
STABLE HYPERPLANE ARRANGEMENTS

TOSHIO OSHIMA

Abstract. We classify complex hyperplane arrangements A whose in-

tersection posets L(A) satisfy L(A) = π−1
i ◦ πi

(
L(A)

)
for i = 1, . . . , n.

Here πi denotes the projection from Cn onto Cn−1 that forgets the co-

ordinate xi of (x1, . . . , xn) ∈ Cn, and πi

(
L(A)

)
= {πi(S) | S ∈ L(A)}.

We show that such arrangements A arise as pullbacks of the mirror hy-

perplanes of complex reflection groups of type A or B.

1. Introduction

Let A be a hyperplane arrangement in V = Cn. That is, A is a finite union of
hyperplanes :

A 3 H := {fH(x) = 0 | x ∈ V } where each fH(x) is a polynomial of degree 1.

If 0 ∈ H for every H ∈ A, we say that A is homogeneous.

Definition 1.1. We denote by L(A), or simply by L, the set or poset of affine
subspaces of V obtained as intersections of hyperplanes in A

•
•
••
•

L = L(A) :=
{ ⋂
H∈B

H 6= ∅ | B ⊂ A
}

and put

L(k) = L(A)(k) := {S ∈ L(A) | codimS = k}, L(0) = {V }, L(1) = A.

For affine subspaces S, S′ ∈ L, we define

L(k)
⊂S = L

(k)
⊂S(A) := {T ∈ L(k) | T ⊂ S},

L(k)
⊃S = L

(k)
⊃S(A) := {T ∈ L(k) | T ⊃ S},

AS := L(1)
⊃S = {H ∈ A | H ⊃ S}.

For a non-zero vector v ∈ V and S, S′ ∈ L, we define

〈v, S〉 := {tv + y | t ∈ C, y ∈ S},
Av := {H ∈ A | 〈v,H〉 = V },
Ac

v := A \ Av,

mcv A := A ∪ {〈v, S〉 | codim〈v, S〉 = 1, S ∈ L(A)(2)}.

x1

•

• •

v →

H1

H4

H2 H3

S

We call mcv A the convolution of A by v.

Remark 1.2. (i) When we fix a coordinate x = (x1, . . . , xn) on Cn, the i-th standard

basis ei := (0, . . . , 0,

i⌣
1, 0, . . . , 0) will occasionally be denoted by xi for brevity.

(ii) Let S = H ∩H ′ ∈ L(2) with H, H ′ ∈ A. Suppose

H = {x ∈ Cn | c1x1+· · ·+cnxn+c = 0} and H ′ = {x ∈ Cn | c′1x1+· · ·+c′nxn+c′ = 0}.
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Then H ∈ Axi
if and only if ci 6= 0.

If H, H ′ ∈ Ac
xi
, then 〈xi, S〉 = S.

If H ∈ Axi
and H ′ ∈ Ac

xi
, then 〈xi, S〉 = H ′.

If H, H ′ ∈ Axi
, then

〈xi, S〉 = {x ∈ Cn | c′i(c1x1 + · · ·+ cnxn + c) = ci(c
′
1x1 + · · ·+ c′nxn + c′)}.

Definition 1.3. A non-zero vector v ∈ V is said to be parallel to S ∈ L(A), or
equivalently that S is called v-closed if and only if 〈v, S〉 = S. If 〈v, S〉 6= S, v is
transversal to S.

A is called v-closed if and only if 〈v, S〉 ∈ L(A) for every S ∈ L(A)(2).
If there exist n linearly independent vectors v1, . . . , vn ∈ Cn such that A is vi-

closed for each i, we say that A is stable. Equivalently, in the coordinate system
defined by {vi} we have

mcxi A = A (i = 1, . . . , n).

Example 1.4. (i) The braid arrangement

A =
⋃

1≤i<j≤n

{(x1, . . . , xn) ∈ Cn | xi = xj}

is a stable hyperplane arrangement, which corresponds to mirror hyperplanes of
the reflection group of type An−1.

