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ABSTRACT. We give a unified interpretation of confluences, contiguity relations
and Katz’s middle convolutions for linear ordinary differential equations with
polynomial coefficients and their generalization to partial differential equa-
tions. The integral representations and series expansions of their solutions
are also within our interpretation. As an application to Fuchsian differential
equations on the Riemann sphere, we construct a universal model of Fuchsian
differential equations with a given spectral type, in particular, we construct sin-
gle ordinary differential equations without apparent singularities corresponding
to the rigid local systems, whose existence was an open problem presented by
N. Katz. Furthermore we obtain an explicit solution to the connection problem
for the rigid Fuchsian differential equations and the necessary and sufficient
condition for their irreducibility. We give many examples calculated by our
fractional calculus.
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Preface

Gauss hypergeometric functions and the functions in their family, such as Bessel
functions, Whittaker functions, Hermite functions, Legendre polynomials and Ja-
cobi polynomials etc. are the most fundamental and important special functions
(cf. [E—, Wa, WW]). Many formulas related to the family have been studied and
clarified together with the theory of ordinary differential equations, the theory of
holomorphic functions and relations with other fields. They have been extensively
used in various fields of mathematics, mathematical physics and engineering.

Euler studied the hypergeometric equation

(0.1) z(1—2)y" + (c—(a+b+1)z)y —aby =0
with constant complex numbers a, b and ¢ and he got the solution

Zala+1)--(a+k—1)-bb+1)---(b+k—1
(0.2) F(a,b,c;x):zz( )c((c+1)~--3c+(k—1))-k!( ) ok,

k=0
The series F(a,b,c;x) is now called Gauss hypergeometric series or function and
Gauss proved the Gauss summation formula
T'(c)T(c—a—1b)
I(c—a)l'(c—0)
when the real part of ¢ is sufficiently large. Then in the study of this function an
important concept was introduced by Riemann. That is the Riemann scheme

(0.3) F(a,b,c;1) =

r=0 1 00
(0.4) 0 0 a ;T
l1—-¢ ¢c—a—-b b

which describes the property of singularities of the function and Riemann proved
that this property characterizes the Gauss hypergeometric function.

The equation (0.1) is a second order Fuchsian differential equation on the Rie-
mann sphere with the three singular points {0, 1,00}. One of the main purpose of
this paper is to generalize these results to the general Fuchsian differential equation
on the Riemann sphere. In fact, our study will be applied to the following three
kinds of generalizations.

One of the generalizations of the Gauss hypergeometric family is the hyperge-
ometric family containing the generalized hypergeometric function ,,F,—1(«, 5; )
or the solutions of Jordan-Pochhammer equations. Some of their global structures
are concretely described as in the case of the Gauss hypergeometric family.

The second generalization is a class of Fuchsian differential equations such as
the Heun equation which is of order 2 and has 4 singular points in the Riemann
sphere. In this case, there appear accessory parameters. The global structure of the
generic solution is quite transcendental and the Painlevé equation which describes
the deformations preserving the monodromies of solutions of the equations with an
apparent singular point is interesting and has been quite deeply studied and now
it becomes an important field of mathematics.

ix
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The third generalization is a class of hypergeometric functions of several vari-
ables, such as Appell’s hypergeometric functions (cf. [AK]), Gelfand’s generalized
hypergeometric functions (cf. [Ge]) and Heckman-Opdam’s hypergeometric func-
tions (cf. [HeO]). The author and Shimeno [OS] studied the ordinary differential
equations satisfied by the restrictions of Heckman-Opdam’s hypergeometric func-
tion on singular lines through the origin and we found that some of the equations
belong to the even family classified by Simpson [Si], which is now called a class of
rigid differential equations and belongs to the first generalization in the above.

The author’s original motivation related to the study in this paper is a general-
ization of Gauss summation formula, namely, to calculate a connection coefficient
for a solution of this even family, which is solved in Chapter 12 as a direct conse-
quence of the general formula (0.24) of certain connection coefficients described in
Theorem 12.6. This paper is the author’s first step to a unifying approach for these
generalizations and the recent development in general Fuchsian differential equa-
tions described below with the aim of getting concrete and computable results. In
this paper, we will avoid intrinsic arguments and results if possible and hence the
most results can be implemented in computer programs. Moreover the arguments
in this paper will be understood without referring to other papers.

Rigid differential equations are the differential equations which are uniquely
determined by the data describing the local structure of their solutions at the
singular points. From the point of view of the monodromy of the solutions, the rigid
systems are the local systems which are uniquely determined by local monodromies
around the singular points and Katz [Kz| studied rigid local systems by defining
and using the operations called middle convolutions and additions, which enables
us to construct and analyze all the rigid local systems. In fact, he proved that
any irreducible rigid local system is transformed into a trivial equation ‘;—Z =0
by successive application of the operations. In another word, any irreducible rigid
local system is obtained by successive applications of the operations to the trivial
equation because the operations are invertible.

The arguments there are rather intrinsic by using perverse sheaves. Dettweiler-
Reiter [DR, DR2] interprets Katz’s operations on monodromy generators and
those on the systems of Fuchsian differential equations of Schlesinger canonical
form

du P4
0.5 — = I
(05) dx Z T —cj
Jj=1
with constant square matrices A;,...,A,. These operations are useful also for

non-rigid Fuchsian systems.

Here A; are called the residue matrices of the system at the singular points
x = c¢j, which describe the local structure of the solutions. For example, the
cigenvalues of the monodromy generator at x = c¢; are e2™V=TM 2TV =TAn,
where A1, ..., A, are eigenvalues of A;. The residue matrix of the system at z = oo
equals Ag := —(A1+ -+ 4,).

Related to the Riemann-Hilbert problem, there is a natural problem to deter-

mine the condition on matrices By, B1, ..., B, of Jordan canonical form such that
there exists an irreducible system of Schlesinger canonical form with the residue
matrices A; conjugate to B; for j = 0,...,p, respectively. An obvious necessary

condition is the equality Z?:o Trace B; = 0. A similar problem for monodromy
generators, namely its multiplicative version, is equally formulated. The latter is
called a mutiplicative version and the former is called an additive version. Kostov
[Ko, Ko2, Ko3, Ko4] called them Deligne-Simpson problems and gave an answer
under a certain genericity condition. We note that the addition is a kind of a gauge
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transformation
u(z) — (x — c))‘u(:r)

and the middle convolution is essentially an Euler transformation or a transforma-
tion by an Riemann-Liouville integral

1 v p—1
u(x) — F(M)/c u(t)(z — ) dt

or a fractional derivation.

Crawley-Boevey [CB] found a relation between the Deligne-Simpson problem
and representations of certain quivers and gave an explicit answer for the additive
Deligne-Simpson problem in terms of a Kac-Moody root system.

Yokoyama [Yo2] defined operations called extensions and restrictions on the
systems of Fuchsian ordinary differential equations of Okubo normal form

du
(0.6) (z-T) e Au.
Here A and T are constant square matrices such that T are diagonalizable. He
proved that the irreducible rigid system of Okubo normal form is transformed
into a trivial equation % = 0 by successive applications of his operations if the
characteristic exponents are generic.

The relation between Katz’s operations and Yokoyama’s operations is clarified
by [O7] and it is proved there that their algorithms of reductions of Fuchsian
systems are equivalent and so are those of the constructions of the systems.

These operations are quite powerful and in fact if we fix the number of accessory
parameters of the systems, they are connected into a finite number of fundamental
systems (cf. [O6, Proposition 8.1 and Theorem 10.2] and Proposition 7.13), which
is a generalization of the fact that the irreducible rigid Fuchsian system is connected
to the trivial equation.

Hence it is quite useful to understand how does the property of the solutions
transform under these operations. In this point of view, the system of the equations,
the integral representation and the monodromy of the solutions are studied by
[DR, DR2, HY] in the case of the Schlesinger canonical form. Moreover the
equation describing the deformation preserving the monodromy of the solutions
doesn’t change, which is proved by [HF]. In the case of the Okubo normal form the
corresponding transformation of the systems, that of the integral representations
of the solutions and that of their connection coefficients are studied by [Yo2], [Ha]
and [Yo3], respectively. These operation are explicit and hence it will be expected
to have explicit results in general Fuchsian systems.

To avoid the specific forms of the differential equations, such as Schlesinger
canonical form or Okubo normal form and moreover to make explicit calculations
easier under the transformations, we introduce certain operations on differential
operators with polynomial coefficients in Chapter 1. The operations in Chapter 1
enables us to equally handle equations with irregular singularities or systems of
equations with several variables.

The ring of differential operators with polynomial coefficients is called a Weyl
algebra and denoted by W{z] in this paper. The endomorphisms of W{z] do not
give a wide class of operations and Dixmier [Dix] conjectured that they are the
automorphisms of Wiz]. But when we localize coordinate x, namely in the ring
W (z) of differential operators with coefficients in rational functions, we have a
wider class of operations.

For example, the transformation of the pair (z, -1) into (z, £ — h(z)) with any
rational function h(z) induces an automorphism of W (z). This operation is called
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a gauge transformation. The addition in [DR, DR2] corresponds to this operation
with h(z) = -2- and A, ¢ € C, which is denoted by Ad((z — ¢)*).

The transformation of the pair (z, &) into (—-L,z) defines an important au-
tomorphism L of W{z], which is called a Laplace transformation. In some cases
the Fourier transformation is introduced and it is a similar transformation. Hence

we may also localize % and introduce the operators such as /\(% —¢)7! and

then the transformation of the pair (z, L) into (z — A(<L)~!, 4) defines an en-
domorphism in this localized ring, which corresponds to the middle convolution
or an Euler transformation or a fractional derivation and is denoted by Ad(9~?)
or mcy. But the simultaneous localizations of =z and % produce the operator
(L)t ozt = Y kla=#1(4L)=*=1 which is not algebraic in our sense and
hence we will not introduce such a microdifferential operator in this paper and we
will not allow the simultaneous localizations of the operators.

Since our equation Pu = 0 studied in this paper is defined on the Riemann
sphere, we may replace the operator P in W(z) by a suitable representative Pe
C(z)P N W]z] with the minimal degree with respect to z and we put R P = P.
Combining these operations including this replacement gives a wider class of op-
erations on the Weyl algebra W[z]. In particular, the operator corresponding to
the addition is RAd((z — ¢)*) and that corresponding to the middle convolution
is RAd(07*) in our notation. The operations introduced in Chapter 1 correspond
to certain transformations of solutions of the differential equations defined by ele-
ments of Weyl algebra and we call the calculation using these operations fractional
calculus of Weyl algebra.

To understand our operations, we show that, in Example 1.8, our operations
enables us to construct Gauss hypergeometric equations, the equations satisfied by
Airy functions and Jordan-Pochhammer equations and to give integral representa-
tions of their solutions.

In this paper we mainly study ordinary differential equations and since any
linear ordinary differential equation is cyclic, namely, it is isomorphic to a single
differential operator Pu = 0 (cf. §1.4), we study a single ordinary differential equa-
tion Pu = 0 with P € W]z]. In many cases, we are interested in a specific function
u(zx) which is characterized by differential equations and if u(x) is a function with
the single variable x, the differential operators P € W (z) satisfying Pu(xz) = 0 are
generated by a single operator and hence it is natural to consider a single differential
equation. A relation between our fractional calculus and Katz’s middle convolution
is briefly explained in §1.5.

In §2.1 we review fundamental results on Fuchsian ordinary differential equa-
tions. Our Weyl algebra Wx] is allowed to have some parameters i, ... and in
this case the algebra is denoted by Wixz;¢]. The position of singular points of the
equations and the characteristic exponents there are usually the parameters and the
analytic continuation of the parameters naturally leads the confluence of additions
(cf. §2.3).

Combining this with our construction of equations leads the confluence of the
equations. In the case of Jordan-Pochhammer equations, we have versal Jordan-
Pochhammer equations. In the case of Gauss hypergeometric equation, we have
a unified expression of Gauss hypergeometric equation, Kummer equation and
Hermite-Weber equation and get a unified integral representation of their solu-
tions (cf. Example 2.5). After this chapter in this paper, we mainly study single
Fuchsian differential equations on the Riemann sphere. Equations with irregular
singularities will be discussed elsewhere (cf. [HiO], [010]).
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In Chapter 3 we examine the transformation of series expansions and contiguity
relations of the solutions of Fuchsian differential equations under our operations.
The results in this chapter will be used in later chapters.

The Fuchsian equation satisfied by the generalized hypergeometric series

o0

R (a1)g (e 4
0.7) nFn_1(a1,...,an,B1,...,Bn-1:) = kZ:O Br ... (ﬂn—l)kk!m

with  (V)k =y +1)- (v +k—1)

is characterized by the fact that it has (n — 1)-dimensional local holomorphic solu-
tions at = 1, which is more precisely as follows. The set of characteristic exponents
of the equation at z = 1 equals {0,1,...,n—1,—8,} with ay+- - -+, = f1+ - -+0x
and those at 0 and oo are {1 — S1,...,1 — f,-1,0} and {a1,...,a,}, respectively.
Then if a; and B; are generic, the Fuchsian differential equation Pu = 0 is uniquely
characterized by the fact that it has the above set of characteristic exponents at
each singular point 0 or 1 or co and the monodromy generator around the point is
semisimple, namely, the local solution around the singular point has no logarithmic
term. We express this condition by the (generalized) Riemann scheme

z=0 1 00 A\
1-581 [Oln—1) a1 A4l
(0.8) L o Pl = : ’
0 _3, a Ad+k-—1

a1++anzﬁl++ﬁn

In particular, when n = 3, the (generalized) Riemann scheme is

rz=0 1 00

1-— Bl 0 a1

1-— BQ (1) (6] T
0 —B3 az

The corresponding usual Riemann scheme is obtained from the generalized Rie-
mann scheme by eliminating the parentheses ( and ) Here [0]¢,—1) in the above

Riemann scheme means the characteristic exponents 0, 1,...,n —2 but it also indi-
cates that the corresponding monodromy generator is semisimple in spite of integer
differences of the characteristic exponents. Thus the set of (generalized) charac-
teristic exponents {[0];,—1), =B} at @ = 1 is defined. Here we remark that the
coefficients of the Fuchsian differential operator P which is uniquely determined by
the generalized Riemann scheme for generic o; and ; are polynomial functions of
a; and f; and hence P is naturally defined for any «; and §; as is given by (13.21).
Similarly the Riemann scheme of Jordan-Pochhammer equation of order p is

r = Cy C1 tee Cp—1 (0.@]
09 0p-1) [Olp-1y - Olp-1y Nle-1n sz¢,
(0.9) Ao AL A Ap

Mot Aot + A+ (p— DA =p— 1.

The last equality in the above is called a Fuchs relation.

In Chapter 4 we define the set of generalized characteristic exponents at a
regular singular point of a differential equation Pu = 0. In fact, when the order of
P is n, it is the set {[A1](m,)s-- - [M](my)} With a partition n = my +--- 4 my, and
complex numbers Ai,...,A\;. It means that the set of characteristic exponents at
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the point equals
(0.10) {AN+v;v=0,....mj—land j=1,... k}

and the corresponding monodromy generator is semisimple if A\; — A\; € Z for 1 <
i1 < j <k.In §4.1 we define the set of generalized characteristic exponents without
the assumption A\; — A\; € Z for 1 < i < j < k. Here we only remark that when
A = A fori=1,... k, it is characterized by the fact that the Jordan normal form
of the monodromy generator is defined by the dual partition of n = mq + - - - + my
together with the usual characteristic exponents (0.10).

Thus for a single Fuchsian differential equation Pu = 0 on the Riemann sphere

which has p+1 regular singular points co, . .., ¢p, we define a (generalized) Riemann
scheme
T = Co C1 e cp
(0.11) [/\0,1].(7710,1) [)‘1,1].(m1,1) ’ [)‘pal].(mp,l)
[AOJLO](mO’nO) [)\l’nl](mlﬂll) e [Apvnp}(mp,"p)

Here n = myjy + -+ mjyn, for j =0,...,p, nis the order of P, A;, € C and
{jalmays -« [)\j’nj](m].‘nj)} is the set of generalized characteristic exponents of
the equation at * = ¢;. The (p + 1)-tuple of partitions of n, which is denoted
by m = (mj;,) j=o,..p , is called the spectral type of P and the Riemann scheme

v=1,...,n;
(0.11).
We note that the Riemann scheme (0.11) should always satisfy the Fuchs rela-
tion

p
{m} =33 mjuAj —ordm + Jidxm

(0.12) oSy
=0.
Here
PN
0.13 idxm := m2, — (p—1)ordm
I,V
j=0v=1

and idxm coincides with the index of rigidity introduced by [Kz].

In Chapter 4, after introducing certain representatives of conjugacy classes of
matrices and some notation and concepts related to tuples of partitions, we define
that the tuple m is realizable if there exists a Fuchsian differential operator P with
the Riemann scheme (0.11) for generic complex numbers A;, under the condition
(0.12). Furthermore, if there exists such an operator P so that Pu = 0 is irreducible,
we define that m is irreducibly realizable.

Lastly in Chapter 4, we examine the generalized Riemann schemes of the prod-
uct of Fuchsian differential operators and the dual operators.

In Chapter 5 we examine the transformations of the Riemann scheme under
our operations corresponding to the additions and the middle convolutions, which
define transformations within Fuchsian differential operators. The operations in-
duce transformations of spectral types of Fuchsian differential operators, which keep
the indices of rigidity invariant but change the orders in general. Looking at the
spectral types, we see that the combinatorial aspect of the reduction of Fuchsian
differential operators is parallel to that of systems of Schlesinger canonical form.
In this chapter, we also examine the combination of these transformation and the
fractional linear transformations.
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As our interpretation of Deligne-Simpson problem introduced by Kostov, we
examine the condition for the existence of a Fuchsian differential operator with a
given Riemann scheme in Chapter 6. We determine the conditions on m such that
m is realizable and irreducibly realizable, respectively, in Theorem 6.14. Moreover
if m is realizable, Theorem 6.14 gives an explicit construction of the universal
Fuchsian differential operator

P n n—1 k
d
Pn = H(;E —¢)" )+ Z ag(z, N, 9)—,
(0.14) (j—l )dm k=0 dz*
:()‘j,v)jzlo ----- 2] g:(917~-~agN)€CN
v=1,...,n;

with the Riemann scheme (0.11), which has the following properties.

For fixed complex numbers )\, ,, satisfying (0.12) the operator with the Riemann
scheme (0.11) satisfying ¢y = oo equals Py, for a suitable g € CV up to a left
multiplication by an element of C(x) if A;, are “generic”, namely,

(AN |a) & {-1,-2,...,1 — (a|om) }

0.15
(0.15) for any o € A(m) satistying (a|om) > 1

under the notation used in (0.22). Here g1, ..., gy are called accessory parameters
and if m is irreducibly realizable, N = 1 — %idx m. Example 5.6 shows the ne-
cessity of the above condition (0.15) but the condition is always satisfied if m is
fundamental or simply reducible (cf. Definition 6.15 and Proposition 6.17), etc. In
particular, if there is an irreducible and locally non-degenerate (cf. Definition 9.8)
operator P with the Riemann scheme (0.11), then \;, are “generic”. The simply
reducible spectral type is studied in Chapter 6 §6.5, which happens to correspond
to the indecomposable object studied by [MWZ] when the spectral type is rigid.

The coefficients a(z, A, g) of the differential operator Py, are polynomials of the
62
891/5;1/’

variables x, A and g. The coefficients satisfy = 0 and furthermore g, can be

equal to suitable a;, ;, under the expression Py = > a; ; ()\,g)mi% and the pairs

(i, 4y) for v = 1,..., N are explicitly given in the theorem. Hence the universal
operator Py, is uniquely determined from their values at generic \;, without the
assumption of the irreducibility of the equation Pyu = 0, which is not true in the
case of the systems of Schlesinger canonical form (cf. Example 9.2).

The universal operator Py, is a classically well-known operator in the case of
Gauss hypergeometric equation, Jordan-Pochhammer equation or Heun’s equation
etc. and the theorem assures the existence of such a good operator for any realizable
tuple m. We define the tuple m is rigid if m is irreducibly realizable and moreover
N = 0, namely, Py, is free from accessory parameters.

In particular, the theorem gives the affirmative answer for the following ques-
tion. Katz asked a question in the introduction in the book [Kz] whether a rigid
local system is realized by a single Fuchsian differential equation Pu = 0 without
apparent singularities (cf. Corollary 10.12 iii)).

It is a natural problem to examine the Fuchsian differential equation Pphu =
0 with an irreducibly realizable spectral type m which cannot be reduced to an
equation with a lower order by additions and middle convolutions. The tuple m
with this condition is called fundamental.

The equation Pnhu = 0 with an irreducibly realizable spectral type m can
be transformed by the operation 0,4, (cf. Definition 5.7) into a Fuchsian equation
Pyv = 0 with a fundamental spectral type m’. Namely, there exists a non-negative
integer K such that Py = 0%, _ Py and we define fm := m’. Then it turns out

that a realizable tuple m is rigid if and only if the order of fm, which is the order
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of P¢m by definition, equals 1. Note that the operator Onax is essentially a product
of suitable operators RAd((z — ¢;)») and RAd(07+).

In this paper we study the transformations of several properties of the Fuchsian
differential equation Ppu = 0 under the additions and middle convolutions. If they
are understood well, the study of the properties are reduced to those of the equation
Prmv = 0, which are of order 1 if m is rigid. We note that there are many rigid
spectral types m and for example there are 187 different rigid spectral types m
with ordm < 8 as are given in §13.2.

As in the case of the systems of Schlesinger canonical form studied by Crawley-
Boevey [CB], the combinatorial aspect of transformations of the spectral type m
of the Fuchsian differential operator P induced from our fractional operations is
described in Chapter 7 by using the terminology of a Kac-Moody root system
(II, W ). Here II is the fundamental system of a Kac-Moody root system with the
following star-shaped Dynkin diagram and W, is the Weyl group generated by the
simple reflections s, for o € II. The elements of II are called simple roots.

Associated to a tuple m of (p + 1) partitions of a positive integer n, we define
an element oy, in the positive root lattice (cf. §7.1, (7.5)):

I:={ag, aj,:j=0,1,..., v=1,2,.},
Woo := (8a; a € II),
(0.16) PN U

Oy 1= Ny + Z Z ( Z mj,i)aj,m

j=0 v=1 1i=v+41

Qg1 002

(m|om) = idxm,

We can define a fractional operation on P, which is compatible with the action of
w € Wy on the root lattice (cf. Theorem 7.5):

(0.17)
{Pm : Fuchsian differential operators with {Am}} — {(A(A),om); am € Ay}

J fractional operations O 4 Wxo-action, —|—TA8’ j

{ Py : Fuchsian differential operators with {Am}} — {(A(N),m); om € AL}

Here \j, € C, 7€ C, m = (m;,,) =0

.....

p With m;, = 0 for v > n;,

v=1,2,.
0o P o0
AV =g+ Z(l +v)ag, + Z Z(l — V),
v=1 j=1lv=1
D= Zu(aw ),
(0.18) ”1:1 b
Ag = 50[0 + 5 Z Z(l - V)aj,m
j=0rv=1
p oo v
A()\) 7A0 — ZZ(Z )\] Z)Oé]y

and these linear combinations of infinite simple roots are identified with each other
if their differences are in CAY. We note that

(0.19) [{Am} = (AA) + 3amlom).
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The realizable tuples exactly correspond to the elements of the set A of pos-
itive integer multiples of the positive roots of the Kac-Moody root system whose
support contains g and the rigid tuples exactly correspond to the positive real
roots whose support contain ag. For an element w € W, and an element oo € A
we do not consider wa in the commutative diagram (0.17) when wa ¢ Ay

Hence the fact that any irreducible rigid Fuchsian equation Ppnu = 0 is trans-
formed into the trivial equation j—; = 0 by our invertible fractional operations
corresponds to the fact that there exists w € W, such that way, = ay because ay,
is a positive real root. The monotone fundamental tuples of partitions correspond
to ay or the positive imaginary roots « in the closed negative Weyl chamber which
are indivisible or satisfies (a|a) < 0. A tuple of partitions m = (m;,) j=o,.., is

v=1,...,njy
said to be monotone if m;1 > mj2 > -+ > mjy,, for j =0,...,p. For example, we
prove the exact estimate
(0.20) ordm < 3|idxm|+ 6

for any fundamental tuple m in §7.2. Since we may assume
(0.21) p < 3|idxm| +3

for a fundamental tuple m, there exist only finite number of monotone fundamental
tuples with a fixed index of rigidity. We list the fundamental tuples of the index of
rigidity 0 or —2 in Remark 6.9 or Proposition 6.10, respectively.

Our results in Chapter 3, Chapter 5 and Chapter 6 give an integral expression
and a power series expression of a local solution of the universal equation Pypu =0
corresponding to the characteristic exponent whose multiplicity is free in the local
monodromy. These expressions are in Chapter 8.

In §9.1 we review the monodromy of solutions of a Fuchsian differential equation
from the view point of our operations. The theorems in this chapter are given
by [DR, DR2, Kz, Ko2]. In §9.2 we review Scott’s lemma [Sc] and related
results with their proofs, which are elementary but important for the study of the
irreducibility of the monodromy.

In §10.1 we examine the condition for the decomposition Py, = Py Py of
universal operators with or without fixing the exponents {); ,}, which implies the
reducibility of the equation Pnhu = 0. In §10.2 we study the value of spectral
parameters which makes the equation reducible and obtain Theorem 10.10. In
particular we have a necessary and sufficient condition on characteristic exponents
so that the monodromy of the solutions of the equation Pynu = 0 with a rigid
spectral type m is irreducible, which is given in Corollary 10.12 or Theorem 10.13.
When mj1 > mjo > --- for any j > 0, the condition equals

(0.22) (AN)|a) ¢ Z (Vo € A(m)).

Here A(m) denotes the totality of positive real roots « such that wpma are
negative and wpy, is the element of W,, with the minimal length so that ay =
WmOm (cf. Definition 7.8 and Proposition 7.9 v)). The number of elements of
A(m) equals the length of wy,, which is the minimal length of the expressions of
wm as products of simple reflections s, with « € II. Proposition 7.9 examines this
set A(m). The set {(alam) | @ € A(m)} gives a partition of a positive integer,
which is denoted by [A(m)] and called the type of A(m) (cf. Remark 7.11 ii)).
If m is monotone and rigid, [A(m)] is a partition of the positive integer ord m +

?:0 Zﬁgl(zgu +1Mmj:) — 1. Moreover m is simply reducible if and only if
[Am)] =1+ +1=1#8m),

In Chapter 11 we construct shift operators between rigid Fuchsian differential

equations with the same spectral type such that the differences of the corresponding
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characteristic exponents are integers. Theorem 11.3 gives a contiguity relation of
certain solutions of the rigid Fuchsian equations, which is a generalization of the
formula

(0.23) c(F(a, b+1,¢;x) — F(a,b, ¢ a:)) =axF(a+1,b+1,c+ 1;x)

and moreover gives relations between the universal operators and the shift operators
in Theorem 11.3 and Theorem 11.7. In particular, Theorem 11.7 gives a condition
which assures that a universal operator is this shift operator.

The shift operators are useful for the study of Fuchsian differential equations
when they are reducible because of special values of the characteristic exponents.
Theorem 11.9 give a necessary condition and a sufficient condition so that the shift
operator is bijective. In many cases we get a necessary and sufficient condition by
this theorem. As an application of a shift operator we examine polynomial solutions
of a rigid Fuchsian differential equation of Okubo type in §11.3.

In Chapter 12 we study a connection problem of the Fuchsian differential equa-
tion Pmu = 0. First we give Lemma 12.2 which describes the transformation of a
connection coefficient under an addition and a middle convolution. In particular,
for the equation Pynu = 0 satisfying mg », = M1, = 1, Theorem 12.4 says that the
connection coefficient ¢(cg : Ag.ny ~> €1 : A1.n,) from the local solution correspond-
ing to the exponent Ag ., to that corresponding to A;,, in the Riemann scheme
(0.11) equals the connection coefficient of the reduced equation Psymv = 0 up to
the gamma factors which are explicitly calculated.

In particular, if the equation is rigid, Theorem 12.6 gives the connection coeffi-
cient as a quotient of products of gamma functions and an easier non-zero term. For
example, when p = 2, the easier term doesn’t appear and the connection coefficient
has the universal formula

n()*l nlfl

I TCome = 2ow +1) - J] T = Army)
v=1 v=1

H F(|7{>‘m’}|)

m'@m”:m
’ o =1
Mo,ng=M1,n; =

(0.24)  c(co: Mong~C1iAn,) =

Here the notation (0.12) is used and m = m’ ® m"” means that m = m’ + m” with
rigid tuples m’ and m”. Moreover in the right hand side of (0.24), the number
of gamma factors appearing in the denominator equals to that in the numerator,
the sum of the numbers * in gamma factors I'(%) in the denominator also equals
to that in the numerator and the decomposition m = m’ & m’ is characterized by
the condition that an € A(m) or am» € A(m) (cf. Corollary 12.7). The author
conjectured this formula (0.24) in 2007 and proved it in 2008 (cf. [O6]). The proof
in §12.1 based on the identity (12.8) is different from the original proof, which is
explained in §12.3.

Suppose p =2, ordm =2, m;, =1for 0 <j <2and 1 <v <2, Then (0.24)
equals

F(Ao2—201+1) - T'(A12—A11)
(Mo + A2+ A1) - T(No1 + A2+ Ao2)’

which implies (0.3) under (0.4).

The hypergeometric series F'(a,b,c;x) satisfies limg_, o0 Fa,b,c + k;x) = 1
if |x| < 1, which obviously implies limy_; 4o F(a,b,c + k;1) = 1. Gauss proves
the summation formula (0.3) by this limit formula and the recurrence relation

F(a,b,¢c;1) = %F(a, b,c+ 1;1). We have limy_,4 o0 c(co: Aong + Kk~ c1:

AM,n, —k) =1 in the connection formula (0.24) (cf. Corollary 12.7). This suggests a

(0.25)
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similar limit formula for a local solution of a general Fuchsian differential equation,
which is given in §12.2.

In §12.3 we propose a procedure to calculate the connection coefficient (cf. Re-
mark 12.19), which is based on the calculation of its zeros and poles. This procedure
is different from the proof of Theorem 12.6 in §12.1 and useful to calculate a cer-
tain connection coefficient between local solutions with multiplicities larger than 1
in eigenvalues of local monodromies. The coefficient is defined in Definition 12.17
by using Wronskians.

In Chapter 13 we show many examples which explain our fractional calculus
in this paper and also give concrete results of the calculus. In §13.1 we list all
the fundamental tuples whose indices of rigidity are not smaller than —6 and in
§13.2 we list all the rigid tuples whose orders are not larger than 8, most of which
are calculated by a computer program okubo explained in §13.11. In §13.3 and
§13.4 we apply our fractional calculus to Jordan-Pochhammer equations and the
hypergeometric family, respectively, which helps us to understand our unifying
study of rigid Fuchsian differential equations. In §13.5 we apply our fractional
calculus to the even/odd family classified by [Si] and most of the results there have
been first obtained by our calculus. In §13.6, we show some interesting identities of
trigonometric functions as a consequence of the concrete value (0.24) of connection
coefficients.

In §13.7, §13.8 and §13.9 we study the rigid Fuchsian differential equations
of order not larger than 4 and those of order 5 or 6 and the equations belonging
to 12 submaximal series classified by Roberts [Ro], respectively. Note that these
12 maximal series contain Yokoyama’s list [Yo]. In §13.9.2, we explain how we
read the condition of irreducibility, connection coefficients, shift operators etc. of
the corresponding differential equation from the data given in §§13.7-13.9. We
examine Appell’s hypergeometric equations in §13.10 by our fractional calculus,
which will be further discussed in another paper.

In Chapter 14 we give some problems to be studied related to the results in
this paper.
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CHAPTER 1

Fractional operations

In this chapter we define several operations on a Weyl algebra. The operations
are elementary or well-known but their combinations will be important.

In §1.4 we review on the ordinary differential equations and the ring of ordinary
differential operators. We give Lemma 1.10 which is elementary but assures the
existence of a cyclic vector of a determined ordinary equation. In §1.5 we also
review on certain system of differential equations of the first order.

1.1. Weyl algebra

Let Clzy,...,2z,] denote the polynomial ring of n variables z1,...,z, over C
and let C(z1,...,x,) denote the quotient field of Clxy,...,x,]. The Weyl algebra
Wlz1,...,z,] of nvariables x4, ..., x, is the algebra over C generated by z1,...,z,
and =2 -9 with the fundamental relation

Ox1’ """ Oxn
(1.1) [, 25] = [0, 521 =0, [goowil =60 (1<id,j<n).

We introduce a Weyl algebra Wxy,...,2z,][¢1,. .., &,] with parameters &1, ...,&N
by
W[xl, e 7.’13,”][51, e 75]\]] = C[fl, e 7§N] % W[J,’l, e 7.’1,‘n]

and put
W[xla"wxn;flv"'?gN] = (C(sla"'va)%W[xla"'van
W(x17"'7xn;€17"'a§N) ::C(xla"'vxn7€17"'a€1\/) ® W[xla"'axn]'

Here we have

(1.2) (2,6 = [5%,6] =0 (1<i<n, 1<v<N),
241-40)
Ox;” f1 Oz \ f
(1.3) ’ axg f—g- af
:w (f? geC[~T17~-~7$na§1»~-~7fN])
and [a%i,f]:aa—giE(C[xl,...,xn,gl,...,&v].

For simplicity we put = (z1,...,2,) and £ = (&1,...,&y) and the algebras
C[x17""xn]7 (C(x17"'7xn)7 W[x17"'7xn][§1)""§N]7 W[x17"'7xn;£17"'7£N]7
W(z1,...,xn;&1,...,€N) ete. are also denoted by Clz], C(x), W]z][§], W]x;],
W (x; &) etc., respectively. Then
(1.4) Clz, ] € Wz][¢] € Wlx; €] € W(z;€).

The element P of W (z;€) is uniquely written by

gortetan

(1.5) P = Z Pa(maf)m (Pa(,§) € C(x,£)).
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Here Z>o = {0,1,2,...}. Similar we will denote the set of positive integers by
Zwo. If P € W(x;€) is not zero, the maximal integer oy + --- + «, satisfying
palz,€) # 0 is called the order of P and denoted by ord P. If P € W{x;£], pa(x,§)
are polynomials of « with coefficients in C(¢) and the maximal degree of p,(z, )
as polynomials of x is called the degree of P and denoted by deg P.

1.2. Laplace and gauge transformations and reduced representatives
First we will define some fundamental operations on Wx;¢].

Definition 1.1. i) For a non-zero element P € W(z;£) we choose an element
(C(z,&) \ {0})P N W]x; ] with the minimal degree and denote it by R P and call
it a reduced representative of P. If P = 0, we put RP = 0. Note that R P is
determined up to multiples by non-zero elements of C(&).

ii) For a subset I of {1,...,n} we define an automorphism L; of Wx;¢]:

z;, (el -2 (Gel
(16)  Li(z;) = s L) =4 om0t and L&) = &
o 3% (i ¢1) Zi (i ¢1)
We put L = Ly, ,y and call L the Laplace transformation of W{x;§].
iii) Let Wi (z; &) be the algebra isomorphic to W (z; &) which is defined by the
Laplace transformation

(1.7) L:W(;€) & Wi(x:6) = W(;6).
For an element P € Wy, (z; &) we define
(1.8) R.(P) =L 'oRoL(P).

Note that the element of Wi (z;&) is a finite sum of products of elements of
Clz] and rational functions of (3%1, ce a%n,fl, o EN).
We will introduce an automorphism of W (x;&).

Definition 1.2 (gauge transformation). Fix an element (hq,...,h,) € C(z,&)™
satisfying

(1.9) ‘;’; = gljj (1<i, j<n)

We define an automorphism Adei(hq,...,h,) of W(z;£) by
Adei(hy, ..., hy)(x;) = x; (i=1,...,n),

(1.10) Adei(hy, .. hn)(35) = 3% —hi (i=1,...,n),
Adei(hy, ..., hp) (&) =& (v=1,...,N).

Choose functions f and g satisfying % =h; fori=1,...,n and put f =e9 and

(1.11) Ad(f) = Ade(g) = Adei(hq, ..., hy).

We will define a homomorphism of W(z;§).
Definition 1.3 (coordinate transformation). Let ¢ = (¢1,...,¢n) be an element

of C(x1,...,%m, &)™ such that the rank of the matrix

(1.12) Q= (g(ﬁjj)lgigm

i/ 135<n

equals n for a generic point (z,§) € C™N. Let ¥ = (¢;;(x,€)) 1<i<n be an
1<j<m
left inverse of ®, namely, U® is an identity matrix of size n and m > n. Then a
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homomorphism T} from W(x1,...,xn; &) to W(xy,...,2m;&) is defined by

T} (2:) = 4i(x) (1<i<n),
1.13 .
(1.13) () Zq/;”x{a% (1<i<n).
If m > n, we choose linearly independent elements h, = (hy 1, .., hym) of C(z,£)™

for v =1,...,m —n such that ¥; 1hy1 + - + VYimhym =0fori =1,...,n and
v=1,....,m—n and put

m—-n

(1.14) K* (o) := z_: )Y g € W)

Jj=1
The meaning of these operations are clear as follows.

Remark 1.4. Let P be an element of W (z;€) and let u(x) be an analytic solution
of the equation Pu = 0 with a parameter £&. Then under the notation in Defini-
tions 1.1-1.2, we have (R P)u(z) = (Ad(f)(P))(f(z)u(z)) = 0. Note that R P is
defined up to the multiplications of non-zero elements of C(§).

If a Laplace transform

(1.15) (Rru)(x) = / e TN T T IR gy (1) by Ty 1y« e ey T )dE g - - d,
c

of u(z) is suitably defined, then (L, k}(RP))(T\’,ku) = 0, which follows from
the equalities 255 = Ry (—a;u) and 0 = [, 2 g (emmh T T E (it ay g, L) )dE =
—z;Riu + Rk( ) for i =1,...,k. Moreover we have

f(@)RrRPu= f(z)(Lg,. sy (RP))(Reu) = (Ad(f) L1, k3 (RP)) (f(2)Rypu).

Under the notation of Definition 1.3, we have T (P)u(¢1(z),...,¢n(x)) = 0 and
Qu(d1(x),- -, $n(w)) = 0 for Q € K*(9).

Another transformation of W{z; €] based on an integral transformation fre-
quently used will be given in Proposition 13.2.

We introduce some notation for combinations of operators we have defined.

Definition 1.5. Retain the notation in Definitions 1.1-1.3 and recall that f = e9

99
and h = o,

(1.16) RAd(f) = RAde(g) = RAdei(hy,. .., hy) == RoAdei(hy, ..., hn),
AdL(f) = AdeL(h) = AdeiL(h1,. .., hn)

1.17

(L17) := L7 o Adei(hy,...,h,) oL,
RAdL(f) = RAdeL(h) = RAde1L(h1, hy)

1.18

(1.18) = L_loRAdei(hl,.. hn) o

(1.19) Ad(9F) ==L "oAd(zt) o
(1.20)  RAd(0%) :=L7' o RAd(x} )oL

Here p is a complex number or an element of C(§) and Ad(9%,) defines an endo-
morphism of W, (x;&).

We will sometimes denote 8— by 0., or 0; for simplicity. If n =1, we usually

denote x; by x and 21 by -4 = or J, or 9. We will give some examples.
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Since the calculation Ad(z7#)0 =z #odoxt = xH(z' 0+ pat ') = O+ pa !
is allowed, the following calculation is justified by the isomorphism (1.7):
Ad(0™H)x™ =07 ox™ o O

:( mg— P«+ )m 2 la pn— 1+( /‘1’)(7”72})7”(”171)‘%7"*28*”72

++( ,U‘)( n— 1)m(' n— m-‘rl)nz!a H—m)au

S 1o () ena

This calculation is in a ring of certain pseudo-differential operators according to
Leibniz’s rule. In general, we may put Ad(0~#)P = 0 " o Po 0" for P € W]x;¢]
under Leibniz’s rule. Here m is a positive integer and we use the notation

v—1

(L21) ()= [[(u+9), (T) - I'(m+1) _m

Pl m—v+DCwv+1) (m—v)!’

1.3. Examples of ordinary differential operators

In this paper we mainly study ordinary differential operators. We give exam-
ples of the operations we have defined, which are related to classical differential
equations.

Example 1.6 (n = 1). For a rational function h(z,&) of x with a parameter £
we denote by [ h(z,£)dz the function g(z, &) satisfying “Lg(x,£) = h(z,£). Put
f(z,6) = e9®€) and define

d
(1.22) gi=a.
Then we have the following identities.
(1.23) Adei(h)d = 8 — h = Ad(e/ M@y g = o/ M)z o g o = [ M(@)dz,
(1.24) Ad(f)zr ==z, AdL(f)0 =0,
(1.25) Ad(Af) =Ad(f) AdL(Af) = AdL(f),
(1.26) Ad(f)0 =0 —h(z,§) = AdL(f)x =z + h(9,8),
(1.27) Ad((z — ¢)*) = Ade(Xog(z — ¢)) = Adei(52),
(1.28) Ad(( c))‘)x =z, Ad((z-¢)")
(129)  RAd((z — )Mo =Ad((z — c)*) ((z — ¢)0) = (z — )0 — A,
RAAL((z — ¢)*)z = L' o RAd((z — )*)(-0)
(1.30) =L (z—0c)(-9)+\)
=0@—cr+A=z0—cr+1+A,

d=0, RAdL((z— c)/\) ((0—c)z) = (0 —c)z+ A,
¥ = AdL(z*)9 = 9 + )\,

AMz—c)™

(1.32) Ad(o*

AMz—c)™
(1.33)  Ad(e” m

z, Ad(e J0=0— XNz —c)" !,
T+ A0 —c)™ 1 (m>1),
(@—c)l"mz+ X (m<-1),

(1.35) Tty gn(@) = (@ = O™, Ty oym(®) = (@ — )™,

Here m is a non-zero integer and A is a non-zero complex number.

A(xz— c)

~— ~— ~— —
8

(1.34) RAdL(e x
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Some operations are related to Katz’s operations defined by [Kz]. The opera-
tion RAd((z — ¢)*) corresponds to the addition given in [DR] and the operator

(1.36) me,, = RAd(07#) = RAdL(z™*)
corresponds to Katz’s middle convolution and the Euler transformation or the
Riemann-Liouville integral (cf. [Kh, §5.1]) or the fractional derivation

(1.37) (I (u)) (z) = % /wu(t)(x — -t

(w
Here c is suitably chosen. In most cases, ¢ is a singular point of the multi-valued
holomorphic function u(x). The integration may be understood through an analytic
continuation with respect to a parameter or in the sense of generalized functions.
When u(x) is a multi-valued holomorphic function on the punctured disk around
¢, we can define the complex integral

(138) (I%(u))(x) = / ) = s M

¢ ‘starting point x

through Pochhammer contour (z+,c+,x—,c—) along a double loop circuit (cf.
[WW, 12.43]). If (2 — ¢)"?u(z) is a meromorphic function in a neighborhood
of the point ¢, we have

(1.39) (I*(u))(z) = (1- eQ”A\/jl) (1- 627”“/?1) /I u(t)(x — t)*tdt.
For example, we have
I((x— o)) = ﬁ /I(t —Ma— ) la
x — )Ml
(1.40) = (F(M))/o 1 —s)P s (x—t=(1-s)(z—c))
_ '(A+1) (& — )
FA+p+1) ’
4r2em A+ v-1

(1.41) fc”((xfc)A) = (z — c)rtL,

T(=ATA - TA+p+1)
For k € Z>(¢ we have
—4m?klem VT

(1.42) IE((@ = )" log(w — ¢)) = T(1—m(u+k+1)

(z — c)PHr+L,

‘We note that since

% (u(t)(z — t)“_l) =/ (t)(x —t)* ! - %(u(t)(x - t)“_l)

and
4 (ut)(z—t)") =u'(t)(z — )" —u(t)L(z—t)"
= au/(t)(z — )71 — tu/ (¢)(x — )T — pu(t) (@ — 1),
we have
(1.43) 1¢(0u) = OI¢ (u),

1 (Ou) = (0 = p) I (u).
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Remark 1.7. i) The integral (1.37) is naturally well-defined and the equalities
(1.43) are valid if Re A > 1 and lim,_,. ~!u(x) = 0. Depending on the definition of
I, they are also valid in many cases, which can be usually proved in this paper by
analytic continuations with respect to certain parameters (for example, cf. (3.6)).
Note that (1.43) is valid if I# is replaced by I* defined by (1.38).

ii) Let € be a positive number and let u(z) be a holomorphic function on

U:a ={zeC;lz—c <eand e (x—¢) ¢ (—0,0]}.

