)y) - ((a - 1)y + (a^2 - a)z - w) \qquad (y\text{-closed}),$$

$$2ax + (a - 1)y + (a - a^2)z = (ax + (a - a^2)z + w) + (ax + (a - 1)y - w) \qquad (w\text{-closed}),$$

$$ax + (a - a^2)z + (1 - a)w = (1 - a)(y + az + w) + (ax + (a - 1)y) \qquad (y\text{-closed}),$$

$$(1 - a)(y + az + 2w) = 2(ax + (a - a^2)z + (1 - a)w)$$

$$- (2ax + (a - 1)y + (a - a^2)z) \qquad (x\text{-closed}),$$

we obtain $\{y + az + 2w = h_3\} \in \mathcal{A}$. Hence $\{y + az + 2^n w = h_{n+2}\} \in \mathcal{A}$ for $n = 0, 1, 2, \ldots$, where each $h_{n+2}(x')$ is an affine linear polynomial in x'.

Proof of Lemma 3.4. Let m be the maximal integer such that there exist indices i_{ν} satisfying $1 \leq i_1 < \cdots < i_m \leq n$ and $\mathcal{A}_{x_{i_1}} \cap \cdots \cap \mathcal{A}_{x_{i_m}} \neq \emptyset$. We will show that m = 2.

Assume to the contrary that m > 2. Without loss of generality, we may assume $H := \{x_1 + \dots + x_m = 0\} \in \mathcal{A}$.

Suppose m < n. Choose $H_2 \in \mathcal{A}_{x_2} \cap \mathcal{A}_{x_{m+1}}$. By the maximality of m, there exists i with $1 \le i \le m$ such that $H_2 \in \mathcal{A}_{x_i}^c$. We may assume i = 1, and write

$$H_2 = \{x_2 + a_3x_3 + \dots + a_mx_m + x_{m+1} + \dots + a_nx_n = a_0\}.$$

Suppose $\mathcal{A}_{x_1}^c \cap \cdots \cap \mathcal{A}_{x_m}^c \neq \emptyset$, and let $H_3 \in \mathcal{A}_{x_1}^c \cap \cdots \cap \mathcal{A}_{x_m}^c$. We may assume $H_3 \in \mathcal{A}_{x_{m+1}}$. By setting $x_4 = \cdots = x_m = 0$, Lemmas 3.2 and 3.6 imply that \mathcal{A} is not stable, hence $\mathcal{A}_{x_1}^c \cap \cdots \cap \mathcal{A}_{x_m}^c = \emptyset$.

$$(x_1, x_2, x_3, \dots, x_m, x_{m+1}, \dots, x_n)$$

Thus, including the case m = n, we may assume

$$H_2 = \{x_2 + a_3 x_3 + \dots + a_n x_n = a_0\} \in \mathcal{A}_{x_1}^c$$

Since $\#\mathcal{L}^{(2)} > 1$, there exists

$$H_3 = \{b_1x_1 + b_2x_2 + b_3x_3 + \dots + b_nx_n = b_0\} \in \mathcal{A}$$

such that $H_3 \not\supset H_1 \cap H_2$.

If $H_3 \cap H_1 = \emptyset$, then by Lemma 3.4 and Lemma 3.2 (with the specialization $x_4 = \cdots = x_n = 0$), \mathcal{A} is either reducible or not stable. Hence we must have $H_3 \cap H_1 \neq \emptyset$.

Since \mathcal{A} is x_1 -closed, we may assume $b_1 = 0$. Similarly, as $H_3 \cap H_2 \neq \emptyset$, the x_2 -closedness of \mathcal{A} implies that we may also assume $b_2 = 0$. Because \mathcal{A} is non-trivial, there exists some $b_i \neq 0$ with $3 \leq i \leq m$; we may take $b_3 \neq 0$. Then, applying Lemma 3.5 to the restriction $x_4 = \cdots = x_n = 0$, we conclude that \mathcal{A} is not stable.

4. A RELATED RESULT

In this final section, we determine all vectors v for which a stable hyperplane arrangement \mathcal{A} is v-closed.