(ii) The arrangement of mirror hyperplanes of the reflection group of type Dn

A = {xi = ±xj | 1 ≤ i < j ≤ n} (n ≥ 4)

is not stable, which is contained in the stable hyperplane arrangement of type Bn

Ã = A ∪ {xi = 0 | 1 ≤ i ≤ n}.

(iii) Under the coordinate system (x, y) of C2,
A =

{
{x = y}, {x+ y = 1}, {x+ y = 2}

}
⊂ C2,

L(2) =
{
( 12 ,

1
2 ), (1, 1)

}
,

mcx A = A ∪
{
{y = 1

2}, {y = 1}
}
.

There exists no stable arrangement Ã satisfying Ã ⊃ A.

•
•

◦
◦

x = y x+y=1 x+y=2

x
0 1 2

The purpose of this paper is to give a classification of stable hyperplane arrange-
ments. Moreover, in §4, we determine the vectors v for which a stable hyperplane
arrangement A is v-closed. We note that the definition of stable arrangements
shares features with that of fibre-type arrangements (cf. [1]).

Lastly in this introduction, we explain the motivation for this paper.
A Pfaffian system with logarithmic singularities along hypersurface arrangement

A is given by

(1.1) M : du = Ωu, Ω =
∑
H∈A

AHd log fH (Ω ∧ Ω = 0)

where AH are constant square matrices of size N and u is a vector of N unknown
functions Each AH is called the residue matrix of M along H, and the condition
Ω ∧ Ω = 0 is the integrability condition of M. Then the convolution of M with
respect to the variable xi and a parameter µ ∈ C produces a new Pfaffian system

(1.2) M̂ = m̂cxi,µM : dû = Ω̂û, Ω̂ =
∑

H∈mcxi
A
ÂHd log fH .

The middle convolution mcxi,µ M ofM is defined (see [3]) as an irreducible quotient

of M̂, and the corresponding transformation of solutions is realized by a Riemann-
Liouville integral. Here the middle convolution of M generalizes the operation
introduced for ordinary differential equations in [4, 2]. An addition of M is the
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transformation induced by the gauge change u 7→
(∏

H∈A fλH

H

)
u with parameters

λH ∈ C. A wide class of systems can be generated from a given system by successive
additions and middle convolutions. For example, any Fuchsian ordinary differential
equation without an accessory parameter can be obtained from the trivial equation
u′ = 0 (cf. [4]). In particular, applying convolution to an addition of the trivial
system (with AH = 0), for generic parameters λH , v, and µ, yields an irreducible
Pfaffian system whose singular locus equals mcv A. If A is stable, these transforma-
tions may be analyzed while keeping the singular locus fixed. When A is the braid
arrangement, the system is of KZ-type and the corresponding transformations were
studied by [5]. The non-stable case will be treated in [6].

2. Classification of stable hyperplane arrangements

We first examine the property of being “v-closed,” defined in the previous section,
which will be used in [6].

Lemma 2.1. (i) Let S ∈ L and T, T ′ ∈ L(codimS+1)
⊂S with T 6= T ′. Then AT ∩

AT ′ = AS.
(ii) The arrangement mcv A is v-closed.
(iii) For S ∈ L, the subspace S is v-closed if and only if AS ⊂ Ac

v.
(iv) Let H ∈ Av and S ∈ L. If S is v-closed, then H ∩ S 6= ∅, and

(2.1) AH∩S ∩ Ac
v = AS .

(v) Assume that A is v-closed and that S ∈ L is not v-closed. Let H ∈ AS ∩Ac
v.

Then

(2.2) S = H ∩ 〈v, S〉 and 〈v, S〉 =
⋂

H′∈AS∩Ac
v

H ′.

In particular, the poset L is v-closed.