Suppose that there exists a positive number ¢ such that |u(x)(z — ¢)~*| is bounded
on {z € Uly; | Arg(x — ¢) — 0] < &} for any k > 0. Note that the function Pu(z)
also satisfies this estimate for P € W{z]. Then the integration (1.37) is defined
along a suitable path C' : v(¢) (0 < ¢t < 1) such that v(0) = ¢, v(1) = z and
| Arg(y(t) — ¢) — 0] < 6 for 0 <t < 5 and the equalities (1.43) are valid.

Example 1.8. We apply additions, middle convolutions and Laplace transforma-
tions to the trivial ordinary differential equation

du
1.44 — =0
(1.4 oo,
which has the solution u(z) = 1.
i) (Gauss hypergeometric equation). Put

P, o 1= RAd(07") o RAd(z™ (1 — 2)*2)0
=RAA(O™M) o R(D — A1 + P2
=RAd(0*) (z(1 — 2)0 — A (1 — ) + Aoz)
=RAAO™)((9 - M) —2(9 — A1 — X2))

(1.45)
=AdO ") (I+1=A1)0— (9 +1)(0 — A1 — X2))
:(19+1—>\1—,u)8—(19+1—u)(19—)\1—)\2—,u)
=0+ — (0 + B +a)
=z2(1-2)0"+ (y— (a+ B+ 1)z)0 — af

with

a=-A—X—pu,
(1.46) B=1—pu,

y=1—X —pu.
We have a solution

u(z) = I (z™ (1 - 2)*?)

1 /m A A —1

=— [ A -t (@ -t) tat
) Jy T OED
[ s =

= s (1 — )P —xs)2ds (t=uxs
L(u) Jo

(1.47) L(Ap + D)o

=——— 2 (=X, A 1, A 1;
TOu+p+1) (=2, A1 + 1+p+Lz)
L(Ap + D)zMHr(1 — p)retr

= F(u, A1+ Ao+ p, A1 +p+1;
LA + DaMtr(l —z)~ 2 x

= F(p, —Xa, A 1, ——

F()\1+ﬂ+1) (ua 2 1+,u+ 71‘—1)
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of the Gauss hypergeometric equation Py, »,,,% = 0 with the Riemann scheme

z=0 1 %)
(1.48) 0 0 1—p P Ty,
AMAp A+p A= —pn

which is transformed by the middle convolution mc,, from the Riemann scheme

z=0 1 00
)\1 AQ 7)\17)\2 L

of z*1(1 — z)*2. Here using Riemann’s P symbol, we note that

=0 1 00
P 0 0 1—pn ;X
AM+p Adtpu —Adi—Ade—p
=0 1 00

= gMtrp - —p 0 M+1 sz
0 Ao+p =X

z=0 1 o0
=ML — )2 THPL N~ e —p Mt tutl
0 0 "
z=0 1 00
—aMpd N M+l 0 ;mfl
0 X2 e Hp
=0 1 00
=M1 — )P M = A+l =X xil
0 0 I

In general, the Riemann scheme and its relation to mc, will be studied in Chapter
4 and the symbol ‘P’ will be omitted for simplicity.

The function u(z) defined by (1.47) corresponds to the characteristic exponent
A1+ @ at the origin and depends meromorphically on the parameters A1, Ao and pu.
The local solutions corresponding to the characteristic exponents Ay + p at 1 and
—A1 — A2 — p at oo are obtained by replacing I} by I}" and I%, respectively.

When we apply Ad(z*1 (z —1)*2) to Py, ,., the resulting Riemann scheme is

z=0 1 00
(1.49) A A 1-M =X, —pu P T
MAN o Ao+ X +p =A== N =X\ —

Putting A11 = A, A2 = A+ AL+ 4, Ao =AY, Aeg = Ae + Ay + g, Ao =
1—M =My —pand A\ga = —A1 — A2 — A] — A — p, we have the Fuchs relation
(1.50) AoiF+ o2+ A F A2+ A+ Aa=1
and the corresponding operator
P\ = .132(1,‘ — 1)282 + JJ(.I — 1)((/\0,1 + /\0,2 + 1)33 + )\171 + )\1’2 — 1)6

+ )\0,1>\o,2$2 + (A21022 — Ao, 10,2 — A 1A12)2 + A2

has the Riemann scheme

(1.51)

rz=0 1 o)
(1.52) Ao Al Agn ;@
Ao2 A2 A2

By the symmetry of the transposition Aj; and Aj;o for each j, we have integral
representations of other local solutions.
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ii) (Airy equations). For a positive integer m we put

zmtl
P,, :=LoAd(e )9

1.53
(1.53) =LO@-z™)=z—(-0)™.

Thus the equation
dm
(1.54) dTZ — (~1)™zu=0

has a solution

m—+1
1.55 ; = — d 0<5<
) we= [ eo (S oe)e 0<ism

where the path Cj of the integration is
(2j—1)7/=1 (2j+1)7/=1
Cj:z(t)y=e mF — tqe mit T (o0 <t < 00).

Here we note that ug(z) + - - - + um(x) = 0. The equation has the symmetry under
/=1
the rotation z + e w1 .

ili) (Jordan-Pochhammer equation). For {ci,...,¢,} € C\ {0} put
P
Prrgn = RAA(@™) o RA(T] (1 = e0) )

j=1

— RAd(D™ M)oR(a+Z €% o)

1—cjz
=RAd(O™") (po(x)a + q(w))

= 077 (p (@) + q(@)) " = Y pr(@)o" ™

k=0
with
pola) = [0 —s2),  ale) = pola) D2 7290
Jj=1 = j
ay Ia+1)
(6) EENCE N ES)) (a,€C).

We have solutions
/ H Mz —t)P Nt (j=0,1,...,p, co=0)

Ap,u¥ = 0 with the Riemann scheme

.....

(1.56) Olp-1 - [0lp-1) 1= plp-1) g
>\1+/'I’ e )\p_’_u _)\1_..._)\}7_#
Here and hereafter we use the notation
A
A+1

A+k-1
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for a complex number A and a non-negative integer k. If the component [A](y is
appeared in a Riemann scheme, it means the corresponding local solutions with the
exponents A+ v for v =0,...,k — 1 have a semisimple local monodromy when \ is
generic.

1.4. Ordinary differential equations
We will study the ordinary differential equation
(1.58) M:Pu=0

with an element P € W(z;€) in this paper. The solution u(z,£) of M is at least
locally defined for x and £ and holomorphically or meromorphically depends on x
and £. Hence we may replace P by R P and we similarly choose P in W{z;£].

We will identify M with the left W (z;&)-module W (z; &) /W (x; &) P. Then we
may consider (1.58) as the fundamental relation of the generator u of the module
M.

The results in this section are standard and well-known but for our convenience
we briefly review them.

1.4.1. Euclidian algorithm. First note that W(x;¢) is a (left) Euclidean
ring. Let P, @ € W (x;€£) with P # 0. Then there uniquely exists R, S € W(x;¢)
such that

(1.59) Q=SP+R (ord R < ord P).

Hence we note that dimg(,¢) (W (z;€)/W(z;€)P) = ord P. We get R and S in
(1.59) by a simple algorithm as follows. Put

(1.60) P=a, 0"+ - -+a10+ay and Q =b,0"+---+b,0+ by

with a, # 0, by, # 0. Here ay, by, € C(z,£). The division (1.59) is obtained by the
induction on ord Q. If ord P > ord @, (1.59) is trivial with S = 0. If ord P < ord @,
(1.59) is reduced to the equality Q" = S'P + R with Q' = Q — a;,'b,,0™ " P and
S" =8 —a,;'b, 0™ " and then we have S’ and R satisfying Q' = S'P + R by the
induction because ord @' < ord ). The uniqueness of (1.59) is clear by comparing
the highest order terms of (1.59) in the case when @ = 0.

By the standard Euclidean algorithm using the division (1.59) we have M,
N € W(x;€) such that

(1.61) MP+NQ=U, PeW(z;§)U and Q € W(x;&)U.
Hence in particular any left ideal of W (x;¢&) is generated by a single element of

Wx; €], namely, W (x; ) is a principal ideal domain.
Definition 1.9. The operators P and @ in W (x;&) are defined to be mutually

prime if one of the following equivalent conditions is valid.
(1.62) W(x;§)P + W(x;:6)Q = W(x; ),
(1.63) there exists R € W(z;¢) satisfying RQu = u for the equation Pu = 0,

(1.64 the simultaneous equation Pu = Qu = 0 has not a non-zero solution
’ for a generic value of &.

The operator S satisfying W (x; )P+ W (x;£)Q = W (x; £)S is called the great-
est common left divisor of P and @ and the operator T satisfying W (x;&)P N
W(z;€)Q = W(x;&)T is called the the least common left multiple of P and Q.
These operators are defined uniquely up to the multiples of elements of C(z;£)\{0}.
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. P, S 1 P.
Put (P, Py, P3,51) = (Q,P,R,S) in (1.59). Then (P;) = <11 0) (Pz)

and in the same way we successively get Ps,..., Py such that

P\ _ (S L1\ [P+
Pjiq 1 0) \Pj+2)’

(1.65) ord P; = ord S; + ord Pji1,
ord Pj1o <ordPj;q or Pjia=0
for j =1,2,...,N — 1 with Pyy; = 0. Putting
(4) (4)
o= (08 ) mses s ()
7O = (Vl(f) Vfr?) N B - T (O 1 )
V2(1) VQ(QJ) J Lo X 1 -S;)°
Ui == UG, Vi =V (1<, i <2),
we have
(1.6) Py =UnPn, Pn=ViiP+Vi2P,
Py =UxnPn, 0=VoP1+ VorPs.
Note that
Uit _ gty _ g 4y, v _ s, o 1,
ugtd _ gt _p@g 4 o), o — 1, Ul o,
VUTD 0t gy ), v 1, v o,
VU Ut - gy 4y, A v 1,

Hence by the relation ord §; = ord P; — ord P41, we inductively have

ordUY™Y = ord V™ = ord Py — ord P4,
ord U(ﬁ'1 = ord Vz(1 I = ord P, —ord Py

and therefore
ord Uy = ord Vog = ord P; — ord Py,
ord U9 = ord V5 = ord P, — ord Py _1,

ord Uy = ord Vo1 = ord P, — ord Py,
ordUss = ord Vi1 = ord P, — ord Py _1.

Moreover we have

(1.67) NP +ToP,=0 < (T1,Tz) € W(x;8)(Var, Vaz),

which is proved as follows. We have only to prove the implication = in the above.
Replacing (Py, P2) by (U11,Uz21), we may assume ord Py = 0. Suppose T1P; +
T2P2 =0 and T1 ¢ W(JZ,&)VQl Putting T1 = B‘/gl + A with ord A < ord Vv21 =
ord Py, we have (BVa1 + A)P; + T5 P, = 0 and therefore AP + (Po — BVag) Py = 0.
Hence for j = 1 we have non-zero operators A; and B; satisfying

AjP;j+ BjPj;1 =0, ordA; <ord Pj;; and ord B; < ord P;.

Since Pj = Sij+1 +Pj+2, the above equality 1mphes (Aij +Bj)Pj+1 +Aij+2 =0
with ord A; < ord Pj1 and therefore the existence of the above non-zero (4;, B;) is
inductively proved for j = 1,2,..., N —1. The relations Ay _1Py_1+Bnx_1Pnv =0
and ord By_1 < ord Py_1 contradict to the fact that ord Py = 0.
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The operator U := Py is the greatest common left divisor of P and ¢, which
equals U in (1.61), and the operator T := Vo1 P = —V5oQ € W (x;€) is the least
common left multiple of P and @. Note that

(1.68) ordT + ordU = ord P + ord ).

1.4.2. cyclic vector. In general, for a positive integer m and any left W (x; &)-
submodule N of W (z;£)™, we can find elements vy, ...,v,, € N such that N' =
W (z;&)v1+- - -+ W (x;€)vy and m’ < m. In particular, any left W (z; £)-submodule
of W(x; &)™ is finitely generated.

This is proved by the induction on m. In fact, we can find v; = (v%l), ceey U%m)> €
N such that {v® | (0D, o) € N} = w(z; €)'V and then N is generated by
vy and the elements generating N7 = {(0,va,...,vy,) € N} C W(a; &)™ L.

Moreover we have the following.

(1.69) Any left W (z;£)-module R with dimg(,.¢) R < 00 is cyclic,

namely, it is generated by a suitable single element, which is called a cyclic vec-
tor. Hence any system of ordinary differential equations is isomorphic to a single
differential equation under the algebra W (z;¢).

To prove (1.69) it is sufficient to show that the direct sum M@GN of M : Pu =0
and NV : Qu = 0 is cyclic. In fact M &N = W(z;{)w with w = u + (z — ¢)"v €
M@ N and n = ord P if ¢ € C is generic. For the proof we have only to show
dimg(g,e) W(z;§)w > m + n and we may assume that P and Q are in W/z;¢]
and they are of the form (1.60). Fix & generically and we choose ¢ € C such
that a,(c)bm(¢) # 0. Since the function space V = {¢(z) + (z — ¢)"p(z) ; Po(z) =
Q(z) = 0} is of dimension m+n in a neighborhood of = = ¢, dimg (g;¢) W (w; §)w >
m +n because the relation Rw = 0 for an operator R € W (z;€) implies Ry (z) =0
for ¢ € V.

Let M be a system of linear ordinary differential equations, namely, a finitely
generated left W (x;&)-module. Then there exist finite elements uq,...,u, of M
such that M = W(x;)us+- - -+ W (z;&)uy,. Then N = {(Py,...,P,) € W(z; )™ |
Pyuy +- - -+ Pyu,, = 0} is generated by suitable elements A; = (A;1,...,4;,) € N
(1 < i < m) with m < n. Then M is isomorphic to W(z;£)"/N and N =
W(z;§) A1+ - -+ W(x;6) Ape.

We give a lemma, which implies (1.69) by putting A = (4; ;)i<i<m in the

1<j<n
above. =
Lemma 1.10. Let A € M(m,n,W(x; )) Here m and n are positive integers
and A # 0. Then there exist S € GL(m,W(x;ﬁ)), T € GL(n,W(J:;{)), P c
W(x; &) \ {0} and k € Z>g such that (B, ;) = B = SAT is the following form:
1

N 1 (1<i=j<k),
(1.70) B = SAT = L, , Bi;={P (i=j=k+1),
0. 0 (i#j or i>k+1).

Here k and ord P do not depend on the choice of S and T and in general, M (m,n, R)
denotes the linear space of matrices of size m xn whose elements are in R and when
R is a ring with the unit, GL(n, R) denotes the group whose elements are invertible
matrices of M(n,n, R).

PRrROOF. Consider the following standard transformations of the matrix C' in
M(m, n, W (x; 5)) as in the linear algebra:

(1) Multiply a row of C from the left by a non-zero element of C(x;¢).
(2) Choose two rows of C' and permute them.



12 1. FRACTIONAL OPERATIONS

(3) Consider a row vector which equals a left multiplication of a row of C by
an element of W(x;¢) and add it to another row of C.

(4) Multiply a column of C' from the right by a non-zero element of C(z;¢).

(5) Choose two columns of C' and permute them.

(6) Consider a column vector which equals a right multiplication of a column
of C by an element of W (x;&) and add it to another column of C.

Let A be a matrix obtained by a suitable successive applications of these trans-
formation to A. First we will prove that we may assume B = A. Let d denote the
minimal order of non-zero elements in the matrices obtained by successive applica-
tions of these transformations to A. We may assume A1 1 # 0 and ord A1 1 =d.
By suitable transformations (3) and (6), we may moreover assume A;; = A; ; =0
if 1 > 2 and j > 2 because of the minimality of d. Put A’ = (Ai,j)2§i§m~ IfA =0,

2<j<n
then B = A.

We may assume A’ # 0. If d = 0, we get B by the induction on m. Hence we
may assume d > 0 and Ag 2 # 0. Putting d’ = ord A, 2 > d > 0, we may moreover
assume ord(Ag o — %) < d’. Add the right multiplication of the second column of
A by 2° (s =0,1,2,...) to the first column. Then add the left multiplication of the
first row by an element —P € W (x;€) to the second row. Then the (2, 1)-element
of the resulting matrix equals

/12,21'8 — PAI,L

We can choose P so that ord(flzgxs — PAM) < d. Then the minimality of d implies
AQ,QJ:S € W(.T;f)ALL Put

’ ~ ~ ~ ;7 ~
x? 75 Ay 0x® = Ao+ 8Agoq + -+ 5T Ayo .

Here 1212’2,,, € W(x;€) do not depend on s. Note that A~272’d/ = xd/flg’g and 12127270 =
1. The condition AQ’QI'S € Wix; 5)[1171 for s =0,1,... implies /127271, € W(x; 5)/1171,
which contradicts to 12127270 =1 because d > 1. Hence A’ = 0.

Define a left W (z;£)-module by M = W (z;£)"/ > % W(x;€) (A, .., Ain)
and put M’ := {u € M | 3P € W(z;&) \ {0} such that Pu = 0}. Note that
the above transformations give isomorphisms between finitely generated W (z;§)-
modules. Note that dimy(z,e) M’ = ord P and M/M' ~ W(z;€)" "1 as left
W (z;&)-modules. Thus we have the lemma by the following.

Suppose W (x; &)™ is isomorphic to W (x; &)™ as left W (x; &) modules. Suppose
moreover A gives the isomorphism. Then we have ord P = 1 and m = n by using
the transformation of A into B. (|

Corollary 1.11. i) If m and n are positive integers satisfying m # n, then
W (z;6)™ is not isomorphic to W (xz; €)™ as left W (x; €)-modules.

il) Any element of GL (n7 W(x; f)) is a product of fundamental matrices corre-
sponding to the transformations (1)—(6) in the above proof.

1.4.3. irreducibility. Lastly we give the following standard definition.

Definition 1.12. Fix P € W (x;¢) with ord P > 0. The equation (1.58) is irre-
ducible if and only if one of the following equivalent conditions is valid.

(1.71) The left W(x;&)-module M is simple.

(1.72) The left W (x;¢)-ideal W (x; &) P is maximal.

(1.73) P = QR with Q, R € W(x;&) implies ord @ - ord R = 0.
(1.74) VQ & W(x;§)P, M, N € W(x; &) satistying MP + NQ = 1.
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(1.75) {ST € W(x;§)P with S,T € W(x;€) and ord S < ord P

=8S=0o0rTecW(x;&P.

The equivalence of the above conditions is standard and easily proved. The last
condition may be a little non-trivial.

Suppose (1.75) and P = QR and ord @ - ord R # 0. Then R ¢ W (x;&)P and
therefore @ = 0, which contradicts to P = QR. Hence (1.75) implies (1.73).

Suppose (1.71), (1.74), ST € W(z;&)P and T' ¢ W (z;£)P. Then there exists
P’ such that {J € W(z;€); JT € W(x;§)P} = W(x;€)P’, ord P’ = ord P and
moreover P'v = 0 is also simple. Since Sv = 0 with ord S < ord P’, we have S=0.

In general, a system of ordinary differential equations is defined to be irreducible
if it is simple as a left W (x; £)-module.

Remark 1.13. Suppose the equation M given in (1.58) is irreducible.

i) Let u(z,§) be a non-zero solution of M, which is locally defined for the
variables z and ¢ and meromorphically depends on (z,£). If S € W]x;¢&] satisfies
Su(x,&) =0, then S € W(x;&)P. Therefore u(x,&) determines M.

ii) Suppose ord P > 1. Fix R € W(x;¢) such that ord R < ord P and R # 0.
For Q € W (x;€£) and a positive integer m, the condition R™Qu = 0 is equivalent
to Qu = 0. Hence for example, if Q1u+ 0" Q2u = 0 with certain Q; € W(z;§), we
will allow the expression 0" Q1 u + Qau = 0 and 9~ Qqu(x, &) + Qau(z, &) = 0.

ili) For T ¢ W(x;£)P we construct a differential equation Qu = 0 satisfied by
v = T as follows. Put n = ord P. We have R; € W(z;€) such that 8/Tu = R;u
with ord R; < ord P. Then there exist b, ..., b, € C(z,&) such that b,R,, + -+ +
b1Ry +byRg = 0. Then QQ = b, O™ + -+ 4+ 510 + by.

1.5. Okubo normal form and Schlesinger canonical form

In this section we briefly explain the interpretation of Katz’s middle convolution
(cf. [Kz]) by [DR] and its relation to our fractional operations.
For constant square matrices T' and A of size n’, the ordinary differential equa-
tion
du

(1.76) (el = T) 7 = Au

is called Okubo normal form of Fuchsian system when T is a diagonal matrix. Then
(1.77) mey (L, —T)0 — A) = (xly — T)0 — (A+ ply)
for generic p € C, namely, the system is transformed into

du,,

(1.78) (xl, —T) I (A+ ply)uy,

by the operation mc,. Hence for a solution u(x) of (1.76), the Euler transformation

uy(x) = I (u) of u(x) satisfies (1.78).
For constant square matrices A; of size m and the Schlesinger canonical form

(1.79) @zz A

of a Fuchsian system of the Riemann sphere, we have

du I~ Aj(—1) e
1.80 — = ! ith = :
(1.80) ; o u with w )

dzr c;

Tr—Cp
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J
(1.81) Aj () = ]) A - Aj,1 Aj + u Aj+1 e A
since Ifcj + (z — cj)%zfcj = % ="' zfzyv. Here flj are square matrices

of size pm. The addition Ad((x - ck)“k) transforms A; into A; + prd;ply, for
j=1,...,p in the system (1.79). Putting

(;1]m
A(/L):A(O)+U1pvrz:Al(,u)‘F"'-i-Ap(,u) and T = ( > ,
cplm

the equation (1.80) is equivalent to (1.76) with n’ = pm and A = A(—1). Define
square matrices of size n’ by

Ay

(1.82) A=
A

P

Then ker A and ker A(u) are invariant under A;(u) for j = 1,...,p and therefore
A;(p) induce endomorphisms of V := CP™/ (kerfl + ker A(u)), which correspond
to square matrices of size N := dim V', which we put A;(u), respectively, under a
fixed basis of V. Then the middle convolution me, of (1.79) is the system

dw -~ A(p)
(1.83) = Zx_cjw
j=1
of rank N, which is defined and studied by [DR,, DR2]. Here ker ANker A() = {0}
if p# 0.
We define another realization of the middle convolution as in [O5, §2]. Suppose
i # 0. The square matrices of size n’

J
Ay

(1.84)  Af(n) = j, A +p and AY(p) = AY () + - + Ay (p)
AP

satisfy

(1.85) A(A + ul) = AY (0)A = (AiAj + uai,in) \ciey € M(n,C),

1<j<p
(186) A+ pulo) Ay () = AY (W A(A + L),
Hence w" := A(A + pl, )u satisfies

dw¥ KA

Zp: AY (1) _ (At pdiiIm
xr — Cj xr — Cj 1<i<p,

Jj=1 1<j<p
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and A(A + pl,) induces the isomorphism
(1.88)  A(A+puly):V=C"/(K+L,) = VV:=ImA(A+ ul,) c C".
Hence putting AY (1) := AY (u)|yv, the system (1.83) is isomorphic to the system

dx

1.
(1.89) e

Jj=1

of rank N, which can be regarded as a middle convolution mc, of (1.79). Here

,w\/
1 D
(1.90) w'=| |, w) = (AA s (), (G=1,....p)
w\/ v=1
p

and if v(z) is a solution of (1.79), then

(1.91) wV(z) = (Zp:(AjAﬁ#‘SMI?( o) ))

r—C =1,...,p

v=1
satisfies (1.89).
Since any non-zero homomorphism between irreducible W (z)-modules is an

isomorphism, we have the following remark (cf. §1.4 and §3.2).

Remark 1.14. Suppose that the systems (1.79) and (1.89) are irreducible. More-
over suppose the system (1.79) is isomorphic to a single Fuchsian differential equa-
tion Pu = 0 as left W (x)-modules and the equation mc,(P)w = 0 is also irreducible.
Then the system (1.89) is isomorphic to the single equation me,(P)w = 0 because
the differential equation satisfied by I*(a(x)) is isomorphic to that of I*(Qu(z))
for a non-zero solution v(z) of Pt = 0 and an operator @ € W (z) with Qa(z) # 0
(cf. §3.2, Remark 5.4 iii) and Proposition 6.13).

In particular, if the systems are rigid and their spectral parameters are generic,
all the assumptions here are satisfied (cf. Remark 4.17 ii) and Corollary 10.12).

Yokoyama [Yo2] defines extension and restriction operations among the sys-
tems of differential equations of Okubo normal form. The relation of Yokoyama’s
operations to Katz’s operations is clarified by [O7], which shows that they are
equivalent from the view point of the construction and the reduction of systems of
Fuchsian differential equations.






CHAPTER 2

Confluences

In this chapter we first review on regular singularities of ordinary differential
equations and then we give a procedure for constructing irregular singularities by
confluences of regular singular points.

2.1. Regular singularities

In this section we review fundamental facts related to the regular singularities
of the ordinary differential equations.

2.1.1. Characteristic exponents. The ordinary differential equation

(2.1) an (2) 58 4, (2) 52 g (2) 9 4 ag(z)u =0

of order n with meromorphic functions a;(z) defined in a neighborhood of ¢ € C
a; (z)
an (x)
The singular point « = ¢ of the equation is a regular singularity if it is a removable
singularity of the functions b;(z) := (z — ¢)" Ja;(z)a,(z)~! for j = 0,...,n. In
this case b;(c) are complex numbers and the n roots of the indicial equation

has a singularity at @ = c if the function has a pole at = ¢ for a certain j.

(2.2) ij(c)s(s—l)-~-(s—j+1):0
=0

are called the charactersitic exponents of (2.1) at c.

Let {A1,...,\n} be the set of these characteristic exponents at c.

If \j — A1 ¢ Zsg for 1 < j <mn, then (2.1) has a unique solution (z — ¢)* ¢1(z)
with a holomorphic function ¢;(z) in a neighborhood of ¢ satisfying ¢ (c) = 1.

The singular point of the equation which is not regular singularity is called
irregular singularity.

Definition 2.1. The regular singularity and the characteristic exponents for the
differential operator

mn n—1
(2:3) P = an(2) fkm + an-1(2) fhamr + - + a1 (@) 5 + ao(2)
are defined by those of the equation (2.1), respectively. Suppose P has a regular
singularity at ¢. We say P is normalized at c if a,, () is holomorphic at ¢ and

(2.4) an(c) =aP(c)=---=a" V() =0 and a{V(c) #0.

In this case a;(x) are analytic and have zeros of order at least j at x = ¢ for
j=0,...,n—1

2.1.2. Local solutions. The ring of convergent power series at x = ¢ is de-
noted by O, and for a complex number x and a non-negative integer m we put
m
(2.5) Oc(p,m) :== (x — c)*log"(z — ¢)O,.

v=0

17
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Let P be a differential operator of order n which has a regular singularity at

x = cand let {\, -+, A, } be the corresponding characteristic exponents. Suppose
P is normalized at c. If a complex number p satisfies A\; — p ¢ {0,1,2,...} for
j=1,...,n, then P defines a linear bijective map

(2.6) P:O.(p1,m) = Oclu,m)

for any non-negative integer m.

Let O, be the ring of formal power series > a;(z —¢)’ (a; € C) of z at c.
For a domain U of C we denote by O(U) the ring of holomorphic functions on U.
Put

(2.7) B.(c):={zeC;|z—c| <r}

for » > 0 and

(28) Oulpn.m) == @) (x — 0 og” (z — )O..
v=0

(2.9) Op, () (1,m) == P (& = )" log" (z — ¢) O, (¢).

> X
Il

Then Op, (¢)(pr, m) C Oc(p,m) C Oc(pt,m).
Suppose a;(z) € O(B,(c)) and a,(z) # 0 for z € B,(c) \ {c} and moreover
Aj—p¢40,1,2,...}, we have

(2.10) P:Og, (¢)(t,m) = OB, (¢) (1, m),

(2.11) PO, (,m) S Oulp,m).

The proof of these results are reduced to the case when 4 = m = ¢ = 0 by the
translation « — x — ¢, the operation Ad(z~*), and the fact P(Z;”:O fi(x)log’ ) =

(P fp(z))log? z + Z;n;ol ¢j(z)log’ = with suitable ¢;(2) and moreover we may as-
sume

P= ﬁ(ﬁ —Aj) —zR(z,9),

zR(z,9) =2 Y rj(@)¥ (rj(z) € O(B,(c))).

When p =m =0, (2.11) is easy and (2.10) and hence (2.6) are also easily proved
by the method of majorant series (for example, cf. [O1]).
For the differential operator

Q=L 1 b, (x) s + -+ b () L + by ()
with b;(x) € O(B,(c)), we have a bijection

~

Q: O(Bi(c)) S O(B.(c)®C"
(2.12) w v
u(z) —  Pu(z) @ (v ()

0<j<n—1
because Q(z—c)™ has a regular singularity at z = ¢ and the characteristic exponents
are —1,—2,...,—n and hence (2.10) assures that for any g(z) € C[z] and f(z) €
O(By(c)) there uniquely exists v(z) € O(B,(c)) such that Q(z — ¢)"v(z) = f(z) —
Qg(z).

If A, — A1 ¢ Zs, the characteristic exponents of R := Ad((z — ¢)”* 1) P at
x=care A\, — A\ —1forv=1,...,n and therefore R = S(z — ¢) with a differential
operator R whose coefficients are in O(B,(c)). Then there exists v (z) € O(B,(c))
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such that —S1 = S(z — c)vi (), which means P((z — ¢)* (1 + (z — c)vi(x))) = 0.
Hence if A\; —\; ¢ Z for 1 < i < j < n, we have solutions u,(z) of Pu = 0 such
that

(2.13) uy(z) = (x — )V o (x)

with suitable ¢, € O(Br(c)) satisfying ¢,(c) =1 forv=1,...,n.
Put £ = #{v; A\, = M} and m = #{v; A\, — A1 € Z>¢}. Then we have
solutions u, (z) of Pu=0 for v =1,...,k such that

(2.14) u,(z) — (x — )M log” Mz —¢) € OB, ()M +1,m —1).

If Op, (c) is replaced by O., the solution

co m—1

u,(z) = (x—c)™ logl'*l(a:—c)—l—z Z cvij(@—e) T logd (x—c) € Ou(A,m—1)
i=1 j=0

is constructed by inductively defining ¢, ; ; € C. Since

oo

P< 2 Wil cuig(x — ) log! (z — C)) = *P<(w — )M log"H(a —¢)

i=N+1 j=0
N . .
+ Z Cuij(r — )M log! (z — c)) € Op,(¢)(A1 + N,m — 1)
i=1

for an integer N satisfying Re(Ay — A1) < N for £ =1,...,n, we have
> cvij(z— )M log! (x — ¢) € Op, ()(\ + N,m — 1)

+
because of (2.10) and (2.11), which means u,(x) € Op, (¢)(A1,m).

2.1.3. Fuchsian differential equations. The regular singularity at oo is
similarly defined by that at the origin under the coordinate transformation = %

When P € W(z) and the singular points of P in C := C U {oo} are all regular
singularities, the operator P and the equation Pu = 0 are called Fuchsian. Let C

be the subset of C deleting singular points co, . .., ¢, from C. Then the solutions of
the equation Pu = 0 defines a map
(2.15) F.CToU: (simply connected domain) — F(U) C O(U)
by putting F(U) := {u(z) € O(U); Pu(z) = 0}. Put
Ui o {x=cj+reV 1. 0<r<e, R<O<R+21} (c; # )
el = {z=rev=1,r>el R<f< R+ 27} (cj = 00).

For simply connected domains U, V C @I, the map F satisfies
(2.16) FU)cCcOU) and dimF(U) = n,
(2.17) VcU = FV)=FU)|v,
de >0, V¢ € F(Uje,r), 3C > 0,3Im > 0 such that
Clz—¢|™™ (¢j # 00, © € Uje,r),
lp(z)| < { Clz|™ (¢;j =00, x €UjR)
for j=0,...,p, VR eR.

(2.18)



20 2. CONFLUENCES

Then we have the bijection

(2.19)
{or + Zaj )07 € W(z) : Fuchsian} =  {F satisfying (2.16)-(2.18)}
w W
P — {U~{uecOU); Pu=0}}.
Here if F(U) = >°7_, Co;(),
o) e o)
nejdet® W e
(2.20) a;(x) = (-1) It ®, with @; = ¢gj+1)($) ¢£Lj+1)($)
V) el @)

The elements F; and F; of the right hand side of (2.19) are naturally identified if
there exists a simply connected domain U such that F(U) = Fa(U).
Let
P=0"+a, 1(x)0" "+ -+ ap(x)
be a Fuchsian differential operator with p + 1 regular singular points ¢y = oo,
c1,...,¢p and let Aj1,...,\;, be the characteristic exponents of P at c;, re-
spectively. Since a,_1(z) is holomorphic at © = oo and a,_1(c0) = 0, there

exists a,—1,; € C such that a,_1(z) = — ?:1 '1;:7;]1 For b € C we have

e — br 19 Y) = 9n — (b4 2yl g, o9m2 4 4 by with b, € C.
Hence we have

n(n—1 .
_25 18n—145 — (2 ) (j=0),

)\. +...+)\-n: nin
JJ ” {an—l,] +(T1) (] = 17"'7p)a

and the Fuchs relation

(2.21) zp:
j=0v

Suppose Pu = 0 is reducible. Then P = SR with S, R € W(x) so that
n' = ord R < n. Since the solution v(z) of Rv = 0 satisfies Pv(xz) = 0, R is also
Fuchsian. Note that the set of m characteristic exponents {)\] siv=1...,n'}of
Rv =0 at ¢; is a subset of {)\;,; v =1,...,n}. The operator R may have other
singular points ¢, ..., ¢, called apparent singular points where any local solutions
at the points is analytic. Hence the set characteristic exponents at = = c;- are
N, v=1,...,n'} such that 0 < pj1 < pjo < -+ < L. and pj, € Z for
( -1

—1n(n—1)
—2 :

HM:
||

, the Fuchs relation

v=1,...,nand j =1,...,q. Since pj1+-- -+ pj > =
for R implies

—Dn'(n/ -1
(2.22) ZBZZ)\”_ )2( ).

j=0v=1

Fixing a generic point ¢ and paths 7; around ¢; as in (9.25) and moreover a
base {u1,...,un} of local solutions of the equation Pu = 0 at ¢, we can define
monodromy generators M; € GL(n,C). We call the tuple M = (My,...,M),)
the monodromy of the equation Pu = 0. The monodromy M is defined to be
irreducible if there exists no subspace V' of C" such that M;V C V for j =0,...,p
and 0 < dim V' < n, which is equivalent to the condition that P is irreducible.
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Suppose Qv = 0 is another Fuchsian differential equation of order n with the
same singular points. The monodromy N = (N, ..., N,) is similarly defined by
fixing a base {v1,...,v,} of local solutions of Qv = 0 at ¢. Then

M~N & Jg € GL(n,C) such that N; = gM;g~" (j =0,...,p)

(2.23)
< Qu =0 is W(x)-isomorphic to Pu = 0.

If Qv = 0 is W (x)-isomorphic to Pu = 0, the isomorphism defines an isomor-
phism between their solutions and then IV; = M; under the bases corresponding to
the isomorphism.

Suppose there exists g € GL(n,C) such that N; = gM;g~! for j = 0,...,p.
The equations Pu = 0 and Qu = 0 are W (x)-isomorphic to certain first order
systems U’ = A(z)U and V' = B(z)V of rank n, respectively. We can choose
bases {Uy,...,U,} and {V1,...,V,} of local solutions of PU = 0 and QV = 0 at
q, respectively, such that their monodromy generators corresponding ; are same
for each j. Put U = (Uy,...,U,) and V = (V4,...,V,). Then the element of the
matrix VU ! is holomorphic at ¢ and can be extended to a rational function of
and then VU ! defines a W (x)-isomorphism between the equations U’ = A(z)U
and V' = B(z)V.

Example 2.2 (apparent singularity). The differential equation
(2.24) 2(e —1)(x — )Ll 4 (22 — 2cx + )% = 0

is a special case of Heun’s equation (6.19) witha =8 =A=0and y=0 =1. It
has regular singularities at 0, 1, ¢ and co and its Riemann scheme equals

oo 0

0
0

(2.25) ’

ool

1
0
0

N OO

The local solution at x = ¢ corresponding to the characteristic exponent 0 is
holomorphic at the point and therefore * = ¢ is an apparent singularity, which
corresponds to the zero of the Wronskian det ®,, in (2.20). Note that the equation
(2.24) has the solutions 1 and clogx + (1 — ¢) log(z — 1).

The equation (2.24) is not W (z)-isomorphic to Gauss hypergeometric equation
if ¢ # 0 and ¢ # 1, which follows from the fact that ¢ is a modulus of the isomorphic
classes of the monodromy. It is easy to show that any tuple of matrices M =
(Mo, My, My) € GL(2,C) satisfying MaM; My = I is realized as the monodromy
of the equation obtained by applying a suitable addition RAd (:c)‘ﬂ(l — x))‘l) to a
certain Gauss hypergeometric equation or the above equation.

2.2. A confluence

The non-trivial equation (x — a)% = pu obtained by the addition RAd((x —

a)“)@ has a solution (z —a)* and regular singularities at = ¢ and co. To consider

the confluence of the point z = a to co we put a = % Then the equation is

(1= cx)d+cp)u=0

and it has a solution u(z) = (1 — cx)*.

The substitution ¢ = 0 for the operator (1 — cx)d + cu € Wlz; ¢, u] gives the

trivial equation Z—Z = 0 with the trivial solution u(z) = 1. To obtain a nontrivial

equation we introduce the parameter A = ¢y and we have the equation

(1=cx)0+A)u=0
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with the solution (1—cz)®. The function (1—cz)* has the holomorphic parameters
c and X and the substitution ¢ = 0 gives the equation (0+ \)u = 0 with the solution
e~ Here (1 — cx)d 4+ A = RAdei(72-)0 = RAd((1 — cx)%)&

This is the simplest example of the confluence and we define a confluence of
simultaneous additions in this section.

2.3. Versal additions
For a function h(c, z) with a holomorphic parameter ¢ € C we put

1 h(z,z)dz
ho(cl,...,cn, ) = _
096 @ ) 2nv/=1 Jjzj=r [ =1 (2 — ¢))
(2.26) - h(ck, )

k=1 Hléign,i;ﬁk(ck —¢)

with a sufficiently large R > 0. Put
2 3

(2.27) h(c,z) :=c tlog(l —cx) = —x — i
2 3 4
Then
(2.28) (1—cx)h/(c,z) =—1
and
n (1 =z
Bolen o) T[ (1 ) = -y skt Z67)
(2.29) 1<i<n =1 [Li<i<n, izn(ce — ci)
7%”71.

The last equality in the above is obtained as follows. Since the left hand side of
(2.29) is a holomorphic function of (c1,...,¢,) € C™ and the coefficient of 2™ is
homogeneous of degree m — n + 1, it is zero if m < n — 1. The coefficient of z"~!
proved to be —1 by putting ¢; = 0. Thus we have

v tntdt

0 H1§i§n(1 —cit)’

A (C1,en,2) o ( I (- Cix))a 0 e~ Anhn(cr,en,o)

(2.30) hn(c1y...yen,x) =

(2.31) tsisn
— ( H (1- ciac))ﬁ—k Az
1<i<n
Mo e
n Cl 1§1§n Cl—C4
(2.32) errtnlermen®) = T (1 - Ckx) i#k

1

k=
Definition 2.3 (versal addition). We put

Dok AT
AdV(x  1)(renihy) = Ad [ ]] (1 - ckx) i#h
(2.33) k=1
p n—1
AnT
= Adel — nni s
(Srie)

(234) RAdV(ﬁ”i)()\l, ey )‘p) = ROAdV(ﬁ”i)()\l, ey )‘p)

We call RAAV (L 1(A1,...,Ap) a versal addition at the p points T
c1 ' ep

c1’ 7 cp
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Putting
h(c,z) :=log(z — ¢),

we have

n . (-
W(er,.ven) [[ =)= Ihigign, spelo =) _,

1<i<n = Hhicicn, izn(er — i)

and the conflunence of additions around the origin is defined by

P Zrek i@
AdV(a1 ’’’’’ p)()\l,...,)\p) = Ad H(x_ak) i
(2.35) Pt
- A
= Adei n ’
<T; ngign(x - az))
(2.36)  RAAV(, oy (seesdp) = RoAAVE, 0 (Ao ).

Remark 2.4. Let gi(c,z) be meromorphic functions of x with the holomorphic
parameter ¢ = (c1,...,¢p) € CP for k=1,...,p such that

P
k(c,z) € Z(Cl
i=1

Suppose ¢1(c, x),...,gp(c, x) are linearly independent for any fixed ¢ € CP. Then
there exist entire functions a; ;(c) of ¢ € CP such that

1
if 0Fc#c;#0 (1<i<j<p, 1<k<p).
— C;T

akn e 1

Hz 1 ( 1_01 )

and (a;j(c)) € GL(p,C) for any ¢ € CP (cf. [03, Lemma 6.3]). Hence the versal
addition is essentially unique.

2.4. Versal operators

If we apply a middle convolution to a versal addition of the trivial operator 0,
we have a versal Jordan-Pochhammer operator.
(2.37) P:=RAd(07#)o RAAV (1 o (M,seeyAp)0
c1 " ep

p )\kx’“*1

Pt szl(l — c,,x))

P
= 37““”*1(170( )0+ q(z) )" = Zpk )orE

— RAd(D ) o R(5‘+

with
P p P
H (1—-c¢jz), q(z)= Z ApzF 1 H (1—c¢jx),
j=1 k=1 j=k+1

pr(x) = (_M +kp - 1>pék) (z) + (_“l:pl_ 1) ¢V (x).

We naturally obtain the integral representation of solutions of the versal Jordan-
Pochhammer equation Pu = 0, which we show in the case p = 2 as follows.
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Example 2.5. We have the versal Gauss hypergeometric operator

PCl,Cz;/\ly/\z,u = RAd((‘)‘“) o RAdV(ﬁ7é)(/\1,)\2)8

A A A
= RAd(a_M) ] RAd ((1 — C1$>0711+61(L'12*02) (1 — 02:1;) 02(022*01))

= RAA(97") 0 RAdei (— 20 — 2% 0

=RAd(07")oR (8 + 2+ (1—012)2(95—02@)
=Ad(07") (01 — c12)(1 — c2x)0 + O(A1 (1 — c2x) + A2x))
= (1—c2)0+ecri(p—1)((1 = cow)d + cop)
+ 20+ (A2 — M) (@d+1— p)
= (1 —c12)(1 — cp2)0?
+ ((er +e2) (= 1) + X + (2erc2(1 — ) + A2 — Aie2)z)d
+ (1 = D) (crcap + Arez — Aa),
whose solution is obtained by applying I¥ to
LS|

4y 2 X2
Kovexate (@) = (1 — 1) 37085 (1 — cpr) e

The equation Pu = 0 has the Riemann scheme
1 1

Tr = — - o0
c1 Cc2
(2.38) 0 0 1—p i T
A A A A A
0711 + 01(012—02) + K 02(022—01) + K _0711 + 0152 —H

Thus we have the following well-known confluent equations

Pei o e = (1— clx)82 + (cl(,u -1+ XM+ )\290)6 —X2(p—1), (Kummer)

o423 N
Kejonpe =1 —cz)™ eXp(%lx)’
Pooso,~1,u = & — 20+ (u — 1), (Hermite)
2
Ad(et™ )Py o010 = (0 — 22)? + 2(9 — a) — (n—1)
=0+ (53— p— %2), (Weber)

Koo0,51 = exp(/ :ttdt) = exp(+%).
0

The solution

M

2 (%)’4]%7!*%)’“(_%2)’“

of Weber’s equation % = ( % +u— %)u is called a parabolic cylinder function
(cf. [WW, §16.5]). Here the above last line is an asymptotic expansion when
r — +00.