Proposition 4.1. Let \mathcal{A} be the hyperplane arrangement described in Theorem 2.1, and assume that $\#\mathcal{L}^{(2)} > 1$. Let v be a non-zero vector in \mathbb{C}^n such that \mathcal{A} is v-closed.

If r > 0 or m > 1, then v is a scalar multiple of one of the coordinate vectors x_i . If m = 1 and $A = A' \cup A_0$, then v is a scalar multiple of either one of the x_i or of $(c, \ldots, c) \in \mathbb{C}^n$ with $c \neq 0$.

If m = 1 and A = A', then v is a scalar multiple of one of the x_i modulo $\mathbb{C}(1,\ldots,1)$.

Proof. We may assume $v = (1, c_2, c_3, ...)$ with $c_2 \neq 0$.

Suppose $H_1 = \{x_1 = 0\}$ and $H_2 = \{x_2 = \alpha_1\}$ are in \mathcal{A} . Then

$$\langle v, H_1 \cap H_2 \rangle = \{ x_2 = c_2 x_1 + \alpha_1 \} \in \mathcal{A}.$$

Hence r=0 and n>2. Since $H_3=\{x_2=\omega x_3\}\in\mathcal{A}$, we also have

$$\langle v, H_1 \cap H_3 \rangle = \{ x_2 - \omega x_3 = (c_2 - \omega c_3) x_1 \} \in \mathcal{A},$$

which implies $c_2 = \omega c_3$, and therefore m = 1 and $c_2 = c_3$. By symmetry of the coordinates (cf. σ in (2.3)), we conclude that m = 1 and v = (1, ..., 1).

Thus we may assume

$$A = \{ \{ x_i = x_j \} \mid 1 \le i < j \le n \} \text{ with } n \ge 4.$$

We may further assume $v = (1, 0, c_3, c_4, ...)$. Then

$$\langle v, \{x_1 - x_2 = x_3 - x_4\} \rangle = \{x_2 - x_3 = (c_3 - c_4)(x_1 - x_2)\} \in \mathcal{A},$$

 $\langle v, \{x_1 - x_2 = x_2 - x_3\} \rangle = \{x_2 - x_3 = -c_3(x_1 - x_2)\} \in \mathcal{A}.$

Hence $c_3 = c_4 = 0$ or 1. By symmetry, it follows that v = (1, 0, 0, ..., 0) or (1, 0, 1, ..., 1), which proves the claim.

Remark 4.2. (i) For m=1, the expression of the arrangement $\mathcal{A}=\mathcal{A}'\cup\mathcal{A}_0$ in Theorem 2.1 remains the same under the coordinate system

$$(x_1-x_n,\ldots,x_{n-1}-x_n,-x_n)$$

of \mathbb{C}^n .

(ii) The arrangement $\mathcal{A} = \{x_i \pm x_j = 0 \mid 1 \leq i < j \leq 3\}$ is $(\epsilon_1, \epsilon_2, \epsilon_3)$ -closed when $\epsilon_k \in \{1, -1\}$ for k = 1, 2, 3.

References

- [1] D. Cohen, G. Denham, M. Falk, H. Schenck, A. Suciu, H. Terao, and S. Yuzvinsky. *Complex Arrangements: Algebra, Geometry, Topology.* Draft of September 4, 2009.
- [2] M. Dettweiler and S. Reiter. An algorithm of Katz and its applications to the inverse Galois problems. J. Symbolic Comput., 30:761-798, 2000.
- [3] Y. Haraoka. Middle convolution for completely integrable systems with logarithmic singularities along hyperplane arrangements. Adv. Studies in Pure Math., 62:109–136, 2012.
- [4] N. M. Katz. Rigid local systems. Number 139 in Annals of Mathematics Studies. Princeton University Press, 1996.
- [5] T. Oshima. Middle convolution of KZ-type equations and single-elimination tournaments. ArXiv.2504.09003, 2025.
- [6] T. Oshima. Transformations of Pfaffian systems with logarithmic singularities along hyperplane arrangements, in preparation. 2025.

Email address: oshima@ms.u-tokyo.ac.jp