Proof. Let T, T ′ ∈ L(codimS+1)
⊂S . If there exists H ∈ (AT ∩AT ′) \AS , then T, T ′ ⊂

H ∩ S ⫋ S, which implies T = T ′ = H ∩ S. This proves (i).
Let H, H ′ ∈ mcv A with codim〈v,H∩H ′〉 = 1. If H /∈ A, then 〈v,H∩H ′〉 = H,

which proves (ii).
Let H ∈ A. For any y ∈ H, we have v + y ∈ H if and only if H ∈ Ac

v. Hence
S ∈ L is v-closed if and only if AS ⊂ Ac

v, which establishes (iii).
Suppose that H ∈ Av and S ∈ L is v-closed. Since 〈v,H〉 = Cn and 〈v, S〉 = S,

it follows that H ∩ S 6= ∅. Let H ′ ∈ (AH∩S ∩Ac
v) \ AS . Then H ′ ∩ S = H ∩ S and

AH′∩S ⊂ Ac
v, which contradicts the assumption that H ∈ AH∩S . This completes

the proof of (iv).
Under the assumption of (v), let S ∈ L(k) with k ≥ 2, and suppose S = H ∩

H2∩· · ·∩Hk. Set H
′
j := 〈v,H ∩Hj〉 ∈ Ac

v. Then H ∩Hj = H ∩H ′
j for j = 2, . . . , k.

Hence S = H ∩H ′
2 ∩ · · · ∩H ′

k and 〈v, S〉 = H ′
2 ∩ · · · ∩H ′

k, which proves (v). □

Remark 2.2. Under the projection

πi : Cn → Cn−1, (x1, . . . , xi−1, xi, xi+1, . . . , xn) 7→ (x1, . . . , xi−1, xi+1, . . . , xn),

we have

L(mcxi
A) = L(A) ∪

⋃
S∈L(A)

π−1
i

(
πi(S)

)
.

Hence A is stable if and only if

L(A) = π−1
i

(
πi(L(A))

)
for all i = 1, . . . , n.
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We now study the condition under which A is xi-closed. Throughout this section,
a coordinate transformation of (x1, . . . , xn) will usually mean a transformation of
the form

xj 7→ ajxσ(j) + bj (j = 1, . . . , n),(2.3)

where aj , bj ∈ C, aj 6= 0, and σ is a permutation of the indices. Such transforma-
tions preserve stability.

Lemma 2.3. Suppose that A is stable. Then there exists a decomposition of the
set of indices

(2.4) {1, . . . , n} =

m⊔
j=1

Ij

such that

Axi
∩ Axi′ 6= ∅ if and only if there exists Ij with i, i′ ∈ Ij .

Proof. Suppose that Ax1
∩ Ax2

6= ∅, Ax2
∩ Ax3

6= ∅, and Ax1
∩ Ax2

∩ Ax3
= ∅.

Then

{x2 = c1x1 + h1(x4, . . . , xn)}, {x2 = c3x3 + h3(x4, . . . , xn)} ∈ A

for some non-zero constants c1, c3 and suitable functions h1 and h3. Since A is
x2-closed, we have

Ax1
∩ Ax3

3 { c1x1 + h1 = c3x3 + h3 } ∈ A.

Thus, if Axi
∩ Axj

6= ∅ and Axj
∩ Axk

6= ∅, then Axi
∩ Axk

6= ∅. This proves the
lemma. □

According to the decomposition (2.4), the arrangement A can be written as

A =
⋃

1≤j≤m

⋃
H∈Aj

π−1
j (H),

πj : Cn → C#Ij , (x1, . . . , xn) 7→ (xν)ν∈Ij ,

(2.5)

where each Aj is a stable hyperplane arrangement in C#Ij . Conversely, for a given
decomposition (2.4), the arrangement A defined by (2.5) is stable if and only if
each Aj is a stable hyperplane arrangement in C#Ij .