The normal form of Kummer equation is obtained by the coordinate transfor-

mation y =z — % but we also obtain it as follows:

Py oy i=RAA(O™) o Ro Ad(z2) o AdV 1 (M)0
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=RAd(0") o R(9 — 22 + 21-)
= Ad(0")(8z(1 — clx)a — 0Nz — (M1 + a1 X))
= (@0+1—p)((1 —c12)0 + c1p) — X20 + (M + c1h2) (20 + 1 — p)
=z(1—az)®+ (1 - X —p+ (A +c(A2 + 21 —2))2)0
+ (=1 (M + (X2 +p),
Poxidon =20° + (1= Xo — i+ Mz)d 4+ Ay (o — 1),
Pocipopu=20*+(1=de—p—2)0+1—p (Kummer),

A
Kepina(@) = 22 (L= 1) 7, Koy (1) = 02 exp(—Ar).
The Riemann scheme of the equation P, ., ., .t =0 is

x=0 L 00
c1

(2.39) 0 0 17 T T
Ao+ 1 %—FM /\2

(/1

and the local solution at the origin corresponding to the characteristic exponent
Ao + p is given by

1 z A1
I (K., =—— [ M1 —ct)er (z— )" dt.
O( 1)\1,)\2)(37) F(u)/o ( C1 ) ! (‘T )
In particular, we have a solution
1 xT
u(x) = I (Ko.—15,) () = —/ t2et(z — t)*Ldt
( O( 2 ( ].—‘(,LL) o )
x)\er# /1 A
= s*2(1 — s)P e ds (t =uxs)
() Jo
T + 1)zt
== 1F(A+1Lpu+r+1;
TOg+p+1) "' 12+ 1 pt Az + L)

of the Kummer equation Py,_1 ,,,u = 0 corresponding to the exponent Ay + 11 at
the origin. If ¢; ¢ (—o00,0] and x ¢ [0, 00] and Ay ¢ Z>(, the local solution at —oo
corresponding to the exponent —\y — 2—11 — p is given by

1 / (—£)2(1 = ext) & (2 — )P~ Ldt

T(1) J_we
(71.))\2 /oo 53\ A2 N B
= 1—— 1 —_ c1 M d —_ ¢
T(u) Jo ( x) (It+ec(s—a) s s (s=z—1)
Ar=—1
—
c1——+0
/ e~ ssu—lds
( 90) p—1 - S\ Az
= L — s(1_2
g, () e
OOF//C )\2+n) Ao T Ao 1
Z N7 Ao)nlzm (—z)e” = (—x) 2 e"2 Fo(= A2, 15 3 )

Here the above last line is an asymptotic expansion of a rapidly decreasing solution
of the Kummer equation when R > —z — +oo. The Riemann scheme of the
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equation Pp,_1 x,,,u = 0 can be expressed by
z=0 oo (1)

(2.40) 0 1—p O
Ae+p =X -1

In general, the expression {OO (r)

A a1
the existence of a solution u(x) satisfying

r .
(ak)} with 0 < 1 < -+ < r, means
k

k T
e

2.41 ~zh (72 v ) f —
(2.41) u(x) ~ 7" exp UZloz o or |z|] = oo

under a suitable restriction of Argx. Here k € Z>g and A, oy, € C.



CHAPTER 3

Series expansion and Contiguity relation

In this chapter we examine the transformation of series expansions and contigu-
ity relations of the solutions of Fuchsian differential equations under our operations,
which will be used in Chapter 8 and Chapter 11.

3.1. Series expansion

In this section we review the Euler transformation and remark on its relation
to middle convolutions.
First we note the following which will be frequently used:

. - L'(a)l'(8)
a—1 _ p\B-1 _
(3.1) /0 (1=t dt = Tatd)
(1—t)77: 2 : (77)(7V71)(777V+1)(_t)u
V!
4 = P +7) =)
_ ’y + v v o __ ’7 vV ,u
TR

The integral (3.1) converges if Reaw > 0 and Re8 > 0 and the right hand side
is meromorphically continued to o € C and 8 € C. If the integral in (3.1) is
interpreted in the sense of generalized functions, (3.1) is valid if « ¢ {0, —1,-2,...}
and 8 ¢ {0,—1,-2,...}.

Euler transformation I# is sometimes expressed by 07# and as is shown in
([Kh, §5.1]), we have

(3.3) )= ﬁ /ﬂx — 6y tu(t)dt
| _M 1 — )" tu((z — ¢)s + c)ds
- F(N) /0 (1 ) (( ) + )d 5
(3-4) N
(3.5) I7"u(x) = dd%u(x),
n A+n+1 i
I#ZC A ZF )\+M+n+)l) (@ =gt
(3.6) A+ 1) i A+ D)ncn R
Tt pt D& A pt ), :
(3.7) " i gt = eV Z )‘ N + n) PEA—p+n)  dvun

27
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Moreover the following equalities which follow from (1.47) are also useful.

Iy Z cnx)‘+"(1 — x)ﬁ

n=0
_ /\ + 1 i >\ + 1 m—i—n B)mcn pAHptmtn
(3:8) T T +p+1) o= A+t Dmgnm!
_M i )\+1 ) ( B)mcnx,\+u+n< € )m
(>\+l£—|—1 A+ 1+ D! z—1/

m,n=0

If A\ ¢ Zeo (resp. A+ p ¢ Z>p) and moreover the power series Y - ¢, t"
has a positive radius of convergence, the equalities (3.6) (resp. (3.7)) is valid since
I# (resp. IX) can be defined through analytic continuations with respect to the
parameters A and p. Note that I# is an invertible map of O.(z — ¢)* onto O.(x —
Mrif N ¢ {—1,-2,-3,..}and A+ p ¢ {-1,-2,-3,...}.

Proposition 3.1. Let A and p be complex numbers satisfying A ¢ Z<o. Differen-
tiating the equality (3.6) with respect to A\, we have the linear map

(3.9) IF : Oc(A,m) = Oc(A+ p,m)

under the notation (2.5), which is also defined by (3.3) if ReA > —1 and Rep > 0.
Here m is a non-negative integer. Then we have

(3.10) I# (Z ¢jlog’ (z —c)) — I*(¢m)log™ (x — c) € O(A + p,m — 1)
=0

for ¢; € O, and I} satisfies (1.43). The map (3.9) is bijective if X+ p ¢ Z<o.
In particular for k € Zso we have IFO* = OFIF = IF=F on O.(\,m) if A —k ¢

{~1,-2,-3,...}.
Suppose that P € W(z] and ¢ € O.(A\,m) satisfy P¢ =0, P #0 and ¢ # 0.
Let k and N be non-negative integers such that

(3.11) Zzaw (z —c) 6)j

=0 j2>0

with suitable a“ € C and put Q = Zl 0250 i ;0 ((x — )0 — p) 7. Then if
A¢{N—-1,N—-2,...,0,—1,...}, we have
(3.12) Ié‘@kPu = QI (u) for ue O (\m)
and in particular QIF(¢) = 0. ‘

Fiz 0 € Z. For u(z) =Y .o, E;nzo ci,j(; - ;)ilogj(x —c) € O.(¢,m) we put
(Tyu)(x) = chzmax{e,Nq} doitocig(a —c)'log!(x —c). Then

[ (@-co- u)’”“)akp(u(x) — (Tyu)(z)) =0
(—N<v<N-1

ane therefore

[I (@-0o—n—v)"")Quryw
(—N<v<N-1

_ fg( [ (@-e0o- )m“)ak

(—N<y<N-1

In particular, [1,_y<,<y_1((x —¢)0 —p— y)mH QI (n(u)) =0 if Pu=0.

(3.13)
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Suppose moreover X\ ¢ Z and N+ p ¢ Z and Q = ST with S, T € W|z]
such that x = c is not a singular point of the operator S. Then TIM($) = 0. In
particular,

(3.14) (RAd(o”!_“)P)Ié‘((b) =0.
Hence if the differential equation (RAd(B*“)P)v = 0 s irreducible, we have
(3.15) W(x) (RAd(@f“)P) ={T e W(x); TI*(¢p) = 0}.

The statements above are also valid even if we replace x — ¢, I# by , IR,
tively.

PRrROOF. It is clear that (3.9) is well-defined and (3.10) is valid. Then (3.9) is
bijective because of (3.6) and (3.10). Since (1.43) is valid when m = 0, it is also
valid when m = 1,2,... by the definition of (3.9).

The equalities (3.6) and (3.7) assure that QI*(¢) = 0. Note that TI#(¢) €
O(A+ p— N,m) with a suitable positive integer N. Since A + 4 — N ¢ Z and any
solution of the equation Sv = 0 is holomorphic at x = ¢, the equality S(TIg(gb)) =0
implies TT#(¢) = 0.

The remaining claims in the theorem are similarly clear. U

respec-

Remark 3.2. i) Let v : [0,1] — C be a path such that y(0) = ¢ and (1) = .
Suppose u(z) is holomorphic along the path () for 0 < ¢t <1 and u(y(t)) = ¢(y(t))
for 0 < t <« 1 with a suitable function ¢ € O.(A,m). Then I#(u) is defined by the
integration along the path +. In fact, if the path ~(¢) with ¢ € [0, 1] splits into the
three paths corresponding to the decomposition [0,1] = [0,€¢] U[e,1 — ] U [1 — ¢, 1]

with 0 < e < 1. Let ¢; = ¢,...,¢p be points in C™ and suppose moreover u(x) is
extended to a multi-valued holomorphic function on C\ {c1,...,¢,}. Then I7(u)
also defines a multi-valued holomorphic function on C\ {¢1,...,¢p}.

ii) Proposition 3.1 is also valid if we replace O.(A, m) by the space of functions
given in Remark 1.7 ii). In fact the above proof also works in this case.

3.2. Contiguity relation
The following proposition is clear from Proposition 3.1.

Proposition 3.3. Let ¢(z) be a non-zero solution of an ordinary differential equa-
tion Pu = 0 with an operator P € W{z]. Let P; and S; € W] forj=1,...,N
so that Z;v:1 P;S; € W[z]P. Then for a suitable ¢ € Z we have

(3.16) >,

by putting

¢j = Sjo,
Qj=9""oPjod"c W,
if ¢(x) € O(\,m) with a non-negative integer m and a complex number \ satis-
fying A ¢ Z and X\ + ,u §é Z or ¢(x) is a function given in Remark 1.7 ii). If

P; = Zk>0 00 Cj.k, 00F9¢ with cjke € C, then we can assume £ < 0 in the above.
Moreover we have

(3.18) oI (61)) = 11(¢1).
PROOF. Fix an integer k such that 9*P; = P;(9,9) = Dinis Ciy i, 01192 with
Ciy,is € C. Since 0 = ZN, akP-S-qS, Proposition 3.1 proves

(3.17) (j=1,...,N)

0_215 (0,0)8;¢) = Z (0,0 — p)I*(S;¢),
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which implies the first claim of the proposition.
The last claim is clear from (3.4) and (3.5). O

Corollary 3.4. Let P(§) and K (&) be non-zero elements of Wlx;¢]. If we substi-
tute & and p by generic complex numbers, we assume that there exists a solution
¢¢(x) satisfying the assumption in the preceding proposition and that I*(¢¢) and
IH(K(&)pe) satisfy irreducible differential equations Ty (€, p)v1 = 0 and T (&, p)ve =
0 with T1(&§, 1) and To(&, 1n) € W(x; &, ), respectively. Then the differential equa-
tion Ty (&, p)vr = 0 is isomorphic to Ta(€, p)ve = 0 as W (x; &, p)-modules.

PROOF. Since K(€) -1~ 1- K(€) = 0, we have Q(€, p)I%(d¢) = 0T (K (€) )
with Q(&, p) = 9* MoK (£)od*. Since *I#(¢¢) # 0 and the equations T} (&, p)v; =0
are irreducible for j = 1 and 2, there exist R;(&, u) and Ro(&, ) € W(x; &, ) such

that I%(¢¢) = Ri(& )Q(E p)1¥(¢e) = Ri(& p)d I (K (€)¢e) and I (K (€)¢e) =
Ro(&, )0 IH (K (€)pe) = Ra(&, n)Q(&, ) I*(¢¢). Hence we have the corollary. O

Using the proposition, we get the contiguity relations with respect to the pa-
rameters corresponding to powers of linear functions defining additions and the
middle convolutions.

For example, in the case of Gauss hypergeometric functions, we have

u)\h)\z#t(x) = Ig(l‘)‘l (1 - x)AQ)’
u>\1,>\2,ﬂ—1(‘r) = 8uh,,\2,u(a:),
au}\lJrl,)\z,,u(x) = (1’(9 +1- M)’LL)\L)Q”“(I'),
Quny pot1,u(7) = (1= 2)0 + p = D)tix, 2o (7).
Here Proposition 3.3 with ¢ = 2™ (1 — z2)*2, (P, 51, P, S2) = (1,7, —z,1) and
¢ =1 gives the above third identity.

Since P>\1,/\2,Mu>\17)\2,u(x) = 0 with

Puop= (1 —=2)0+ 1 =X —p— (2= X — A2 —2p)z)0
= (p=1)A1+ A2+ p)

as is given in Example 1.8, the inverse of the relation wx, x, u—1(x) = Oux, x, u(2)
is
z(1=2)0+ (1 =X —p— (2= X — A2 — 2u)z)
u)\l,Az’H(x) = -
(=1 (A1 + X2+ p)
The equalities ux, x, u—1() = Oux, r,,u(2) and (1.47) mean
LA + 1)arrtua-t
D(A1 + p)
LA + D)artr-l
= F(=Xo, A1 +1,A 1;
T(A + p) (P2t LA+t 1)
(A + DaMtr 4
——————F(- 2, i+ L, M+t 1z
(A +p+1) de (=42, A LTH )
and therefore uy, x, u—1(x) = Oux, x,,u(x) is equivalent to
(’7 - 1)F(aaﬁa7 - 17.27) = (19 +’7 - I)F(O(,B,’)/,IE)
The contiguity relations are very important for the study of differential equations.
For example the author’s original proof of the connection formula (0.24) announced
in [OG] is based on the relations (cf. §12.3).
Some results related to contiguity relations will be given in Chapter 11 but we
will not go further in this subject and it will be discussed in another paper.

Uy 2o u—1(T).

F(*)\Q, )\1 + ].,)\1 + ,U;SC)




CHAPTER 4

Fuchsian differential equation and generalized
Riemann scheme

In this chapter we introduce generalized characteristic exponents at every singu-
lar point of a Fuchsian differential equation which are refinements of characteristic
exponents and then we have the generalized Riemann scheme as the corresponding
refinement of the Riemann scheme of the equation. We define the spectral type
of the equation by the generalized Riemann scheme, which equals the multiplicity
data of eigenvalues of the local monodromies when they are semisimple.

4.1. Generalized characteristic exponents
We examine the Fuchsian differential equations
n n—1
(4.1) P =an(z) s + an1(2) s + -+ + ao (@)
with given local monodromies at regular singular points. For this purpose we first
study the condition so that monodromy generators of the solutions of a Fuchsian

differential equation is semisimple even when its exponents are not free of multi-
plicity.

Lemma 4.1. Suppose that the operator (4.1) defined in a neighborhood of the origin
has a regular singularity at the origin. We may assume a,(x) are holomorphic at

0 and a,(0) = a (0) =--- = agfkl)(()) =0 and a” (0) # 0. Then the following
conditions are equivalent for a positive integer k.

(4.2) P=2"R with a suitable holomorphic differential operator R
at the origin,
(4.3) Pz’ =o(z"1) for v=0,...,k—1,
(44) Pu=0 has a solution z¥ + o(z*~Y) forv=0,... k-1,
(4.5) P= ijpj () with polynomials p; satisfying p;(v) =0
j=0 for 0<v<k—j and j=0,....k—1.

PROOF. (4.2) = (4.3) < (4.4) is clear.
Assume (4.3). Then Pz¥ = o(z*~1) for v = 0,..., k—1 implies a;(z) = 2*b; ()

for j =0,...,k—1. Since P has a regular singularity at the origin, a;(z) = asjcj (x)
for j =0,...,n. Hence we have (4.2).
Since Pz¥ = Z;’;O "% Ip;(v), the equivalence (4.3) < (4.5) is clear. O

Definition 4.2. Suppose P in (4.1) has a regular singularity at 2 = 0. Under the
notation (1.57) we define that P has a (generalized) characteristic exponent [A])
at x = 0 if 2" 7% Ad(z™)(a,(z) "' P) € W][z].

Note that Lemma 4.1 shows that P has a characteristic exponent [A](;) at =0
if and only if

(4.6) z"an, () 1P = Z xd q;(9) H (0—X—1)
7>0 0<i<k—j

31
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with polynomials ¢;(t). By a coordinate transformation we can define generalized
characteristic exponents for any regular singular point as follows.

Definition 4.3 (generalized characteristic exponents). Suppose P in (4.1) has
regular singularity at x = ¢. Let n = my 4+ --- + my be a partition of the positive
integer n and let Aq1,..., Ay be complex numbers. We define that P has the (set
of generalized) characteristic exponents {[A1](m,);---,[AN](my)} and the spectral
type {ma,...,mn} at = c € CU {oo} if there exist polynomials g¢(s) such that

(4.7) (x—c)"an(z) P = Z(Jc—c)zqz((x—c)a) H H ((z =)0 =\, —1)

£>0 v=1 0<i<m, —¢

in the case when ¢ # oo and

(4.8) ", (x) " P = Zx_zqg (19) H H (19 + A+ z)

£>0 v=1 0<i<m, ¥4

in the case when ¢ = oo. Here if m; = 1, [\;](;,,) may be simply written as \;.

Remark 4.4. i) In Definition 4.3 we may replace the left hand side of (4.7) by
é(x)a, () ~LP where ¢ is analytic function in a neighborhood of z = ¢ such that
p(c) = --- = ¢ V(c) = 0 and ¢ (c) # 0. In particular when a,(c) = --- =
al (¢) =0 and a,(c) # 0, P is said to be normalized at the singular point z = ¢
and the left hand side of (4.7) can be replaced by P.

In particular when ¢ = 0 and P is normalized at the regular singular point
x = 0, the condition (4.7) is equivalent to

N

@9 IT I G-x-d]pi(s) (¥£=0,1,... max{m,...,my}—1)
v=10<i<m, —£

under the expression P = > 2% x7p;(0).

ii) In Definition 4.3 the condition that the operator P has a set of generalized
characteristic exponents {A1,...,A,} is equivalent to the condition that it is the
set of the usual characteristic exponents.

iii) Any one of {\, A+ 1, A+ 2}, {[N(2), A + 2} and {A, [A + 1](9)} is the set of
characteristic exponents of

P=W-N0-A=10 - A=2+x)+2*0 - A+1)

at = 0 but {[A]¢)} is not.
iv) Suppose P has a holomorphic parameter ¢ € By(0) (cf. (2.7)) and P has
regular singularity at x = ¢. Suppose the set of the corresponding characteristic ex-

ponents is {[A1(t)](m1)s - - -, [AN(E)] (ma) } for ¢t € B1(0)\ {0} with A, (t) € O(B1(0)).
Then this is also valid in the case ¢t = 0, which clearly follows from the definition.

‘When

pP= Zw‘zcn((x —¢)0) ﬁ H (z =)0 =X, — 1),

>0 v=1 0<i<m, ¢

we put

N
P, = Zafzqtg((x—c)a) H H (x—c)d =X, — vt —i).

£>0 v=1 0<i<m, —{

Here A\, € C, gg #0 and ord P = mj +---+my. Then the set of the characteristic
exponents of P is {[A1(2)](my)s - -5 [AN(E)]my) } With Aj(t) = Aj +jt. Since Ai(t) —
S\j(t) ¢ Z for 0 < [|t| < 1, we can reduce certain claims to the case when the
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values of characteristic exponents are generic. Note that we can construct local
independent solutions which holomorphically depend on ¢ (cf. [O4]).

Lemma 4.5. i) Let A be a complex number and let p(t) be a polynomial such that
p(A) #£ 0. Then for non-negative integers k and m we have the exact sequence

_ k
p(9)(I-A)

0 — O\ & —1) — Og(A,m +k — 1) Oo(\,m—1) — 0

under the notation (2.5).
ii) Let my,...,my be non-negative integers. Let P be a differential operator
of order n whose coefficients are in Oy such that

(4.10) P= i ] I @-#k)
£=0

v=1 0<k<m,—¥¢

with polynomials rp. Put Myqe = max{my,...,my} and suppose ro(v) # 0 for
v=0,...,Mmaez — 1.

Let m¥ = (my,...,my, ) be the dual partition of m := (my,...,my),
namely,
(4.11) mY = #{js m; > v).
Then fori=0,...,Mmaz — 1 and j =0,... 7miv+1 — 1 we have the functions

) Mmaz—1 J
(4.12) (@) =a'log’e+ D i atlog
p=it+1 v=0

such that ¢}y’ € C and Pu; j € Og(Mmaz, J)-
iii) Let mi,...,m/y be non-negative integers and let P’ be a differential oper-
ator of order n' whose coefficients are in Oy such that

(4.13) P':ixe H 11 (ﬁ—m,,—k)
£=0

v=1 0<k<m/ —

with polynomials qy. Then for a differential operator P of the form (4.10) we have

(4.14) P’P:i_o: (Zrel,ﬂ—l—url, )H I @-».

v=1 0<k<m,+m],—£

PROOF. i) The claim is easy if (p,k) = (1,1) or (¢ — p,0) with p # A. Then
the general case follows from induction on degp(t) + k.

ii) Put P =Y ,o,2pe(9) and m/ = 0 if v > Mynas. Then for a non-negative
integer v, the multiplicity of the root v of the equation py(t) = 0 is equal or larger
than myMJrl for £ =1,2,.... If 0 < v < Mmypqee — 1, the multiplicity of the root v
of the equation py(t) = 0 equals m,_ ;.

For non-negative integers i and j, we have

I'Epg(ﬁ)xi log/ x = ' t* Z ¢ g log” x

0<v<j—mY iet1

with suitable ¢; j,, € C. In particular, py(J)x’ log/ 2 =01if j < my. If £ >0 and
1+ £ < Mmpax, there exist functions

J
_ it v
Vi =T E i log” x
v=0
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with suitable a; j ¢, € C such that po(d)v; ;¢ = xpy(9)z log’ z and we define a
C-linear map @ by

Mmaz—1—1 Mmaz—1i—1 J
Qz'log! x = — Z Vi = — Z Zai,j,z,ufﬂ log” ,
(=1 =1 v=0
which implies po (¢ )Qxi log x = — Y tmes™ Tty (9)ailog? and QMmer = 0.

Putting Tu := Yo~ QVu for u € Y 7mes™ Zj:Bl Cx'log’ x, we have
PTu = po(9)Tu + Z T pe mod Oy (Mimaz, J)
0(19)( Q) mod Oy (mmawaj)
=po()(1 - Q)L +Q+---+ Q™= u mod Op(Mimaz, J)

= po(V)u.

Hence if j < m), PTx" log’ 2 =0 mod Oo(Mmaz, j) and u; j(x) == Tzilog’ x are
required functions.
ili) Since

, N N
2r,0) [ ] (0 —my, — k) - a're) [ | (9 — k)

v=1 0<k/<m!,—¢ v=1 0<k<m, —¢
N

=2, 0+ Or() [ ] @—m, -k +0 J[ @-k
v=10<k'<m/, —¢' 0<k<m, —¢

N
2 (0 + Ore@) T II (0 — k),

v=10<k<m,+m, —£—L'
we have the claim. O

Definition 4.6 (generalized Riemann scheme). Let P € W[z]. Then we call P
is Fuchsian in this paper when P has at most regular singularities in C U {oo}.

Suppose P is Fuchsian with regular singularities at £ = ¢y = o0, ¢i,..., ¢, and

the functions ZJL((?) are holomorphic on C\ {c1,...,¢,} for j =0,...,n. Moreover

suppose P has the set of characteristic exponents {[Aj 1](m; 1)s- -+ [Njn;l(m,... )} at
’ ’ i

x = ¢;. Then we define the Riemann scheme of P or the equation Pu = 0 by

T =Cy=00 Cc1 . cp
(4.15) [A“]ﬁmm) [Alvl]'(ml,n - [Ap,l].(m,,,l)
P\Oano](mo,ng) [A17n1}(ml,"1) et [)\p7n1)](mp,np)

Remark 4.7. The Riemann scheme (4.15) always satisfies the Fuchs relation
(cf. (2.21)):

n; mj,—1

(4.16) Z Z (Aj,yﬂ):%.

Definition 4.8 (spectral type). In Definition 4.6 we put
m = (110,15, M0,n0; M1,1, -5 Mp 15+ Mpny )

which will be also written as mg 1102 - - M0,ng, M1,1*** ,Mp 1+ * = My p, for simplic-
ity. Then m is a (p+ 1)-tuple of partitions of n and we define that m is the spectral
type of P.
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If the set of (usual) characteristic exponents
(4.17) Aj={\,+1;0<i<m;,—landv=1,...,n,}

of the Fuchsian differential operator P at every regular singular point x = c¢; are n
different complex numbers, P is said to have distinct exponents.

Remark 4.9. We remark that the Fuchsian differential equation M : Pu = 0 is
irreducible (cf. Definition 1.12) if and only if the monodromy of the equation is
irreducible.

If P=QR with Q and R € W(z; &), the solution space of the equation Qu =0
is a subspace of that of M and closed under the monodromy and therefore the
monodromy is reducible. Suppose the space spanned by certain linearly indepen-
dent solutions uq, ..., u,, is invariant under the monodromy. ‘We have a non-trivial
simultaneous solutlon of the linear relations bmu(m) 4+ o+ by u(-l) + bou; = 0 for
j=1,...,m. Then are single-valued holomorphic functions on CU{oo} exclud-
ing ﬁnlte number of smgular points. In view of the local behavior of solutions, the
singularities of _ are at most poles and hence they are rational functions. Then
we may assume R =0, 0™+ -+ bg € W(x;&) and P € W(z; )R

Here we note that R is Fuchsian but R may have a singularity which is not a
singularity of P and is an apparent singularity. For example, we have

(4.18) 2(1—2)0*+(y—ax)0+a = (l—sc)71 (x(l—m)a—i—('y—ax)) ((Z[—x)a—l—l).

@
We also note that the equation 0?u = zu is irreducible and the monodromy of its
solutions is reducible.

2. Tuples of partitions

For our purpose it will be better to allow some m;, equal 0 and we generalize
the notation of tuples of partitions as in [O6].

Definition 4.10. Let m = (m;, ) =o,1,... be an ordered set of infinite number of
=1,2

non-negative integers indexed by no;l—hééative integers j and positive integers v.
Then m is called a (p + 1)-tuple of partitions of n if the following two conditions
are satisfied.

(4.19) > mjy=n  (j=0,1,..)
=1

(4.20) mj1=n (Vj > p).

A (p+ 1)-tuple of partition m is called monotone if

(4.21) My, >mi (=01, v=12_.)

and called trivial if m;, = 0 for j = 0,1,... and v = 2,3,.... Moreover m is
called standard if m is monotone and m;> > 0 for j = 0,...,p. The greatest
common divisor of {m;,;j=0,1,..., v=1,2,...} is denoted by gcdm and m is

called divisible (resp. indivisible) if gcdm > 2 (resp. gcdm = 1). The totality of
(p + 1)-tuples of partitions of n are denoted by 731()?1 and we put

(4.22) Ppi : U M, P = U Sy P—UPPH,

p=0
(4.23) ordm:=n if meP™,
(424) 1:= (]., 1, .. ) = (ij = (51,11)j

. ePW

0,1,
12..
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p oo
(4.25) idx(m, m’) := Z mj,m}, —(p—1)ordm-ordm’,
j=0v=1
P oo
(4.26) idxm := idx(m, m) = Z Z miy — (p—1)ordm?,
7=0rv=1
id
(4.27) Pidxm :=1— - ’;m

Here ord m is called the order of m. For m, m’ € P and a non-negative integer
k, m + km’ € P is naturally defined. Note that

(4.28) idx(m + m’) = idxm + idx m’ + 2idx(m, m’),
(4.29) Pidx(m + m’) = Pidx m + Pidx m’ — idx(m, m’) — 1.
For m € P(H we choose integers ng,...,n, so that m;, = 0 for v > n; and
7 =0,...,p and we will sometimes express m as
m = (m07m13"'amp)

=Mo,15- -5 MOmngs - -5 Mk 15+ -5 Mpon,

— mO,l P mo’no’ ml,]. .. .ml’nl’ . 777'[‘]@’1 ce. mp’np
if there is no confusion. Similarly m = (mg1,...,Mon,) if m € Py. Here

m; = (mj1,...,Mjn,) and ordm=m;; +---+mj,, (05 <p).

For example m = (m;,) € P(4) with my 1 = 3 and mp, = mg, = m1 2 =1 for
v=1,...,4 will be expressed by

m=1,1,1,1;3,1;1,1,1,1 = 1111, 31,1111 = 1,31, 1*

and mostly we use the notation 1111,31,1111 in the above. To avoid the confusion
for the number larger than 10, we sometimes use the convention given in §13.1.3.

Let G be the restricted permutation group of the set of indices Z>¢ =
{0,1,2,3,...}, which is generated by the transpositions (j,7 + 1) with j € Zx¢.
Put 6 = {0 € 64 ; 0(0) = 0}, which is isomorphic to S

Definition 4.11. The transformation groups S, and S/_ of P are defined by

Seo:=H xS,
(4.30) Ste :={(01)iz0,1,...; 0, €6, 0y =1 (i>1)}, H~6,
m},yzma(]‘),aj(u) (G=0,1,..., v=1,2,...)

for g = (0,01,...) € Soo, m = (m;,) € P and m" = gm. A tuple m € P is
isomorphic to a tuple m’ € P if there exists g € S, such that m’ = gm. We
denote by sm the unique monotone element in S’ _m

Definition 4.12. For a tuple of partitions m = (mj,,,)1<u<nj € Ppy1 and A =

0<j<p
(Mo )12v2n, With Az € C, we define
0<j<p
P idxm
4.31 Am}| = iy — ord :
(4.31) |{ }| szm jv —ordm + 5

j=0v=1
We note that the Fuchs relation (4.16) is equivalent to
(4.32) {Am}] =0
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because
p n; my,—1 1 p Ny 1 p ny
> i=52 D mivlmiy =1 =53 > mj, —sp+1)n
j=0v=1 =0 j=0v=1 j=0v=1
1/. 9 1
:5(1dxm+(p71)n fi(erl)n
1 —1 -1
zaidxm—n—l—(p )Z(n )

4.3. Conjugacy classes of matrices

Now we review on the conjugacy classes of matrices. For m = (my,...,my) €
P and A = (A1, ..., Av) € CY we define a matrix L(m;\) € M(n, C) as follows,
which is introduced and effectively used by [O2] and [O6]:

If m is monotone, then

LmiN) = (Aij) iy Aig € M(miym;, C),

1<j<N
Ailm, 1=17),
(4.33) 7 (i =)
Aij = Imyom; = (6HV)1§,U,§mi = ( 75”) (i=j-1),
1<v<m;

Here I,,, denote the identity matrix of size m; and M (m;, m;, C) means the set of
matrices of size m; x m; with components in C and M (m,C) := M(m,m,C).
For example

A 001
0 A 0
L(2,1,1; A1, A2, Ag) 1= SV
A3
Suppose m is not monotone. Then we fix a permutation o of {1,..., N} so that

(Mg(1), - - - Me(n)) is monotone and put

L(m7)‘) = L(mo'(l)7 s 7mcr(N);)‘o'(1)7 L) AU(N))

When \; = -+ = Ay = g, L(m; \) may be simply denoted by L(m, u).

We denote A ~ B for A, B € M(n,C) if and only if there exists g € GL(n,C)
with B = gAg~".

When A ~ L(m;\), m is called the spectral type of A and denoted by spc A
with a monotone m.

Remark 4.13. i) If m = (mq,...,my) € P{n) is monotone, we have

J
A~ Lm;)) & rank [J(A=A)=n—(mi+---+m;) (j=0,1,...,N).

v=1
ii) For p € C, put
Then we have

(4:35) Lm; ) ~ €D L((m; 1)),

pneC
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ili) Suppose m is monotone. Then for p € C

mi

(4.36) Lm, ) ~ 362 J(max{v; my, > j}, p),

J(k,p) := L(1*, ) € M(k,C).

iv) For A € M(n,C), we put Z(A) = Zy(n,c)(A) :={X € M(n,C); AX =
XA}, Then

v) (cf. [O8, Lemma 3.1]). Let A(¢) : [0,1) — M(n,C) be a continuous
function. Suppose there exist a continuous function A = (A,...,Ay): [0,1) — CV
such that A(t) ~ L(m; A(¢)) for ¢ € (0,1). Then

(4.37)  A(0) ~ L(m;\(0)) if and only if dim Z(A(0)) =m3 + -+ mi.

Note that the Jordan canonical form of L(m;\) is easily obtained by (4.35)
and (4.36). For example, L(2,1,1; p) ~ J(3, 1) & J(1, ).

4.4. Realizable tuples of partitions

Proposition 4.14. Let Pu = 0 be a differential equation of order n which has a
regular singularity at 0. Let {{\1](m,), -, [AN](my)} be the corresponding set of the
characteristic exponents. Here m = (myq,...,my) a partition of n.

1) Suppose there exists k such that

A =Xy == A,
mip > mg 2> - > My,
)\j7>\1¢Z (j:k+1,,N)

Let mY = (mY,...,mY) be the dual partition of (m1,...,mg) (cf. (4.11)). Then
fori=0,....m;i—1andj=0,... ,miv+1 — 1 the equation has the solutions

J
(4.38) wig(w) = @Mt gz ¢y (@).
v=0
Here ¢; ;. (x) € O and ¢;,,;(0) =9, forv=0,...,j—1.
i) Suppose

(4.39) N—N#Z\{0}  (0<i<j<N).

In this case we say that the set of characteristic exponents {[A]im,) -+ [AN](ma)}
is distinguished. Then the monodromy generator of the solutions of the equation at
0 is conjugate to

L(m; (eQm/jAl, o ,eQm/jAN)).

PROOF. Lemma 4.5 ii) shows that there exist u; j(z) of the form stated in i)
which satisty Pu; j(z) € Og(A1 +m1, ) and then we have v; j(z) € Og(A1 +ma, j)
such that Pu; ;(z) = Puv; j(z) because of (2.6). Thus we have only to replace u; ;(z)
by u; j(x) —v; ;(x) to get the claim in i). The claim in ii) follows from that of i). O

Remark 4.15. i) Suppose P is a Fuchsian differential operator with regular sin-
gularities at x = cg = 00, ¢4, ..., ¢, and moreover suppose P has distinct exponents.
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Then the Riemann scheme of P is (4.15) if and only if Pu = 0 has local solutions
ujv,i(z) of the form

(z =) (1 + ol — ¢ =)
(x —=¢, i=0,....m;,—1, j=1,...,p),

4.40 oy = . X ’
( ) Wi, (.23) x*/\o,u*l(l + O(x*mo,qulJrl))

(x =00, 1=0,...,mp,).

Moreover suppose \j, — Aj,» ¢ Z for 1 <v <v' <nj and j =0,...,p. Then
— e )N tig . 1<i<
(4.41) uj,u,i(l‘) = (Z;)\ CJ,)i J d)J’V’Z(x) ( =7 = p)
T g, i(7) (J=0)

with ¢;,.:(z) € O, satisfying ¢;,:(c;) = 1. In this case P has the Riemann
scheme (4.15) if and only if at the each singular point x = ¢;, the set of characteristic
exponents of the equation Pu = 0 equals A; in (4.17) and the monodromy generator
of its solutions is semisimple.

ii) Suppose P has the Riemann scheme (4.15) and A1 = -+ = Ay ;. Then
the monodromy generator of the solutions of Pu = 0 at x = ¢; has the eigenvalue
e2™V=IA1 with multiplicity n. Moreover the monodromy generator is conjugate to
the matrix L((mu7 ce My ), 627“/?1)‘1’1), which is also conjugate to

J(mYy, ™ @@ J(my,, €T,

Here (myy, ... ,mlvny) is the dual partition of (mq1,...,m1,,). A little weaker
condition for )\;, assuring the same conclusion is given in Proposition 9.9.

Definition 4.16 (realizable spectral type). Let m = (my,...,m,) be a (p + 1)-
tuple of partitions of a positive integer n. Here m; = (my1,...,mj ;) and n =
mj 1+ +mjy, for j =0,...,pand m;, are non-negative numbers. Fix p different
points ¢; (j =1,...,p) in C and put ¢y = co.

Then m is a realizable spectral type if there exists a Fuchsian operator P with
the Riemann scheme (4.15) for generic A;, satisfying the Fuchs relation (4.16).
Moreover in this case if there exists such P so that the equation Pu = 0 is ir-
reducible, which is equivalent to say that the monodromy of the equation is irre-
ducible, then m is irreducibly realizable.

Remark 4.17. i) In the above definition {);,} are generic if, for example, 0 <
mo,1 <ordm and {\;,; (4,v) # (0,1), j=0,...,p, 1 <v <n;}U{1} are linearly
independent over Q.

ii) It follows from the facts (cf. (2.22)) in §2.1 that if m € P satisfies

HAm }| € Z<o ={0,—1,-2,...} for any m’, m"” € P

(442) . . _ / " /
satisfying m = m’ + m"” and 0 < ord m’ < ord m,

the Fuchsian differential equation with the Riemann scheme (4.15) is irreducible.
Hence if m is indivisible and realizable, m is irreducibly realizable.

Fix distinct p points c1,...,¢, in C and put cg = co. The Fuchsian differential
operator P with regular singularities at x = ¢; for j = 1,...,n has the normal form

(4.43) P = (T](z = )")0" +an1(2)0" " 4+ + a2(2)0 + ao (a),

=1

p
j=
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where a;(z) € C[z] satisfy
(4.44) dega;(x) < (p—1)n+
(4.45) (0"a;)(¢;) =0 (0<v § -1)
fori=0,...,n—1.

Note that the condition (4.44) (resp. (4.45)) corresponds to the fact that P has
regular singularities at x = c] for j=1,...,p (resp. at © = ).

Since a;(x) = bi(2) [[P_,(z — ¢;) with bi(z) = X"V 0,07 € Wial
satisfying degb;(z) < (p — 1)n+ i —pi = (p — 1)(n — i), the operator P has the
parameters {b; ,}. The numbers of the parameters equals

— — 1

Z D(n—i)+1) = (pn+p2n+ )nv

i=0
The condition (z — ¢;)~*P € W{z] implies (9%a;)(c;) = 0 for 0 < ¢ < k — 1 and
0 < 7 < n, which equals (aebi)(cj) =0for0</¢{<k—-—1—dand0<i<k-—1.
Therefore the condition

(4.46) (x —¢;) "™ Ad((z — ¢;) ") P € W]a]

. . . . . =1
gives independent linear equations for {b, ..} since > ;%" (m;,

N (myutl)my,
1) = 5

(myj,v+1)mj,,
2

. If all these equations have a simultaneous solution and they are
independent except for the relation caused by the Fuchs relation, the number of
the parameters of the solution equals

(pn+p n+1 szjymj,y-&- )+

j=0v=1

(4.47) (pnﬂg_nﬂ ZZ s p—|—1)2 +1

j=0v=1

1 P
=3 ((p —1)n? — Z m?, + 1) = Pidxm.
j=0v=1

Remark 4.18 (cf. [06, §5]). Katz [Kz] introduced the index of rigidity of an
irreducible local system by the number idx m whose spectral type equals m =
(mjy)j=o,..p and provesidxm < 2, if the local system is irreducible.
v=1,...,n

Assume t]he local system is irreducible. Then Katz [Kz] shows that the local
system is uniquely determined by the local monodromies if and only if idxm = 2
and in this case the local system and the tuple of partition m are called rigid. If
idxm > 2, the corresponding system of differential equations of Schleginger normal
form

p .
(4.48) @:Z Ay

dz T —aj

j=1
has 2 Pidx m parameters which are independent from the characteristic exponents
and local monodromies. They are called accessory parameters. Here A; are con-
stant square matrices of size n. The number of accessory parameters of the single

Fuchsian differential operator without apparent singularities will be the half of this
number 2 Pidxm (cf. Theorem 6.14 and [Sz]).

Lastly in this section we calculate the Riemann scheme of the products and the
dual of Fuchsian differential operators.
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Theorem 4.19. Let P be a Fuchsian differential operator with the Riemann scheme
(4.15). Suppose P has the normal form (4.43).
i) Let P’ be a Fuchsian differential operator with regular singularities also at

T =cy=00,C1,...,¢p. Then if P" has the Riemann scheme
Tr=cyg=0 Cj (]:1,,]?)
[)\0,1 + mo,1 — (p — 1) ord m](m/o.l) [/\j,l + mjvl](mé,l)
(4.49) . ' . )

[)‘O,no + Mon, — (p - 1) ord m](mf),no) [)‘janj + mj,nj](m’ )

Jmj

the Fuchsian operator P'P has the spectral type m + m’ and the Riemann scheme

T = Cyp =0 C1 s Cp
P\O,l](moyl—&-'rn{JJ) [Al,l](77z111+m’1‘1) T [)\p,l](mp‘l-i-mévl)
(4.50) . . .
[)\O’no}("lo,no +m6,n0) [Alvnl](ml‘nl +7n/1‘n1) o [Ap’np](m'p’"p +m/11"1))

Suppose the Fuchs relation (4.32) for (4.15). Then the Fuchs relation for (4.49) is
valid if and only if so is the Fuchs relation for (4.50).
ii) For @ =245 qx(2)0F € W (z), we define the formal adjoint Q* of Q by

(4.51) Q" = Z(—@)qu(x)

k>0
and the dual operator PV of P by
(4.52) PY := a,(z)(an(z) ' P)*
when P =" _ a,(x)0*. Then the Riemann scheme of PV equals

T =cy=00 ¢ (G=1,...,p)

[2—n—mo1 — Xo,1)(m ) [n—mja — Aja](m, )
(4.53) . S

2 =1 —=m0n, = Aonglmong) [0 = Min; = Xjinsl(m; )

PRrROOF. i) It is clear that P'P is a Fuchsian differential operator of the nor-
mal form if so is P’ and Lemma 4.5 iii) shows that the characteristic exponents
of PPP at © = ¢; for j = 1,...,p are just as given in the Riemann scheme
(4.50). Put n = ordm and n’ = m’. We can also apply Lemma 4.5 iii) to
z=@P=Dnp and == P’ ynder the coordinate transformation z — 1 we have
the set of characteristic exponents as is given in (4.50) because g~ =Dntn’) prp —
(Ad(x—(p—l)n)m—(p—l)n/p/) (z==Dn)p,

The Fuchs relation for (4.49) equals

P
Z Z mj, (N +mj —60(p—1)ordm) = ordm’ —
§=0

idxm’
2

v=1
Since
p Ny
DD mj,(my. — d0(p — 1) ordm) = idx(m, m’),
j=0v=1
the condition is equivalent to

p .
(4.54) 3OSl = ordm’ — B i (m, m)
j=0v=1
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and also to
p N .
d !
(4.55) DO my 4+ m) )N = ord(m +m') — %
j=0v=1

under the condition (4.32).
ii) We may suppose ¢; = 0. Then

an(x) ' P=Y"a"q@) ] - —i),

>0 1<v<n;

O§i<m1,,,—€
an(x) PV =D q(-9-1) [ (=0-A,—i-1)a2tm
£>0 1<v<ng

0<i<my ,—£

=> a2 (@) [ W+ Mu+itl+L—n)

>0 1<v<n;
0<i<my,,—4
= E zeinSZ(ﬂ) H (’19 —+ Al,u — j —+ ml,l, — n)
£>0 1<v<ng

0<j<miy,,—¢

with suitable polynomials ¢y and s, such that ¢, sp € C*. Hence the set of
characteristic exponents of PV at c1 is {[n —m1, — A,u](my )5 ¥ =1,...,n1}.
At infinity we have

an(z) 1P = Z = ", (9) H (9 4+ Ao, +1),

£>0 1<v<n;
0<i<mg,, —¢
(@) Py =3 s@)  [] 0 dow—it1--n)
>0 1<v<ng
0<i<mg,, —¢
= Z s (V) H (=Aop+j+2—n—mg,)
>0 1<v<n;

0<j<mo,,—¢

with suitable polynomials ¢, and sy with qg, sg € C* and the set of characteristic
exponents of P¥ at ¢1 is {[2—n —mq, — Ao,vlmo, )i vV =1,...,m0} O

Example 4.20. i) The Riemann scheme of the dual P>\\/1,...,>\p/ of the Jordan-

N2

Pochhammer operator Py, .., given in Example 1.8 iii) is
1 1

o o s
[ p-1) p—1) 2 —2p+ p](p—1)
AM—p+p—1 - =X —pt+p—1 M+ +ApF+p—p+l

i) (Okubo type) Suppose P (A) € W(z] is of the form (11.34). Moreover sup-
pose Pp(A) has the the Riemann scheme (11.34) with (11.33). Then the Riemann
scheme of Py, (A\)* equals

T =00 r=c¢j (j=1,...,p)
[2 —mo,1 — Xo,1](mo,1) 0] (m, 1)
(4.56) 2 —mo2 = No2lomon) M1 —mi2 = Aj2lm,.)

2= mo.ny = Aomol(mong)  [Mi1 = Mijim; = Ajins om0 )



CHAPTER 5

Reduction of Fuchsian differential equations

Additions and middle convolutions introduced in Chapter 1 are transformations
within Fuchsian differential operators and in this chapter we examine how their
Riemann schemes change under the transformations.

Proposition 5.1. i) Let Pu = 0 be a Fuchsian differential equation. Suppose there
exists ¢ € C such that P € (0 — c)Wlx]. Then c=0.

ii) For ¢(z) € C(z), A€ C, p € C and P € Wix], we have
(5.1) P € C[z] RAdei(—¢(x)) o RAdei(¢(z)) P,
(5.2) P e C[0] RAd(a_“) o RAd((‘?“)P.
In particular, if the equation Pu = 0 is irreducible and ord P > 1, RAd(a_“) o
RAd(9")P = cP with c € C*.

PROOF. i) Put P = (0—¢)Q. Then there is a function u(x) satisfying Qu(z) =
e“”. Since Pu = 0 has at most a regular singularity at x = oo, there exist C > 0
and N > 0 such that |u(z)| < Clz|Y for |z| > 1 and 0 < argx < 27, which implies
c=0.

ii) This follows from the fact

Adei(—¢(x)) o Adei(p(z)) = id,
Adei (6(2) ()P = (z) Adei(6(@)) P (£(z) € C(a))
and the definition of RAdei(¢(x)) and RAd(9"). O

The addition and the middle convolution transform the Riemann scheme of the
Fuchsian differential equation as follows.

Theorem 5.2. Let Pu = 0 be a Fuchsian differential equation with the Riemann
scheme (4.15). We assume that P has the normal form (4.43).
i) (addition) The operator Ad((x — ¢;)7) P has the Riemann scheme

x:cozoo Cl e Cj .. Cp
P‘O,l - T](mo,l) [)\171]('”’7«1,1) T [)‘Jﬂl + T](m]‘,l) T [)‘1071](771@1)
Moo = Tlmowmg)  Atnloniny) 0 iy + 7m0 Poimplimpn,)

ii) (middle convolution) Fiz u € C. By allowing the condition m;i = 0, we
may assume

(5.3) w=Xx,a—1 and N1 =0forj=1,...,p
and #{j; m;1 <n} > 2 and P is of the normal form (4.43). Putting

(5.4) d:= Zmﬂ —(p—1)n,
j=0

43
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we suppose
(5.5) mj1>d for j=0,...,p,

(5 6) >\O,V ¢ {07—1, —2,. . .,moy]_ — mo,,, — d—I— 2}
' if moy,+--+mp1—(p—1n>2, mq---mp1#0 and v>1,
)\071 + )‘jW ¢ {0, —-1,-2,....m;1 —m;, — d+ 2}
(5.7) if mo1 4ot mi_1a+my, Fmigg o+ mpr — (p—1)n > 2,
mij1#0, 1<j<p and v>2.

Then S := 0~1Ad(0~H) ?:1(33 —¢j) " P € Wlz] and the Riemann scheme of
S equals

Ir = Cy =00 Cc1 N Cp
[1 - M](ngfd) [0](m1,1*d) e [O](mp,lfd)
(5.8) Doz = tlmesy  Prz om0 Dozt i,z
Moo = Mmong)  Ana + MWminy) Pony + Blmgn,)

More precisely, the condition (5.5) and the condition (5.6) for v = 1 assure S €
Wlz]. In this case the condition (5.6) (resp. (5.7) for a fixed j) assures that the
sets of characteristic exponents of P at x = oo (resp. ¢;) are equal to the sets given
in (5.8), respectively.

Here we have RAA(0~*)RP =S, if

(5.9) {)\j,l +mj1 are not characteristic exponents of P

atx =cj for j =0,...,p, respectively,
and moreover
(5.10) mo1=d or Mg ¢{-d,—d—1,...,1—mg1}.
Using the notation in Definition 1.3, we have

S=Ad((x — ) ) (z — )T, (—0)™ Ad(o~)T1,

xT—cy

5.11 p
(.11 . (3[;—cl)dl_[(:c—cj)_mj*1 Ad((z —c1)™1)P

j=1
under the conditions (5.5) and

(512) )\OW¢{0,71,72,...,7720717m0,y*d+2}
' if moy,+miit+-+mpr—pP-1n>2 m1#0 and v>1.

ili) Suppose ord P > 1 and P is irreducible in ii). Then the conditions (5.5),
(5.6), (5.7) are valid. The condition (5.10) is also valid if d > 1.
All these conditions in ii) are valid if #{j; m;1 < n} > 2 and m is realizable

and moreover X\;, are generic under the Fuchs relation with A\j1 = 0 for j =
1,....p.
iv) Let m = (mj,) j=0..p € PI()T-:-)I' Define d by (5.4). Suppose \;, are
v=1

=1,...,n;

complex numbers satisfying (5.3). Suppose moreover m;y > d for j = 1,...,p.
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Defining m’ € Pg(;il and \; , by

(5.13) my, =mj, —0,1d (j=0,...,p, v=1,...,n5),
2= Qo (j=0, v=1),
)\',,,—)\0,14-1 (‘]'ZO,I/>1)7

(5.14) N ! :
0 (>0, v=1),
)\],V+>\01_]- (]'>071/>].)7

we have

(5.15) idxm =idxm’, |[{A\m}=|{\u}-

PRrROOF. The claim i) is clear from the definition of the Riemann scheme.
ii) Suppose (5.5), (5.6) and (5.7). Then

(5.16) P = (ﬁ(x - cj)-mm)p € Wlal.
j=1

Note that R P = P’ under the condition (5.9). Put Q := 9~ )"~ Xi=1™i1 P’ Here
we note that (5.5) assures (p — 1)n — Z’;:l mj1 > 0.

Fix a positive integer j with j < p. For simplicity suppose j = 1 and ¢; = 0.
Since P’ = Z;L:O aj(x)d? with degaj(z) < (p—1)n+j— Z§:1 mj1, we have

N
xmlle’ = Z xNiZTZ(”lg) H (19 —+ )\O,y —+ Z)
£=0 1<v<ng
O§i<mo,y—l

and

P
N = (p — 1)n — ij,l = mo,1 +m1’1 —d
Jj=2

with suitable polynomials 7, such that rq € C*. Suppose

(5.17) II @+Xw+i)¢aWa] if N—my1+1<l<N.
1<v<ng
0<i<mg,, —£
Since P’ € Wz], we have
I'N_eTe(ﬁ) _ $N_€1'€_N+m1’1aé—]v+ml‘lSg(’l9) if N — mia +1 S / S N

for suitable polynomials s,. Putting sy =7, for 0 < ¢ < N —my ;, we have

N—?’)’L1‘1
Pr= " 2N matsw) T 0+ dow +i)
=0 1<v<ng
0<i<mg,, —4
(5.18) N
+ ) Vg I 0+ dew +i).
Z:melyl%*l 1<v<ng
0<i<mo,, —¥

Note that sg € C* and the condition (5.17) is equivalent to the condition g, +i # 0
for any v and ¢ such that there exists an integer £ with 0 < ¢ < mg, — ¢ —1 and
N —my1+1</¢<N. This condition is valid if (5.6) is valid, namely, m;, = 0 or

)\O,u ¢ {0,—1,...,77’),0,1 — Mo,y — d—|—2}
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for v satisfying mg,, > mg1 —d + 2. Under this condition we have

N

Q=> 0"s,(V) 11 @+i)- I 0+ +1),
£=0 1<i<N—my 1 —£ 1<v<ng
0<i<mo,,—£
N
Ad@™MQ = d"ssW—p) [ @—n+i)
£=0 1<i<N—my1—£
II o+ J] @-p+rw+i)
1<i<mg,1—4 2<v<ng
0<i<mg,, —4
since gt = Ao,1 — 1. Hence 9701 Ad(07")@Q equals
mo,1—1
> amor sy (9 — ) 11 @—p+i)  J[ @—n+ron+i)
£=0 1<i<N—my £ 2<v<no
0§i<m0,u—€
N
+ > 0Tms(9 - ) 11 @—p+i)  J[ @—p+ron+i)
Z:mml 1§i§N—m1,1—Z QSVSTLU
0<i<mo,, —£

and then the set of characteristic exponents of this operator at oo is

{[1 - lu](m()’l*d)7 [)\0,2 - M](mmz)? ) [)\071’7,0 - M](mgyno)}'

Moreover 9~ ™0t =1 Ad(07")Q ¢ W x] if Ao,1 +mo,1 is not a characteristic exponent
of Pat oo and —Ag1 +1+i#mg1+1forl <i< N —my; =mp1—d, which

assures %180 [ [ cicnm, (0 =+ 9) [ 2<v<ny (0 —p+ A1y +1i) ¢ OW[az].
== : 0<i<mo,.
Similarly we have

mi,1
=Y 0" ") [ - —i)
£=0 2<v<ng
0<i<my,, —¢
N
+ Y atmge) [ 0-aw—i),
L=mq,1+1 2<v<ni
0<i<my,, —¢
mi,
Q=Y ""'qw) ] +xr.—9)
£=0 2<v<ny
O§i<m1,,,—€
N L—m11
+ 3 V) [ 0+ [ @ Mw—i)
l=mq 1+1 i=1 2<v<ns

0<i<my,, —4
N
Ad@™MQ =Y " "qw-p J[ @-n+i)
/=0 1§i§e—le
[T @-—n-x.-9)
2<v<n,
0<i<my,,—4

with go € C*. Then the set of characteristic exponents of 9™t Ad(0~#)Q equals

{[O](le*d)? [/\172 + :u](m1,2)7 R [)‘17’”1 + :u](ml,nl)}
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if
[T @ n—Au—i)¢ oWl

2<v<ng
0<i<my,, —¢€

for any integers £ satisfying 0 < ¢ < N and N —¢ < myg,;. This condition is satisfied
if (5.7) is valid, namely, mo 1 = 0 or

)\071 =+ )\1,u §é {0, —1,... ,M11 — M1,y — d+ 2}
for v > 2 satisfying m;, >mi 1 —d+2

because my , —¢—1 < mqy, +mo1 —N —2 =my, —my 1 +d—2 and the condition
V—p—Ay—i€0W[z]means —1=p+ A\, +i=X1— 1+, +i.
Now we will prove (5.11). Under the conditions, it follows from (5.18) that

P = gmoa~ NAd ’\01 Hac—c “milp

— xmo,1+m1,1 NAd(m)\O'l)P
N
_ meo,lff Ad(x)\(),l)sg(ﬁ) H (19 — l/) H (’19 —+ AOW + Z),
£=0 0<v<t—N+mq 1 1<v<no
0<i<mo,y—1{

Q:=(-0)N "o TP

N
= ()N Tmer Yy "t Tmotgy (=) = Ao 1) I =X1-v
=

0<v<{—N+m 1

o

H (=0 4+ Xop — Xo,1 + 1) H (=0 +1)

2<v<ng 0<i<mg,1—¢
0<i<my, v—L
N
E =9 = Xo,1) H (=9 —1)
=0 1<i<l—mo,1

[T o9-2a-») JI =9+ —2o1+9)
0<v<f—N+mq 1 2<v<ng
0<i<mo,,—¢

and therefore

N
Ad(O™M)Q = (=N s -1) ] (=041 —-1-1)
£=0 1<i<l—mo,1
I o-1-v) J[ 9+ —1+i).
0<v<f—N+mq 1 2<v<ng
0<i<mg,, —¢

Since

IZ—N-le,l
SN || (—ﬁ—l—u)z{ N

N—¢
0<v<l—N+m1 1 (_8) e

(
(
gt Nrmaa II o+v),

0<v<N—f—m1 1

N -/ < m171)
N —/¢ Z m171)
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we have

N
Q = (-0)"™ Ad(O Q=Y at Nt T (-0 +v)
£=0

OSI/<N—€—m111

so(=9=1)  J] (9+xa-2-v) [] (—0+Xw—1+14)
0<v<€—mo1 2<v<ngo
0§i<m07,,—€

and

N
gt TN AQ(pAo TR =Y Tamer ™t [ (9= v) - se(@ — Ao + 1)
57

0<v<l—mg,1

[T @-roa+2+v) J[ @+row—doa+1+1),

0<v<N-—myi1—4 2<v<ng
0<i<mg,, —£

which equals 971 Ad(07#)Q because [, (0 —v) = zk ok for k € Z>y.
iv) (Cf. Remark 7.4 ii) for another proof.) Since

P P
idxm — idxm’ = Zm?’l —(p—1)n*— Z(mj’l —d)?+(p—1)(n—d)?
=0 j=0

—Qdijl (p+1)d* —2(p — 1)nd + (p — 1)d?

- d(2jz::0mj,1 —2d=2(p—1)n) =0

and
szw v szw/ jw
j=0v=1 j=0v=1
p
= mo(p+1) = (moy — d)(1— p) + p(n —mo1 — >_(n—mjy1))
j=1

P
= (Z mj1—d— (p— l)n)u —mo1d — (mo,1 —d) =d,
=0

we have the claim.
The claim iii) follows from the following lemma when P is irreducible.
Suppose Aj, are generic in the sense of the claim iii). Put m = ged(m)m
Then an irreducible subspace of the solutions of Pu = 0 has the spectral type £'m
with 1 < ¢ < ged(m) and the same argument as in the proof of the following
lemma shows iii). O

The following lemma is known which follows from Scott’s lemma (cf. §9.2).

Lemma 5.3. Let P be a Fuchsian differential operator with the Riemann scheme
(4.15). Suppose P is irreducible. Then

(5.19) idxm < 2.
Fiz 0 = (b, ..., 4p) € Z’;El and suppose ord P > 1. Then
(5.20) Mo, +mie, +-Fmpy, — (p—1)ordm <my,, for k=0,...,p
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Moreover the condition

(5.21) Aoto AL+ Apg, €Z
implies
(5.22) moe, +mie, + -+ mpe, < (p—1)ordm.

Proor. Let M; be the monodromy generators of the solutions of Pu = 0 at ¢;,
respectively. Then dim Z(M;) > Y777, m?, and therefore > i_gcodim Z(M;) <
(p+1)n? — (idxm + (p — 1)n?) = 2n? — idxm. Hence Corollary 9.12 (cf. (9.47))
proves (5.19).

We may assume ¢; = 1 for j = 0,...,p and & = 0 to prove the lemma. By
the map u(x) — Hle(x — ¢;)" M u(x) we may moreover assume \jo, = 0 for
j =1,...,p. Suppose A\o1 € Z. We may assume M,---M;My = I,. Since
dimker M; > m; 1, Scott’s lemma (Lemma 9.11) assures (5.22).

The condition (5.20) is reduced to (5.22) by putting mge, = 0 and gy, =
—A1,e; =+ — Apy, because we may assume k = 0 and bo = ng + 1. O

Remark 5.4. i) Retain the notation in Theorem 5.2. The operation in Theo-
rem 5.2 i) corresponds to the addition and the operation in Theorem 5.2 ii) corre-
sponds to Katz’s middle convolution (cf. [Kz]), which are studied by [DR] for the
systems of Schlesinger canonical form.

The operation ¢(P) := Ad(0~#*)0®~ 1" P is always well-defined for the Fuchsian
differential operator of the normal form which has p 4+ 1 singular points including
oo. This corresponds to the convolution defined by Katz. Note that the equation
Sv =0 is a quotient of the equation ¢(P)a = 0.

ii) Retain the notation in the previous theorem. Suppose the equation Pu = 0
is irreducible and J;, are generic complex numbers satisfying the assumption in
Theorem 5.2. Let u(z) be a local solution of the equation Pu = 0 corresponding to
the characteristic exponent \; , at z = ¢;. Assume 0 <¢ <pand 1 < v <n;. Then
the irreducible equations (Ad((z — ¢;)")P)us = 0 and (RAd(O#*) o RP)uz = 0
are characterized by the equations satisfied by uq(z) = (x — ¢;)"u(z) and ua(z) =
I} (u(x)), respectively.

Moreover for any integers ko,ki,...,k, the irreducible equation Qusz = 0
satisfied by ug(z) = Ittho( Z;Zl(x — ¢;)%u(z)) is isomorphic to the equation

(RAA(07*) o R P)up = 0 as W (x)-modules (cf. §1.4 and §3.2).
Example 5.5 (Okubo type). Suppose Py (\) € Wlx] is of the form (11.35). More-

over suppose Pm(A) has the the Riemann scheme (11.34) satisfying (11.33) and
Aj,v ¢ Z. Then for any p € C, the Riemann scheme of Ad(97") P ()) equals

r =Cy=00 C1 N Cp
[)‘0,1 - :u](mo,1) [O](mll) U [O](mp,l)
(5.23) [/\0’2 o 'u’](mo,2) [)\172 + 'u](ml,z) T P‘PQ + 'u](mp,z)
[)\O,TLO - 'u](m(),no) [ALnl + 'u](ml,nl) T [)\p7np + :u“}(mp,np)

In particular we have Ad(9'=201) Py (X) € 0™ Wa].

Example 5.6 (exceptional parameters). The Fuchsian differential equation with
the Riemann scheme

T =00 0 1 c
[0](2) 02y [0](2) [0]2)
2—a—-fB—-v-20 « Ié] 0
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is a Jordan-Pochhammer equation (cf. Example 1.8 ii)) if § # 0, which is proved
by the reduction using the operation RAd(9'~%) R given in Theorem 5.2 ii).
The Riemann scheme of the operator

P, =x(x —1)(z — ¢)8?

—((a+B+7v—-6)2>— ((a+B—4)c+a+y—4)z+ (o —2)c)d?
—(2a+B+7y=3)z—(a+B8-2)c—(a+7y—2)—7)0

equals

T =00 0 1 c

[0](2) [0]2) [0]2) [0]¢2) ¢
2—a—f-7 «a B Y

which corresponds to a Jordan-Pochhammer operator when » = 0. If the param-
eters are generic, RAd(0)P, is Heun’s operator (6.19) with the Riemann scheme

T = 00 0 1 c
2 0 0 0 ,
3—a—-f—7v a—1 -1 -1

which contains the accessory parameter r. This transformation doesn’t satisfy (5.6)
for v =1.
The operator RAd(9'~*~#~7) P, has the Riemann scheme

T = 00 0 1 c
a+B+vy—1 0 0 0
a+p+y 1-pf—-v l—=-y—a 1—a-p

and the monodromy generator at oo is semisimple if and only if = 0. This
transformation doesn’t satisfy (5.6) for v = 2.

Definition 5.7. Let
P =a,(2)0™ + an_1(2)0" " + - + ap()

be a Fuchsian differential operator with the Riemann scheme (4.15). Here some
m;,, may be 0. Fix £ = ({y,...,£,) € ZX5" with 1 < ¢; < n;. Suppose

(5.24) #{j; mje; #nand 0 < j < p} > 2.
Put

(5.25) de(m) :=mge, +---+mypy, — (p—1)ordm
and

(5.26)

p p

0P = Ad(J (@ = e))) [J (@ = ¢g) o =W gmmoo Ad(9!—Poto = Pwtn)

j=1 j=1
P p \

LW =m0 () T (@ — )"0 Ad([ [ (@ = )79 P,

j=1 j=1
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If A;,, are generic under the Fuchs relation or P is irreducible, 9y P is well-defined
as an element of W{z] and

(5.27) J7P = P with P of the form (4.43),

0P eW(x RAd H T —c RAd(E)‘1 Ao, eg = *p,ep)
(5.28) ) =t
. RAd H (x—c¢j it )P

and Oy gives a Correspondence between differential operators of normal form (4.43).
Here the spectral type dym of 9;P is given by

(5.29) Oym :=(mj; ) o<j<p and m)

G =My = 00,0 - de(m)
<v<n;

and the Riemann scheme of 9, P equals

Moy —2ue (j=0, v=14)
. Ao, — Hhe (j:O V7££0)
5.30 O dm ) = (N, th N, = ’ ’
( ) é{ m} { m} W1 YRZ )\j’y (1§j§p, 1/25])
Aowt+pe  (L<j<p, v#L)
by putting
p
(5.31) Mo = Z /\j,gj —1
j=0
It follows from Theorem 5.2 that the above assumption is satisfied if
(5.32) mje, = de(m)  (j=0,...,p)
and
p
Z 3,5+ —"25)85,k ¢ {Z €Z;(p—1)n— ijlfr(l’*@f)f;j,k +2<i< O}
(5.33) = =

for k=0,....,pand v=1,... ny.
Note that 9ym € Py is well-defined for a given m € Ppyq if (5.32) is valid.

Moreover we define
(5.34) Oom := 0, ym

OmazM 1= 8gma1(m)m with
(5.35)

Uz (m); 1= min{y; mj, = max{m;1,mjz2,.. }},

(5.36) dmaz(m) := Zmax{ij, Moy, Mjn, t— (p—1)ordm.
§=0

For a Fuchsian differential operator P with the Riemann scheme (4.15) we define
(5.37) 6ma$P = 8‘€maz(m)P and 8ma${/\m} = 8Zmaa:(m){)\m}'
A tuple m € P is called basic if m is indivisible and d;;q,(m) < 0.

Proposition 5.8 (linear fractional transformation). Let ¢ be a linear fractional

transformation of P1(C), namely there exists (3 g) € GL(2,C) such that ¢(z) =

az+f3
yr+96 °

We may assume —% = ¢; with a suitable j by putting cp41 = —%, Apt1,1 = 0 and

Let P be a Fuchsian differential operator with the Riemann scheme (4.15).
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Mpy1,1 = n if necessary. Fix 0 = (by,---{,) € Z’;’Bl. If (5.32) and (5.33) are valid,
we have

0P € W(x) Ad((yz + 0)* )T 0, T} P,

5.38
( ) H:)‘O,Zo+"'+)\p7ép_1~

PROOF. The claim is clear if v = 0. Hence we may assume ¢(x) = % and the
claim follows from (5.11). O

Remark 5.9. i) Fix \;, € C. If P has the Riemann scheme {\,} with
dmaz(m) =1, 9, P is well-defined and Oy, P has the Riemann scheme Oy00.{Am}-
This follows from the fact that the conditions (5.5), (5.6) and (5.7) are valid when
we apply Theorem 5.2 to the operation Oy @ P+ Omaz P-

ii) We remark that

(5.39) idx m = idx 9pm,

(5.40) ord Oppazm = ord m — dypq. (m).
Moreover if idx m > 0, we have

(5.41) dmaz(m) > 0

because of the identity

P Py
(5.42) (Z mj, — (p—1)ord m) -ordm = idxm + Z Z(mﬂj — M) M.
j=0 j=0v=1
Ifidxm = 0, then d,,4;(m) > 0 and the condition d,,q,(m) = 0 implies m; , = m;1
forv=2,...,n; and j =0,1,...,p (cf. Corollary 6.3).
iii) The set of indices £y,q,(m) is defined in (5.35) so that it is uniquely deter-
mined. It is sufficient to impose only the condition

(5'43) mjyemam(m)j = ma’X{mj»:l? mj727 M '} (] = 07 ce 7p)
on £y qz(m) for the arguments in this paper.
Thus we have the following result.

Theorem 5.10. A tuple m € P is realizable if and only if sm is trivial (cf. Defi-
nitions 4.10 and 4.11) or Ope.m is well-defined and realizable.

Proor. We may assume m € P;i)l is monotone.

Suppose #{j; mj1 < n} < 2. Then Opq;m is not well-defined. We may
assume p = 0 and the corresponding equation Pu = 0 has no singularities in C by
applying a suitable addition to the equation and then P € W(z)0". Hence m is
realizable if and only if #{j; m;1 < n} = 0, namely, m is trivial.

Suppose #{j; mj1 < n} > 2. Then Theorem 5.2 assures that Opq,m is
realizable if and only if 0,,,, m is realizable. O

In the next chapter we will prove that m is realizable if d;;q,(m) < 0. Thus
we will have a criterion whether a given m € P is realizable or not by successive
applications of 9,4z

Example 5.11. There are examples of successive applications of sod to monotone
elements of P: B B B
411,411,42,33 =287 111, 111,21 *=251 11,11, 11 P 2251 1,1, 1 (vigid)
211,211,111 °=5" 111,111, 111 *°=25° 111, 111, 111 (realizable, not rigid)
211,211,211,31 =231 111,111,111, 21 5" (realizable, not rigid)
22,22,1111 °=5" 21, 21,111 °=35% x (not realizable)
The numbers on the above arrows are d(y1,...) (m). We sometimes delete the trivial
partition as above.



The transformation of the generalized Riemann scheme of the application of
is described in the following definition.

8k

max

Definition 5.12 (Reduction of Riemann schemes). Let m = (mjvl,) j=0,..p €

Pp+1 and A, € Cfor j =0,...,pand v = 1,...,n;.
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v=1,...,n;

Then there exists a positive integer K such that

(5.44)

ordm > ord 8,4, m > ord 82

max

m> - >orddE, m

and s0X, m is trivial or da. ((‘ﬁgaxm) <0.

max

Define m(k) € Ppyq, (k) € Z, p(k) € C and A(k);pec for k=0,..., K by

(5.45)
(5.46)

(5.48)

(5.49)

(5.51)

m(0) =m and m(k) = Opeem(k —1)

(k=1,...,K),

U(k) = lnae (m(k)) and d(k) = dmas (m(k)),
(547) {MF)anitr} = O Am} and (k) = M+ Dy~ MR} (v £ £(R)).

Namely, we have

/\(O)j,u = /\j,u (j =0,...
M(k) = Z)‘(k)j,é(k)j -1,
7=0
)\(k)o,u - 2M(k)
Ak + 1), = 1830 —wlk)
A(k)jw + n(k)
)i,

0 A (k
{)\m} &) > {)‘(k)m(k)} L {)‘(k + 1)m(k+1)}

’p7 V:1""7nj)7

(j =0, v="_(F)o),
(j=0,1<v<ng, v#LUk)o),
(1<j<p, v=LKk)),
(1<j<p, 1<v<n; v#LUk);)

Or(k+1)

Suppose m is realizable.






CHAPTER 6

Deligne-Simpson problem

In this chapter we give an answer for the existence and the construction of
Fuchsian differential equations with given Riemann schemes and examine the irre-
ducibility for generic spectral parameters.

6.1. Fundamental lemmas

First we prepare two lemmas to construct Fuchsian differential operators with
a given spectral type.

Definition 6.1. For m = (m;,);—o.,...p € P +1’ we put
<n;

6.1
(6.1) —#{(],)EZ2 i>0,0<j<p, mj; >n—v},
(6.2) My = Zmax{mj,y —14,0}.

v=1

See the Young diagram in (6.32) and its explanation for an interpretation of
the number m; ;.

Lemma 6.2. We assume that m = (m;,)j—o <V p € 73 satisﬁes

(6.3) My > Mo > >Myn, >0 and n>me1 >myg > >my;
and

(6.4) mo1+ -+ mpa < (p—1)n.

Then

(6.5) N,(m) >0 (v=2,3,....,n—1)

if and only if m is not any one of
(ky ks k ks k ks ko), (koK Kk Kk kK k),
(6.6) (2K, 2k; k, kK, k; k, K,k k)
and (3k,3k; 2k, 2k, 2k; k, k, k, k, k, k) with k> 2.

PRrOOF. Put

ﬂ,J

= Z max{m;,, — t,0},
v=1

q/gj(t):zn(l— ) for 7=0,...,p

mj1

55
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Then ¢;(t) and ¢;(t) are strictly decreasing continuous functions of ¢ € [0,m; 1]
and

¢;(0) = $;(0) = n,
¢j(mj1) = ¢j(mj1) =0,
20;(8E2) < ¢;(t1) + ¢5(t2) (0 <ty <ty <myy),
¢(t) = —ny < e = 0 (t) 0<t<1).
Hence we have
¢;(t) = ¢;(1) (0 <t <myji1, n=mjin;),
b;(t) < ¢;(t) 0<t<mji, n<m;in;)

and forv=2,...,n—1

S #{i€Zzo; ¢j(i) 2n—vy=> [¢; (n—v)+1]

=0 =0

NE

(gb]_l(n —-v)+ 1)

<.
Il
o

(6 (n—v)+1) = i(wzﬂ + 1)

7=0
p=Lr+p+l)=pE-HF+1)+2

v

IN
AT
=}

Here [r] means the largest integer which is not larger than a real number 7.
Suppose there exists v with 2 < v < n — 1 such that (6.5) doesn’t hold. Then
the equality holds in the above each line, which means

d);l(n_y)ez (.j:O7"'7p)7
(67) n=m;j;in; (]:O,,p)7
p—Dn=mo1+--+mp.
Note that n = m; 1n; implies mj1 = -+ = mj,, = nﬂ] andp—1= nio—f—'-‘-ﬁ-,%p <

%. Hencep:3withn0:n1:n2:n3:2orp:2with1:7%04—”%4—7%2. If
2, {ng,n1,n2} equals {3,3,3} or {2,4,4} or {2,3,6}. Thus we have (6.6) with

p =
k=1,2,.... Moreover since

_ —_ vm; v )
d)jl(niy):d)jl(n*y):ij’l:igz (j:(),...,p),
n n;
v is a common multiple of ng,...,n, and thus £ > 2. If v is the least common
multiple of ng,...,n, and k > 2, then (6.7) is valid and the equality holds in the
above each line and hence (6.5) is not valid. O

Corollary 6.3 (Kostov [Ko]). Let m € P satisfying dpmqar(m) < 0. When idxm =
0, m is isomorphic to one of the tuples in (6.6) with k =1,2,3,....

PrROOF. Remark 5.9 assures that dp,.;(m) = 0 and n = m;1n;. Then the
proof of the final part of Lemma 6.2 shows the corollary. (]

Lemma 6.4. Let c,...,c, be p+1 distinct points in CU {oo}. Let ng,ni,...,n,
be non-negative integers and let a;, be complex numbers for 5 =0,...,p and v =
1,...,n;. Putn:=mng+---+mny,. Then there exists a unique polynomial f(x) of
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degree n. — 1 such that
f@) = a1 +ajo(®—ci)+- -+ ajn(x—c)""
(6.8) +olz — ¢V (z =y, ¢ # 00),

. et (@) = a4 aj0r T+ @t A+ of|x] )

(x = 00, ¢j = 00).
Moreover the coefficients of f(x) are linear functions of the n variables a;,, .

PrROOF. We may assume c, = oo with allowing n, = 0. Put n; = no+---4+n;_1
and ng =0. For k=0,...,n — 1 we define

f(e) = L@ M L@ =)™ (R <k <, 0<i<p),
U e T () (fip <k < 7).

Since deg fi(z) = k, the polynomials fo(z), f1(z), ..., fa—1(z) are linearly indepen-

dent over C. Put f(z) = ZZ;S ug fr(x) with ¢, € C and

v = i k—iig+1 (i <k <7iqr, 0<0 < p),
Ap f—Fk (ﬁp <k< fl)

by (6.8). The correspondence which maps the column vectors u := (ug)k=0,... -1 €
C™ to the column vectors v := (Vk)k=0,...7i—1 € C™ is given by v = Au with a square
matrix A of size n. Then A is an upper triangular matrix of size n with non-zero
diagonal entries and therefore the lemma is clear. O

6.2. Existence theorem

Definition 6.5 (top term). Let
_ d" dn—t d
P = an(v) i + an—1(2) fmr + - + a1 (x) 3 + ao(x)
be a differential operator with polynomial coefficients. Suppose a,, # 0. If a,,(x) is
a polynomial of degree k with respect to x, we define Top P := amkxk@" with the
coefficient a,, ; of the term x* of an(z). We put Top P =0 when P = 0.

Theorem 6.6. Suppose m € 77;1)1 satisfies (6.3). Retain the notation in Defini-
tion 0.1.
i) We have Ni(m) =p— 2 and

n—1
(6.9) > N,(m) = Pidxm.
v=1
ii) Suppose p > 2 and N,(m) >0 forv=2,...,n—1. Put
(6.10) @ = #{i; mo; >n—v, i >0},
(6.11) Im = {(j,v) €Z*; ¢ <j <>+ N,(m) and 1 <v <n—1}.

Then there uniquely exists a Fuchsian differential operator P of the normal form
(4.43) which has the Riemann scheme (4.15) with ¢y = oo under the Fuchs relation
(4.16) and satisfies

1 ddchfjfllan_V_1

(degP —j —v)!  dxdesP—i—v

(6.12) 0)=gj»  (V(,v) € Im).



58 6. DELIGNE-SIMPSON PROBLEM

Here (gjﬂ/)(j V)elm € CPidxm s arbitrarily given. Moreover the coefficients of P
are polynomials of x, \j, and g;, and satisfy

(6.13)
jtv 87]3) v+l _ 0*p — ; il
x Top(ang 0"7  =TopP and 9900900 0 ((4,v), (4,V') € I;n).
Fiz the characteristic exponents X\, € C satisfying the Fuchs relation. Then
all the Fuchsian differential operators of the normal form with the Riemann scheme
(4.15) are parametrized by (g;,,) € CPidxm - fence the operators are unique if and
only if Pidxm = 0.

PROOF. i) Since mj1 =n—n; <n—2, Ny(m)=2(p—-1)+1—-(p+1)=p—2
and

n—1
S H#{(i) ez i>0,0<j <p, Wy =n—v}
= P n—1
:Z< #{iEZZO;ﬁWZn—y}—l)
=0 v=0
jp mj,1 P mj1my
=3 (D= 1) = >2(30 > max{my, — .0} - 1)
j=0 =0 j=0 i=0 v=1
LA mj,(m;., +1)
SRR
1 p N
j=0rv=1
n—1 p N
S N = - D" ) ) (Y m, e+ - 2)
v=1 j=0v=1
P ny
— 5(@_ 1)n2 +9— szfy) = Pidxm
j=0v=1
ii) Put
pn
P=> a"pf,(0)
=0
pn
= Z(m - Cj)epﬁf((x - cj)a) (1 <j<np),
(=0

hje(t) := L2 Mosicmo, —e(t+ 2o +1)  (5=0),
7 [1041 Mocicm,, —e(t = Xjw —1) (1 <j<p),
Pie(t) = qf(Ohje(t) +17(t)  (degr,(t) < deghye(t)).

Here pfz(t), qfe(t)7 rﬁg(t) and h; ¢(t) are polynomials of ¢ and

n
(6.14) deghj o = Z max{m;,, — ¢,0}.

v=1
The condition that P of the form (4.43) have the Riemann scheme (4.15) if and
only if rfé = 0 for any j and ¢. Note that a,_(z) € C[x] should satisfy

(6.15) degan—r(x) <pn—k and ag:)k(cj) =0 (0<v<n—-k—-1,1<k<n),
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which is equivalent to the condition that P is of the Fuchsian type.
n n—1 n—k
Put P(k) := ( 5):1(:1: — ) ) e a1 (@) e+ an—k(x)czyﬁ~

Assume that a,—1(2), ..., an—k+1(x) have already defined so that deg rﬂkil) <

n —k+ 1 and we will define a,,_x(x) so that degr PR < k.
When k& =1, we put

P nj Mjv—
Qp— 1 :—an Zx_cj (Z Z >‘ju+’t (n2—1))

j=1 v=1l =0

P(1)

and then we have degr P < —1 for J=1,...,p. Moreover we have degr; ,” <

n — 1 because of the Fuchs relation (cf. (2.21)).
Suppose k£ > 2 and put

() = 4 22020 co e, M,
n- _ .
Zzzo cjke(x — )" kot G=1,...,p)

with ¢; ;¢ € C. Note that

n—k—1
an—k(2)0"F =" co e T 0 -19)
>0 i=0
n—k—1
:ZCj)k)g(l‘—Cj)e ((x—cj)(‘)—i).
>0 i=0

Then degr; , PR < — k if and only if degh; ¢ <n —k or

1 dn—k P(k—1)
(6.16) Cjkl = *m (dtn—k Tie (t))

Namely, we impose the condition (6.16) for all (4, ¢) satisfying

t=0

n;
M = Zmax{mj,,, — 0,0} >n—k.
v=1
The number of the pairs (7, £) satisfying this condition equals (p—1)k+1—Nj_1(m).
Together with the conditions afl'i)k(cj) =0forj=1,...,pandv=0,...,n—k—1,
the total number of conditions imposing to the polynomial a,,_x(x) of degree pn—k
equals

pn—k)+(p—1k+1—Np_1(m) = (pn —k+1) — Ny_1(m).

Hence Lemma 6.4 shows that a,,_(z) is uniquely defined by giving cg x ¢ arbitrarily
for qg_l </< qg_l + Ni—1(m) because qg_l =#{>0; mos >n—k}. Thus we
have the theorem. O

Remark 6.7. The numbers N, (m) don’t change if we replace a (p + 1)-tuple m
of partitions of n by the (p + 2)-tuple of partitions of n defined by adding a trivial
partition n = n of n to m.

Example 6.8. We will examine the number N, (m) in Theorem 6.6. In the case
of Simpson’s list (cf. §13.2) we have the following.

(H,: hypergeometric family)
m=n-—11,1"1"

m=nn—2n-3,...1;m;n
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(EOgp,: even family) m = mm,mm — 11,1?™

m=2m,2m—2,...,2;2m,2m —3,...,1;2m

(EOgp11: odd family) m = m + 1m, mm1,1?"**
m=2m+1.2m—1,...,1;2m+1,2m —2,...,2;2m + 1
m = 42,222, 16

m=6,4,2,1;6,3;6

(Xg: extra case)

In these cases p = 2 and we have N, (m) =0 for v = 1,2,...,n — 1 because

m:={m;,;v=0,....,mj1—1,j=0,...,p}

6.17
(6.17) ={n,n,n,n—-2n—-3,n—4,...,2/1}.

See Proposition 6.17 ii) for the condition that N,(m) >0 for v =1,...,ordm — 1.
We give other examples:

’ m ‘ PldX‘ m ‘ N17N27~-~7Nordmfl
221, 221, 221 0 | 52,5252 0,1,—1,0
21,21, 21,21 (Ps) 0 | 31,31,31,31 1,—1
22,2222 —3 [ 42,42,42 0,-2,—1
11,11,11,11 (Dy) 1 [2,2,22 1
111,111,111 (Es) 1 3,3,3 0,1
22,1111, 1111 (E;) | 1 | 42,4,4 0,0,1
33,222,111111 (Eg) | 1 | 642,63,6 0,0,0,0,1
21,21, 21, 111 1 [31,31,31,3 1,0
222,222,222 1 |63,63,63 0,1,—1,0,1
11,11,11,11,11 2 [2,2,2,22 2
55, 3331, 22222 2 110,8,6,4,2;10,6,3;10,5 | 0,0,1,0,0,0,0,0, 1
22,22,22, 211 2 | 42,42,42,41 1,0,1
22,22,22,22,22 5| 42,42,42,42,42 2,0,3
32111, 3221, 2222 8 | 831,841,84 0,1,2,1,1,2,1

Note that if Pidxm = 0, in particular, if m is rigid, then m doesn’t satisfy
(6.4). The tuple 222,222,222 of partitions is the second case in (6.6) with k = 2.

Remark 6.9. Note that [O6, Proposition 8.1] proves that there exit only finite
basic tuples of partitions with a fixed index of rigidity.

Those with index of rigidity 0 are of only 4 types, which are D4, Eg, FE7 and
Eg given in the above (cf. Corollary 6.3, Kostov [Ko]). Namely, those are in the
Soo-orbit of

(6.18) {11,11,11,11 111,111,111 22,1111,1111 33,222,111111}

and the operator P in Theorem 6.6 with any one of this spectral type has one
accessory parameter in its 0-th order term.

The equation corresponding to 11,11,11, 11 is called Heun’s equation (cf. [SW,
WW]), which is given by the operator

(6.19) Py pryoxr=x(z—1)(z— 0)82 + (fy(sc —1)(x—c)+ dx(z —c)
' F(a+B+1—7y—d)z(x—1))d+afs — A
with the Riemann scheme

z=0 1 c 00
(6.20) 0 0 0 a T
11—y 1-6 ~+d—a—0 B ;A
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Here ) is an accessory parameter. Our operation cannot decrease the order of
P, 3,5 but gives the following transformation.

Ad(0"*)Pa .0 = Par gty 5030

(621) a/:2—a7ﬁzﬂ_a—|—17’y/:"y—a+1, (5/:(5—O[+1,
/\’:)\+(1—a)(6—5+1+(’y+6—a)c).

Proposition 6.10. ([O6, Proposition 8.4]). The basic tuples of partitions with
index of rigidity —2 are in the Soo-orbit of the set of the 13 tuples
{11,11,11,11,11 21,21,111,111 31,22,22, 1111 22,22,22,211
211,1111,1111 221,221, 11111 32,11111,11111 222,222, 2211
33,2211, 111111 44,2222,22211 44,332, 11111111 55,3331, 22222

66,444,2222211},

PRrOOF. Here we give the proof in [O6].
Assume that m € P, is basic and monotone and idxm = —2. Note that

(5.42) shows
O<ZZ Mmj1—mj,) mj, < —idxm = 2.
j=0v=2
Hence (5.42) implies 7_ S o(mj1 —my,)mj, = 0 or 2 and we have only to
examine the following 5 possibilities.

(A) mo1---Mom, =2---211 and mj 1 = mj,, for 1 <j <p.

(B) mo,1 " Mong = 3---31 and mjii1 = mj’nj for 1 < j < p.

(C) mo,1---Mony = 3---32 and mj1 = mj,nj for 1 S] S p-

(D) M1 Ming =2...21 and mj1 = Mjn, for0<i<1 <j<np.

(E) mj1 =mjy,, for 0 <j<pandordm = 2.

Case (A). If 2---211 is replaced by 2---22, m is transformed into m’ with
idxm’ = 0. If m’ is indivisible, m’ is basic and idxm = 0 and therefore m is
211,14,1% or 33,2211,1°. If m’ is not indivisible, 2m’ is basic and idx m’ = 0
and hence m is one of the tuples in

{211,22,22,22 2211,222,222 22211,2222 44 2222211, 444, 66}.

Put m = ng — 1 and examine the identity

P
mj1
Z$—p—1+(ordm (1dxm+ZZmJ1 m;. mjl,)

7=0 j=0v=1
Case (B). Note that ordm = 3m—i—1 and therefore 37r?+1 —|—ni1+~ . ~+n—1p =p—1.
Since n; > 2, we have %p—l < 3m+1 <1 andp<3
If p =3, we have m = 1, ordm = 4, n—l +ta = %, {n1,na2,n3} ={2,2,4}
and m = 31,22,22, 1111.
Assume p = 2. Then i—i—i 1—m Ifmln{nl,ng} > 3, n—l—i—— %

and m < 2. If min{ny,na} = 2, max{nl,ng} >3 and 5o +1 > 1 5 and m < 5. Note

that 7711 + E =12 10 T 1 and § according to m =5, 4, 3, 2 and 1, respectively.

Hence we have m = 3, {n1,n2} = {2,5} and m = 3331, 55, 22222.

Case (C). Wehave3m+2+ 4L =p—1. Sincen; > 2, 1p—1< 2 +2<1

and p < 3. pr—S,thenm—l ordm—Sandn—l—&—n—z—Fn—S:%, which never

occurs.

Thuswehavep:Q,n—lJr—,lfgmi+2

Then n% + n% = %‘;, %L 1817 3 and 2 = according to m =5, 4, 3, 2 and 1, respectively.

and hence m < 5 as in Case (B).
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Hence we have m = 1 and n; = ny = 5 and m = 32,11111,11111 or m = 2 and
ny =2 and ny, = 8 and m = 332,44, 11111111.

Case (D). We have 52— + -2 +ni2—|—~~+ni:p—1. Since n; > 3 for

2m—+1 2m—+1
j22,wehavep—1§%%ﬂzﬁandmgz If m =1, then p = 3 and

=+ =2-35=2%and we have m = 21,21,111,111. If m = 2, then p = 2,
7= =1— % and m = 221,221, 11111,

Case (E). Since m;; =1 and (5.42) means —2 = Z?:o 2mj, —4(p — 1), we
have p=4 and m = 11,11,11,11,11. O

Remark 6.11. A generalization of Proposition6.10 is given in [HiO] which can be
applied to equations with irregular singularities.

6.3. Divisible spectral types

Proposition 6.12. Let m be any one of the partition of type Dy, Eg, Er or Fyg
in FExample 6.8 and put n = ordm. Then km is realizable but it isn’t irreducibly
realizable for k = 2,3,.... Moreover we have the operator P of order kordm
satisfying the properties in Theorem 6.6 ii) for the tuple km.

PrOOF. Let P(k,g) be the operator of the normal form with the Riemann
scheme
T =cy=00 r=c¢j (j=1,...,p)
[)\071 — k(p — 1)n + km0,1](m011) [)\j71 + kmj,ﬂ(mj,l)

[)‘07’@1 — k‘(p — l)n + kmoyl}(mo,nl) [)\j7nj + kmj,nj](m,-,”j)

of type m. Here m = (mj7,,) j=0,..p , m =ordm and g is the accessory parameter

v=1,..., n;
contained in the coefficient of the 0-th order term of P(k,g). Since Pidxm = 0
means

p Ny no
Z Zmiu =@p-1n*= Z(P = )nmo,y,
j=0v=1 =0

the Fuchs relation (4.16) is valid for any k. Then it follows from Lemma 4.1
that the Riemann scheme of the operator Py(g1,...,9x) = P(k — 1,gx)P(k —
2,9k—-1) -+ P(0, g1) equals

T =cyp=00 x:cj(jzl,...,p)
[No.1] (ko) (Xl e 1)
[/\0,n1](kmo,n1) [)‘j’nj](kmj,nj)

and it contain an independent accessory parameters in the coefficient of vn-th order
term of Px(g1,...,gx) for v =0,...,k — 1 because for the proof of this statement
we may assume \;, are generic under the Fuchs relation.