To classify stable arrangements, we may assume that A is indecomposable; namely,

Axi ∩ Axj 6= ∅ (1 ≤ i < j ≤ n).(2.6)

We will give representatives of such arrangements under suitable coordinate trans-
formations of the form (2.3).

Note that the following lemma is straightforward.

Lemma 2.4. Let a, b ∈ C with a 6= 0, and define

π : Cn → Cn−1, (x1, . . . , xn−2, xn−1, xn) 7→ (x1, . . . , xn−2, axn−1 + bxn).

Then, for a hyperplane arrangement A′ in Cn−1, the inverse image π−1(A′) is a
stable hyperplane arrangement in Cn if and only if A′ is stable.

Definition 2.5. A hyperplane arrangement A in Cn is said to be reducible if
A = π−1(A′) for some arrangement A′ in Cn−1 as in Lemma 2.4, under a suitable
coordinate system (x1, . . . , xn). If A is not reducible, we say that A is reduced.

It is clear that an arrangement A given by the decomposition (2.5) is reduced if
and only if each Aj is reduced.
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Remark 2.6 (Trivial case). Assume that #L(2) = 1. Let L(2) = {S}. Then it
follows from the following Lemma 2.7 that

Â := mcx1
mcx2

· · ·mcxn
A = A ∪ {〈xi, S〉 | codim〈xi, S〉 = 1, i = 1, . . . , n}

is stable, and moreover L(2)(Â) = {S}.

Lemma 2.7. Suppose that L(2) = {S}. Then S ⊂ H for every H ∈ mcv A and
every non-zero vector v ∈ V .

Proof. Let H ∈ A. Since L(2) 6= ∅, there exists H ′ ∈ A with H ∩H ′ 6= ∅, and so
the assumption implies S = H ∩H ′, and hence S ⊂ 〈v, S〉 ∩H. □

Example 2.8. The hyperplane arragements

A = {xi = ±1 | i = 1, . . . , 4} ∪ {xi = xi+2 | i = 1, 2} ⊂ C4,

A′ = {{x1 + x2 + x3 = 0}, {x1 = ±1}, {x2 + x3 = ±1}} ⊂ C3,

A′′ = {{x1 + x2 + x3 = 0}, {x1 = x2}, {2x1 + x3 = 0}, {2x2 + x3 = 0}} ⊂ C3

are stable. But A is decomposable, A′ is reducible and #L(2)(A′′) = 1.

We now state the main result of this note.

Theorem 2.1. Let A be a stable, reduced, and indecomposable hyperplane arrange-
ment in Cn. Assume that #L(2) > 1, namely, A is non-trivial. Then, under a suit-
able coordinate system (x1, . . . , xn), there exist a positive integer m, a non-negative
integer r, and non-zero complex numbers α1, . . . , αr such that A has the following
form. Set

Ω :=
{
e

2πk
√

−1
m | k = 1, . . . ,m

}
,

Ac :=
{
{xi = ωαj} | ω ∈ Ω, i = 1, . . . , n, j = 1, . . . , r

}
,

A0 :=
{
{xi = 0} | 1 ≤ i ≤ n

}
.

If n = 2, then r ≥ 1 and

A =
{
{x1 = ωx2} | ω ∈ Ω′} ∪ Ac ∪ A0, where 1 ∈ Ω′ ⊂ Ω.

If n ≥ 3, then

A = A′ with m = 1 and n > 3, or A = A′ ∪ Ac ∪ A0,

A′ :=
{
{xi = ωxj} | ω ∈ Ω, 1 ≤ i < j ≤ n

}
.

Remark 2.9. (i) When n = 2 in Theorem 2.1 and Ω′ = {ω1, . . . , ωL}, we may
assume that

Ω = {ωk1
1 · · ·ωkL

L | k1, . . . , kL ∈ Z≥0}.