Note that
1 (¥=n-1 modn),
N,(km)=¢ -1 (=0 mod n),
0 (@#0,n—1 modn)
forv=1,...,kn — 1 because

{2i,2i,2i,2i;i=1,2,...,k} if mis of type Dy,
km = ¢ {ni,ni,ni,ni —2,ni —3,...,ni—n—+1;i=1,2,...,k}
if m is of type Eg, E; or Ey
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under the notation (6.2) and (6.17). Then the operator Py(g1,...,gx) shows that
when we inductively determine the coefficients of the operator with the Riemann
scheme (6.22) as in the proof of Theorem 6.6, we have a new accessory parameter
in the coefficient of the ((k: - j)n)—th order term and then the conditions for the
coefficients of the ((k —Jjn— 1)—th order term are overdetermined but they are

automatically compatible for j =1,...,k — 1.
Thus we can conclude that the operators of the normal form with the Riemann
scheme (6.22) are Py(g1,...,9gk), which are always reducible. d

Proposition 6.13. Let k be a positive integer and let m be an indivisible (p 4 1)-
tuple of partitions of m. Suppose km is realizable and idxm < 0. Then any
Fuchsian differential equation with the Riemann scheme (6.22) is always irreducible
if A\j, is generic under the Fuchs relation

p .
d
(523 S5 s —ordm 4
j=0v=1

PROOF. Since ordkm = kordm and idxkm = k2idxm, the above Fuchs
relation follows from (4.32).

Suppose Pu = 0 is reducible. Then Remark 4.17 ii) says that there ex-
ist m’, m"” € P such that km = m’ + m” and 0 < ordm’ < kordm and
H{Am’} € {0,—1,—2,...}. Suppose A, , are generic under (6.23). Then the condi-
tion [{A\m}| € Z implies m’ = fm with a positive integer satisfying ¢ < k and

HAm }| = zp: iﬁmj,l,)\jﬁ,, — ord fm + £?idx m
i=0v=1
— ¢(ordm — kidxm) — fordm + (% idxm
— 0(£ = k)idxm > 0.
Hence [{Am’}| > 0. O

6.4. Universal model

Now we have a main result in Chapter 6 which assures the existence of Fuchsian
differential operators with given spectral types.

Theorem 6.14. Fiz a tuple m = (m;,) o<j<p € Pzgi)l.
<v<nj
i) Under the notation in Definitions 4.10, 4.16 and 5.7, the tuple m is realizable
if and only if there exists a non-negative integer K such that 8¢ . _m are well-defined

max
fori=1,....K and
ordm > ord d,,q,m > ord 92,,,m > --- > ord 9%, m

mazx
dma:p (arlriawm) =2 OI‘d 87]71(@:10

6.24
(6.24) m 0r dpar(0F,,m) <0.

ii) Fiz complex numbers A;,. If there exists an irreducible Fuchsian operator
with the Riemann scheme (4.15) such that it is locally non-degenerate (cf. Defini-
tion 9.8), then m is irreducibly realizable.

Here we note that if P is irreducible and m is rigid, P is locally non-degenerate
(cf. Definition 9.8).

Hereafter in this theorem we assume m is realizable.

iii) m is irreducibly realizable if and only if m is indivisible or idx m < 0.

iv) There exists a universal model Pymu = 0 associated with m which has the
following property.
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Namely, Py, is the Fuchsian differential operator of the form
(6.25)

p . dr dqn—1 d
Py = (Jl:[l(os —¢j) )dxin + an_l(x)m + 4 al(:c)% + ag(x),
02%a;(x) o .
aj(x) € Cw g1, 08], F5 =0 (1<i<i <N, 0<j<n)
such that Py has regular singularities at p + 1 fized points x = cg = 00,¢1,...,¢p

and the Riemann scheme of Py equals (4.15) for any g; € C and A, € C under

the Fuchs relation (4.16). Moreover the coefficients a;(x) are polynomials of x, A;

and g; with the degree at most (p — L)n+ j for j = 0,...,n, respectively. Here g;

are called accessory parameters and we call Py, the universal operator of type m.
The non-negative integer N will be denoted by Ridxm and given by

0 (idxm > 0),
(6.26) N =Ridxm :=< gedm  (idxm = 0),
Pidxm (idxm < 0).
Put M = (M;,) 0<j<p = Ok aem with the non-negative integer K given in i).

When idxm < 0, we define

o
@ = #{i; Zmax{ﬂow —4,0} >ordm — ¢, i > 0},

v=1
Im ={(,v) €2 qy<j<qy+N,—1, 1<v<ordm—1}.
When idxm > 0, we put I, = ().
Then #Iy, = Ridxm and we can define I; such that I, = {I;;i=1,...,N}
and g; satisfy (6.13) by putting g5, = ¢; fori=1,...,N.
v) Retain the notation in Definition 5.12. If A\, , € C satisfy

50 M) (k) 465 50 (va—t(k) )
¢ {07 —-1,-2,-3,... ’m(k)jo,f(k)j,, — m(k)jm,jo — d(k‘) + 2}
forany k=0,..., K —1 and (jo,V,) satisfying
m(k)j, v, = m(k)j, o), — dk) +2,

any Fuchsian differential operator P of the normal form which has the Riemann
scheme (4.15) belongs to Py with a suitable (g1, ...,gn) € CV.

(6.27)

(6.28) If m is a scalar multiple of a fundamental tuple or simply reducible,
’ (6.27) is always valid for any X,

Fiz \;,, € C. Suppose there is an irreducible Fuchsian differential
(6.29) < operator with the Riemann scheme (4.15) such that the operator is
locally non-degenerate or K <1, then (6.27) is valid.

Suppose m is monotone. Under the notation in §7.1, the condition (6.27) is
equivalent to

(AN)|a) +1¢{0,-1,...,2 = (a|am)}

(6.30) for any a € A(m) satisfying (a|am) > 1.

Example 5.6 gives a Fuchsian differential operator with the rigid spectral type
21,21, 21,21 which doesn’t belong to the corresponding universal operator.
The fundamental tuple and the simply reducible tuple are defined as follows.
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Definition 6.15. i) (fundamental tuple) An irreducibly realizable tuple m € P is
called fundamental if ordm =1 or dy,ax(m) < 0.

For an irreducibly realizable tuple m € P, there exists a non-negative integer
K such that 90X m is fundamental and satisfies (6.24). Then we call 09X, m is a
fundamental tuple corresponding to m and define fm := 9% m

max °

ii) (simply reducible tuple) A tuple m is simply reducible if there exists a
positive integer K satisfying (6.24) and ord 9%, . m = ordm — K.

PROOF OF THEOREM 6.14. i) We have proved that m is realizable if the condi-
tion dpa.(m) < 01is valid. Note that the condition d,q.(m) = 2 ord m is equivalent
to the fact that sm is trivial. Hence Theorem 5.10 proves the claim.

iv) Now we use the notation in Definition 5.12. The existence of the universal
operator is clear if sm is trivial. If dy,q.(m) < 0, Theorem 6.6 and Proposition 6.12
with Corollary 6.3 assure the existence of the universal operator Py, claimed in iii).
Hence iii) is valid for the tuple m(K) and we have a universal operator Px with
the Riemann scheme {\(K)m k) }-

The universal operator Py with the Riemann scheme {A(k)m ()} are inductively
obtained by applying 9y to the universal operator Py with the Riemann scheme
{AMk+1D)m@s1)} for k=K -1, K —2,...,0. Since the claims in iii) such as (6.13)
are kept by the operation gy, we have iv).

ili) Note that m is irreducibly realizable if m is indivisible (cf. Remark 4.17
ii)). Hence suppose m is not indivisible. Put k = gedm and m = km’. Then
idxm = k%idxm’.

If idxm > 0, then idxm > 2 and the inequality (5.19) in Lemma 5.3 implies
that m is not irreducibly realizable. If idx m < 0, Proposition 6.13 assures that m
is irreducibly realizable.

Suppose idxm = 0. Then the universal operator Py, has k accessory param-
eters. Using the argument in the first part of the proof of Proposition 6.12, we
can construct a Fuchsian differential operator Pm with the Riemann scheme {)\m}.

Since Py, is a product of k copies of the universal operator Par and it has k ac-
cessory parameters, the operator Py, coincides with the reducible operator P, and
hence m is not irreducibly realizable.

v) Fix X;, € C. Let P be a Fuchsian differential operator with the Riemann
scheme {A\m}. Suppose P is of the normal form.

Theorem 6.6 and Proposition 6.12 assure that P belongs to Py, if K = 0.

Theorem 5.2 proves that if 9%, P has the Riemann scheme {A(k)m)} and

max

(6.27) is valid, then 05FLP = 9y()0F ., P is well-defined and has the Riemann
scheme {A(k+1)m41)} for £ =0,..., K —1 and hence it follows from (5.27) that
P belongs to the universal operator Py, because 9% P belongs to the universal
operator P (k-

If m is simply reducible, d(k) = 1 and therefore (6.27) is valid because m(k); .
m(k)j ek, < m(k)jew), —d(k)+2for j =0,...,pand v = 1,...,n; and k
0,...,K — 1.

The equivalence of the conditions (6.27) and (6.30) follows from the argument
in §7.1, Proposition 7.9 and Theorem 10.13.

ii) Suppose there exists an irreducible operator P with the Riemann scheme
(4.15). Let M = (M, ..., M) be the tuple of monodromy generators of the equa-
tion Pu = 0 and put M(0) = M. Let M(k+1) be the tuple of matrices applying the
operations in §9.1 to M(k) corresponding to the operations Jy for £ =0,1,2,.. ..

Comparing the operations on M(k) and Jy(x), we can conclude that there ex-
ists a non-negative integer K satisfying the claim in i). In fact Theorem 9.3 proves
that M(k) are irreducible, which assures that the conditions (5.6) and (5.7) corre-
sponding to the operations dy) are always valid (cf. Corollary 10.12). Therefore

A
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m is realizable and moreover we can conclude that (6.29) implies (6.27). If idx m
is divisible and idxm = 0, then P, is reducible for any fixed parameters A;, and
gi;- Hence m is irreducibly realizable. O

Remark 6.16. i) The uniqueness of the universal operator in Theorem 6.14 is
obvious. But it is not valid in the case of systems of Schlesinger canonical form
(cf. Example 9.2).

ii) The assumption that Pu = 0 is locally non-degenerate seems to be not
necessary in Theorem 6.14 ii) and (6.29). When K = 1, this is clear from the proof
of the theorem. For example, the rigid irreducible operator with the spectral type
31,31, 31,31, 31 belongs to the universal operator of type 211, 31, 31, 31, 31.

6.5. Simply reducible spectral type

In this section we characterize the tuples of the simply reducible spectral type.

Proposition 6.17. i) A realizable tuple m € P"™) satisfying mo, = 1 forv =
1,...,n is simply reducible if m is not fundamental.

ii) The simply reducible rigid tuple corresponds to the tuple in Simpson’s list
(cf. §13.2) or it is isomorphic to 21111,222,33.

ili) Suppose m € Ppiq is not fundamental. Then m satisfies the condition
N,(m) >0 forv=2,...,ordm — 1 in Definition 6.1 if and only if m is realizable
and simply reducible.

iv) Let m € Ppy1 be a realizable monotone tuple. Suppose m is not fundamen-
tal. Then under the notation in §7.1, m is simply reducible if and only if

(6.31) (o]am) =1 (Va € A(m)),
namely [A(m)] = 1#20) (cf. Remark 7.11 ii)).

PROOF. i) The claim is obvious from the definition.

ii) Let m’ be a simply reducible rigid tuple. We have only to prove that
m = Op,,m’ is in the Simpson’s list or 21111,222,33 and ordm’ = ordm + 1
and dp,q;(m) = 1, then m’ is in Simpson’s list or 21111,222,33. The condition
ordm’ = ordm + 1 implies m € P;. We may assume m is monotone and m’ =
Oty 1,0, The condition ordm’ = ordm + 1 also implies

(mo1 —mog,) + (M1 —mig) + (Mot —mayg,) = 2.

Since Opazm’ = m, we have mj,, > mj1 — 1 for j =0,1,2. Hence there exists an
integer k with 0 < k < 2 such that mje, =mj1— 1+ 0 for j =0,1,2. Then the
following claims are easy, which assures the proposition.

If m =11,11,11, m’ is isomorphic to 13,13,21.

If m = 13,13,21, m’ is isomorphic to 1%,14,31 or 14,211, 22.

Ifm=1"1"n— 11 with n > 4, m’ = 1"*1 17+! nl.

If m=12"nn — 11, nn with n > 2, m’ = 12"+ nnl,n + 1n.

If m = 15,221, 32, then m’ = 15,33, 321 or 1°,222,42 or 21111, 222, 33.

Ifm=1" n+1n,nnl withn >3, m' =1?>""2 n+1In+1,n+ Inl.

If m = 16,222, 42 or m = 21111,222,33, m’ doesn’t exists.

iii) Note that Theorem 6.6 assures that the condition N,(m) > 0 for v =
1,...,ordm — 1 implies that m is realizable.

We may assume m € 7?151)1 is standard. Put d = mo1+---+mp1—(p—1)n >0
and m’ = 9,,4,m. Then m;ﬂ, =mj, —6,1dfor j =0,...,pand v > 1. Under the
notation in Definition 6.1 the operation 0,4, transforms the sets

m; = { e k=0,1,2,... and iy > 0}
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into
m; = {ﬁ%k —min{d,m;1 —k}; k=0,...,max{m;1 —d,mj2 — 1}},
respectively because m;; = >, max{m;, —i,0}. Therefore N,(m’) < N,(m) for

v=1,...,n—d—1=ordm’ — 1. Here we note that

n—1 n—d—1
N, (m’) = Pidx m.

ZNy(m) =

Hence N,(m) > 0 for v = 1,...,n — 1 if and only if N,(m’) = N,(m) for v =
1,...,(n—d) —1 and moreover N,(m) =0 for v =n—d,...,n— 1. Note that the
condition that N,(m’) = N,(m) for v =1,...,(n —d) — 1 equals

=

v

T+

(6.32) mj1—d>mjo—1 for 7=0,...,p.

+ [+

This is easy to see by using a Young diagram. For example, when {8,6,6,3,1} =
{mo1,mo,2, Mo 3,M0p,4, Mo 5} is a partition of n = 24, the corresponding Young
diagram is as above and then mg 2 equals 15, namely, the number of boxes with the
sign + or —. Moreover when d = 3, the boxes with the sign — are deleted by 94z
and the number mg 2 changes into 12. In this case mo = {24,19,15,11,8,5,2,1}
and m{, = {21,16,12,8,5,2}.

If d > 2, then 1 € m; for j =0,...,p and therefore N,,_s(m) — N,,_;(m) = 2,
which means N,,_1(m) # 0 or N,_2(m) # 0. When d = 1, we have N,(m) =
N,(m') forv=1,...,n—2 and N,,_1(m) = 0. Thus we have the claim.

iv) The claim follows from Proposition 7.9. (]

Example 6.18. We show the simply reducible tuples with index 0 whose funda-
mental tuple is of type Dy, Fg, E7 or Eg (cf. Example 6.8).
Dy 21,21,21,111 22,22,31,211 22,31,31,1111
Fg: 211,211,1111 221,221,2111 221,311,11111 222,222,3111 222,321, 2211
222,411,111111 322,331,2221 332,431,2222 333,441, 3222
FEr: 11111,2111,32 111111,2211,42 21111,2211,33 111111,3111,33
22111,2221,43 1111111,2221,52 22211,2222,53 11111111, 2222, 62
32111, 2222,44 22211, 3221,53
Fg: 1111111,322,43 11111111,332,53 2111111,332,44 11111111,422,44
2211111,333,54 111111111,333,63 2221111,433,55 2222111,443,65
3222111,444,66 2222211,444,75 2222211,543,66 2222221,553,76
2222222653, 77

In general, we have the following proposition.

Proposition 6.19. There exist only a finite number of standard and simply re-
ducible tuples with any fixed non-positive index of rigidity.

PROOF. First note that m € Pp41 if dyee(m) = 1 and ordm > 3 and g, m €
Pp+1. Since there exist only finite basic tuples with any fixed index of rigidity
(cf. Remark 7.15), we have only to prove the non-existence of the infinite sequence

m(o) Omaz m(].) Omaz Omax m(k) Omax m(k+].) Omax .

such that dp,q,(m(k)) =1 for £ > 1 and idxm(0) < 0.
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Put
m(k); = max{m(k);.},
a(k); = #{v; m(k);, = m(k);},
_J#Hvsmk)jp =m(k); -1} (m(k); > 1),
e {oo (m(k); = 1).

The assumption diae(M(k)) = dpa(m(k+1)) = 1 implies that there exist indices
0 < jg < j;, such that
k), +1,b(k); —1 = i
(6.33) (a(k +1);,b(k +1);) = (alk); +1,bk); —1) {7 =Jx or Jk?,’
(La(k); —1) (j # jr and j;)

and
(6.34) m(k)o+---+m(k)p, =(p—1)ordm(k) + 1 (p>1)

for k=1,2,.... Since a(k+1); + b(k+1); < a(k); + b(k);, there exists a positive
integer N such that a(k+1); + b(k +1); = a(k); + b(k); for k > N, which means

>0 (j=Jkor jy),
(6.35) DR o

=0 (j# jr and jj).
Putting (a;,b;) = (a(N);,b(N);), we may assume by > by > by =bz =--- =0 and
az > az > ---. Moreover we may assume jy_; < 3, which means a; =1 for j > 4.

Then the relations (6.33) and (6.35) for k= N, N +1, N +2 and N + 3 prove that
((ao, bo),- -, (as, bg)) is one of the followings:

(6.36) ((a0,00), (a1,0), (1,0), (1,0)),

(6.37) ((a0,00), (1,1),(2,0), (1,0)),

(6.38) ((2,2),(1,1),(4,0),(1,0)), ((1,3),(3,1),(2,0),(1,0)),
(6.39) ((1,2),(2,1),(3,0), (1,0)),

(6.40) ((1,1),(1,1),(2,0), (2,0)).

In fact if by > 1, ag = a3 = 1 and we have (6.36). Thus we may assume by = 1. If
by = o0, a3 = 1 and we have (6.37). If by = by = 1, we have easily (6.40). Thus we
may moreover assume by = 1 < by < 0o and ag = 1. In this case the integers jj/
satisfying b(k)j;'c' =0and 0 < j/ <2 for k > N are uniquely determined and we
have easily (6.38) or (6.39).

Put n = ord m(N). We may suppose m(N) is standard. Let p be an integer
such that m; o < n if and only if j < p. Note that p > 2. Then if m(N) satisfies
(6.36) (resp. (6.37)), (6.34) implies m(N) = 1",1",n — 11 (resp. 1", mm — 11, mm
or 1", m + 1m,mm1l) and m(N) is rigid.

Suppose one of (6.38)—(6.40). Then it is easy to check that m(N) doesn’t
satisfy (6.34). For example, suppose (6.39). Then 3mp1 —2 <n,3mi1—1<n
and 3mg1 < n and we have mo 1 + m1 1 + ma < [%F2] + [2] + [2] = n, which
contradicts to (6.34). The relations [2F2] + [2] + [2] < n and 2[2F] +2[2] = 2n

1 2
assure the same conclusion in the other cases. O



CHAPTER 7

A Kac-Moody root system

In this chapter we explain a correspondence between spectral types and roots
of a Kac-Moody root system. The correspondence was first introduced by Crawley-
Boevey [CB]. In §7.2 we study fundamental tuples through this correspondence.

7.1. Correspondence with a Kac-Moody root system

We review a Kac-Moody root system to describe the combinatorial structure of
middle convolutions on the spectral types. Its relation to Deligne-Simpson problem
is first clarified by [CB].

Let

(7.1) I:={0,(j,v);j=0,1,..., v=1,2,..}

be a set of indices and let h be an infinite dimensional real vector space with the
set of basis II, where

(7.2) D={a;;i€l}={ao, j,;j=012,..., v=12,...}
Put
(73 = I\{0), =10\ {ag),
(7.4) Q= Z Zao O Qg = Z Z>pa.
a€ell a€ell

We define an indefinite symmetric bilinear form on h by
(al)=2  (aem,
(wolag,y) = =0y 1,

0 i#j or —v|>1),
(i plag) = (. . s = vl > 1)
1 (i=j and |p—v|=1).

(7.5)

The element of II is called the simple root of a Kac-Moody root system and
the Weyl group W5, of this Kac-Moody root system is generated by the simple
reflections s; with ¢ € I. Here the reflection with respect to an element o € b
satisfying (o) # 0 is the linear transformation

(7.6) sa:baxﬁx—Qmaeh
(ala)

and

(7.7) S; = Sq, for 1€1.

In particular s;(z) = @ — (a;|z)a; for i € I and the subgroup of W, generated by
s; for i € T\ {0} is denoted by W_.

The Kac-Moody root system is determined by the set of simple roots II and its
Weyl group W, and it is denoted by (II, Ws,).

Denoting o(ap) = ap and o () = Qy(5),, for o € G, we put

(7.8) Wao 1= Gug X Wao,

69
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which is an automorphism group of the root system.

Remark 7.1 ([Kc]). The set A" of real roots equals the Wi.-orbit of II, which
also equals W ap. Denoting

(7.9) B :={f € Q4+ ; suppf is connected and (B,a) <0 (Va €II)},
the set of positive imaginary roots AT equals W, B. Here
(7.10) supp 8 :={a €Il;n, #0} if 8= Z N
a€ell
The set A of roots equals A™ U A" by denoting A" = —A%™ and A"™ =
ATPUA™, Put Ay = ANQ4, AL = -AL, AT = A" N Q4 and AT = —A’°.

Then A = Ay UA_, AY™ € Ay and A™ = A¢ U AT The root in A is called
positive if and only if « € Q.

A subset L C II is called connected if the decomposition L1 U Ly = L with
Ly # 0 and Ly # 0 always implies the existence of v; € L; satisfying (v1|va) # 0.
Note that suppa 3 ag for a € A™™.

The subset L is called classical if it corresponds to the classical Dynkin diagram,
which is equivalent to the condition that the group generated by the reflections with
respect to the elements in L is a finite group.

The connected subset L is called affine if it corresponds to affine Dynkin dia-
gram and in our case it corresponds to Dy or Eg or E; or Eg with the following
Dynkin diagram, respectively.

3
2 4 6 5 4 3 2 1
O—=0O O—C0O0—C0O—"~0O—-=0
33,222, 111111
(7.11) 11,11,11,11 1
2 2
1 2 3 4 3 2 11 2 3 2 1
o—O0O0—"AD0O—"0—0—0—0 O0—0O—"0O—"—0O——=0
22,1111, 1111 111,111,111

Here the circle correspond to simple roots and the numbers attached to simple roots
are the coefficients n and n;, in the expression (7.15) of a root a.

For a tuple of partitions m = (mj,u) e P we define

j>0, v>1
Njy = Myl + M2+,
oo oo
(7.12) Qm ‘= Nnog + E E n; 05, € Qy,
j=0v=1
K(m) = m.

As is given in [O6, Proposition 2.22] we have

Proposition 7.2. i) idx(m, m’) = (am|am).
i) Giveni € I, we have amr = s;(am) with
Om (i=0),
m' = v vl

(m071 BN L7 W (L7 VRS LT RV ) (’L = (], l/))
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Moreover for £ = (Lo, {1, ...) € ZZ, satisfying €, =1 for v >> 1 we have

0 fj*l
(7.13) op =01, =ap + Z Z Qjp = <H Sj0;—1" " Sj’25j71> (Oéo),

j=0 v=1 3>0
(7.14) @9, (m) = Sa,(Om) = Om — 2%@4 = am — (@m|ag)ay.
Note that
a = noy + Z an’,,aj,l, € Ay withn >0
(7.15) i>0v>1
= n>nj1>Nnjo > (j=0,1,...).

In fact, for a sufficiently large K € Z~, we have n;, = 0 for > K and
Sajtajpiitota; @ =0+ (Mj 1 —nj, ), a1+ Fajk) € AT
for « € Ay in (7.15), which means n;,_1 > n;, for v > 1. Here we put n;o =n
and ;o = op. Hence for o« € A} with supp a 3 ag, there uniquely exists m € P

satisfying a = auy-

It follows from (7.14) that under the identification P C Q4 with (7.12), our
operation J; corresponds to the reflection with respect to the root «y. Moreover
the rigid (resp. indivisible realizable) tuple of partitions corresponds to the positive
real root (resp. indivisible positive root) whose support contains «g, which were
first established by [CB] in the case of Fuchsian systems of Schlesinger canonical
form (cf. [06)).

The corresponding objects with this identification are as follows, which will be
clear in this section. Some of them are also explained in [O6].

’ P ‘ Kac-Moody root system ‘
m am (cf. (7.12))
m : monotone aeQy: (o)f) <0 (VBell')
m : realizable acAy
m : rigid a € A suppa D ag

m : monotone and fundamental | o € Qi:a=agor (a|f) <0 (V8 e€1l)
a €Ay, suppa > ag
indivisible or (aja) <0

aEQ.: (alf) <0 (YFel)
indivisible

ae AL (alam) =1 (Va € A(m))

ap € A(m), («|8) <0 (VB ell')

m : irreducibly realizable

m : basic and monotone

m : simply reducible and monotone

ord m no @ =mnoeg+ )., , NisQiy
idx(m, m’) (o |0tm)
idxm (0tm|ovm)
d¢(m) (cf. (5.25)) (aglam) (cf. (7.13))
Pidx m + Pidxm’ = Pidx(m 4+ m’) (am|om) = =1
(v,v+1)eG; C S, (cf. (4.30)) si € WL (cf. (7.7))
H~ Gy (cf. (4.30)) G in (7.8)

o1 50
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) 5oy (cf. (7.13))
(01, Seo) Wo (cf. (7.8))
{Am} (AN, am) (cf. (7.18))
{Am} (A(N) + 3am|om)
Ad((z —¢;)7) +7A9; (cf. (7.18))
Here
(7.16) Ay i={ka;a €Ay, k€Zwg, suppa D ap},

A(m) C A’ is given in (7.30) and A(\) € by for A = (\j.,)j=0,...p with );, € Cis
v=1,2,.

defined as follows.

Definition 7.3. Fix a positive integer p which may be oco. Put
(7.17) I,:={0, (4,v);7=0,1,...,p, v=1,2,..} C T

for a positive integer p and I, = I.

Let b, be the R-vector space of finite linear combinations the elements of
I, := {e; i € II,} and let f)zv, be the C-vector space whose elements are linear
combinations of infinite or finite elements of 11, which is identified with Il;c;, Coy;
and contains b,.

The element A € b naturally defines a linear form of b, by (A| - ) and the group
Wi, acts on by If p = 0o, we assume that the element A = &oap+ - &), € hY
always satisfies ;1 = 0 for sufficiently large j € Z>¢. Hence we have naturally
b;/ - h;\o/+1 and by, = szo h;/

Define the elements of b,

H»Y

A=Y (w=ia;; (7=0,....,p, v=0,1,2,...),

Ag = 171/%”,

l\J\H
l\:)\

HMS

1=v+1
%) P oo
AV = 2A0 — 2A0’0 =g + Z(l + V)OZ()’V + Z Z(l — V)Ozj",,,
(718) N v=1 j=1lv=1
A?,k =ANjo— Ao = Z viag, —aj,) (0<j<k<p),
v=1
P oo v
/\) = —Ao - Z Z(Z )\jﬂ-)aj’l,
j=0v=1 i=1
P oo
=—Ao+ Z Z Njw(Njv—1—Aju).
j=0v=1
Under the above definition we have
(7.19) (A°|e) = (A?’k|a) =0 (Vaell,),
(720) (Aj,l,\aj/,l,/) :5j,j’51/71/’ (], jl :O,l,..., v, V/ = 1,27...)7
(7.21) (A0|Oéi) = (Aj,o‘ai) = (51,0 (VZ € Hp),
(7.22) {Am} = (A(N) + am|am),
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p
so(AN) = = (3" Aja = 1)ao + A
j=0

(7.23) = —/LAO - AO - i(i (/\0)1‘ — (1 + (51'70)/1))050)1,

v=1 i=1

- Ep: i(Z(Ajl +(1— 5z‘,0)u)>aj,u

with p = Z?:o Aji— L

We identify the elements of b; if their difference are in CAY, namely, consider
them in Bp = h;{ JCAC. Then the elements have the unique representatives in f)]\g/
whose coeflicients of «g equal f%.

Remark 7.4. i) If p < oo, we have

p
(7.24) {Aeby; (Ala)=0 (YaeIl,)}=CA"+> CAJ,.

j=1

ii) The invariance of the bilinear form ( | ) under the Weyl group W, proves
(5.15).

ili) The addition given in Theorem 5.2 i) corresponds to the map A(X) —
AN) +7'A8’j with7eCand 1 <j<p.

iv) Combining the action of s;, on f)}f with that of sg, we have

(7.25)  A(N) = s4,A(\) € CA” and am = Sa,am  when {N} = 9{\m}
because of (5.30) and (7.23).
Thus we have the following theorem.

Theorem 7.5. Under the above notation we have the commutative diagram

{Pm : Fuchsian differential operators with {Am}} — {(A(N),m); am € AL}
J fractional operations O I Wao-action, +7‘A87j

{Pm : Fuchsian differential operators with {Am}} — {(A(N),0m); am € AL}

Here A(\) € b, the Riemann schemes {\m} = {Njwlomy ) bi=0,....p satisfy {Am}] =

3 hyeen

0 and the defining domain of w € Wy, is {a € Ay ; wa € Ay},

PRrROOF. Let T; denote the corresponding operation on {(Pm,{Am})} for s; €
Weo with 7 € I. Then Ty corresponds to 07 and when 7 € I’, T; is naturally
defined and it doesn’t change P,,. The fractional transformation of the Fuchsian
operators and their Riemann schemes corresponding to an element w € W, is
defined through the expression of w by the product of simple reflections. It is clear
that the transformation of their Riemann schemes do not depend on the expression.

Let i € I and j € I. We want to prove that (T,7;)* = id if (sis;)* = id
for a non-negative integer k. Note that T? = id and the addition commutes with
T;. Since T; = id if i € I’, we have only to prove that (T} 17p)® = id. Moreover
Proposition 5.8 assures that we may assume j = 0.

Let P be a Fuchsian differential operator with the Riemann scheme (4.15).
Applying suitable additions to P, we may assume \j; = 0 for j > 1 to prove
(To1Tp)?>P = P and then this easily follows from the definition of 91 (cf. (5.26))
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and the relation

00 ¢j (1<j<p)
)\071 m 0 ms
{Aozkmz:; [A[j,}z‘(h;;,)g) (d="mo1 4+ mpa —ordm)
/\O,u](mo,u) )‘J)V (mj,)
00 g (1<j<p)
To,1To [)\072 — )\071 + 1](m011) [0](mj‘1_d)

o201 | [FA01 + 2mg—a) N2+ Ao — Ugm, )

Moy — X0+ U,y N + 201 = Um, )

00 ¢; (1<j<p)
To1To [_>‘0,2 + 2](m0,1—d) (mj,1+mo,1—mo,2—d)

§10,1=20,2 [)\0,1 - )\0,2 + 1](mo,1)

[0]¢

N2+ X02 = Lmy.a)
Mo =202+ Uime,) [N,

)

v+ A2 — ](mj,,,)

00 ;g (1<j<p
To,1To [)‘0 1](mo 1) [O](mj,l)
§ro,2—1 [)‘0 2](mo 2) >‘ij (mj,2)
[Ao 71/](77740 v [/\ij](mj v)
and (T071T0)3P € Clz] Ad(9*271) o Ad(9r02=201) 0 Ad(0'~ )R P = C[z] R

D

Definition 7.6. For an element w of the Weyl group W,, we put
(7.26) A(w) := AN w AT

If w=s;8, 5 with i, € I is the minimal expression of w as the products of
simple reflections which means k is minimal by definition, we have

(727) A(w) = {aik78ik (aik—1)7 SikSik_1 (O‘ik72>7 <oy i Tt Sig (ah)}'

The number of the elements of A(w) equals the number of the simple reflections
in the minimal expression of w, which is called the length of w and denoted by L(w).
The equality (7.27) follows from the following lemma.

Lemma 7.7. Fiz w € Wy and i € I. If a; € A(w), there exists a minimal
expression w = Sy, Sy -+ 8y with sy = s; and L(ws;) = L(w) — 1 and A(ws;) =
si(A(w) \{a;}). If a; ¢ A(w), L(ws;) = L(w) + 1 and A(ws;) = s;A(w) U {a}.
Moreover if v € W, satisfies A(v) = A(w), then v = w.

PROOF. The proof is standard as in the case of classical root system, which
follows from the fact that the condition o; = s;, - - - s4,,, (v, ) implies

(728) Si = Siy, "'Siz+18izsiz+1 c S

and then w = ws;s; = 84, *++ 84,184, "+ * 54, Si- O

Definition 7.8. For a € @, put

(7.29) h(a) :==no + Z Z n;, if a=mneag + Z Z N, € Q.

j>0v>1 j>0v>1

Suppose m € P,4 is irreducibly realizable. Note that sfm is the monotone
fundamental element determined by m, namely, osfm is the unique element of
Wam N (B U {ao}). We inductively define wm € Wi satisfying wmom = aspm-
We may assume wp, has already defined if h(om/) < h(om). If m is not mono-
tone, there exists ¢ € I\ {0} such that (am|e;) > 0 and then wm = wmrs; with
Qm' = S;Qyy. If m is monotone and m # fm, wy, = WymSo-
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We moreover define
(7.30) A(m) := A(wm)-
Suppose m is monotone, irreducibly realizable and m # sfm. We define wy,
so that there exists K € Z~o and v1,...,vx € W satisfying
Wm = VK S0 - - V2500150,
(VkSo - v1Soam|a) <0 (Vo eII\ {0}, k=1,...,K),

which uniquely characterizes wy,. Note that

(7.31)

(7.32) VRS0 V1800m = Q(so)km (K =1,..., K).

The following proposition gives the correspondence between the reduction of
realizable tuples of partitions and the minimal expressions of the elements of the
Weyl group.

Proposition 7.9. Definition 7.8 naturally gives the product expression wpy, =
Siy 8y, withi, €I (1<v<k).

i) We have
(7.33) L(wm) = k,
(7.34) (alam) >0 (Vo € A(m)),
(7.35) h(am) = h(ospm) + Y (0fom).
a€A(m)

Moreover ag € supp « for a € A(m) if m is monotone.
ii) Suppose m is monotone and fm # m. Fiz mazimal integers v; such that

M1 — dmae(m) < my,, 41 for j=0,1,... Then
A(m) = 50( H Sj1° sj%)A(s@m) U {Oéo}
(7.36) FE

U{Ozo+05j)1+"'+04j’,,; 1<v <y cmdj:O,l,...},
(737) (a0 +ajn+ -+ ajulam) = dmae (M) + M1 —mjn (v >0).

iii) Suppose m is not rigid. Then A(m) = {a € A" ; (a|am) > 0}.
iv) Suppose m is rigid. Let a € AT satisfying (a|omm) > 0 and sq(am) € Ag.
Then
a € A(m if (alam) > 1,
(7.38) (m) ' (@lam)
#({a, am — a} N A(m)) =1 if (a|lam) =1
Moreover if a root v € A(m) satisfies (y|om) = 1, then am —y € AT and ag €

supp(atm —7)-
V) W s the unique element with the minimal length satisfying Wmom = Qs fm-

PROOF. Since h(sya) — h(a) = —(ay|a) = (syaqr|a), we have

I
™~

h(siz sy a) — h(a) (h(Si; cesya) —h(si o ~si/1a)>

14

(Culsiy - sipe) = 3 (51,8, @ lsy -+ 5140)
v=1

Il
o

v

[
M~

N
Il
—

for ¢/, 4}, € I and o € A.

i) We show by the induction on k. We may assume k > 1. Put w’ = s;, -+ 84, _,
and oy = i, and a(v) = s;,_, ---8;,,, 04, for v =1,... k — 1. The hypoth-
esis of the induction assures L(w') = k — 1, A(m’) = {a(1),...,a(k — 1)} and



76 7. A KAC-MOODY ROOT SYSTEM

(aW)|am) > 0 for v = 1,...,k — 1. If L(wym) # k, there exists ¢ such that
a;, = o) and wym = S -+ 8i,_,Si,,, * " Si,_, is a minimal expression. Then
h(am) — h(am’) = —(i, |am’) = —(a(f)|am’) < 0, which contradicts to the defi-
nition of wy,. Hence we have i). Note that (7.34) implies supp a 3 ag if @ € A(m)
and m is monotone.

ii) The equality (7.36) follows from

A(Om) N Z Za=A{aj1+-+aj,, ;v=1,...,v5 v;>0and j =0,1,...}
acIl\{0}

because A(m) = soA(Om) U {ag} and (H §>0 Sj.u; ~--sj’1>a,9m = (sHm-
v; >0

The equality (7.37) follows from (ao\am)J = dy(m) = dpae(m) and (o, |om) =
Mjp+1 — Myjp-

iii) Note that v € A(m) satisfies (y|am) > 0.

Put w, = si,,, - -5i,_,5i, for v =0,...,k. Then wy = wy and A(m) =
{w, ey, ;v =1,...,k}. Moreover w, w, *a;, € A" if and only if 0 < v/ < v.

Suppose m is not rigid. Let o € A" with (afom,) > 0. Since (wma|am) > 0,
wma € AT Hence there exists v such that w,a € Ay and w,_1a € A_, which
implies w, o = «;, and the claim.

iv) Suppose m is rigid. Let o € A’¢. Put £ = (a|am). Suppose £ > 0
and 8 := spam € A;. Then oy = o+ B, ag = bwma + wmP and (Blam) =
(am — lafam) = 2 — £2. Hence if £ > 2, RBN A(m) = () and the same argument as
in the proof of iii) assures & € A(m).

Suppose £ = 1. There exists v such that w,a or w, 3 equals «;, . We may
assume w;, 'a = a;,. Then a € A(m).

Suppose there exists w,»8 = «; ,. We may assume V' < v. Then wy, Qm =
Wy 10+ wy_1 8 € AT, which contradicts to the definition of w,. Hence w, 8 =
a; , for v/ =1,... k and therefore § ¢ A(m).

Let v = w,ta;, € A(m) and (y|am) = 1. Put 8 = am — a = s4am. Then
Wy—10m = w,3 € AT¢. Since f ¢ A(m), we have 3 € A”¢.

Replacing m by sm, we may assume m is monotone to prove oy € supp f.
Since (Blam) =1 and (a;|am) < 0 for ¢ € I'\ {0}, we have g € supp 5.

v) The uniqueness of wy, follows from iii) when m is not rigid. It follows from
(7.34), Theorem 15.1 and Corollary 15.3 when m is rigid. ]

Corollary 7.10. Let m, m’, m” € P and k € Z~o such that
. m=Fkim +m’, idxm =idxm"” and m’ is rigid.
7.39 km' " id idxm” and m’ gid.

Then m is irreducibly realizable if and only if so is m” .
Suppose m is irreducibly realizable. If idxm < 0 or k > 1, then m’ € A(m).
Ifidxm = 2, then {om’, am/} NA(M) = {om’'} or {am~}.

PROOF. The assumption implies (m|om) = 2k? + 2k (@ |om) + (me |t
and hence (m/|mr) = —k and s,_,am» = . Thus we have the first claim
(cf. Theorem 7.5). The remaining claims follow from Proposition 7.9. ]

Remark 7.11. i) In general, v € A(m) does not always imply syam € Aj.
Put m = 32,32,32,32, m’ = 10,10,10,10 and m” = 01,01,01,01. Putting

v = $0,151,152,183,1, We have am = g, Omr = v, (Qm/|m?) = —2, Soomr =
20im +am, VSg0um = g+20um and SquSgvag = SgUSoOm = 30m/ +20um = Oy -
Then v = spvag = 2am’ + am» € A(m), (Y|am) = (Sovam’|SovSev0m’) =

(ot |S0vam’) = (0w |20ms + amr) = 2 and sy (m) = (Bam’ + 20m7) — 2(2am +
Qmr) = —0mr € A_.
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ii) Define
(7.40) [A(m)] := {(a]am); a € A(m)}.
Then [A(m)] gives a partition of the non-negative integer h(cum) — h(sfm), which
we call the type of A(m). It follows from (7.35) that
(7.41) £A(m) < hom) — h(s fm)
for a realizable tuple m and the equality holds in the above if m is monotone and
simply reducible. Moreover we have

(7.42)  [A(m)] = [A(s0m)] U {d(m)} U | J{m;, —mj1 —d(m) € Zg; v > 1},
j=0

(7.43) #A(m) = #A(sdm) + Z(min{y; mj, > mjq —d(m)} — 1) +1,

j=0
(744)  h(m) =h(sfm)+ i
i€[A(m)]
if m € P, is monotone, irreducibly realizable and not fundamental. Here we use
the notation in Definitions 4.11, 5.7 and 6.15. For example,

’ type \ m \ h(am) \ #A(m) ‘
H, 1",1",n — 11 n?+1 n?
EOs,, 12™ mm, mm — 11 2m? +3m+1 (272”) +4m
EOsm 41 12m+L i+ Im, mml 2m? +5m+3 | (*"5F) +4m +2
X6 111111, 222, 42 29 28
21111, 222, 33 25 24
P, n—11,n—11,...€ P, on +1 [A(m)] : 1" (n — 1)
Piomt1 | m+1m,m+1m,m+1Im,m+1m 6m+1 [A(m)] : 147 . 2m

Suppose m € P,y is basic. We may assume (6.3). Suppose (am|ag) = 0,
which is equivalent to >-%_m;1 = (p — 1) ordm. Let k; be positive integers such
that

(7.45) (amlaj,) =0 for 1 <v<k; and (amlajk,) <0,
which is equivalent to mj 1 = mj2 =+ =myx;, > Mmjk, 11 for j=0,...,p. Then
P9 P omig
7.46 - > UILE S
( ) Z kj — Z ordm p
7=0 7=0

If the equality holds in the above, we have k; > 2 and mjk+1 = 0 and therefore
m is of one of the types Dy or Eg or E; or Fs. Hence if idxm < 0, the set
{k;j; 0 <j<p, k;j > 1} equals one of the set 0, {2}, {2,v} with 2 <wv <5, {3,v}
with 3 <w <5, {2,2,v} with 2 <v <5 and {2,3,v} with 3 < v < 5. In this case
the corresponding Dynkin diagram of {ag, ;. ;1 <v <k;, j=0,...,p} is one of
the types A, with 1 <v <6, D, with4 <v <7 and F, with 6 <v <8. Thus we
have the following remark.

Remark 7.12. Suppose a tuple m € P,ﬂ’ﬁl is basic and monotone. The subgroup of
W, generated by reflections with respect to ay (cf. (7.13)) which satisfy (am|ar) =0
is infinite if and only if idxm = 0.

For a realizable monotone tuple m € P, we define

{ao}  (d1(m)
0

=0),
(di(m) #0

).

(7.47) II(m) := {a;, € Supp m; mj, =m; 41} U {
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Note that the condition (am|ay) = 0, which is equivalent to say that ay is a root of
the root space with the fundamental system II(m), means that the corresponding
middle convolution d, keeps the spectral type invariant.

7.2. Fundamental tuples

We will prove some inequalities (7.48) and (7.49) for fundamental tuples which
are announced in [O6].

Proposition 7.13. Let m € Ppy1 \ P, be a fundamental tuple. Then

(7.48) ordm < 3|idxm| + 6,
(7.49) ordm < |idxm|+2 if p>3,
(7.50) p < ilidxm]| + 3.

Example 7.14. For a positive integer m we have special 4 elements
Dim) :m?,m2 m?, m(m — 1)1 Eém) cm® m3, m*(m — 1)1

(7.51) :
Eém) c(2m)%,mt,m3(m — 1)1 Eém - (3m)?, (2m)®, m®(m — 1)1

with orders 2m, 3m, 4m and 6m, respectively, and index of rigidity 2 — 2m.
Note that Eém), Dflm) and 11,11,11,--- € P;i)l attain the equalities (7.48),
(7.49) and (7.50), respectively.

Remark 7.15. It follows from the Proposition 7.13 that there exist only finite
basic tuples m € P with a fixed index of rigidity under the normalization (6.3).
This result is given in [O6, Proposition 8.1] and a generalization is given in [HiO)].

Hence Proposition 7.13 assures that there exist only finite fundamental uni-
versal Fuchsian differential operators with a fixed number of accessory parameters.
Here a fundamental universal Fuchsian differential operator means a universal oper-
ator given in Theorem 6.14 whose spectral type is fundamental (cf. Definition 6.15).

Now we prepare a lemma.
Lemma 7.16. Leta > 0, b > 0 and ¢ > 0 be integers such that a4+c—b > 0. Then
btke—6 [<k+1 (0<k<5),
(a+c—0b | <7 (0 <k <6).