(ii) Examples of stable arrangements in C2 with coordinates (x, y):

y = ci

x = y x = y

x+y=0

y = cix

y = 0

x = 0
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3. Proof of Theorem 2.1

Proof of Theorem 2.1 for n = 2. Choose (a, b) ∈ L(2). Since A is xi-closed, we have
{x1 = a}, {x2 = b} ∈ A. By the assumption of the theorem, we may therefore
assume that, under a suitable coordinate system (x, y) of C2,

{x = 0}, {y = 0}, {x = 1}, {y = 1}, {x = y} ∈ A.

In this case, the condition {x = c} ∈ A equals {y = c} ∈ A.
If #(Ax1

∩ Ax2
) = 1, then the theorem follows immediately with m = 1.

Hereafter we assume #(Ax1
∩ Ax2

) > 1.
Now suppose {y = x + c} ∈ A for some c 6= 0. If {x = d} ∈ A, then {y =

c+ d} ∈ A and hence {x = c+ d} ∈ A. By iteration, we obtain {x = nc+ d} ∈ A
for n = 0, 1, 2, . . ., which would imply #A = ∞. Thus, under a suitable coordinate
transformation, we may instead assume that {y = α1x} ∈ A with α1 6= 0, 1.

Hence we assume that

H1 = {y = x}, H2 = {y = α1x}, H3 = {y = α2x+ α3}, H4 = {x = 1} ∈ A.

Here we do not necessarily assume H3 6= H1 or H3 6= H2.
If {x = z} ∈ A for some z ∈ C, then {x = z} ∩ H2 = {(z, α1z)} ∈ L, so

{y = α1z} ∈ A and therefore {x = α1z} ∈ A. Similarly, {x = z} ∈ A implies {x =
α2z + α3} ∈ A. The desired conclusion then follows directly from Lemma 3.1. □
Lemma 3.1. Let αj ∈ C (j = 1, 2, 3) satisfy α1α2(α1 − 1) 6= 0, and define

T1(z) = α1z,

T2(z) = α2z + α3.

Suppose there exists a finite set F ⊂ C such that 0 6= z ∈ F and T1(F ) = T2(F ) =
F . Then α3 = 0, and there exists an integer m ≥ 2 such that

αm
1 = αm

2 = 1 and F ⊃
{
e

2πk
√

−1
m z | k = 1, . . . ,m

}
.(3.1)

Proof. Let a ∈ F be such that |a| ≥ |p| for all p ∈ F . Note that at least one of
a or T1(a) is not a fixed point of T2. Since #F < ∞, there exists m ∈ Z>1 such
that αm

1 = αm
2 = 1. For k = 1, 2, . . . ,m, we then have |αk

1α2a + α3| ≤ |a|, hence
|a + α−k

1 α−1
2 α3| ≤ |a|. Since α1 6= 1 and αm

1 = 1, this inequality holds only when
α3 = 0, which proves (3.1). □

We next prepare a lemma that reduces the proof of the theorem to lower-
dimensional cases.

Lemma 3.2. Let A be a hyperplane arrangement in Cn with coordinates (x1, x2, . . . , xn)
and n ≥ 3. Fix an integer m with 1 < m < n and a point p ∈ Cn−m. Define

V ′ := {(x1, . . . , xn) | (xm+1, . . . , xn) = p},
and call

A′ := {H ∩ V ′ | H ∈ A} \ {∅, V ′}
a specialization of A. For i = 1, . . . ,m, A′ is xi-closed whenever A is xi-closed.
Moreover, if A is reduced, then so is A′.

Proof. For H1,H2 ∈ A, set H ′
j := Hj ∩ V ′ for j = 1, 2. Assume H ′

j 6= ∅ and
H ′

j 6= V ′ for j = 1, 2, and further that H ′
1 6= H ′

2 but H ′
1 ∩H ′

2 6= ∅. Write

Hj = {(x′, x′′) ∈ Cn | fj(x′) = gj(x
′′)}, H ′

j = {x′ ∈ Cm | fj(x′) = gj(p)},
where fj(x

′) and gj(x
′′) are affine linear polynomials in x′ = (x1, . . . , xm) and

x′′ = (xm+1, . . . , xn), respectively, satisfying fj(0) = 0. The assumptions imply
that f1 and f2 are linearly independent over C. It then follows that

〈xi,H
′
1 ∩H ′

2〉 = 〈xi,H1 ∩H2〉 ∩ V ′ (i = 1, . . . ,m),
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which proves the claim of the lemma. Note that dimH ′
j = m − 1 holds precisely

when fj 6= 0 and fj(0) = 0. □
Remark 3.3. A stable hyperplane arrangement A in Theorem 2.1 with r > 0 and
n ≥ 2 can be viewed as a suitable specialization of a stable homogeneous hyperplane
arrangement. For example, by setting x3 = 0 and x4 = 1 in

{
{xi = xj} ⊂ C4 | 1 ≤

i < j ≤ 4
}
, we obtain the hyperplane arrangement

{
{x1 = x2}, {xi = 0}, {xi =

1} | i = 1, 2
}
in C2.

The following lemma is the key step in proving the theorem for the case n ≥ 3.

Lemma 3.4. Under the assumption of Theorem 2.1, we have

Axi
∩ Axj

∩ Axk
= ∅ for 1 ≤ i < j < k ≤ n.

Proof of Theorem 2.1 for n ≥ 3 assuming Lemma 3.4. We know that Axi
∩Axj

6=
∅ while Axi

∩ Axj
∩ Axk

= ∅ for distinct indices i, j, k ∈ {1, . . . , n}. Hence, we

may assume that {xi = xi+1} ∈ L(2) for i = 1, . . . , n − 1. It then follows that
{xi = xj} ∈ L(2) for all 1 ≤ i < j ≤ n. Applying Lemma 3.2 together with the case
n = 2, we obtain the theorem.

Indeed, if #(Ax1 ∩ Ax2) = 1, then the result corresponds to the case m = 1. If
there exist two hyperplanes H1,H2 ∈ Ax1 ∩Ax2 , we may assume H1 ∩H2 ⊂ {x1 =
x2 = 0}, and the theorem follows immediately. Note that if {x1 = a2x2}, {x2 =
a3x3} ∈ A, then {x1 = a2a3x3} and {x1 = a2a3x2} ∈ A, and therefore A ⊃ A′

with m > 1. □
Now we prove Lemma 3.4, starting with the case n = 3.

Lemma 3.5. Let A be a stable hyperplane arrangement in C3. Suppose Ax1
∩

Ax2
∩ Ax3

6= ∅.
(i) Then

{
{x1 = c1}, {x2 = c2}

}
6⊂ A for any c1, c2 ∈ C.

(ii) Moreover, if {x1 = c1} ⊂ A or #L(2) > 1, then A is reducible.

Proof. We may assume H := {x1 + x2 + x3 = 0} ∈ A. Suppose {x1 = c1}, {x2 =
c2} ∈ A. Then, by translation, we may further assume c1 = c2 = 0. Since
(x1 + x2 + x3) − x1 = x2 + x3, we have {x2 + x3 = 0} ∈ A. If {nx1 = x2} ∈ A
(which holds for n = 0), then the relations

(x1+x2+x3)+(nx1−x2) = (n+1)x1+x3, (n+1)x1+x3−(x2+x3) = (n+1)x1−x2,

imply {(n+ 1)x1 = x2} ∈ A, contradicting #A < ∞. Thus we have (i).
If {x1 = c1} ⊂ A, then {x2 + x3 = −c1} ⊂ A, and (i) implies that A is

reducible. In fact, if H ′ := {a1x1 + a2x2 + a3x3 = a0} ∈ A with a2 6= a3, then
〈x1,H ∩ H ′〉 = {(a2 − a1)x2 + (a3 − a1)x3 = a0} ∈ A, and moreover {x2 = c2},
{x3 = c3} ∈ A with suitable c2 and c3.