PROOF. Suppose b > ¢. Then
b+ kc—6 b+kb—6
< k+ 1.
ate—bp - b -"F
Next suppose b < c. Then

(k+1)(a+c—bb—(b+ kc—6)

>(k+1)(c—bb—b—kc+6
>(k+1)b—b—k(b+1)+6=6—k.
Thus we have the lemma. O

PROOF OF PROPOSITION 7.13. Since idx km = k?idxm for a basic tuple m
and k € Z-o, we may assume that m is basic and idxm < —2 to prove the
proposition.

Fix a basic monotone tuple m. Put o = «ay, under the notation (7.12) and
n = ord m. Note that

(7.52) (ala) = n(alag) + Zan,l,(amj,y), (o) <0, (a]aj) <0.
j=0v=1



7.2. FUNDAMENTAL TUPLES 79

We first assume that (7.48) is not valid, namely,
(7.53) 3|(a]a)| + 6 < n.

In view of (6.18), we have (a|a) < 0 and the assumption implies |(a|ap)| = 0
because |(a|a)| > n|(alag)|.

Let IIy be the connected component of {a; € II; (a|a;) = 0 and «; € supp a}
containing ap. Note that supp a generates a root system which is neither classical
nor affine but Il generates a root system of finite type.

Put J = {j; 3o, € supp am such that (afe;,) < 0} # 0 and for each j € J
define k; with the condition (7.45). Then we note that

0 (1<v<kj),

(aloy,) = B !
2k = Mgk~ Mk < —1 (V= k).

Applying the above lemma to m by putting n = b + k;c and n;, = b+ (k; —v)c

(1 <v <k;)and nj;+1 = a, we have

~~

(7.54)

n—=~6 <k‘j+1 (1§k‘j§5,
(njvkj—l + Ny ki1 — 2nj»kj)nj,kj <7 1< kj < 6)

—~

Here (alajk;) = b—c—a < —1 and we have |(a|a)| > [(afay,)| > 7?]‘7161 if kj <6
and therefore £; > 3.

It follows from the condition k; > 3 that m € Ps because 1l is of finite type
and moreover that Il is of exceptional type, namely, of type Eg or E7 or Eg because
supp « is not of finite type.

Suppose #J > 2. We may assume {0,1} C J and ko < k;. Since Iy is
of exceptional type and supp « is not of finite type, we may assume kg = 3 and
k1 <5. Owing to (7.52) and (7.54), we have

|[(e]@)| > no,3(no2 + 10,4 — 210,3) + N1k, (N1,8y -1 + N1k +1 — 2008,

n—=6 n—=6 n—=6
> 3+1 + 5+1 > 3 7

which contradicts to the assumption.

Thus we may assume J = {0}. For j = 1 and 2 let n; be the positive integer
such that Qjn,; € SUPP @ and Qs +1 ¢ supp a. We may assume nj > ns.

Fist suppose ko = 3. Then (ni,n2) = (2,1), (3,1) or (4,1) and the Dynkin
diagram of supp o with the numbers m; , is one of the diagrams:

3m

3m 4m 5m 6m 4m  2m

O—O0—O0——O—C0——=0 [(a]a)| > 3m

O<k<m 2m

k m 2m  3m 4m 3m  2m m

O—0O0—CO0O—"0O0—0C0—""0—"—0——=0 |(a]er)| > 2k(m — k)
5m

m dm  Tm 10m 8&n 6m  4m m )

O—O0—0O0O—0O0O—0—"CO0O—"—C0C——=0 [(a]a)| > 2m

For example, when (nq,n2) = (3,1), then k := mg 4 > 1 because (o|cv,3) # 0 and

(3,1)
therefore 0 < k < m and |(a]a)| > k(m—2k)+m(2m+k—2m) = 2k(m—k) > 2m—2
and 3|(a|a)| + 6 —4m > 3(2m — 2) + 6 — 4m > 0. Hence (7.53) does not hold.
Other cases don’t happen because of the inequalities 3 - 3m + 6 — 6m > 0 and
3-2m? +6 — 10m > 0.
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Lastly suppose ko > 3. Then (ko,n1,n2) = (4,2,1) or (5,2,1).

m<k<2m 3m
k 2m  3m  4m E)/T\n 6m 4m 2m

© © O O—O0—O—C0O——=0 |(afer)| > 2m
0O<k<m 3m

k m 2m  3m  4m  bm 6m 4m 2m

© © O O—O0—"CO—"—C0O—=0C O |(ala)| >2(m—1)

In the above first case we have (a|a)| > 2m, which contradicts to (7.53). Note
that (|aja)| > k- (m —2k) +m -k = 2k(m — k) > 2(m — 1) in the above last case,
which also contradicts to (7.53) because 3 -2(m — 1) + 6 = 6m.

Thus we have proved (7.48).

Assume m ¢ Ps to prove a different inequality (7.49). In this case, we may
assume (o|ag) =0, |(a]er)| > 2 and n > 4. Note that

(7.55) 2n=mnp1+ni1+---+np1 with p>3andn;; >1for j=0,...,p.

If there exists j with 1 < n;; < % — 1, (7.49) follows from (7.52) and |(a]aj1)] =

nja(n+mnje —2n51) > 2nj1(5 —nja) 2n—2.
Hence we may assume n;; > "?’1 for j =0,...,p. Suppose there exists j with
nj1 = 251, Then n is odd and (7.55) means that there also exists j' with j # j/

and nj; = 5+, In this case we have (7.49) since
(e )|+ (e )] = nja(ntng o =2n50) +nya(ntng o —2n50) > 255 4 252

Now we may assume n;; > 4 for j =0,...,p. Then (7.55) implies that p = 3
and n;, = g for j =0,...,3. Since (a]a) < 0, there exists j with n;2 > 1 and

(el )] + [(alay2)| = nj1(n+nj2 — 2n51) + 1 2(nj1 + 153 — 2n5,2)

n

— ) . (n R, W
= Fnj2 +nj2(5 +nj3 — 2n;2)

{2 n (nj2 > 1),

=n—2 (n;2=1andn;3=0).

Thus we have completed the proof of (7.49).

There are 4 basic tuples with the index of the rigidity 0 and 13 basic tuples
with the index of the rigidity —2, which are given in (6.18) and Proposition 6.10.
They satisty (7.50).

Suppose that (7.50) is not valid. We may assume that p is minimal under
this assumption. Then idxm < —2, p > 5 and n = ordm > 2. We may assume
n>mng1 >ny1 > > np1 > 0. Since (o) < 0, we have

(7.56) no,1 +ni1+cFnp1 >2n>ngq o npo11.
In fact, if ngq1 +---+np—1,1 > 2n, the tuple m’ = (my, ..., m,_1) is also basic and
[(e|)] = [(atmr, )| = % = 3,54 m2 , > 2, which contradicts to the minimality.
Thus we have 2n;1 < n for j = 3,...,p. If n is even, we have |idxm| >
Y _sl(alegi)l = ¥ _5(n + nja — 2n51) > 2(p — 2), which contradicts to the
assumption. If n = 3, (7.56) assures p =5 and ng1 = --- = n5,0 = 1 and therefore
idxm = —4, which also contradicts to the assumption. Thus n = 2m + 1 with

m > 2. Choose k so that ng_11 > m > ng ;. Then |idxm| > Zfzk(a|aj71)| =
Z?:k(n+nj,2_2”j,1) > 3(p—k+1). Owing to (7.56), we have 2(2m+1) > km—+(p—
k) and k < % < % < 5, which means k < 4, |idxm| > 3(p—3) > 2p — 4
and a contradiction to the assumption. O



CHAPTER 8
Expression of local solutions

Fix m = (mj’,,)jzo,..,,p € Pp+1. Suppose m is monotone and irreducibly real-
1<v<n;

izable. Let Py, be the universal operator with the Riemann scheme (4.15), which is
given in Theorem 6.14. Suppose ¢; = 0 and my ,, = 1. We give expressions of the

local solution of Phu = 0 at = 0 corresponding to the characteristic exponent
Aoy -

Theorem 8.1. Retain the notation above and in Definition 5.12. Suppose A;, are
generic. Let

oo
(8.1) v(z) = ZCUJCA(K)L"“”’

v=0
be the local solution of (0K, Pm)v =0 at x =0 with the condition Cy = 1. Put
(8.2) A(K)jmaz = AK)jech),

Note that if m is rigid, then

p .
(8.3) v(z) = A1 H(l B E)A(K)J,mw.

=2
The function
Ii_f TAK) 10, — Ak) 1 maz + 1)
k=0 F 1 n1 )\(k)l,maz + /"L(k) + 1)F<_M(k))
sp_q K—1
/ (5 — spya) 01
(8.4) 0 0 k=0
K- 1( )/\ 1,maz ﬁ( 1-— C Sk ))\(k);j,nu}.w)
E—0 5k+1 =2 ¢; $k+1
cv(sk)dsk -+ - dsy
So=x
is the solution of Pmu = 0 so normalized that u(z) = 2 =1 mod a1 +10,.
Here we note that
Iﬁl << Sg ))\(k)l,'max ﬁ( 1-— C )A(k)j,'rrLa:E)
o Sk+1 = 1-— cj 3k+1

s())‘(o)l,vnaz p (1 _ c‘;lso))\(o)jﬂnaz

8.5 = - }
( ) s;\((K_l)l,m,am =1 (]_ _ Cj 1SK))\(K—1)J,m,aw
K-—1 D
' H (Sz(k)l,mam7/\(k71)1,mw H(l _ cj—1sk),\(k)_7,mm—A(k—1)_7,mm>_
k=1 j=2

81
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When m 1is rigid,

p

w(z) = 2M (H(1_;)”°”*W> | T

=2 (VJ k) 2<j<p €255 VT
1<k<K
(8.6) K (MOum =AM rmas + )50 s,

) Shos Zf(:i-u Vs,t
(>\(2 - l)s,maw - A(’Ds,mam)u

p K
s)i H(x)21:1 Vs,i
Vs,i! : Cg

When m is not rigid

u(zx) = z M <

—
—
\
QQ‘H
N——
>
°

2

8
N———
[~]e

~
Il
¥

i

()‘(i)l,nl - A(i)lﬂnaw + 1 VO+Z£:2 Zf(:i-#l Vet
(A(i)l,rn - /\(i)l,maz + /J,(’L) + 1)V0+Z§:2 Zf;prl Vet
()\(K - ]-)s,maz)y‘ K1 (

—

(8.7) i

— L

A(Z - ]-)s,maI - A(Z‘)Svmam)uﬁ,i

P
=TI
|

5 Vs,K- - Vs,i!
p K
Yo T\ i1 Vs
-Cyx H — .
C
s=2 s

Fiz j and k and suppose

w
||

(8.8) Uk —1); =(k), whenm is rigid or k < K,

) Uk —-1); = when m is not rigid and k = K.
Then the terms satisfying v > 0 vanish because (O),,j),c = S0, for vjp =
0,1,2,....

PROOF. The theorem follows from (5.26), (5.27), (5.28), (3.2) and (3.6) by the
induction on K. Note that the integral representation of the normalized solution

of (OmazP)v = 0 corresponding to the exponent A(1),, equals

F()\(k)lfﬂl - /\(k)l,maw + 1)
2 TAR) 10, — AK)1maz + (k) + 1)T (—p(k))

.K—1(< Sk )A(k)l,,m 12[( 1_C;1Sk >A(/~c)j,mw>
0 Sk+1 ) 1—c;t

~v(sg)dsg -+ - dsy

x>
Il

S1=x

= :Lv)‘(l)lﬂq mod I’)‘(l)l,"1+100
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by the induction hypothesis and the normalized solution of Pu = 0 corresponding
to the exponent A ,,, equals

F(/\(O)l,nl - /\(O)l,maw + 1)
L(A0) 1m0 — A0)1maz + p(0) + 1)T (—1(0))

- A O max P ] — T g\ —A0) max
[ (L5 )

_A(O)l,max _ '_1
S0 i 1 ¢80

and hence we have (8.4). Then the integral expression (8.4) with (8.5), (3.2) and
(3.6) inductively proves (8.6) and (8.7). O
Example 8.2 (Gauss hypergeometric equation). The reduction (10.54) shows
A0)jw = Ajw, m(0);, =1 (0<5<2,1<wv<2), u(0)=—-Xo2— A2 — A2,
m(l)j71 =0, m(l)j72 =1 (j=0,1,2),

AD)o1 = Ao +2Xx0,2 +2X12+2X22, A(L)11 =11, A(D)21 = Aa1,

A(Do2 =2X02 + A1z + A22, A(1)12=—Xo2 — A22, A(L)22=—Xo2— 12
and therefore

AM0) 1 = A0)1mae F1(0) +1=X12—A11— (Ao2+ A2+ Ag2) +1
=Xo,1+ A2+ A2,
A0)2,maz — A(1)2,maz = A(0)21 — A(1)22 = A2 1 + A2 + A1 2.

Hence (8.4) says that the normalized local solution corresponding to the character-
istic exponent A 2 with ¢; = 0 and c; = 1 equals

F(/\l,2 — A1+ 1)x’\1,1(1 — g)ten
I'(Xoj + A2 + A21) T Aoz + A2 + Ag2)

x
/ (:C _ S)>\0.2+>\1.2+/\2.2—1S—>\0,2—>\1.1—)\2,2(1 _ 8)—)\0,2—/\1,2—>\2,1d8
0

u(x) =

(8.9)

and moreover (8.6) says

oo
Ao+ A2+ A21)u(Xo2 + A2 + A2y
_ (] ) (Ao,1 1,2 2,1 0,2 1,2 21)v o
(8.10) w(z)=2a"2(1—x) ;O Cio = Ait Do zv.
Note that u(z) = F(a,b, c;x) when
r=o00 0 1 T =00 0 1
(811) )\071 )\171 )\271 = a 1—c¢ 0
Ao,2 A2 22 b 0 c—a—2>b

The integral expression (8.9) is based on the minimal expression w = $g,151,151,250
e 2 .
satisfying way, = ag. Here aym = 2ap + ijo oj1. When we replace w and its
minimal expression by w’ = s¢,181,151,28080,1 O W” = $0,151,181,25082,1, we get the

different integral expressions
F()\LQ — )\1)1 —+ 1)35)\1’1(1 — QC)A2’1
Aoz + A2+ A21)T(Aog + Ar2 + A22)

u(z) = I

xr
/ (1‘ _ S)>\0,1+)\1,2+)\2,2*18*)\0,1*A1,1*A2,2(1 _ 3)*>\0,1*>\1,2*>\2,1ds
0

. F()\LQ — )\1,1 + 1)35)\1’1(1 — x)A“
B F(/\0,1 + A2+ /\2,2)F()\0,2 + A2+ )\2,1)

xr
/ (.73 _ S)>\0,2+)\1,2+)\2,1*18*>\0,2*>\1,1*)\2,1(1 _ 3)*>\0,2*>\1,2*>\2,2ds_
0

(8.12)
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These give different integral expressions of F(a,b,c;x) under (8.11).
Since Sag+ag1+ao,.%m = Om, We have

T =00 0 1 oy T =00 0 1
a 1—c¢ 0 Z sla—-c+1 0 0
b 0 c—a—2>b b—c+1 ¢c—1 c—a—0»
ge—d T =00 0 1 g [T=00 0 1
“—<{a—-d+1 0 0 R a 1—d 0
b—d+1 d—1 d—a-—0 b 0 d—a—>b

and hence (cf. (3.6))

1-d x
(8.13) F(a,b,d;z) = [(d)z )/ (z — 5)47 1L F(a,b, ¢; 5)ds.
0

L(e)T'(d — ¢
Remark 8.3. The integral expression of the local solution u(x) as is given in
Theorem 8.1 is obtained from the expression of the element w of W, satisfying
wam € BU{ag} as a product of simple reflections and therefore the integral
expression depends on such element w and the expression of w as such product. The
dependence on w seems non-trivial as in the preceding example but the dependence
on the expression of w as a product of simple reflections is understood as follows.

First note that the integral expression doesn’t depend on the coordinate trans-
formations x — ax and x +— x + b with a € C* and b € C. Since

x

/Cx(ac — ) Lo(t)dt = _/i(x _ %)#_1¢(%)S_2ds

— _(_1)#—1$u—1 [;(% _ S)“_l(%)“+1q§(%)ds,

we have )
(8.14) 14(8) = —~(~1p e (13 (2 6@),., )|

which corresponds to (5.11). Here the value (—1)*~! depends on the branch of the
value of (z — 1)#~! and that of z#~1z?=# (L — s)»~1.

Hence the argument as in the proof of Theorem 7.5 shows that the dependence
on the expression of w by a product of simple reflections can be understood by the

identities (8.14) and I#1[H2 = JF1thz (cf. (3.4)) ete.

7
z—L
s



CHAPTER 9

Monodromy

The transformation of monodromy generators for irreducible Fuchsian systems
of Schlesinger canonical form under the middle convolution or the addition is stud-
ied by [Kz] and [DR, DR2] etc. A non-zero homomorphism of an irreducible single
Fuchsian differential equation to an irreducible system of Schlesinger canonical form
induces the isomorphism of their monodromies of the solutions (cf. Remark 1.14).
In particular since any rigid local system is realized by a single Fuchsian differen-
tial equation, their monodromies naturally coincide with each other through the
correspondence of their monodromy generators. The correspondence between the
local monodromies and the global monodromies is described by [DR2], which we
will review.

9.1. Middle convolution of monodromies

For given matrices A; € M(n,C) for j =1, ..., p the Fuchsian system

dv "4
1 — = 5
(9-1) dx Z T —cj v
j=1
of Schlesinger canonical form (SCF) is defined. Put A9 = —4; —--- — A, and
A = (Ao, A1,...,A,) which is an element of
(9.2) M(n,C)h*" = {(Co,...,Cp) € M(n,C)P™; Co+ -+ C, = 0},
The Riemann scheme of (9.1) is defined by
(9.3)
T = Co = OO C1 te Cp A
[/\071}"10,1 [/\171]7"1‘1 e [Apvl]mp,l
A
0,10 mo,n 1,n1 mi,n T P,MplMp 1
[Nomolmong A lmi, [Ap.n,]
if

Aj ~ L(mj)l,...,mjmj;)\j)l,...,)\jmj) (] = O,...,p)

under the notation (4.33). Here the Fuchs relation equals

p Ny
(94) Z Z mj,l,)\jw =0.

j=0v=1

We define that A is irreducible if a subspace V' of C" satisfies A;V C A; for
j=20,...,p, then V= {0} or V. = C". In general, A = (Ao,...,4p), A" =
(Ah,...,A)) € M(n,C)P*!, we denote by A ~ A’ if there exists U € GL(n,C)
such that A} = UA;U" for j =0,...,p.

For (o, . . ., pip) € CPT with puo+- - -+p, = 0, the addition A" = (4p, ..., A,) €
M(n,C)5*" of A with respect to (uo,...,u,) is defined by AL = Aj + py for
7=0,...,p.

85
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For a complex number y the middle convolution A :=mcy(A) of A is defined
by A; = A;(p) for j =1,...,p and A9 = —A; —--- — A, under the notation in
§1.5. Then we have the following theorem.

Theorem 9.1 ([DR, DR2]). Suppose that A satisfies the conditions

(9.5) (] kerA; Nker(Ag —7) = {0} (i=1,...,p, V1 €C),
1<j<p
J#i
(9.6) ﬂ ker'A; Nker(*Ag — 7) = {0} (t=1,...,p, VT € C).
1<j<p
J#i
i) The tuple me,(A) = (Ao, ..., Ap) also satisfies the same conditions as above
with replacing A, by A, forv=0,...,p, respectively. Moreover we have
(9.7) me, (A) ~me,(A') if A~A/
(9.8) meyr 0o mey, (A) ~ meyq 0 (A),
(9.9) mco(A) ~ A

and me,(A) is irreducible if and only if A is irreducible.
ii) (cf. [06, Theorem 5.2]) Assume

(9.10) p=>Xxo1#0 and X\j1=0 for j=1,...,p
and
(9.11) /\j,y = )\j71 implies mj;v S mj1

forj=0,...,p andv =2,...,n;. Then the Riemann scheme of mc,(A) equals

Tr=0o0 Cl o Cp
[_:u]mo,l—d [O]ml‘l_d e [O]mpJ—d
(9.12) P‘O»Q - Mmo,Q [)‘1,2 + :U']m1,2 T [>\p,2 + ,LL]mp,2
[Ao,ne — ﬂ}mo,no A1ng + .U]ml,nl T [/\pmp + .U]mp‘l
with
(9.13) d:=mo1+---+mp1—(p—1)ordm.

Example 9.2. The addition of
MC_xg 1 —A12—Aae({A0,2 = Ao, Aot + A1 + Aoj2, Aot + Ao + Aan})

with respect to (—A12 — A2,2, A1,2, A22) give the Fuchsian system of Schlesinger
canonical form

du éu+ A2

dr  w x—1"
A1 Ao+ A2+ A A2.2
A= ’ ’ ’ ’ d Ay = ’ .
! ( A12 an 2 Ao+ A+ A2 Aga
with the Riemann scheme
Tr =00 0 1
Ao,1 A1 A2 (Aot F o2+ A1+ A2+ A2+ A2 =0).

Aoz A2 A2
The system is invariant as W(z; A;,)-modules under the transformation \;, —
Ajs—p for 7 =0,1,2 and v =1, 2.
Suppose J;, are generic complex numbers under the condition Ao + A1 2 +
A21 = Ap2+A1,1+A22 = 0. Then A; and A, have a unique simultaneous eigenspace.
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In fact, A, ((1)) = A12 ((1)) and A, ((1)) = A1 ((1)) Hence the system is not invariant
as W (z)-modules under the transformation above and A is not irreducible in this
case.

To describe the monodromies, we review the multiplicative version of these
operations.
Let M = (M, ..., M,) be an element of

(9.14) GL(n,C)¥™ := {(Go,...,G,) € GL(n,C)P*; G, ---Go = 1.}

For (po, ..., pp) € CPT! satisfying po - - - pp, = 1, the multiplication of M with respect
to p is defined by (poMo, . .., ppMp).

For a given p € C*, we define M; = (ij,,,y/) 1<v<n € GL(pn,C) by

1<v'<p
6V,V’In (V i ])a
~ M, —1 =4, 1<V <j—-1
Ny = (v 1SV );
pM; (v=21"=),
p(My —1) (v=j, j+1<V <p)
Let M; denote the quotient ]\;[j\(cpn/v of
I,
(9.15) Mj=|M —1 - pM; --- p(M,—1)| €GL(pn,C)
I,

for j=1,....pand My = (M,,...M;)~'. The tuple MC,(M) = (My, ..., M,) is
called (the multiplicative version of) the middle convolution of M with respect to
p. Here V= ker(M — 1) + (]_, ker(M; — 1) with

M,
M :=
M,
Then we have the following theorem.
Theorem 9.3 ([DR, DR2]). Let M = (My,...,M,) € GL(n,(C)Il’H. Suppose

(9.16) ﬂ ker(M, — 1) Nker(M; — ) = {0} (1<i<p, VreCX),

1<v<p
v<i

(9.17) m ker("M,, — 1) Nker("M; — 1) = {0} (1<i<p, VreCX).

1<v<p
v<i

i) The tuple MC,(M) = (Moy,...,M,) also satisfies the same conditions as
above with replacing M, by M, forv=20,...,p, respectively. Moreover we have

(9.18) MC, (M) ~ MC,(M') if M~ M,
(9.19) MC,, 0 MC, (M) ~ MC,, (M),
(9.20) MC; (M) ~ M

and MC,(M) is irreducible if and only if M is irreducible.
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ii) Assume
(9.21) My~ L(mj1, ..oy Mjns Py Piny) for j=0,....p,
(9.22) p=poa1#1l and pj1 =1 for j=1,...,p
and
(9.23) Pjv = pj1 implies mj, < mjq
forj=0,...,pandv =2,...,n;. In this case, we say that M has a spectral type
m := (mg,...,my) with m; = (m;1,...,Mjn,).
Putting (Mo, ..., M,) = MC,(Mo, ..., M,), we have
(9.24)

W~ L(moy —d,moa,. .., mone; p~ Y p  po2, - p~  pome) (5 =0),
P\ Lmja —dimyas o My L ppioy . pPing) (G=1,....p).

Here d is given by (9.13).

Remark 9.4. i) We note that some m;; may be zero in Theorem 9.1 and Theo-
rem 9.3.

ii) It follows from Theorem 9.1 (resp. Theorem 9.3) and Scott’s lemma that any
irreducible tuple A € M(n, C)2™ (resp. M € GL(n,C)?*") can be connected by
successive applications of middle convolutions and additions (resp. multiplications)
to an irreducible tuple whose spectral type m satisfies ordm = 1 or dpax(m) < 0.
Moreover the spectral type of an irreducible tuple M or A is irreducibly realizable
in the sense in Definition 4.16 (cf. [Ko], [CB], [06]),

Definition 9.5. Let M = (Mj,...,M,) € GL(n,C)?*'. Suppose (9.21). Fix
0= (ly,...,¢,) € Zg{l and define 9;M as follows.

i {pj,ej (0<j<p 14 <ny),
any complex number (0 <j <p, n; <¥{;),
p = pop1-- - Pp,
(Mg, .., My) :=MCp(p1 - - ppMo, py "My, p5 ' Mo, ..., p, ' M),
oM := (p7'-- .pglMc’), p1 My, paMa,)' ... ppM)).
Here we note that if £ = (1,...,1) and p;; =1 for j =2,...,p, 9M = MC,(M).

Let u(1),...,u(n) be independent solutions of (9.1) at a generic point g. Let
v; be a closed path around c¢; as in the following figure. Denoting the result of
the analytic continuation of @ := (u(1),...,u(n)) along v; by 7;(@), we have a
monodromy generator M; € GL(n,C) such that v;(@) = aM;. We call the tuple
M = (My, ..., M,) the monodromy of (9.1) with respect to @ and o, ...,7,. The
connecting path first going along 7; and then going along ; is denoted by v; o ;.

i 07;(1) = 5 (@)
= ;(@) M;
= aM; M,

MyM,_y -+ My My = I,.
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The following theorem says that the monodromy of solutions of the system
obtained by a middle convolution of the system (9.1) is a multiplicative middle
convolution of that of the original system (9.1).

Theorem 9.6 ([DR2]). Let Mon(A) denote the monodromy of the equation (9.1).
Put M = Mon(A). Suppose M satisfies (9.16) and (9.17) and

(9.26) rank(Ag — p) = rank(My — 2™V,
(9.27) rank(A;) = rank(M; — 1)
forj=1,...,p, then
(9.28) Mon (mcy,(A)) ~ MC,2ry=1, (Mon(A)).
Let F be a space of (multi-valued) holomorphic functions on C\ {c1,...,¢,}

valued in C™ such that F satisfies (2.15), (2.16) and (2.17). For example the
solutions of the equation (9.1) defines F. Fixing a base u = (u(1),...,u(n)) of
F(U) with U > ¢, we can define monodromy generators (Mo, ..., M,). Fix p € C
and put p = 2™V =11 and

f(z+,Cj+,zf,c]'7) u(t)(zft)”fldt

t—cy
vj(z) = and v(z) = (vi(),...,vp(2)).
f(:c+,cj+,x—,cj—) u(t)(tﬂi—ci)ufldt

Then v(z) is a holomorphic function valued in M (pn, C) and the pn column vectors
of v(z) define a convolution F of F and the following facts are shown by [DR2].

The monodromy generators of F with respect to the base v(z) equals the
convolution M = (M, ..., M;) of M given by (9.15) and if F corresponds to the
space of solutions of (1.79), F corresponds to that of the system of Schlesinger
canonical form defined by (flo(u), e flp(u)) in (1.81), which we denote by M4.

The middle convolution MC,(M) of M is the induced monodromy generators
on the quotient space of CP"/V where V is the maximal invariant subspace such the

restriction of M on V is a direct sum of finite copies of 1-dimensional spaces with
J

the actions (p=1,1,...,1,p,1,...,1) € GL(1,C)?™" (j =1,...,p) and (1,1,...,1).
The system defined by the middle convolution mc, (A) is the quotient of the system
M by the maximal submodule such that the submodule is a direct sum of finite
copies of the equations (z — Cj)% =pw (j=1,...,p) and % =0.

Suppose M and MC,(M) are irreducible and p # 1. Assume ¢(x) is a function
belonging to F such that it is defined around x = ¢; and corresponds to the
eigenvector of the monodromy matrix M; with the eigenvalue different from 1.

Then the holomorphic continuation of ®(x) = f(g”’cﬁ’mf’cj*) %c_f)“dt defines
the monodromy isomorphic to MC,(M).

Remark 9.7. We can define the monodromy M = (M, ..., M,) of the universal
model Ppu = 0 (cf. Theorem 6.14) so that M is entire holomorphic with respect
to the spectral parameters );, and the accessory parameters g; under the nor-
malization u(j)* =Y (q) = djvforj, v=1,...,nand ¢ € C\ {c1,...,¢,}. Here
u(1),...,u(n) are solutions of Pupu = 0.

Definition 9.8. Let P be a Fuchsian differential operator with the Riemann scheme
(4.15) and the spectral type m = (m;,) o<j<p . We define that P is locally non-

1<v<n;

degenerate if the tuple of the monodromy generators M := (Mo, ..., M)) satisfies

)

(9.29) My~ L(mya,...omyn ;€™ 00 2V (=0, p)
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which is equivalent to the condition that
(9.30) dim Z(M;) =m5, +---+m3,  (j=0,...,p).

Suppose m is irreducibly realizable. Let P, be the universal operator with the
Riemann scheme (4.15). We say that the parameters A;, and g; are locally non-
degenerate if the corresponding operator is locally non-degenerate.

Note that the parameters are locally non-degenerate if
)\j:V_)\]'7V'¢Z (j:O7"'ap71§V<V/§nj)-

Define P; as in Remark 4.4 iv). Then we can define monodromy generator M;
of P, at = ¢; so that M; holomorphically depend on ¢ (cf. Remark 9.7). Then
Remark 4.13 v) proves that (9.30) implies (9.29) for every j.

The following proposition gives a sufficient condition such that an operator is
locally non-degenerate.

Proposition 9.9. Let P be a Fuchsian differential operator with the Riemann
scheme (4.15) and let M; be the monodromy generator at x = ¢;. Fiz an integer j
with 0 < j < p. Then the condition

Ajw = X @ L or (Njw = Ajw ) (N + My — Ao —my) <0

9.31
(9:31) for 1<v<n; and 1<v <nj

implies dim Z(M;) = mil +-- 4 m?ynj. In particular, P is locally non-degenerate
if (9.31) is valid for j =0,...,p.

Here we remark that the following condition implies (9.31).
(9.32) Njiw—Njwr § Z\{0} for 1<v<mn; and 1<V <nj.

Proor. For p € C we put

N, = {V; 1<v<ng, pe{N,Njp+1,...,0, +mj, — 1}}

If N, > 0, we have a local solution w,, ., (x) of the equation Pu = 0 such that
(9.33) wpp(z) = (z —c¢;)"log"(x —¢;) + O (p+1,L,) for v=0,...,N, — 1.
Here L, are positive integers and if j = 0, then = and = — ¢; should be replaced by
Yy = % and y, respectively.

Suppose (9.31). Put p = e*™, m) = {m;,; \j, —p € Z} and m/, =

!
p
My, b with my,  >mj o >+ >mj > 1. Then (9.31) implies

{m p,2 =

/
FREREE

myy+-o+my e (L<k<ny,),
m,q+-+m) (n, < k).

PMp

(9.34) n — rank(M; — p)* < {
The above argument proving (9.29) under the condition (9.30) shows that the left
hand side of (9.34) is not smaller than the right hand side of (9.34). Hence we
have the equality in (9.34). Thus we have (9.30) and we can assume that L, = v
in (9.33). O

Theorem 9.3, Theorem 9.6 and Proposition 3.1 show the following corollary.
One can also prove it by the same way as in the proof of [DR2, Theorem 4.7].

Corollary 9.10. Let P be a Fuchsian differential operator with the Riemann
scheme (4.15). Let Mon(P) denote the monodromy of the equation Pu = 0. Put
Mon(P) = (Mo, ..., M,). Suppose

(9.35)  Mj ~ L(mj,...,mjn,; 2TV eQﬂﬁA-f'"j) for 7=0,...,p.
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In this case, P is said to be locally non-degenerate. Under the notation in Defini-
tion 5.7, we fix £ € Z?{l and suppose (5.24). Assume moreover

(9.36) w2,
(9.37) My, <My, or Njo, —Nju €2 (j=0,...,p, v=1,...,n5).
Then we have

(9.38) Mon(9yP) ~ 9¢ Mon(P).

In particular, Mon(P) is irreducible if and only if Mon(9yP) is irreducible.

9.2. Scott’s lemma and Katz’s rigidity

The results in this section are known but we will review them with their proof
for the completeness of this paper.

Lemma 9.11 (Scott [Sc]). Let M € GL(n,C)?™ and A € M(n,C)%*" under the
notation (9.2) and (9.14). Then

P
(9.39) Zcodim ker(M; — 1) > codim ﬂ ker(M; — 1) + codim ﬂ ker(‘M; — 1),
7=0 7=0 7=0
P P P
(9.40) Z codimker A; > codim ﬂ ker A; 4+ codim m ker ‘A
3=0 7=0 §=0

In particular, if M and A are irreducible, then

p
(9.41) > dimker(M; — 1) < (p— 1)n,
p
(9.42) > dimker A; < (p — 1)n.
j=0

ProOOF. Consider the following linear maps:

V =Im(My—1) x --- x Im(M,, — 1) ¢ C"P+D]

B:C*"=V, v (My—1ov,...,(M,— 1)),

0: V—=0C" (vo,...,0p) = My Myvg+ My --- Movy + - - - + Mpvp_1 + vy
Since My, --- My(Mo—1)+-- -+ My(Mp_1 —1)+ (Mp,—1) = M,--- M1 My—1=0,
we have § o 8 = 0. Moreover we have

P P

ZM My (M = oy =7 (14 D0 (My = )Moy - My ) (M = Dy
j=0 v=j+1
p v—1
= —1UJ+Z o M (M — 1)y
j=0 v=1 i= 0
D Jj—1
= Z(Mj - 1)(”1‘ + > M1 My (M; — 1)vi)

=0

<
I
=)

and therefore Im ¢ = Z?:o Im(M; —1). Hence
My —1
dimIm ¢ =rank(My —1,..., M, — 1) =rank :
‘M, —1
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and
P
Z codimker(M; — 1) = dimV = dimker § + dimIm §
3=0
> dimIm g + dimImé
P P
= codim ﬂ ker(M; — 1) 4+ codim m ker("M; — 1).
j=0 §=0
Putting

VZIonX---XImApc((I"(P'*‘l)’
B:C" =V, v (Agv,..., Ap),
0: V—=C" (vo,...,0p) = vo+v1+--+vp,

we have the claims for A € M(n,C)P*! in the same way as in the proof for M €
GL(n,C)P* O

Corollary 9.12 (Katz [Kz] and [SV]). Let M € GL(n,C)?™ and put

(9.43) Vi:={H e GL(n,C)’"'; H ~ M},
(9.44) Vo:={H e GL(n,C""' Hj~M; (j=0,...,p)}.
Suppose M is a generic point of the algebraic variety V. Then
(9.45) dim V; = codim Z(M),
(9.46) dim V5 = zp: codim Z(M;) — codim Z (M).

§=0

Here Z(M) := ?:0 Z(M;) and Z(M;) ={X € M(n,C); XM; = M;X}.
Suppose moreover that M is irreducible. Then codim Z(M) = n? — 1 and

P
(9.47) Zcodim Z(M;) > 2n* — 2.
=0

P
Moreover M is rigid, namely, V1 = Vs if and only if Zcodim Z(M;) = 2n? — 2.
§=0

PROOF. The group GL(n,C) transitively acts on V] as simultaneous conjuga-
tions and the Lie algebra of the isotropy group with respect to M is identified with
Z(M) and hence dim V; = codim Z(M).

The group GL(n,C)P*! naturally acts on GL(n, C)P*! by conjugations. Putting
L = {(g;) € GL(n,C)P*1; gpMpgp_1 - goMogyt = M, --- My}, Vs is identified
with L/Z(My) x --- x Z(M,), which is a subset of the homogeneous space

{He M(n,C)P**; H; ~ M; (j=0,...,p)} ~ GL(n,C)P*/Z (M) x - - x Z(M,).

Denoting g; = exp(tX;) with X; € M(n,C) and t € R with |¢| < 1 and defining
A; € End(M(n,C)) by A4;X = MjXMj*l7 we can prove that the dimension of L
equals the dimension of the kernel of the map
P
v M(n,(C)p+1 > (XQ,.. .,Xp) — ZAP'”Aj‘f‘l(Aj — 1)XJ
§=0
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by looking at the tangent space of L at the identity element because
exp(tXp) My exp(—tXp) - - - exp(tXo) Mo(—tXo) — Mp--- My

:_t(ZA Aj(A )Xj)Mp...MOJro(t).

We have obtained in the proof of Lemma 9.11 that codimkery = dimIm~y =
dim »7_ Im(A; —1) = codim (;_, ker(*A; —1). We will see that (;_, ker(*4; —1)
is identified with Z(M) and hence codim ker v = codim Z(M) and

dim V5 = dimkery — Z dim Z(M Z codim Z(M,) — codim Z(M).
7=0
In general, fix H € V5 and define A; € End( (n,C)) by X — MjXH;1 for
j=0,...,p. Note that A,A,_1--- Ay is the identity map. If we identify M (n,C)
with its dual by the inner product trace XY for X, Y € M(n,C), 'A; are identified
with the map Y — H i 1YMj, respectively.
Fix P; € GL(n,C) such that H; = P;M;P; . Then
Aj(X)=X & M;XH;' =X & M;X = XP;M;P;" < M;XP; = XP;M;,
"A;(X)=X & H;'XM; = X & XM; = P,M;P;'X & P, 'XM; = M;P; ' X
and codimker(A; — 1) = codim Z(M;).
In particular, we have (\;_, ker("A; — 1) ~ Z(M) if H; = M; for j =0,...,p
Suppose M is irreducible. Then codim Z(M) = n? — 1 and the inequality

(9.47) follows from Vi C Va. Moreover suppose » f_,codim Z(M;) = 2n* — 2.
Then Scott’s lemma proves

P
% -2 = Zcodim ker(A; — 1)
j=0

p
> n? — dim ({X € M(n,C); M;X = XH;}
j=0

P
+n? —dim (|{X € M(n,C); H; X = XM;}.
j=0
Hence there exists a non-zero matrix X such that M;X = XH; (j =0,...,p) or
H;X=XM; (j=0,...,p). If M;X = XH, (resp. H;X = XM;) for j =0,...,p,
Im X (resp. ker X) is Mj-stable for j =0, ...,p and hence X € GL(n,C) because M
is irreducible. Thus we have V1 = V5 and we get all the claims in the corollary. [






CHAPTER 10
Reducibility

We examine the condition for the decomposition Py, = Py Py of universal
operators with or without fixing the characteristic exponents (cf. Theorem 4.19 1)),
which implies the reducibility of the equation Pynu = 0. Note that the irreducibility
of a Fuchsian differential equation equals the irreducibility of the monodromy of
the equation and that it is kept under our reduction of the equation. In §10.2 we
study the value of spectral parameters which makes the equation reducible and
obtain Theorem 10.10. In particular we have a necessary and sufficient condition
on characteristic exponents so that the monodromy of the solutions of the equation
Pnu = 0 with a rigid spectral type m is irreducible, which is given in Theorem
10.13.

10.1. Direct decompositions

n)

For a realizable (p 4+ 1)-tuple m € 731() 11> Theorem 6.14 gives the universal
Fuchsian differential operator Pm(Aj,.,¢;) with the Riemann scheme (4.15). Here
g1,--.,gn are accessory parameters and N = Ridxm.

First suppose m is basic. Choose positive numbers n’, n'', m
that

/.

%, and mf; such

n=n'+n", 0<mj; <n/, 0<mj, <n",

10.1
(10.1) m6,1 —|—-~-+m;71 < (p—1)n’, mg,l +"'+m;o/,1 <(p—1)n".

. and m'  so that m’ = (m’ ) and m” =

Jv Jv J,v
) are monotone tuples of partitions of n’ and n”, respectively, and moreover

We choose other positive integers m
(m

IV
(10.2) m=m'+m".

Theorem 6.6 shows that m’ and m” are realizable. If {);,} satisfies the Fuchs
relation

p Ny : /
idxm'
(10.3) E E my, Ajw =n' — 5

j=0v=1

for the Riemann scheme {[Aj,y](m; ) }, Theorem 4.19 shows that the operators
(104) Pm//(>\j’1/ + m;-’,, - 5j,0(p - 1)71/, gg/) . Pm/()\j,l,, g;)

has the Riemann scheme {[); ,](m, ) }. Hence the equation Py ()., gi)u = 0 is not
irreducible when the parameters take the values corresponding to (10.4).
In this section, we study the condition

(10.5) Ridx m = Ridx m’ + Ridx m”

for realizable tuples m’ and m” with m = m’ + m”. Under this condition the
Fuchs relation (10.3) assures that the universal operator is reducible for any values
of accessory parameters.

95
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Definition 10.1 (direct decomposition). If realizable tuples m, m’ and m” satisfy
(10.2) and (10.5), we define that m is the direct sum of m’ and m” and call
m =m’ + m" a direct decomposition of m and express it as follows.

(10.6) m=m &m".

Theorem 10.2. Let (10.6) be a direct decomposition of a realizable tuple m.

i) Suppose m is irreducibly realizable and idx m’” > 0. Put m’' = ged(m’) " 'm’.
If m' is indivisible or idxm < 0, then
(am|om)

10.7 am = Qm/ — 2
( ) m (O[ﬁ//|0lﬁ//)

Qm’

orm=m’ & m" is isomorphic to one of the decompositions
32,32, 32,221 = 22,2222 220 & 10, 10, 10, 10, 001
322,322, 2221 = 222,222, 2220 & 100, 100, 0001
54,3222,22221 — 44,2222, 22220 & 10, 1000, 00001
76, 544, 2222221 = 66, 444, 2222220 & 10, 100, 0000001

(10.8)

under the action of Wm.
i) Suppose idxm < 0 and idxm’ < 0 and idxm” < 0. Then m = m’ & m”
orm=m" & m’ is transformed into one of the decompositions

Y =11,11,11,11 111,111,111 22,14 1% 33,222,16
my = kX & (%
mm, mm, mm, m(m — 1)1 = kk, kk, kk, k(k — 1)1 & £¢, 00, £¢, ££0
mmm, mmm, mm(m — 1)1 = kkk, kkk, kkk, kk(k — 1)1 @ €04, 002, 0000
(2m)2, m*, mmm(m — 1)1 = (2k)2, k*, k*, kkk(k — 1)1 & (20)2, ¢*, %0
(3m)?, (2m)*,m°(m — 1)1 = (3k)%, (2k)°, k°(k — 1)1 @ (30)%, (20)°,£°0

under the action of Woo. Here m, k and £ are positive integers satisfying m = k+£.
These are expressed by

mDy = kDy ® €Dy, mE; = kE; ®(E; (j =6,7,8),

Dy - D ey, B - B atE; (-0

(10.9)

m —

(10.10)

PrOOF. Put m’ = km’ and m” = /m” with indivisible m’ and m”. First note
that

(1011) (Oém|0(m) = (Oém/|0(m/) —|— Q(O[m"am”) —|— (O(m//|0(m//),

ii) Using Lemma 10.3, we will prove the theorem. If idxm = 0, then (10.11)
and (10.12) show 0 = (o' |am”) = kl(osm |agm), Lemma 10.3 proves idxm’ = 0
and M’ = m” and we have the theorem.

Suppose idxm < 0.

If idxm’ < 0 and idxm” < 0, we have Pidxm = Pidxm’ + Pidxm”, which
implies (@m’|am~) = —1 and contradicts to Lemma 10.3.

Hence we may assume idxm” = 0.

Case: idxm’ < 0. It follows from (10.11) that 2 — 2Ridxm = 2 — 2Ridxm’ +
2¢(m, m). Since Ridxm = Ridxm’ + ¢, we have (am|am’) = —1 and the theorem
follows from Lemma 10.3.

Case: idxm’ = 0. It follows from (10.11) that 2 — 2 Ridxm = 2kl(am |am ).
Since the condition Ridxm = k + ¢ shows (og o) = 75 — + — 7 and we have
(o |aga) = —1. Hence the theorem also follows from Lemma 10.3.
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i) First suppose idxm’ # 0. Note that m and m’ are rigid if idxm’ > 0.
We have idxm = idxm’ and idxm = (am + log|am + lomr) = idxm’ +
20( Q| ) + 202, which implies (10.7).