Now suppose #L(2) ≥ 2. Since A is stable, we have #Ac
xi

≥ 1 for i = 1, 2, 3.

Assume #Ac
xi

= 1 for i = 1, 2, 3 and write Ac
xi

= {{Hi}}. Then for S ∈ L(2),
we have S ⊂ Hi for all i = 1, 2, 3. Since Ac

x1
∩ Ac

x2
∩ Ac

x3
= ∅, it follows that

S = H1 ∩ H2 ∩ H3, hence L(2) = {H1 ∩ H2 ∩ H3} and #L(2) = 1. Thus we may
assume #Ac

x3
≥ 2.

Write
Ac

x3
=

{
{x1 + ax2 = ci} | i = 1, 2, . . .

}
,

where a 6= 0 and c1 6= c2. Since {x1+x2+x3 = 0} ⊂ A, it follows from Lemma 3.2,
Lemma 3.5 (i), and the theorem for n = 2 that a = 1, and hence A is reducible. □
Lemma 3.6. Let A be a reduced hyperplane arrangement in Cn with n ≥ 4. Put
x = x1, y = x2, z = x3, w = x4, x′ = (x5, . . . , xn). If

{x+ y + z = h0}, {w = h1}, {y + az + w = h2}
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belong to A, then A is not stable. Here hj are affine linear polynomials in x′.

Proof. If a = 0, then it follows from Lemma 3.5 with the specialization x4 = · · · =
xn = 0 that A is not stable. If a = 1, then {x − w = h0 − h2} ∈ A because A is
y-closed, and A is not stable as in the case a = 0.

Thus we may assume a 6= 0, 1. Then, from the relations

ax+ (a− 1)y − w = a(x+ y + z)− (y + az + w) (z-closed),

x+ (1− a)z − w = (x+ y + z)− (y + az + w) (y-closed),

x+ (1− a)z =
(
x+ (1− a)z − w

)
+ w (w-closed),

ax+ (a− 1)y =
(
ax+ (a− 1)y − w

)
+ w (w-closed),

(a− 1)y + (a2 − a)z − w = (ax+ (a− 1)y − w)− a(x+ (1− a)z) (x-closed),

ax+ (a− a2)z + w =
(
ax+ (a− 1)y

)
−

(
(a− 1)y + (a2 − a)z − w

)
(y-closed),

2ax+ (a− 1)y + (a− a2)z =
(
ax+ (a− a2)z + w

)
+

(
ax+ (a− 1)y − w

)
(w-closed),

ax+ (a− a2)z + (1− a)w = (1− a)(y + az + w) +
(
ax+ (a− 1)y

)
(y-closed),

(1− a)(y + az + 2w) = 2
(
ax+ (a− a2)z + (1− a)w

)
−

(
2ax+ (a− 1)y + (a− a2)z

)
(x-closed),

we obtain {y + az + 2w = h3} ∈ A. Hence {y + az + 2nw = hn+2} ∈ A for
n = 0, 1, 2, . . ., where each hn+2(x

′) is an affine linear polynomial in x′. □

Proof of Lemma 3.4. Let m be the maximal integer such that there exist indices
iν satisfying 1 ≤ i1 < · · · < im ≤ n and Axi1

∩ · · · ∩ Axim
6= ∅. We will show that

m = 2.
Assume to the contrary that m > 2. Without loss of generality, we may assume

H := {x1 + · · ·+ xm = 0} ∈ A.
Suppose m < n. Choose H2 ∈ Ax2

∩ Axm+1
. By the maximality of m, there

exists i with 1 ≤ i ≤ m such that H2 ∈ Ac
xi
. We may assume i = 1, and write

H2 = {x2 + a3x3 + · · ·+ amxm + xm+1 + · · ·+ anxn = a0}.