Thus we may assume idxm < 0 and idxm’ = 0. If k = 1, idxm = idxm’ = 0
and we have (10.7) as above. Hence we may moreover assume k > 2. Then (10.11)
and the assumption imply 2 — 2k = 2k{(amy |am) + 2¢2, which means

k—14 ¢2
kl '

Here k and ¢ are mutually prime and hence there exists a positive integer m with
k=mf+ 1 and

— (aﬁ’ |O(ﬁ” ) =

m+ 1 1
~lomlom) = Ty = e
Thus we have m = ¢ = 1, k = 2 and (om|am») = —1. By the transformation
of an element of Woo, we may assume m’ € Pp,yq is a tuple in (10.16). Since
(o |am) = —1 and aq s a positive real root, we have the theorem by a similar
argument as in the proof of Lemma 10.3. Namely, m, nt, = =2 and my, ,, L= =0and
wemayassumemjnH—Oforj—O . landmpnﬂ—i—mpn,ﬁ—i— =1,
which proves the theorem in view of ay € A“’ O

Lemma 10.3. Suppose m and m’ are realizable and idxm < 0 and idxm’ < 0.
Then

(10.12) (atm|om’) < 0.
If m and m’ are basic and monotone,
(10.13) (am|wam’) < (am|om?) (Vw € Wx).

If (am|am’) =0 and m and m’ are indivisible, then idxm =0 and m = m’'.
If (aml|am’) = —1, then the pair is isomorphic to one of the pairs

(D, Dy) + ((kk, kk, kk, k(k — 1)1),

(B E) - ((kk:k: kkk, k(k —1)1),

(B Br) : (((2k)?, kkk, kkk(k H),
(Eék),Es (((3k 8 kkkkk(k — 1)1),

11,11,11,110))
111,111,1110))
22,1111, 11110))
33,222,1111110))

(10.14)

~—~ o~ —~

under the action of WOO.

PROOF. We may assume that m and m’ are indivisible. Under the transfor-
mation of the Weyl group, we may assume that m is a basic monotone tuple in
Ppt1, namely, (am|ap) < 0 and (mlaj,) < 0.

If m’ is basic and monotone, Wy — oy is a sum of positive real roots, which
proves (10.13).

Put am = nag + > n;,a;, and m' = njog + Zn;»’yajw. Then

(am|am’) = ng(em|ao) + Z”;,u(am‘aj,u)a

(10.15)
(amla) <0 (Vo € supp am).

Let k; be the maximal positive integer satisfying m;x, = m; 1 and put Iy =
{ao,0j,;1 <v <k j=0,...,p}. Note that II, defines a classical root system
it idxm < 0 (cf. Remark 7.12).

Suppose (&m|em’) =0and m € P,y;. Then mo1+---+mp1 = (p—1)ordm
and supp am C I because (am|a) = 0 for o € supp ay,. Hence it follows from
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idxm’ < 0 that idxm = 0 and we may assume that m is one of the tuples (10.16).
Since supp am C supp am and idxm’ < 0, we conclude that m’ = m.

Lastly suppose (am|am’) = —1.

Case: idxm = idxm’ = 0. If m’ is basic and monotone and m’ # m, then it is
easy to see that (am|om’) < —1 (cf. Remark 7.1). Hence (10.13) assures m’ = wm
with a certain w € W, and therefore suppm C suppm’. Moreover there exists
Jo and L > kj, such that suppm’ = suppm U {a, k;,» Qo k;+15 - - -5 Ao, } and
Mo k;, = 1 and m}o)km 41 = 1. Then by a transformation of an element of the

Weyl group, we may assume L = kj, and m’ =r; - - Tir T (o, kjg ) with suitable i,
satisfying «;, € suppm for v =1,..., N. Applying r;, - - -1, to the pair (m, m’),
we may assume m’ = T (o ks ) L Hence the pair (m, m’) is isomorphic to one of
the pairs in the list (10.14) with k& = 1.

Case: idxm < 0 and idxm’ < 0. There exists jo such that supp am: > ajy ;-
Then the fact idx(m,m’) = —1 implies n} , = 1 and n;}k;‘ = 0 for j # jo.
Let L be the maximal positive integer with n’; ; # 0. Since (aml|aj,,) = 0 for
ko+1 < v < L, we may assume L = kg by the transformation r(;, x,41)0° - 07(,1)
if L > ko. Since the Dynkin diagram corresponding to IIp U {e;,, ;%} is classical or
affine and suppm’ is contained in this set, idxm’ = 0 and m’ is basic and we may
assume that m’ is one of the tuples

(10.16) 11,11,11,11 111,111,111 22,1111,1111 33,222,111111

p1 = =my, =Tland mp, ., = 0. It follows
from (amlap,k,) = —1 that there exists an integer L' > k, 4 1 satisfying suppm =
suppm’U{a,,; k, <v < L'} and my g, = mpx,—1 — 1. In particular, m;, = m;
for v =1,...,k; — djp and j = 0,...,p. Since 3-0_ym;1 = (p — 1)ordm, there
exists a positive integer k such that

mi;, = k/‘m;‘,l (j:()v"'7paV:17""kj_§j,17)7
! k‘m;)l -1 (j=p, v= kp)-

and jo = p. In particular m

Hence my j,+1 =1 and L' = k, + 1 and the pair (m, m’) is one of the pairs in the
list (10.14) with & > 1. 0

Remark 10.4. Let k be an integer with & > 2 and let P be a differential operator
with the spectral type Dflk), Eék), Egk) or Eék). It follows from Theorem 4.19 and
Theorem 6.14 that P is reducible for any values of accessory parameters when the
characteristic exponents satisfy Fuchs relation with respect to the subtuple given
in (10.14). For example, the Fuchsian differential operator P with the Riemann
scheme

Moy Aiay A2l RERI)
Mozl [zl [Pa22ley  Ps2le-1)
Ago 2k — 2
is reducible.

Example 10.5. i) (generalized Jordan-Pochhammer) If m = km’ @ fm” with a
rigid tuples m, m’ and m” and positive integers k and £ satisfying 1 < k < £, we
have
k*+02—1
K
For positive integers k& and ¢ satisfying 1 < k < ¢ and
k41
=

(10.17) (m’|amr) = eZ.

(10.18) +1ez,
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we have an example of direct decompositions

p+1 partitions
—N—
bk, bk, ... Lk =0k, 0k, ..., 0k ® (0,40,...,00
=((p=Dk =0k, ((p =Dk =0Ok,....((p =Dk = O)k
& (20— (p—1)k)0, (20 — (p — DK)O, ..., (20 — (p — 1)k)0.

(10.19)

Here p = 3 + % > 2 and the condition p = 2 implies k = ¢ = 1 and the

condition p = 3 implies £ = k + 1. If k = 1, then (am’|am~) = —¢ and we have an
example corresponding to Jordan-Pochhammer equation:
{42 partitions
—_———
(10.20) £a,--- 41 =01,---,01 40, , 0.
When £ = k + 1, we have (@m’|am~) = —2k and an example
(s + 1)k, (k + Dk, (K + 1)k, (5 + 1k
(10.21) = 0k, 0k, 0k, 0k & (k + 1)0, (k + 1)0, (k + 1)0, (k + 1)0
= (k- 1)k, (k— 1k, (k— 1k, (k- 1)k @ 20,20, 20, 20.
We have another example
83, 83,83, 83,83 = 03,03, 03,03, 03 & 80, 80, 80, 80, 80
=13,13,13,13,13 ® 70,70,70,70,70
in the case (k,¢) = (3,8), which is a special case where { = k> — 1, p = k + 1 and
(' |m) = —k.

When p is odd, the equation (10.18) is equal to the Pell equation
(10.23) v —(m?—1)a2* =1
by putting p — 1 = 2m, z = £ and y = mf — k and hence the reduction of the tuple
of partition (10.19) by Omax and its inverse give all the integer solutions of this Pell
equation.

The tuple of partitions ¢k, k, ... lk € Pz(f;k) with (10.18) is called a general-
ized Jordan-Pochhammer tuple and denoted by P,41 ¢4%. In particular, P41, is
simply denoted by P,.

ii) We give an example of direct decompositions of a rigid tuple:

3322, 532,532 = 0022, 202, 202 & 3300, 330, 330 :
= 1122, 312, 312 @ 2200, 220, 220 :
= 0322, 232,232 & 3000, 300, 300 :
= 3302, 332, 332 ¢ 0020, 200, 200 :
= 1212,321, 321 & 2110, 211,211 :
= 2211,321,312 @ 1111, 211, 220 :
= 2212,421,322 ¢ 1110, 111,210 :
= 2222,431,422 ¢ 1100, 101,110 :
= 2312,422,422 & 1010, 110, 110 :
= 2322,522,432 ¢ 1000, 010, 100 :

They are all the direct decompositions of the tuple 3322, 532,532 modulo obvious
symmetries. Here we indicate the number of the decompositions of the same type.

(10.22)

S N O R U U (C S

.

Corollary 10.6. Let m € P be realizable. Put m = ged(m)m. Then m has no
direct decomposition (10.6) if and only if

(10.24) ordm =1
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or
(10.25) idxm = 0 and basic

or

idxm < 0 and M is basic and m is not isomorphic to any one of tuples

10.
(10.26) in Example 7.14 with m > 1.

Moreover we have the following result.

Proposition 10.7. The direct decomposition m = m’ @ m” is called rigid decom-
position if m, m’ and m" are rigid. If m € P is rigid and ord m > 1, there exists
a rigid decomposition.

PrROOF. We may assume that m is monotone and there exist a non-negative
integer p such that m;o # 0 if and only if 0 < j < p+ 1. If ordOm = 1, then
we may assume m = (p — 1)1, (p — 1)1,...,(p— 1)1 € Pl(ﬁ)l and there exists a
decomposition

p-D1L,(p-—11,....,(p—1)1=0110,...,10® (p—1)0,(p — 2)1,...,(p — 2)1.

Suppose ord0m > 1. Put d =idx(m,1) =mg1+---+mp1 — (p—1)-ordm > 0.

The induction hypothesis assures the existence of a decomposition Om = m’ @
m” such that m’ and m” are rigid. If 9m’ and dm’" are well-defined, we have the
decomposition m = 9?m = dm’ @ dm” and the proposition.

If ordm’ > 1, Om’ is well-defined. Suppose m’ = (5%@],)]-:0 ,,,,, p- Then
p
idx(0m, 1) — idx(dm,m’) =Y "((mj1 — d — (mj,e, — ddy, 1))
=0

> —d#{j; t; >1, 0<j <p}
Since idx(0m, 1) = —d and idx(0m,m’) = 1, we have d#{j; ¢; > 1, 0< j <p} >
d + 1 and therefore #{j; ¢; > 1, 0 < j < p} > 2. Hence 0m’ is well-defined. O

Remark 10.8. The author’s original construction of a differential operator with a
given rigid Riemann scheme doesn’t use the middle convolutions and additions but
uses Proposition 10.7.
Example 10.9. We give direct decompositions of a rigid tuple:
721, 3331, 22222 = 200, 2000, 20000 & 521, 1331, 02222 : 15
(10.27) = 210,1110, 11100 & 511, 2221,11122 : 10
=310,1111,11110 & 411,2220,11112: 5

The following irreducibly realizable tuple has only two direct decompositions:
44,311111, 311111 = 20, 200000, 200000 & 24,111111,111111

(10.28) = 02, 200000, 200000 & 42,111111,111111

But it cannot be a direct sum of two irreducibly realizable tuples.

10.2. Reduction of reducibility

We give a necessary and sufficient condition so that a Fuchsian differential equa-
tion is irreducible, which follows from [Kz] and [DR, DR2]. Note that a Fuchsian
differential equation is irreducible if and only if its monodromy is irreducible.
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Theorem 10.10. Retain the notation in §10.1. Suppose m is monotone, realizable
and Omqem is well-defined and

(10.29) d:=mo1+---+mp1—(p—1)ordm > 0.
Put P = Py, (cf. (6.25)) and

(10.30) pi=Xog+ A+ A — 1

(10.31) Q = Omaa P,

(10.32) P = Plx;=x0,, gi=ges Q7= QI =00, gi=g?

with some complex numbers A],, and g7 satisfying the Fuchs relation [{A\3,}| = 0.

i) The Riemann scheme {\q} of Q is given by
ﬁlj,l/ =MmMjv — d5V,17

(10.33) < _
Aj’y = )\j,u + ((—1)63’0 — 51,,1)/.11.

ii) Assume that the equation P°u = 0 is irreducible. If d > 0, then p ¢ Z. If the
parameters given by A7, and g7 are locally non-degenerate, the equation Q°v =0
is irreducible and the parameters are locally non-degenerate.

iii) Assume that the equation Q°v = 0 is irreducible and the parameters given
by A7, and g7 are locally non-degenerate. Then the equation P°v = 0 is irreducible

if and only if

P

(10.34) Z/\;,Héj,jo(r/rl) ¢ Z for any (jo,vo) satisfying myj, ., >m;j, 1 — d.
§=0

If the equation P°v = 0 is irreducible, the parameters are locally non-degenerate.

iv) Put m(k) := 0% . .m and P(k) = 0F ,, P. Let K be a non-negative integer
such that ordm(0) > ordm(1) > --- > ordm(K) and m(K) is fundamental. The
operator P(k) is essentially the universal operator of type m(k) but parametrized
by Aj and g;. Put P(k)° = P(k)|x,,=x;, -

If the equation P°u = 0 is irreducible and the parameters are locally non-
degenerate, so are P(k)°u =0 fork=1,... K.

If the equation P°u = 0 is irreducible and locally non-degenerate, so is the
equation P(K)°u = 0.

Suppose the equation P(K)°u = 0 is irreducible and locally non-degenerate,
which is always valid when m is rigid. Then the equation P°u = 0 is irreducible if
and only if the equation P(k)°u = 0 satisfy the condition (10.34) fork =10,..., K —
1. If the equation P°u = 0 is irreducible, it is locally non-degenerate.

PROOF. The claim i) follows from Theorem 5.2 and the claims ii) and iii) follow
from Lemma 5.3 and Corollary 9.10, which implies the claim iv). O

Remark 10.11. i) In the preceding theorem the equation P°u = 0 may not be
locally non-degenerate even if it is irreducible. For example the equation satisfied
by 3F3 is contained in the universal operator of type 111,111, 111.

ii) It is also proved as follows that the irreducible differential equation with a
rigid spectral type is locally non-degenerate.

The monodromy generators M; of the equation with the Riemann scheme at
x = c; satisfy

rank(M; — PV L (M; — 2™V <y Amyn, (E=1,...,n)

for j = 0,...,p. The equality in the above is clear when A;, — X\; ./ ¢ Z for
1 <v < v < nj and hence the above is proved by the continuity for general \; .
The rigidity index of M is calculated by the dimension of the centralizer of M;
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and it should be 2 if M is irreducible and rigid, the equality in the above is valid
(cf. [Kz], [O6]), which means the equation is locally non-degenerate.

iii) The same results as in Theorem 10.10 are also valid in the case of the
Fuchsian system of Schlesinger canonical form (9.1) since the same proof works. A
similar result is given by a different proof (cf. [CB]).

iv) Let (Mo, ..., M,) be a tuple of matrices in GL(n, C) with M,M,_; --- My =
I,. Then (My,...,M,) is called rigid if for any go,...,g, € GL(n,C) satisfying
gpMpg;1 ~gp,1Mp,1gpil1 -+ goMogy ' = I,., there exists g € GL(n,C) such that
giMigi_l = gM,;g~"! for i =0,...,p. The tuple (Mo, ..., M,) is called irreducible if
no subspace V of C" satisfies {0} G V' G C* and M;V C V for i =0,...,p. Choose
m € ’PI(JL and {u;, } such that L(m;pu;1,...,/;n;) are in the conjugacy classes
containing M, respectively. Suppose (Mo, ..., M,) is irreducible and rigid. Then
Katz [Kz] shows that m is rigid and gives a construction of irreducible and rigid
(Mo, ..., Mp) for any rigid m (cf. Remark 9.4 ii)). It is an open problem given
by Katz [Kz] whether the monodromy generators M; are realized by solutions
of a single Fuchsian differential equations without an apparent singularity, whose
affirmative answer is given by the following corollary.

Corollary 10.12. Let m = (ij) o<j<p be a rigid monotone (p + 1)-tuple of
1<v<n;
partitions with ord m > 1. Retain the notaéion in Definition 5.12.
i) Fiz complex numbers \;,, for 0 < j <p and 1 <v < n; satisfying the Fuchs
relation (4.32). The universal operator Pym(MN)u = 0 with the Riemann scheme
(0.11) s drreducible if and only if the condition

P
(10.35) Z)\(k)j,e(k)j+5j,,-o(uo—e(k)j) ¢Z
=0
for any (jo,vo) satisfying m(k)j, v, > m(k);, ek, — d(k)
is satisfied for k=0,..., K — 1.
ii) Define fu(k) and p(k);, fork=0,...,K by

(10.36) w00 =pjn (G=0,....p, v=1,...,n,),
P
(10.37) fi(k) = H 1(k)jeky,
j=0
(10.38) k1)1 = (k) - (k) D700,
Then there exists an irreducible tuple (Mo, ..., M,) of matrices satisfying
M- My = I,
(10.39) ?

Mj ~ L(mj,la s 7mj,nj;/~"j,17 s 7Mj,nj) (.7 = Oa s 7p)
under the notation (4.33) if and only if

P ny
(10.40) I x5 =1

j=0v=1
and the condition
P
(1041)  TT k) jiew; 455 (ra—ei) # 1
3=0

Jor any (Gosvo) satisfying m(k)s,w, > Mk, ecry,, — AK)
is satisfied for k=0,..., K — 1.
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iii) Let (Mo, ..., Mp) be an irreducible tuple of matrices satisfying (10.39).
Then there uniquely exists a Fuchsian differential equation Pu = 0 with p + 1
singular points co,...,cp, and its local independent solutions ui,...,Uordm N @
neighborhood of a non-singular point q such that the monodromy generators around

the points c; with respect to the solutions equal M, respectively, for j = 0,...,p
(cf. (9.25)).

PROOF. The clam i) is a direct consequence of Theorem 10.10 and the claim
ii) is proved by Theorem 9.3 and Lemma 9.11 as in the case of the proof of Theo-
rem 10.10 (cf. Remark 9.4 ii)).

iii) Since gcdm = 1, we can choose )\;, € C such that 2V = g, and
> j.» MjwAj = ordm — 1. Then we have a universal operator Pm (A, )u = 0 with
the Riemann scheme (0.11). The irreducibility of (M, ..., My) and Theorem 9.6
assure the claim. (]

Now we state the condition (10.35) using the terminology of the Kac-Moody
root system. Suppose m € P is monotone and irreducibly realizable. Let {A\m} be
the Riemann scheme of the universal operator Py,. According to Remark 5.9 iii) we
may relax the definition of £,,4,(m) as is given by (5.43) and then we may assume

(10.42) VS0 - - v1SoA(N) € WL A(A(K)) (k=1,...,K)

under the notation in Definition 5.12 and (7.31). Then we have the following
theorem.

Theorem 10.13. Let m = (ij) o<j<p be an irreducibly realizable monotone
1<v<n;

tuple of partition in P. Under the notatjion in Corollary 10.12 and §7.1, there

uniquely exists a bijection

@ A(m) = {(k,jo,10): 0 Sk <K, 0<jo <p, 1 <1 <myp,
(10.43) vo # U(k)j, and m(k)jovy > m(k) o 0k),, — d(k)}
U{(k,0,0(k)o); 0<k <K}
such that

P
(10.44)  (AWN)a) = D> A (K)je(k); 4655, (vo—tik);) when w(a) = (k, jo, o).
7=0

Moreover we have
(a‘am) = m(k)jo,lfo - m(k)jme(k)jo +d(k)

(1045) (Oé c A(rn)7 (k‘,jo, 1/0) = w(a))

and if the universal equation Py (MN)u = 0 is irreducible, we have
(10.46) (AN)|a) ¢ Z  for any o € A(m).
In particular, if m is rigid and (10.46) is valid, the universal equation is irreducible.

PRrROOF. Assume ordm > 1 and use the notation in Theorem 10.10. Since
m may not be monotone, we consider the monotone tuple m’ = sm in S, m
(cf. Definition 4.11). First note that

d—mj1+mj, = (a0 +aj1+ -+ aj,—1]|om).
Let 7; be the positive integers defined by

Mjp+1 < mj1 —d <mjp,
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for j =0,...,p. Then
P
O/ = vilaﬂ, with v := H(Sj,l T Sj,ﬁj—l)
7=0
and w(m) = svs,,, and
A(m) = ZU sgvA(m’),
E:={a}U |J {ao+aji+-+agiv=1..,7-1}

0<j<p
vi#l

Note that £(0) = (1,...,1) and the condition mj, ., > mj,1 — d(0) is valid if
and only if vy € {1,...,7;,}. Since

p
D> A0 148, (ro-1) = (AN + o1 + -+ + g 1) + 1,
=0

we have
L(0) = {(A(N)]a) +1; 0 € E}
by denoting

P
L(k) := D AR juek), 48, 5, (vomth)) 5 1K) g0y > mk)j, 0k, — A(R)}-
7=0

Applying v™1sp to m and {A\m, }, they changes into m’ and {)\., }, respectively, such
that A(X) —v7tsgA()\) € CAp. Hence we obtain the theorem by the induction as
in the proof of Corollary 10.12. O

Remark 10.14. Let m be an irreducibly realizable monotone tuple in P. Fix
a € A(m). We have @ = ayy with a rigid tuple m’ € P and

(10.47) {Am }H = (AN ).

Definition 10.15. Define an index idxm (¢(\)) of the non-zero linear form £(\) =
‘;’:0 oo kjuAjw of with kj,, € Zs¢ as the positive integer d; such that

p N p
(1048) {Z ZJ kj,uej,u; €50 € 7Z and Z Zi:mj,l,ej,l, = O} = 7Zd;.

j=0v=1 j=0v=1

Proposition 10.16. For a rigid tuple m in Corollary 10.12, define rigid tuples
m® . mW™) with a non-negative integer N so that A(m) = {m™ ... m™)}
and put

P
(10.49) GO =3 "mN,  (i=1,...,N).
j=0v=1
Here we note that Theorem 10.13 implies that Py (\) is irreducible if and only if
6G(N) ¢ Z fori=1,...,n.

Fiz a function €(X) of X\, such that {(X) = {;(X) —r with i € {1,...,N}
and v € Z. Moreover fiz generic complex numbers \;, € C under the condition
(A) = [{A\m}| = 0 and a decomposition Pm(X) = P" P’ such that P', P" € W(x),
0 < n' :=ordP’ < n and the differential equation P'v = 0 is irreducible. Then
there exists an irreducibly realizable subtuple m’ of m compatible to ¢(\) such that
the monodromy generators MJ’ of the equation P'u = 0 satisfies
rank(M; — ™V L (M; — V) < M gy +- o mj (k=1,...,n;)

Jsnj
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for 7 =0,....p. Here we define that the decomposition

(10.50) m=m’'+m"” (m'e P;ill), m” € P;ili), 0<n' <n)

is compatible to ¢(\) and that m’ is a subtuple of m compatible to €(\) if the
following conditions are valid

(10.51) '} € Z<o and |[{A\mr}| € Z,
(10.52) m' is realizable if there exists (j,v) such that m}, =m;, >0,
(10.53) m" is realizable if there exists (j,v) such that m’;,, =mj, > 0.

Here we note [{\m'} + [{A\m~}| =1 if m’' and m" are rigid.

PROOF. The equation Py (A)u = 0 is reducible since £(A) = 0. We may assume
Ajv—Aj #0for 1 <v<v' <njand j=0,...,p. The solutions of the equation
define the map F given by (2.15) and the reducibility implies the existence of
an irreducible submap F’ such that 7'(U) C F(U) and 0 < n' := dim F'(U) <
n. Then F’ defines a irreducible Fuchsian differential equation P'v = 0 which
has regular singularities at * = ¢y = 00, ¢1,...,¢, and may have other apparent
singularities c},...,c;. Then the characteristic exponents of P’ at the singular
points are as follows.

There exists a decomposition m = m’ + m” such that m’ € P() and m” €

P(™") with n” := n — n’. The sets of characteristic exponents of P’ at z = c; are

N isi=1,...,m},, v=1,...,n} which satisfy
)\;%i - X €{0,1,...,m;, —1} and )\;%1 < /\;MQ << /\;’”vmé,v
for j =0,...,p. The sets of characteristic exponents at x = c; are {1, -, i},

which satisfy pj; € Zand 0 < pjq < --- < pjpn for j =1,...,¢q. Then Remark 4.17
ii) says that the Fuchs relation of the equation P'v = 0 implies [{Am’}| € Z<o.
Note that there exists a Fuchsian differential operator P” € W(x) such that
P = P"P'. 1If there exists j, and v, such that m/ == 0, namely, m} , =
mj, v, > 0, the exponents of the monodromy generators of the solution P'v = 0
are generic and hence m’ should be realizable. The same claim is also true for the
tuple m”. Hence we have the proposition. O

Example 10.17. i) The reduction of the universal operator with the spectral type
11,11, 11 which is given by Theorem 10.10 is

T =00 0 1
Ao A1 Az (Z Ajv=1)
(10.54) Aoz A2 Az

. { xr =00 0 1 }
2002 F A1+ A1 —Ao2— A2 —Ao2— A

because = Ao + A1 + X210 — 1= —Xg2 — A2 — A2 2. Hence the necessary and
sufficient condition for the irreducibility of the universal operator given by (10.34)

is
Xoi+ A1+ A € Z,

Aoz + A1+ € Z,
Ao+ A2+ Ao €2,
Ao+ A1+ A € Z,
which is equivalent to
(10.55) X+ Ma1+Ae,; ¢Z for i=1,2and j=1,2.

The rigid tuple m = 11,11,11 corresponds to the real root am = 2ag + ag,1 +
a1,1 + a1 under the notation in §7.1. Then A(m) = {a, a0 + ;155 = 0,1,2}
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and (Alag) = Ao + A1+ 21 and (Alag + @p1) = Aoz + A1,1 + A21, ete. under
the notation in Theorem 10.13.
The Riemann scheme for the Gauss hypergeometric series o F (a, b, ¢; z) is given
T = 00 0 1
by a 0 0 and therefore the condition for the irreducibility
b l—-¢c c—a—-0»
is
(10.56) a¢Z,b¢7Z,c—b¢Z and c—a ¢ Z.

ii) The reduction of the Riemann scheme for the equation corresponding to
sFy(a1, az, a3, B1, B2;x) is

T =00 0 1 5 5
aq 0 [0](2) o _
Qo 1-81 —B3 (; 4= ;&)
(10.57) as  1-f
T =00 0 1
—qar—a1+1 a3 —B 0

az—ay1+1 a3 —P2 a3 —pB3—1

with ¢ = a3 —1. Hence Theorem 10.10 says that the condition for the irreducibility
equals

o ¢ 7 (i=1,2,3),
Oél—ﬁj¢Z (j:1,2>

together with
o, —B; ¢ Z (i=2,3, 7=1,2).

Here the second condition follows from i). Hence the condition for the irreducibility
is

(10.58) 0;¢7Z and oy —B; €7 (i=1,2,3, j=1,2).

iii) The reduction of the even family is as follows:

o oy W DR ;
al 1 —(,26) [—ﬁ(?) N ar —ap +1 0 0
Of 1*51 3@ az—a1+1 ar—p1 [ — B3 — 1

’ 2 ag—or+1 a1 — B
o
T = 00 0 1
(z—1)~ 10 ) an — 3 0 —on + P+ 1
e
az—f3 oy — B [0](2)

ag—fs ar — P

Hence the condition for the irreducibility is

; §é Z (z’: 1,2,3,4),
oy — f3 ¢Z

together with

O{i—ﬁ,’},%Z (Z:2a3a4)
onta;—Bi—B3¢Z (=234, j=1,2)
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by the result in ii). Thus the condition is

a; €7, a;— P3¢ Zand oy +ap — B — P3¢ Z

10.59
(10.59) (1=1,2,3,4, j=1,2, k=2,3,4).

Hence the condition for the irreducibility for the equation with the Riemann scheme

Aot [Male) [Peale

Aoz A2 M2
10.60 ’ ’ ’
( ) Aoz A3
Ao,4

of type 1111,211,22 is

(10.61) {)\o,u F g Aog ¢ 2 (v=1,2,3,4, k=1,2)
Aopv+Aoy FA1+det+ A1+ ¢Z 1<v<v <4).

This condition corresponds to the rigid decompositions

(10.62) 14,212,22 =1,10,1 @ 13,112, 21 = 12, 11,12 ® 12, 11,12,

which are also important in the connection formula.
iv) (generalized Jordan-Pochhammer) The reduction of the universal operator
of the rigid spectral type 32,32, 32,32 is as follows:

Mol [Aile) Peale) s 3)}
’ ’ ’ (3 Ai1+2 Ajo =4)
{P\o,z}@) M2l M2l Maele Z i Z 72

N { Ao,1 — 20 AL A2,1 A1 }
o2 =) M2+tule [Peet+iule [PMs2+ule
with 1= Ag1 + A1+ A21 + As,1 — 1. Hence the condition for the irreducibility is
Yoo Niass,, ¢ Z (k=0,1,2,3,4),
Z?:O(l + (5]‘,1@))\]‘,1 + 2?20(1 —0j,k)Aj,2 ¢7Z (k=0,1,2,34).
Note that under the notation defined by Definition 10.15 we have
(1064) ide(Ao,l + )\1,1 + )\2,1 + )\3,1) =2

and the index of any other linear form in (10.63) is 1.
In general, the universal operator with the Riemann scheme

{ PNolwy il Peaddw  Pealw }
No2lk—1) 2= [Ae2le-1) [PMs2]w—1)

(10.63) {

(10.65) 3 3
(B> Na+(E=1)> " Xjo=2k)

=0 =0
is irreducible if and only if
Yo =N+ (v — 148601 ¢ Z (k=0,1,2,3,4),
S0V + 5N+ oV =6 N2 €2 (k=0,1,2,3,4)

for any integers v and v/ satisfying 1 <2v < kand 1 <2/ <k —1.
The rigid decomposition

(10.67) 65, 65,65,65 = 12,21,21, 21 @ 53,44, 44, 44

(10.66) {

gives an example of the decomposition m = m’ ® m” with supp o, = supp oy =
SUpPP Q-
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v) The rigid Fuchsian differential equation with the Riemann scheme
=0 1 Cc3 Cyq o0
0]y [0lo) [O]o) [Olco) [eol(s)
lala) [Ble) @) lde  lels
€2
is reducible when
a+b+c+d+3eg+e €7,
which is equivalent to %(eo — ey — 1) € Z under the Fuchs relation. At the generic
point of this reducible condition, the spectral types of the decomposition in the
Grothendieck group of the monodromy is
93,93,93,93,831 = 31, 31,31, 31,211 + 31, 31, 31, 31, 310 + 31, 31, 31, 31, 310.
Note that the following reduction of the spectral types
93,93,93,93,831 — 13,13,13,13,031 — 10,10,10,10,001
31,31,31,31,211 — 11,11,11,11,011
31,31,31,31,310 — 01,01,01,01,010

and idx(31,31,31,31,211) = —2.



CHAPTER 11

Shift operators

In this chapter we study an integer shift of spectral parameters A;, of the
Fuchsian equation Py, (A)u = 0. Here Py, (\) is the universal operator (cf. Theo-
rem 6.14) corresponding to the spectral type m = (m;,) j=o,..., - For simplicity,

v=1,...,n;

we assume that m is rigid in this chapter unless otherwise stated.

11.1. Construction of shift operators and contiguity relations

First we construct shift operators for general shifts.

Definition 11.1. Fix a tuple of partitions m = (mjﬁy) j=0,....p € P(n) Then a

ptl:
v=1,...,n;
set of integers (ejw) j=0,....,p parametrized by j and v is called a shift compatible
v=1,...,n;
to m if
p nj
(11.1) > eumj, =0.

=0 v=1

Theorem 11.2 (shift operator). Fiz a shift (e;,) compatible to m € 771(]7;)1. Then
there is a shift operator Ry, (€, \) € W(z] ® C[\;,] which gives a homomorphism
of the equation Pym(N)v = 0 to Pm(N)u = 0 defined by v = Rpm(e, \)u. Here the
Riemann scheme of Pm(X) is {Am} = {[Njvlom, )} j=0...p and that of Pu(N')

v=1,...,n;
is {Am} defined by X, = X\, + €;,,. Moreover we may assume ord Rm(e,N) <
ordm and Ry, (€, \) never vanishes as a function of A and then Ry, (e, \) is uniquely
determined up to a constant multiple.

Putting

(11.2) T = (Tj’y) 0<5<p with Tjv = (2 + (p — 1)n)(5j’0 —Mju
1<v<n;

and d = ord Rm (€, ), we have
(11.3) PO\ + €)Rm(6,A) = (=1)? R (6,7 — X — €)* Pm(\)
under the notation in Theorem 4.19 ii).

PrOOF. We will prove the theorem by the induction on ord m. The theorem
is clear if ordm = 1.

We may assume that m is monotone. Then the reduction {S\{h} of the Riemann
scheme is defined by (10.33). Hence putting

(11.4) =1t F oL L
€iv=¢€u+ ((—1) 3,0 — 51,’1)61 (J=0,....p, v=1,...,nj),

109
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there is a shift operator R(¢, A) of the equation Ps(X)& = 0 to Ps (M) = 0 defined
by o = R(€, \)4. Note that

Pir(A) = Omaz Ad ﬁ(xfc i ﬁ(l’fc Nmin—dg=dAd(9H)
H(Z*CJ) mJlAd(H(x*CJ) AJI)PmO\)v

H S
E~2
|
)
§
>
o,
—~
=
—~
8
|
o
>
SN—
~
—~
>
S~—

Suppose )\j,y are generic. Let u(x) be a local solution of Py(A)u=0at z = ¢;
corresponding to a characteristic exponent different from A; ;. Then

() = H(az—c Jl@“Hx—c Aity(z)
j=1

satisfies Pg(A)a(xz) = 0. Putting
O(x) := R(E Na(),

:Hx—c 718“H$—cj 19(x),
Jj=1 Jj=1
p ~
= H x— ¢ R(E,N)
7j=1
we have Pg(N)@(x) = 0, Pe(N)v(z) = 0 and
p P

H(x - cj)ej*l(?_“/ H(Jc — ¢ Y Niay(z) = R(€,\)0™H H(Jj —¢j) M ru(x).

j=1 j=1 j=1

In general, if

P P / P
(11.5) SS9 H(Jc —¢;) 0™ H(Jc —¢j) " Ninw(z) = S;07H H(m — ;) Mru(a)
j=1 j=1 =1
with 51, S2 € W{z], we have
(11.6) Ryv(x) = Ryu(z)
by putting
P €1 P
Ry = H(aﬁ —c; ) vt gutt H T —c k“51 H o~ H H(:L’ — cj)_)"'*”,
(11.7) w o -
Ry = H(x — ¢j) N thLg gt H(x )28, H o H x—¢;) i
j=1 j=1 j=1

with suitable integers ki ;, k2 ; and £ so that Ry, Ry € W[ac; Al

We choose a non-zero polynomial Sy € Clz] so that S; = SyR(E,\) € Wlx].
Since Py ()') is irreducible in W(x; A) and Rov(z) is not zero, there exists R3 €
W(x;€) such that RgRy — 1 € W(x;\)Pm(N). Then v(z) = Ru(z) with the
operator R = R3R; € W(a; \).
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Since the equations Py(A)u = 0 and Py (N)v = 0 are irreducible W (z; A\)-
modules, the correspondence v = Ru gives an isomorphism between these two
modules. Since any solutions of these equations are holomorphically continued
along the path contained in C\ {c1,...,¢c,}, the coefficients of the operator R are
holomorphic in C\ {e1,...,¢,}. Multiplying R by a suitable element of C(\), we
may assume R € W(z) ® C[A\] and R does not vanish at any A;, € C.

Put f(z) = H§:1($ —¢;)". Since Rm(e, A) is a shift operator, there exists
Sm(€,A) € W(z; A) such that

(11.8) F PN+ €)Rin(6,A) = Sm(6, ) f 1 Pm(N).
Then Theorem 4.19 ii) shows
Rin(e, N (f ' Pn(A +€)" = (f ' Pm(N) Smle, ),
Ren(€,N)" - [T Pm(A+€)¥ = f7 Pm(N)" - Sm(e, V)",
Run(&,X)" f ™' Pm(p — A—G) F7 Pm(p = X)Sm(e, N,
(119)  Rulep— =) f " Pu(t) = f " Paalji + ) Simles p— i — )"
(1

)
Here we use the notation (4.52) and put p;, = 2(1 —n)d;o +n —m;, and p =
p—A—e. Comparing (11.9) with (11.8), we see that Sy, (€, A) is a constant multlple of
the operator R (e, p—A—¢)* and fRm(€e, p—A—€)* f~1 = (f 'Rm(e, p— )\—e)f) =

Rm(e, 7 — X —€)* and we have (11.3). O

Note that the operator Ry, (€, A) is uniquely defined up to a constant multiple.

The following theorem gives a contiguity relation among specific local solutions
with a rigid spectral type and a relation between the shift operator Ry, (e, A) and
the universal operator Pm ().

Theorem 11.3. Retain the notation in Corollary 10.12 and Theorem 11.2 with a
rigid tuple m. Assume mj,, =1 for j =0, 1 and 2. Put e = (¢;,), € = (€} )

2,V
!/
(11.10) €jv = 051000, — 0j20un, and €, = ;00u,n, — 6,200,

forj=0,....,pandv=1,...,n;.
i) Define Qm(N) € W(x /\) $0 that Qm(A)Pm(A+€) —1 € W(z;\)Pmn(X +¢).
Then
(11.11) Rm(e,A) = C(N)Qm(A\)Pm( A+ €) € W(z; \) Pm(N)
with o rational function C'(X) of Aj..
ii) Let ux(z) be the local solution of Pm(A)u = 0 such that uy(z) = (x—cy)
mod (z — ¢;)* 1O, for generic Ajv. Then we have the contiguity relation
K-1
AV + Dy — AW)1e), +1
11.12) uy(z) = urgper(x) + (1 — C
( ) )\() A+ () (1 Q)IE) )\( )1n17)\( )1[(11 1
PrROOF. Under the notation in Corollary 10.12, ¢(k); # n; for j = 0,1,2 and
k=0,...,K —1 and therefore the operation 9%, on Pm()\) is equals to 9%, on
P (X + €) if they are realized by the product of the operators of the form (5. 26).
Hence by the induction on K, the proof of Theorem 11.2 (cf. (11.5), (11.6) and
(11.7)) shows

(11.13) P\ + €)u(z) = Pm(A+ €)v(x)

for suitable functions u(z) and v(x) satisfying Pm(A)u(z) = Pm(A+€)v(z) = 0 and
moreover (11.12) is calculated by (3.6). Note that the identities

p
(1 — ¢ Hx—c )‘+E Hx—c] Hx—c >‘+€-7,
Jj=1 Jj=1 Jj=1

“Upte(T).
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correspond to (11.12) and (11.13), respectively, when K = 0.
Note that (11.13) may be proved by (11.12). The claim i) in this theorem
follows from the fact v(z) = Qm(A)Pm(A + €)v(2) = Qm(A) Pm(A + €)u(x). O

In general, we have the following theorem for the contiguity relation.

Theorem 11.4 (contiguity relations). Let m € P be a rigid tuple with Mip, =1
and let uy (A, z) be the normalized solution of the equation Py (N)u = 0 with respect

to the exponent A1, at x =cy. Let € be shifts compatible to m for i =0,...,n.
Then there exists polynomial functions r;(x,A) € Clz, A] such that (ro,...,r ) ;é 0
and

n .
(11.14) Z ri(@, Nuy (A + €@ 2) = 0.

i=0

PROOF. There exist R; € C(\) R (e, \) satisfying uy (A+e®, z) = Ryuy (), z)
and ord R; < n. We have r;(z, \) with Y7 7;(z,\)R; = 0 and the claim. O

Example 11.5 (Gauss hypergeometric equation). Let Pyxu = 0 and Pyv = 0 be
Fuchsian differential equations with the Riemann Scheme

Tr = 00 0 1 Tr =00 0 1
Mg A Agnpoand S Gy =Xo1 A=A Aog =A21 o,
Aoz A2 Az M2 =Ao2 Ma=Ada2+1l X=Xy —1

respectively. Here the operators Px = Py, Ao2,M1.1,01.2,00.1,00,; and Py are given
n (1.51). The normalized local solution uy(z) of Pyxu = 0 corresponding to the
exponent Ao at x =0 is

(11.15) a™2(1 —2)* ' F(Xo1 + Arz + A2.1, Aoz + A2 + A1, 1 — A+ Ap g 2).

r =00 0 1 T = 00 0 1
By the reducti A Arr A N ith
y the reduction 0,1 1,1 210 — {)\0’2 — Ao+ p Ao+ M} h
Aoz A2 Age

= MXo1+ A1+ Az21 — 1, the contiguity relation (11.12) means

22 (1 —2)* 2  F(Aoq + A2+ Aa1, Aog + A2+ Aa1, 1 — A + A o;2)
2?2 (1 — )21 F(Ngq1 + Ao+ Xa1, Ao+ Aa+dag + 1,1 — A + A o;2)
Aot A2+ A At
1=+ A
“F(Xoi+ A2+ A1+ 1L A2+ A2+ A1 +1,2— A1+ Ao 2),

(1 =)

which is equivalent to the contiguity relation

(11.16) F(a,B,v,2) = Fla, B+ 1,7v;2) — %xF(a—l— 1,84+ 1,v+ 1;2).
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Using the expression (1.51), we have
Pyyo — Py =2%(z — 1)0 4+ N12® — (Mo + A2z,
Pyt — Prie = x(x — 1)28 + /\071x2 — (Ao,1 + AL 1)T — A,
(= 1)Prye = (x(z = 1)0+ Moz — 2)x + A1 2+ 1) (Pryer — Paye)
— (Mo + A1+ A21)(Ao2 + A2 + Ao p)z(z — 1),
e 2 — 1) Na(z =104+ (N2 —2)z+ A2+ 1)(Page — Pr) — (. —1)7' Py

Ao 1T
= —(}\0’1 + )\1’1 + )\2’1)(‘%8 — )\172 _ x2,_1 1)

and hence (11.11) says

(11.17) Rum(e,N) =20 = A2 = Aoy ——.

In the same way we have

(11.18) Rn(—€,A+¢) = (x—l)a—Az,ﬁlfAl,lx;l.
Then

(r1g)  Tm(TeAFORmed) T @ TR

=—(No1+ A2+ 221)( o2+ A2+ A1)

and since —Ruy (6,7 — A\ —€)* = 7(9:3 +AM2+2)+ A1+ 1)%)* =20 — N\ 2—
1 — (A1 + 1)-% with 7 given by (11.2), the identity (11.3) means

(11.20) Py\Run(e,\) = (xa — (Ao 4+ 1) = (Ao + 1)%)3“.

Remark 11.6. Suppose m is irreducibly realizable but it is not rigid. If the
reductions of {Am} and {A,,} to Riemann schemes with a fundamental tuple of
partitions are transformed into each other by suitable additions, we can construct
a shift operator as in Theorem 11.2. If they are not so, we need a shift operator
for equations whose spectral type are fundamental and such an operator is called
a Schlesinger transformation.

Now we examine the condition that a universal operator defines a shift operator.

Theorem 11.7 (universal operator and shift operator). Let m = (m;,) 0<j<p

1<v<n;

and m' = (m;’u)loéjgp € Ppy1 be irreducibly realizable and monotone. They may
_u_nj

not be rigid. Suppose ordm > ordm’. Fiz jo with 0 < jo < p. Let n}o be a positive

integer such that m}o . > m}o w41 = 0 and let Pm () be the universal operator
»io Vo

corresponding to {Am}. Putting N, = X\;, when (j,v) # (jo,n},), we define

the universal operator P2, (\) := Pyy(X') with the Riemann scheme {\.,}. Here

, . . - ,
)‘jomgo is determined by the Fuchs condition. Then (am|am’) < Mo,y Mo s, -

Suppose

Py
(11:21) (emlam) (= 30D mjum), = (p—1)ordm - ordm’) = mj, 1), -

j=0v=1
Then m'’ is rigid and the universal operator ng, (N) is the shift operator Ry (e, \):

{[A ] } R (e,)=P (\) {[A ]
v . . — - m s ',U+€',l/ . } .
(11.22) P myn) ] EISEE ne I men ] SIER

with €v = (1 — (5j,j0(5,,,n;0)m/,

v =050 (p—1)ordm’.
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PROOF. We may assume X is generic. Let u(z) be the solution of the irreducible
differential equation Py, (A)u = 0. Then
XN+ (1=85406, .0 )M,
O e N ) S T
Pm/()\/)x_/\o"’ooo c x—*o‘u—(l—%,jo%,n}o)mo,u+(17—1) ord m O

and Py, (XN)u(x) satisfies a Fuchsian differential equation. Hence the fact Ry (e, ) =

P () is clear from the characteristic exponents of the equation at each singular

points. Note that the left hand side of (11.21) is never larger than the right hand

side and if they are not equal, Py (N )u(x) satisfies a Fuchsian differential equation
with apparent singularities for the solutions u(z) of Pm(A)u = 0.