Suppose Ac
x1

∩ · · · ∩ Ac
xm

6= ∅, and let H3 ∈ Ac
x1

∩ · · · ∩ Ac
xm

. We may assume
H3 ∈ Axm+1

. By setting x4 = · · · = xm = 0, Lemmas 3.2 and 3.6 imply that A is
not stable, hence Ac

x1
∩ · · · ∩ Ac

xm
= ∅.

(
x
x1,

y
x2,

z
x3, . . . , xm,

w
xm+1, . . . , xn)

Thus, including the case m = n, we may assume

H2 = {x2 + a3x3 + · · ·+ anxn = a0} ∈ Ac
x1
.

Since #L(2) > 1, there exists

H3 = {b1x1 + b2x2 + b3x3 + · · ·+ bnxn = b0} ∈ A

such that H3 6⊃ H1 ∩H2.
If H3 ∩ H1 = ∅, then by Lemma 3.4 and Lemma 3.2 (with the specialization

x4 = · · · = xn = 0), A is either reducible or not stable. Hence we must have
H3 ∩H1 6= ∅.

Since A is x1-closed, we may assume b1 = 0. Similarly, as H3 ∩ H2 6= ∅, the
x2-closedness of A implies that we may also assume b2 = 0. Because A is non-
trivial, there exists some bi 6= 0 with 3 ≤ i ≤ m; we may take b3 6= 0. Then,
applying Lemma 3.5 to the restriction x4 = · · · = xn = 0, we conclude that A is
not stable. □
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4. A related result

In this final section, we determine all vectors v for which a stable hyperplane
arrangement A is v-closed.

Proposition 4.1. Let A be the hyperplane arrangement described in Theorem 2.1,
and assume that #L(2) > 1. Let v be a non-zero vector in Cn such that A is
v-closed.

If r > 0 or m > 1, then v is a scalar multiple of one of the coordinate vectors xi.
If m = 1 and A = A′ ∪A0, then v is a scalar multiple of either one of the xi or

of (c, . . . , c) ∈ Cn with c 6= 0.
If m = 1 and A = A′, then v is a scalar multiple of one of the xi modulo

C(1, . . . , 1).

Proof. We may assume v = (1, c2, c3, . . .) with c2 6= 0.
Suppose H1 = {x1 = 0} and H2 = {x2 = α1} are in A. Then

〈v,H1 ∩H2〉 = {x2 = c2x1 + α1} ∈ A.

Hence r = 0 and n > 2. Since H3 = {x2 = ωx3} ∈ A, we also have

〈v,H1 ∩H3〉 = {x2 − ωx3 = (c2 − ωc3)x1} ∈ A,

which implies c2 = ωc3, and therefore m = 1 and c2 = c3. By symmetry of the
coordinates (cf. σ in (2.3)), we conclude that m = 1 and v = (1, . . . , 1).

Thus we may assume

A =
{
{xi = xj} | 1 ≤ i < j ≤ n

}
with n ≥ 4.

We may further assume v = (1, 0, c3, c4, . . . ). Then

〈v, {x1 − x2 = x3 − x4}〉 = {x2 − x3 = (c3 − c4)(x1 − x2)} ∈ A,

〈v, {x1 − x2 = x2 − x3}〉 = {x2 − x3 = −c3(x1 − x2)} ∈ A.

Hence c3 = c4 = 0 or 1. By symmetry, it follows that v = (1, 0, 0, . . . , 0) or
(1, 0, 1, . . . , 1), which proves the claim. □
Remark 4.2. (i) For m = 1, the expression of the arrangement A = A′ ∪ A0 in
Theorem 2.1 remains the same under the coordinate system

(x1 − xn, . . . , xn−1 − xn,−xn)

of Cn.
(ii) The arrangement A = {xi ± xj = 0 | 1 ≤ i < j ≤ 3} is (ϵ1, ϵ2, ϵ3)-closed

when ϵk ∈ {1,−1} for k = 1, 2, 3.
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