It follows from Lemma 10.3 that the condition (11.21) means that at least one

of the irreducibly realizable tuples m and m’ is rigid and therefore if m is rigid, so

is m’ because Ry, (€, \) is unique up to constant multiple. O

If ordm’ = 1, the condition (11.21) means that m is of Okubo type, which
will be examined in the next section. It will be interesting to examine other cases.
When m = m’ @m” is a rigid decomposition or ay, € A(m), we easily have many
examples satisfying (11.21).

Here we give such examples of the pairs (m;m’) with ordm’ > 1:

(Am, 1%, n —11;1"7 1 17 n — 21)  (221,32,32,41; 110, 11, 11, 20)
(11.23) (1™, mm — 11,m?;1%,110,1?) (12 m21,m 4 1m; 12,120, 11)
(221,221,221 110,110, 110) (2111,221,221;1100, 110, 110).

11.2. Relation to reducibility

In this section, we will examine whether the shift operator defines a W (x)-
isomorphism or doesn’t.

Theorem 11.8. Retain the notation in Theorem 11.2 and define a polynomial
function em(€; A) of Aj, by

(11.24) Rn(—€, A+ €)Rm(e,N) — cm(e; A) € (W[z] ® C[A]) Pm ().

We call cxn(€; \) the intertwining polynomial for the differential equation Py (A)u =
0 with respect to the shift €.

i) Fiz A}, € C. If cm(e;A%) # 0, the equation Py, (\°)u = 0 is isomorphic to
the equation Pm(A° + €)v = 0. If em(e; X°) = 0, then the equations Pm(A°)u = 0
and Py (A° + €)v = 0 are not irreducible.

ii) Under the notation in Proposition 10.16, there exists a set A whose elements

(i,k) are in {1,...,N} X Z such that
(11.25) tm(eN) =C ] (L) —k)

(i,k)eA

with a constant C' € C*. Here A may contain some elements (i, k) with multiplici-
ties.

PROOF. Since u +— Rpm(—€, A + €) R (e, N)u defined an endomorphism of the
irreducible equation Py (A)u = 0, the existence of ¢y (€; A) is clear.

If cm(€; A°) = 0, the non-zero homomorphism of Py, (A°)u = 0 to Py (A°+€)v =
0 defined by u = Rm(€; A°)v is not surjective nor injective. Hence the equations are
not irreducible. If ¢y, (e; A°) # 0, then the homomorphism is an isomorphism and
the equations are isomorphic to each other.

The claim ii) follows from Proposition 10.16. g
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Theorem 11.9. Retain the notation in Theorem 11.8 with a rigid tuple m. Fiz a
linear function £(X) of A such that the condition £(\) = 0 implies the reducibility of
the universal equation Pm(N)u = 0.

i) If there is no irreducible realizable subtuple m’ of m which is compatible to
L(N\) and £(X+€), L(N) is a factor of cm(€; ).

If there is no dual decomposition of m with respect to the pair £(\) and £(A+¢€),
L(N) is not a factor of cm(e; N). Here we define that the decomposition (10.50) is
dual with respect to the pair £(X) and L(\ + €) if the following conditions are valid.

(11.26) m' is an irreducibly realizable subtuple of m compatible to £(\),
(11.27) m" is a subtuple of m compatible to {(\ + €).

il) Suppose there exists a decomposition m = m’ ®m" with rigid tuples m’ and
m" such that L(\) = [{\m}| + &k with k € Z and {(A+€) = £(X\) + 1. Then £()) is
a factor of em(€; N) if and only if k = 0.

PRrROOF. Fix generic complex numbers A;, € C satisfying ¢(\) = [{Am}| = 0.
Then we may assume \j, —\;j,» ¢ Zfor 1 <v<v' <njandj=0,...,p.

i) The shift operator R := Ry, (—¢€, A+¢) gives a non-zero W (z)-homomorphism
of the equation Py(A+ €)v = 0 to Pm(A)u = 0 by the correspondence v = Ru.
Since the equation Py, (A)u = 0 is reducible, we examine the decompositions of m
described in Proposition 10.16. Note that the genericity of A;, € C assures that
the subtuple m’ of m corresponding to a decomposition Py, (A) = P”P’ is uniquely
determined, namely, m’ corresponds to the spectral type of the monodromy of the
equation P'u = 0.

If the shift operator R is bijective, there exists a subtuple m’ of m compatible
to £(A\) and (X + €) because R indices an isomorphism of monodromy.

Suppose £(\) is a factor of ¢m(e; A). Then R is not bijective. We assume
that the image of R is the equation P”# = 0 and the kernel of R is the equation
P/t = 0. Then Pyn(A\) = P"P’ and Py(X + ¢) = P/P! with suitable Fuchsian
differential operators P’ and P!’. Note that the spectral type of the monodromy of
P'u = 0 and P’v = 0 corresponds to m’ and m” with m = m’ + m”. Applying
Proposition 10.16 to the decompositions Py, (A) = P”P’ and P(A+¢€) = P/P!, we
have a dual decomposition (10.50) of m with respect to the pair £()\) and £(A + ¢).

ii) Since Py (A)u = 0 is reducible, we have a decomposition Py () = P” P’ with
0 < ord P’ < ord Py (A). We may assume P'u = 0 and let m’ be the spectral type
of the monodromy of the equation P'u = 0. Then m’ = /;m’ 4 fom” with integers
¢y and ¢y because |{Am}| € Z<o. Since P'u = 0 is irreducible, 2 > idxm’ =
2(03 — {105 + ¢3) and therefore (¢1,/¢3) = (1,0) or (0,1). Hence the claim follows
from i) and the identity [{Am/} + [{Am~} =1 O

Remark 11.10. i) The reducibility of Py (A) implies that of the dual of Py, ()).

ii) When m is simply reducible (cf. Definition 6.15), each linear form of A;,
describing the reducibility uniquely corresponds to a rigid decomposition of m
and therefore Theorem 11.9 gives the necessary and sufficient condition for the
bijectivity of the shift operator Ry (€, \).

Example 11.11 (FO,4). Let P(A\)u = 0 and P(\)v = 0 be the Fuchsian differential
equation with the Riemann schemes

Aot [Mle) [Peale) Ao,1 Mile) [M2ile
Ao,2 AL2 [A2.2](2) and Ao,2 A12 [A2.2](2)
Aoz A3 0,3 Az +1 ’
/\O,4 )\074 —1
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respectively. Since the condition of the reducibility of the equation corresponds
to rigid decompositions (10.62), it easily follows from Theorem 11.9 that the shift
operator between P(A)u =0 and P(X\)v = 0 is bijective if and only if

Aoga+Aa+Ae, —1#0 (1<pu<2),
Myv+dop+FA1+As+A1+A2—1#0 (1<v<v <3).

In general, for a shift ¢ = (¢;,) compatible to the spectral type 1111, 211, 22,
the shift operator between P(A)u = 0 and P(A + €)v = 0 is bijective if and only if
the values of each function in the list

(1128) )\0,1, + )\1,1 + )\Q»P« (1 S 174 S 4, 1 S 12 S 2)7
(11.29) Ao + Ao, + )\171 + )\173 + )\271 + )\272 —1 (1 <v<v < 4)
are

not integers for A and A\ + ¢
(11.30) or positive integers for A and A + €
or non-positive integers for A and A\ + €.

Recall (2.23) and note that the shift operator gives a homomorphism between mon-
odromies.

The following conjecture gives ¢m (€; A) under certain conditions.

Conjecture 11.12. Retain the assumption that m = (X;,) o<j<, € PL7) is rigid.
<v<n;

i) If £(\) = £(A + €) in Theorem 11.9, then £(A) is not a factor of cm(€;N),

i) Assume mq,, = man,, =1 and

(11.31) €= (€1) 0<i<p s € = 03,100m, — 05200 0,5
1<v<n;

Then we have
(11.32) cm(6A) =C 11 { A}

m:m’@m”
’ 7 1
MYy =M

2,m9
with C' € C*.
Suppose that the spectral type m is of Okubo type, namely,
(11.33) mi1+---+mp1=(p—1)ordm.

Then some shift operators are easily obtained as follows. By a suitable addition we
may assume that the Riemann scheme is

T =00 T=c e T=c
[Ao,1](mo,1) (0] 1) e (0] (1)
(11.34) [)‘0’2](7”0,2) [>‘1¢2](m1,2) T [)\p72:|('n’Ly12)
P\O,no](mo,no) [)‘1,711](7711,77,1) U [)\P’”p](mpmp)

and the corresponding differential equation Pu = 0 is of the form

n n—1 p dk

P

— n—m. d max —mj.1

(11.35) PN\ = H(x —¢j) lexin + E H(x — ¢j)maxthom;, ’O}ak(a:)dxk.
j=1 k=0 j=1
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Here ay,(z) is a polynomial of x whose degree is not larger than k — 377 max{k —
mj 1,0} for any k =1,...,p. Moreover we have

no mo,,—1

(11.36) ax) =] J] ow+9).

v=1 =0
Define the differential operators Ry and Ry, (A) € Wz] @ C[A] by
(11.37) Ry =4 and Pu(X) = —Rm(A)Ri +ao(z).

Let Pm(XN)v = 0 be the differential equation with the Riemann scheme

T = 00 Tr=c e T =cp
[Ao,1 + U (mo.1) (0] (rmy.1) e [0] 1)
(11.38) [)\0,2 + ”(nzo,z) [)\1,2 - 1](7711,2) T P‘M - ”(mp,z)
P‘O,no + ”(mo,no) P‘lﬂll - 1](m1m,1) t [)\p,np - 1}(mp1n,p)

Then the correspondences u = Ry (A)v and v = Ryu give W (x)-homomorphisms
between the differential equations.

Proposition 11.13. Let m = {m; , } o<j<p be a rigid tuple of partitions satisfying

1<v<n;

(11.33). Putting

1 =0, 1<v<
(11.39) € = (=0, 1 <v<no),

’ 5u,071 (1§]§p,1§1/§n]),

we have

ng mo,p—1
(11.40) Cm(E;)\) = H H ()\07,,—1-)\171 —|—-~'+)\p71 +Z)

v=1 =0

PROOF. By suitable additions the proposition follows from the result assuming
Aj1 =0 for j=1,...,p, which has been shown. 0

Example 11.14. The generalized hypergeometric equations with the Riemann
schemes

Mo A A2 Ao,1 AL1 A2,1](n—1)
(1141) )‘OW )\1,,/0 and /\OW )\17% +1 R
Ao Aln A2,2 Ao,n Ao Ao —1

) ) ) ) )

respectively, whose spectral type is m = 1", 1" (n — 1)1 are isomorphic to each
other by the shift operator if and only if

(1142) )‘0,V+)‘1,Vo +>\271 #O (I/: 17...,7L).

This statement follows from Proposition 11.13 with suitable additions.

Theorem 11.9 shows that in general P(A)u = 0 with the Riemann scheme { Ay, }
is W(z)-isomorphic to P(A+ €)v = 0 by the shift operator if and only if the values
of the function Ao, + A1, + Ao satisfy (11.30) for 1 <v <mnand 1 < p < n. Here
€ is any shift compatible to m.
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The shift operator between

Ao A [Aealm-n Aot A+ [Aaa]m-n

Aoz A1 A2.2 Aoz Az —1 A2.2
(11.43) , ) and . :

)\O,n >\1,n )\O,n )\1,n

is bijective if and only if
)\0’1, + )\1’1 + )\2’1 75 0 and )\0}1, + )\1}2 + )\2}1 #1 for v=1,...,n.

Hence if A3 = 0 and A2 = 1 and Ag,1 + A2;1 = 0, the shift operator defines a
non-zero endomorphism which is not bijective and therefore the monodromy of the
space of the solutions are decomposed into a direct sum of the spaces of solutions
of two Fuchsian differential equations. The other parameters are generic in this
case, the decomposition is unique and the dimension of the smaller space equals
1. When n =2 and (co, ¢1,¢2) = (00,1,0) and Ay 1 and Ay o are generic, the space
equals Cz*21 @ Cxr22

11.3. Polynomial solutions

We characterize some polynomial solutions of a differential equation of Okubo
type.

Proposition 11.15. Retain the notation in §11.1. Let Pm(A)u = 0 be the dif-
ferential equation with the Riemann scheme (11.34). Suppose that m is rigid and
satisfies (11.33). Moreover suppose X, ¢ Z for j =0,...,p and v = 2,...,n;.
Then the equation Pm(A)u = 0 has a non-zero polynomial solution if and only if
—Xo,1 15 a non-negative integer. When 1 — Xo1 — mo,1 45 a non-negative integer k,
the space of polynomial solutions of the equation is spanned by the polynomials
(11.44) pxry = Rm(AN)oRm(A+€)o-- -0 Rm(A+(k—1)e)x¥ (v =0,...,mp1—1)
under the notation (11.37) and degpy, =k + v.

PROOF. Since m = (m0,1(517,,) 0<j<p D (mj,,, — m07151,y) 0<j<p is a rigid

1<v<n; 1<v<n;

decomposition of m, Example 5.5 and (4.56) assure a decomposition P, ()
0™ Py with a suitable operator P; € W(x) when 2 —mg 1 — Ao,1 = 1. Moreover
Proposition 11.13 assures that Ry, (A + fe) defines an isomorphism of the equation
P A+ (£4+1)e)ug1 = 0 to the equation Py (A+Le)ur, = 0 by up = Ry (A+Le)ug11
it —xo1 —¢ ¢ {0,1,...,mp1 —1}. Hence the polynomials (11.44) are solutions of
Ppa(AM)u = 0. The remaining part of the proposition is clear. O

Y

Remark 11.16. i) Note that we do not assume that mg 1 > mgj for j=1,...,ng
in Proposition 11.15.

ii) We have not used the assumption that m is rigid in Proposition 11.13 and
Proposition 11.15 and hence the propositions are valid without this assumption.

iii) As are give in §13.2.3, most rigid spectral types are of Okubo type, namely,
satisfy (11.33).

iv) A generalization of the above proposition is given by Remark 13.1 and
Theorem 11.7.

v) Suppose P is a Fuchsian differential operator with the Riemann scheme
(11.34) satisfying (11.33). Suppose P is of the form (11.35). Since P defines an
endomorphism of the linear space of polynomial functions of degree at most m for
any non-negative integer m, there exists a monic polynomial p,, of degree m such
that p,, is a generalized eigenfunction of P.



CHAPTER 12

Connection problem

12.1. Connection formula

For a realizable tuple m € Py, let Pnu = 0 be a universal Fuchsian differen-
tial equation with the Riemann scheme

x=0 c1=1 cj cp = 00
Poalmoy  Malemey o Wale,y 0 Pealmm,n
(12.1) : . . . . .
[/\O,no](mo,no) [)‘l,m](anl) T [)‘j,nj](mj,nj) T [)‘Pa"p](mp,np)
The singular points of the equation are ¢; for j = 0,...,p. In this section we always
assume ¢o = 0, ¢; = 1 and ¢, = o0 and ¢; ¢ [0,1] for j = 2,...,p — 1. We also

assume that A;, are generic.

Definition 12.1 (connection coefficients). Suppose A;, are generic under the

Fuchs relation. Let uéo’"" and ui\l’”l be normalized local solutions of Py = 0 at

2 = 0 and = 1 corresponding to the exponents \g ., and A1 ,,, respectively, so that
u)®" = 22000 mod 2 +10y and W= (1 - 2)Me mod (1 — )M Oy,

Yo

A . . .
Here 1 <yp<mpand 1 <v; <ng. fmg,, =1, uoo’ is uniquely determined and

then the analytic continuation of ugo’”o to x = 1 along (0,1) C R defines a con-

nection coefficient with respect to ui\l’"l, which is denoted by ¢(0: Ao,y ~>1:A1,,,)
or simply by ¢(Aog,1y ~> A1,1,). The connection coefficient ¢(1: Ay, ~>0: Ag.,) Or

1,vq 0,vq

(A, ~ Aoy, ) Of ui\ with respect to ug are similarly defined if mq ,, = 1.

Moreover we define c(c¢; : A; o, ~¢j ¢ )\j,yj) by using a suitable linear fractional
transformation T' of C U {oo} which transforms {c;,¢;} to {0,1} so that T'(c,) ¢
(0,1) for v = 0,...,p. If p = 2, we define the map T so that T'(c;) = oo for the
other singular point ¢;. For example if ¢; ¢ [0,1] for j = 2,...,p — 1, we put
T(x) = ;%5 to define c(0: Ag,py ~>00 1 Apy,) Or ¢(00 1 Ap b, 0 X uy)-

In the definition ug\o’"o (x) = 2?00 ¢(x) with analytic function ¢(x) at 0 which
satisfies ¢(0) = 1 and if Re A1, < Re A1, for v # vy, we have

(12.2) cMowe ~Apy) = lim (1—z)Mwu)®0(z)  (z€(0,1))
z—1-0

by the analytic continuation. The connection coefficient ¢(Ag.,y ~> A1, ) meromor-
phically depends on spectral parameters A;,. It also holomorphically depends on
accessory parameters g; and singular points 5 (j =2,...,p—1) in a neighborhood
of given values of parameters.

The main purpose in this section is to get the explicit expression of the connec-
tion coefficients in terms of gamma functions when m is rigid and mg,, = my,» = 1.

Fist we prove the following key lemma which describes the effect of a middle
convolution on connection coefficients.

119
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Lemma 12.2. Using the integral transformation (1.37), we put
(12.3) (TFu)(x) == 2= #(1 —2) "I (1 — z) u(z),
(12.4) (Shpu)(z) =™ Mg (1 — z)u(z)

a

x
for a continuous function u(x) on [0,1]. Suppose Rea > 0 and Rep > 0. Under
the condition Reb+Rep <0 or Reb+Rep >0, (T ,u)(z) or Si(u)(x) defines

a
a continuous function on [0,1], respectively, and we have

(125)  TA0) = SL,0)0) = 1),

() (1)  w() ., v Dla+p+1)I(—p—b)
126 7 @ ~w© e T T e Orn
L)1) 1 T(a+p+1)

S _ ! a _ b+,u71u
12T 5 w)0) ~ wo) Mot o1y J, C -0

PrOOF. Suppose Rea > 0 and 0 < Rep < —Reb. Then
() Ty (u) ()

_gmemn(l —x)*b*#/ 11— (@ — ) u(t)dt (=51, 0 <2 < 1)
0
1
=(1- x)_b_“/ s4(1 — 1) 11 — xs1) u(as;)ds;
0
la 1—s1\#/1—x51\? ds
’/0 Sl(l—x) ( 1o ) uws) =4
_/1(1_ )a( S9 )H(1+ TrSo )b( B )@ ( _1_ )
= | So - u(r — rso 1= 52

1—2z S9

1

— /01_m (1—s(1- m))as”(l + xs)bu(x —z(l- m)s)% (52 = (1 -2)s).

Since

|sf(1—s)* M1 - xsl)bu(xsl)} < max{(1 — s;)Rer=1 1}37 Reb Jnax lu(t)]

for0<s;<land0<ua< 2, T}, (u)(2) is continuous for x € [0, 2). We have

[(1—s(1— x))as“fl(l + z8)’u(r — (1 — z)s))| < sfen=l(1 4 %)Reborgtag)i |u(t)]

for 1 <2 <1and0< s < L and therefore T, (u)(z) is continuous for z € (3,1].
Hence T"',(x) defines a continuous function on [0, 1] and

" 1 1 a p dsy  T(a+1)
L) = g [ 0= w0 = )
ap(w)(1) = F(IM)/O Su(1+5)bu(1)%
(tzlj-s:l*l-}-s’ 1is:1*t71+5:%_t,5:%_t*1:%_“%:7ﬁ)
1 (Yt k-l s (b
:m/o (m) (1= 1) Pu(1)dt = WU(I).

The claims for Sg , are clear from

1
L(u) Sy, (u)(z) = /0 s3(1 — s1)P 11 — 2s1)bu(zsy )ds. O
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This lemma is useful for the middle convolution mc, not only when it gives a
reduction but also when it doesn’t change the spectral type.

Example 12.3. Applying Lemma 12.2 to the solution

p—1

wy (@) = / Po(1 -t (H (1--) ) (@ — )" dt
0 =2 G
of the Jordan-Pochhammer equation (cf. Example 1.8 iii)) with the Riemann scheme
=0 c1=1 cj Cp = 0
Ole-1 Ole-n - Ole-n - L—pe- ¢,
Notp AAp o Nrpo —SEIEN —p

we have

c(0: Mg+ p~>1: A + p) =

T(Ao 4 p 4+ DD(=A — p) § (1 1 )Aj
(Ao + DI(=A1) 7

-1
FAo+p+1) /1 A A1 ] t\Y
DY ~1:0)= ———M~ tro(1 — )M Tr 1—— dt.
0201120 = Fonrng v Jy Y U( -)

Moreover the equation Pu = 0 with
P :=RAdA(0")RAd(z" ) RAA(™*) RAd(z*° (1 — 2))d
is satisfied by the generalized hypergeometric function 3 F5 with the Riemann scheme

z=0 1 00
0 [0](2) L=y
N+ ! L= N—p—u
Ao+ NFpt+p Mtptp “do—A =N —p—p

corresponding to 111,21, 111 and therefore

Qo+ N+t A+ ) =Ly O8 s ian
CTQo+p+ 0= —p) TQo+ N +p+p + DI(=M —p— ')
T T+ D0(=N) T(Mo+ N +p+ DT(=A; — p)
CPQo+p+DFNo+ N +p+p +DI(=A —p— )
N P+ 1DIT(=A)T( Mo+ N+ p+1) ’

We further examine the connection coefficient.

In general, putting ¢ =0 and ¢; =1 and A\ = Ei:o Ak,1 — 1, we have

{ z=c¢ (j=0,....,p—1) 00 }
Njw = (5.0 + 05,00 N1 0m,) P + A0in0 + Atiny ] (mo.)

2 0m0 (1—z) m1 { T =cy o0 }
- 7
Piwlims) Poslim,.)

20 TPl (1 ta) TP { [0](mj.1) [)\pJ + ZZ;(I) )‘kyl](mp,l) }
’ -1
[)\j,u - )\jvl](mjyu) [Apvl’ + Zizo )\kvl](mILD)
6172%:0 ki1 { [0](mj,1—d) P‘p,l + Zi;(l)_)l‘k,l - 2)\1](mp,1—d)}
Pw =N+ Mmoo + 200 M1 — M,

(d= mr1—(p—1)n)
k=0
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3: =c; 00
Umgi—ay  [Pp1 = 2M]mp1—a) ¢

)\] v + )\1 mJ V) [Ap,u - Al](mpyu)

oM _ C TXone + A1 = Aot + DI(A11 — Ay, — )\1).

Aomy A0 A T AL F(Xo,no — Ao + DA — Aipy)

20,1 Hp—l(l Cfll) 4,1

In general, the following theorem is a direct consequence of Definition 5.7 and
Lemma 12.2.

Theorem 12.4. Put co =0, ¢c; =1 and ¢;j € C\ {0} for j =3,...,p—1. By the
transformation

P p—1
RAd(xAOvl = £)A“) o RAd(al—Zizo Ak,l) o RAd(x—Ao,l I - E)w,1>
j=1 K j=1 €
the Riemann scheme of a Fuchsian ordinary differential equation and its connection

coefficient change as follows:

r=¢ (j=0,...,p—1) 00
{Am} = {[ g, } (mj,v) } 0<j<p = [)‘jvl](mall) [Ap’l](mm)
1<v<n; )\j,l/ (mj0) Ap’y](mpyy)
= { A} = {[Aé,uhm;,»} 0<i<p
1<v<n;
r=¢ (j=0,...,p—1) i
= [)‘j,l](7nj,1—d) [>\p,1 -2 ZZ:O Ak,1 + 2](mp,1—d)

N + k0 Mt = Uems)  Pow = 2k Mt + U,
with
d=mo1+---+mp1— (p—1)ordm,

m;’l,:mj,l,—dé,,’l (j=0,....p, v=1,...,n;),

Noa=Xa (G=0,...,p=1), X, 1 ==2X1— =2 11— M1 +2,
Niy =X+ doa+ A1+ 1 -1 (G=0,...,p—1, v=2,...,n),
Apw = Apw — Ao — = Ap1 + 1

and if mo n, =1 and ng > 1 and n; > 1, then

(12.8) A0 A1) _ c(Ao,n0 ~* A1y )

T(None — Aot + DTN = An) TAome — Aot + DI (AL — Avm,y )
Applying the successive reduction by 9,4, to the above theorem, we obtain
the following theorem.

Theorem 12.5. Suppose that a tuple m € P is irreducibly realizable and mg ,,, =
M1, =1 in the Riemann scheme (12.1). Then the connection coefficient satisfies

C()\Omo W>\1,n1)
E()‘(K)O no W)‘(K)l n1)
B H (AE)o,no — M(K)o,eeryo +1) - T(A(k) Z(k)l = Ak)1n,)
k+1)0no—)\(k+1)oe +1) - T(Ak+ D1y, — Ak +1D1n,)

under the notation in Definitions 5.12. Here ¢(A(K)on, ~> A(K)1,n,) is a corre-
sponding connection coefficient for the equation (0K, Pm )v = 0 with the funda-
mental spectral type fm. We note that

(A + Dong = Ak + D)o,ekyo + 1) + (ME+ D1 egry, — Ak + D1y

(12.9) = (A(F)o.no — A(F)o,ekyo + 1) + (AE) 1000y, — A(K)1.m,)
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fork=0,..., K —1.

When m is rigid in the theorem above, we note that ¢(Ag o (K)~ A1 pn, (K)) =1
and we have the following more explicit result.

Theorem 12.6. Let m € P be a rigid tuple. Assume mon, = Mip, =1, ng > 1
and ny > 1 in the Riemann scheme (12.1). Then

no—1 ni—1

II TCome = 2ow +1) - T T = Arny)
(12.10) C(A0m0 2 Atny ) = pff
AMK);, Z(K)J
[T 0w TI(r- —)
m '&m’ =m Jj=2
mo no_m/l/nl =1
(12.11) > oml, = (= myy —850(1 —nody,,) + 811 —nady,,)
m'@m”:m
M0,mg =T my =1 (1 <v<n;, 0<5< p)

under the notation in Definitions 4.12 and 5.12.

ProoF. We may assume m is monotone and ord m > 1.
We will prove this theorem by the induction on ord m. Suppose

(12.12) m=m'om" with mg, =mj, =1
If Oy m’ is not well-defined, then
(12.13) ordm’ =1 and m;.)l =1 for j=1,2,...,p
and 1+my1+---+myp1 — (p—1)ordm = 1 because idx(m, m’) = 1 and therefore
(12.14) di(m) =mg .
If O1m” is not well-defined,

ordm” =1 and m/, =1 for j=0,2,...,p,
(12.15) ! / P
dl(m) = le.

Hence if di(m) < mp; and di(m) < mq,1, ym’ and 9ym” are always well-
defined and 9ym = 9ym’ G dym” and the direct decompositions (12.12) of m
correspond to those of Oym and therefore Theorem 12.4 shows (12.10) by the in-
duction because we may assume dp (m) > 0. In fact, it follows from (5.15) that the
gamma factors in the denominator of the fraction in the right hand side of (12.10)
don’t change by the reduction and the change of the numerator just corresponds
to the formula in Theorem 12.4.

If di(m) = mg1, there exists the direct decomposition (12.12) with (12.13)
which doesn’t correspond to a direct decomposition of d;m but corresponds to the
term I'([{Am/ }]) = T(Aony +A11+ - +Ap 1) = T(AG,, —Ap1+1) in (12.8). Similarly
if d1(m) = mq 1, there exists the direct decomposition (12.12) with (12.15) and it
corresponds to the term I'([{Am/ }) =T(1 — {Am~}) =T —Xoj1 — A1n, — A21 —

— A1) = (M1 — A ,,,) (cf. (12.21)). Thus Theorem 12.4 assures (12.10) by
the induction on ord m.
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Note that the above proof with (12.9) shows (12.18). Hence

no—1 ni—1

Yoo = D0 Comg = Aow + D+ D7 (A = Ay
m’'®&m’’ =m v=1 v=1
Mo,ng="M1,n, =1 no—1 ni—1
=(no — 1) + (no — L)Ao,ne — Z Aow + Z Ay
p nj—0j1
nl - 1 (Z mj,l,)\j,l, —-n -+ 1)
j=0 v=1
’nofl
= (no +ny — 2))‘0,n0 + Z ((m — 1)m07y — 1))\071,
v=1
ni—1 P n2
+ Z ((m — l)ml’,, + 1))\1’,/ + Z Z(nl — l)mj’,,)\j,l,
v=1 Jj=2v=1

—+ (TLO+TL1 72) — (n1 — l)ordm.

The left hand side of the above first equation and the right hand side of the above
last equation don’t contain the term A ,, and therefore the coefficients of )A;, in

the both sides are equal, which implies (12.11). O
Corollary 12.7. Retain the notation in Theorem 12.6. We have

(12.16) #m';m' om” =m with mg,,, =my, =1} =no+n -2,
(12.17) Z ordm’ = (n; — 1) ord m,

m éBm =m
"
mo np=M1,ny =1

no—1 ni—1
(12.18) > {0 =D Qomo = Aow + 1)+ > (A — Ay
m’ ®&m’ =m v=1 v=1

’ o _
mO)WO —anl =1

Let ¢(Ao,ng + t~> A1n, —t) be the connection coefficient for the Riemann scheme
{[)‘j,v + t(éj,06V7n0 - 51'715”7”1)}(7%,1/)}' Then

p—1
(12.19) Jim e(0: 0 1 LAy, — 1) = I1a- ;) st
j=2

Under the notation in Theorem 10.13, we have

(12.20)
H P 3) = 1 L (], + (=1)" 01 (AN Jam)).
m ‘'&m’ =m m/EA(m)
mo 'no_m,l/nl 1 mo ng +my, np =1

PrOOF. We have (12.18) in the proof of Theorem 12.4 and then Stirling’s for-
mula and (12.18) prove (12.19). Putting (j,7) = (0,n¢) in (12.11) and considering
the sum " for (12.11) with j = 1, we have (12.16) and (12.17), respectively.

Comparing the proof of Theorem 12.6 with that of Theorem 10.13, we have
(12.20). Proposition 7.9 also proves (12.20). O

Remark 12.8. i) When we calculate a connection coefficient for a given rigid
partition m by (12.10), it is necessary to get all the direct decompositions m =
m’ © m" satisfying mg ,, = mY,, = 1. In this case the equality (12.16) is useful
because we know that the number of such decompositions equals ng+n; —2, namely,
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the number of gamma functions appearing in the numerator equals that appearing
in the denominator in (12.10).

ii) A direct decomposition m = m’ @ m” for a rigid tuple m means that
{@m’, am~ } is a fundamental system of a root system of type As in Ry + Raynr
such that oy = am + am and Q' O

(o |om’) = (amr|amr) = 2, \ i
(am’|am"> =-1L oy
iii) In view of Definition 4.12, the condition m = m’ @ m” in (12.10) means

(12.21) [{Am } + [{Amr }] = 1.

Hence we have

c()\O,no W)\l,nl) : C()\l,nl “’"’)\O,no)

H sin(|{Am }|7)

m’@m”:m

(1222) m{),nO:m,l,,nl:l
= ng—1 ni—1 ’
H Sin()\o,y — )\1,1,)7T : H Sin()\l,u - )\l,nl)ﬂ—
v=1 v=1

iv) By the aid of a computer, the author obtained the table of the concrete
connection coefficients (12.10) for the rigid triplets m satisfying ord m < 40 together
with checking (12.11), which contains 4,111,704 independent cases (cf. §13.11).

v) Is there an interpretation of A(K); ¢(x); in Theorem 12.6 as (12.20)7

12.2. An estimate for large exponents

The Gauss hypergeometric series

L wala+1) - (a+k—1)-BB+1)-(B+Ek—1)
F(Oé,ﬂa%x) 7]; ’Y(’Y+1)"'(’Y+k_1)'k! 2

uniformly and absolutely converges for
(12.23) reD:={xeC;|z| <1}

if Rey > Re(a + ) and defines a continuous function on D. The continuous
function F(a, 8,7 + n;x) on D uniformly converges to the constant function 1
when n — 400, which obviously implies

(12.24) lim F(a,8,7v+n;1) =1
n—oo

and proves Gauss’s summation formula (0.3) by using the recurrence relation

F ;1 — —
We will generalize such convergence in a general system of ordinary differential
equations of Schlesinger canonical form.

Under the condition

a>0,b>0and ¢c>a+0d,

the function F(a,b,c;z) = Y 7o, %xk is strictly increasing continuous func-

tion of x € [0, 1] satisfying

L(e)T'(c—a—0)
I'(c—a)l'(c—10)
and it increases if a or b or —c increases. In particular, if

0<a<N,0<b<Nandc>2N

1< F(a,b,c;x) < F(a,b,c;1) =
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with a positive integer N, we have

0< F(a,b,c;z)—1

I'(c)T'(c — 2N) _ (c=N)n

N

_(e-N N (1N
~—\¢—2N o c— 2N
N \"' N
c—2N c—2N’

<n(1+

Thus we have the following lemma.

T(c—N)T(c—N) = (c—2N)y :Hc—]:f—u_l

v=1

)

Lemma 12.9. For a positive integer N we have

N N
12.26 F r) =1 < (14— -1
(12.26 Flasyio) -1 < (14 o)
if
(12.27) r€D, |a] <N, |[B|<N and Revy>2N.
ProOOF. The lemma is clear because
\2: o < S Uk o o), 51, e — 23 ) -
kk' — (Rey)rk
For the Gauss hypergeometric equation
z(1—az)u”" + (v = (a+ B+ 1)z)u' —aBfu=0
we have
(zu) =u' + zu” = ! + (ot B+ Lz = y)u'+abu
1—=x
_af 1 vy a+5+1 ,
_l—xu+<x x(l—:z:)+ 1—2z )xu
_aB L (l=q atBon+l)
1—-=z T 1—-=z
Putting
~ () u
(12.28) U= <u1> = <£2,>
we have
0 o 0 0
(12.29) Lo\ 1—v)_ \B a+p-~+1
u = u+
z 1—=x
In general, for
, A B
v=—v+ v
z 1-—
we have
20’ = Av+ — By
1—x

= Av+z(av' + (B — A)v).
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Thus

Tu) = oy,
zuy = (1 —y)uy + z(zul + Bug + (o + B)uq)

(12.30) {

and the functions

Ug = F(Q»B»Wﬁf)a
12.31
( ) ulng(a—i—l,B—&—l,v—i—l;x)

satisfies (12.30).

Theorem 12.10. Let n, ng and ny be positive integers satisfying n = ng + nq

(0 A\ , (0 0
and let A = o 4)2=\5 B € M(n,C) such that Ay, By € M(ny,C),

Ao € M(ng,n1,C) and By € M(n1,n9,C). Let D(0,m) = D(0,mq,...,my,) be
the diagonal matriz of size n whose k-th diagonal element is my_n, if k> ng and
0 otherwise. Let u™ be the local holomorphic solution of the system

A—D(0,m) B — D(0,m)
U = u+ U

T 1—=x

(12.32)

at the origin. Then if Rem, are sufficiently large for v = 1,...,nq1, the Taylor
series of u™ at the origin uniformly converge on D = {x € C; |z| < 1} and for
a positive number C, the function u™ and their derivatives uniformly converge to
constants on D when min{Remy,...,Rem,, } — +o0o with |A;j| + |Bi;| < C. In
particular, for x € D and an integer N satisfying

ny ni no ni
(12.33) > (Aol <N, D (Al <N, D I(Bo)al <N, D [(B)aw| <N
v=1 v=1 v=1 v=1

we have

2N (N 4+ 1)2

min Rem, —4N —1
1<v<n;

(12.34) 1r£nya%<n‘u,/ () —u

S
e
AN
=
o
"
=

:
e

if Remy, >5N+4 forv=1,...,n;.
PrOOF. Use the method of majorant series and compare to the case of Gauss

hypergeometric series (cf. (12.30) and (12.31)), namely, limc— o0 F(a,b,c;2) = 1
on D with a solution of the Fuchsian system

U = —u-+

/U/,
1—2

(0 A (0 0 (v
=) o= oa) ()

zvy = Agvr,
.’L"Ull = $2v/1 + (1 — x)Al’Ul + xBovg + xB1vy

= Ajv + .’1?(3?1}1 + Bovg + (Bl — Al)vl)
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or the system obtained by the substitution A; — A; — D(m) and B; — B; — D(m).
Fix positive real numbers «, § and ~y satisfying

ni no

a>Y (Al (1<i<ng), B> |Bo)wl (1<i<m),
v=1 v=1

n
at+p> Z|(B1 = A1)l (1 <4< ng),
v=1
n1
v =min{Remy,...,Remy, } —21maX [(A1)i| — 1> a+ 6.
1

<i<ng
=

Then the method of majorant series with Lemma 12.11, (12.30) and (12.31) imply

um < ax1<u<n, [0 (0)] - (e, B, 752) (I <i<mng),
‘ % ‘maxi<y<p, [UP0)] - Fla+ 1,84+ 1, v+ 1;2) (ng<i<n),

which proves the theorem because of Lemma 12.9 with « = 5 = N as follows. Here
Ziozo a,r’ K ZEOZO b,x¥ for formal power series means |a,| < b, for v € Z>.

Put m = min{Remy,...,Remy,, } —2N —1 and L = maxi<,<n, |u2*(0)|. Then
y>m—2N —1andif 0 <i < nyg and z < D,

|u(z) — u™(0)] < L+ (F(a, 8,7 |2]) — 1)

= L<(” %)N - 1)

N N-1 N2 LoN-1 N2
§L<1+7 ) _ < .
m—4N —1 m—4N —1 m—4N — 1
Ifng<i<nandx €D,
|u§“(x)|§§-LF(@+1,B+1,7+1;|33|)
LN N+1 N+1 LN(2N+ 41
< —FF— (1+_7+) +1 <Q~
m—2N —1 m—4N — 3 m—2N —1 O

Lemma 12.11. Let A € M(n,C) and put

(12.35) |A| := giagxn; |Aiy|.

If positive real numbers mq, ..., m, satisfy

(12.36) Momin, := min{my, ..., m,} > 2|4|,

we have

(12.37) |(kI, + D(m) — A) 7| < (k4 mpin — 2JA)Y (Vk > 0).

PROOF. Since

|(D(m) = A) ™| = |D(m) " (I, — D(m) " 4)7!|
= ‘D(m)_1 Z(D(m)_lA)k‘
k=0

2/A
<y (1 220) < (i — 200,
Mmin

we have the lemma by replacing m, by m, + k forv=1,...,n. O
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12.3. Zeros and poles of connection coefficients

In this section we examine the connection coefficients to calculate them in a
different way from the one given in §12.1.
First review the connection coefficient ¢(0 : Mgz ~ 1 : Ay 2) for the solution
z=0 1 00
of Fuchsian differential equation with the Riemann scheme ¢ Ao1  Ai1 A2
Aoz A2 A2

Denoting the connection coefficient ¢(0: g 2~>1: A1 2) by c({ ig; - ii; iz; }), we

have
o2 _ Ao,1 A1 Az A1,2 Xo,1 A2 A2 A1
(1238) Yo = C({ Ao,2 > Ar2 Az2 })ul + C({ Ao,2 ~ A1 A2 })ul :
o Aot Ana Az2n ) = ¢( Xo,i—Xo2  AL1—Ar2 Ao2tAr 2t Az )
(12.39) A0,2 ~ Ar2 A2z B 0 ~ 0 Xo,2+A1 24+ A2 2

=F(Xo2+ A2+ A21,00,2 + A2+ A22, Aoz — Ao + 15 1)
under the notation in Definition 12.1. As was explained in the first part of §12.2,
the connection coefficient is calculated from

(12.40) lim o({ 3 h =1

s 00 Aoz~ Al

and

C({ Ao,1 A1 A2 })
(12.41) X0,2A1,2 Az2 (Mo + A+ A22) (Mo + A+ A2n)
. C({ Xo,1—1 Ar;1+1 Ao }) o ()\0,2 — )\071 + 1)()\1,1 — )\172)

Ao,z ~ A2 A22

The relation (12.40) is easily obtained from (12.39) and (12.24) or can be reduced
to Theorem 12.10.

We will examine (12.41). For example, the relation (12.41) follows from the
relation (12.25) which is obtained from

Yy =1-@2y—a-p-1z)F(a,B,v;2) + (v — a)(y = BzF (e, 8,7 + L 2)
=70y = DA —=z)F(a, 8,7 — 1;2)
by putting = 1 (cf. [WW, §14.1]). We may use a shift operator as follows. Since

d
L p(a,pvia) = LFR@+1,8+ 1,7+ 152)
dx ~

1— —a— 1— 0 —a—
:C({ va“r 3 B%})%U?JW({ ova—a—ﬁg})%uy op

and
%u?fo‘fﬁ =(a+B-7)1—-2)" "1 mod (1-2z)" POy,
we have
af — 0 a+1 1—y 0 Iy
76({ 0 ~ y—a—B—1 B+1 }) =(a+p~- 'Y)C({ 0 ~ y—a—B8 B })a
which also proves (12.41) because
C( Ao,1 A1,1 A2 ) C( A0,1— 0,2 0 Ao,2+A1,1+A2 1 )
Ao,z ~ A1z Az2 . 0 ~ A1,2—A1,1 Ao2+A11+A2 2
C( Ao,1—1 A1,1+1 A2 ) o C( Ao,1—Ao,2—1 0 Ao,2FA1,2+ A2 1+1 )
Aoz~ A2 Ag2 0 ~ Ar2—A1,1—1 Xo2+ A1, 2+ A2 241

Furthermore each linear term appeared in the right hand side of (12.41) has own

meaning, which is as follows.

Ao,1 A1,1 A2;1 })

Examine the zeros and poles of the connection coefficient c({ Noa = A2 Nan

We may assume that the parameters );, are generic in the zeros or the poles.
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Consider the linear form Ag 2 + A1,1 + A22. The local solution ugw correspond-
ing to the characteristic exponent Ag 2 at 0 satisfies a Fuchsian differential equation
of order 1 which has the characteristic exponents Az 2 and A;,; at co and 1, respec-
tively, if and only if the value of the linear form is 0 or a negative integer. In this

case c({ Ao A Az }) vanishes. This explains the term Ag 2 + A1,1 + A2 in the

Ao,z ~ A12 A2
numerator of the right hand side of (12.41). The term Ag 2 + A1,2 + A2 2 is similarly
explained.
The normalized local solution uéo’z has poles where Ao ;1 — Ag2 is a positive
integer. The residue at the pole is a local solution corresponding to the exponent

Ao,2. This means that c({ ig; - ii; ii;
integer, which explains the term Ag 2 —Ap,1 +1 in the denominator of the right hand
side of (12.41).

There exists a local solution a()\)uil’1 + b()\)ui‘l‘(" such that it is holomorphic

for A;, and b(\) has a pole if the value of A\ ; — A 2 is a non-negative integer, which
Ao,1 A1,1 A1
Ao,z ~ A12 A2z

}) has poles where Ag .1 — Ag,2 is a positive

means c({ }) has poles where A1 2 — A1 1 is non-negative integer. This

explains the term A; 1 — A1 2 in the denominator of the right hand side of (12.41).
These arguments can be generalized, which will be explained in this section.
Fist we examine the possible poles of connection coefficients.

Proposition 12.12. Let Pu = 0 be a differential equation of order n with a regular

singularity at x = 0 such that P contains a holomorphic parameter A = (A1,...,AN)
defined in a neighborhood of \° = (XS,...,\%) in CN. Suppose that the set of
characteristic exponents of P at x = 0 equals {[A]¢m,), -5 [AN](my)} with n =

mi+---+mpy and

(1242) A=A = A €Z>0 and \] = \] ¢ Z if 1<i<j<N and j# 2.
Let u; ., be local solutions of Pu = 0 uniquely defined by

(12.43) wj, = 2N mod 2NTMIO, (j=1,... ,mj andv=0,...,m; —1).

Note that uj, =<0 ki (NN TR with meromorphic functions ay, j,,(X) of A
which are holomorphic in a neighborhood of \° if Ao — Ay # A3 1. Then there exist
solutions v;, with holomorphic parameter X in a neighborhood of \° which satisfy
the following relations. Namely

(12.44) vjy=1uj, (B<j<Nandv=0,...,m;—1)

and when A +myi > A§ + ma,

Vi = Uiy 0<v<m),
(12.45) _ U2v 7 Ui, by, i1 0<
2, v — ° - I\ o <v< m2)
Al — Ao+ /\2,1 m2+)\;1<i<m1 AL — A+ )\271
AAH+T L ATHEASL AT AS A ma—1 A4 my -1
with the diagram o . o o . °
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which illustrates some exponents and when A +my < A§ 4+ ma,

(12.46)
U, = U2,y (0 <v < mg),
by.ius.;
Vi =Ury, — Z S L - (0 < v <min{m, A5 ,}),
’ ’ A A1 — A2+ A9, ’
max{O,mlf)\gyl}S’L<m2 ’
ULy — U2p—2g, by iz i o
Vi = _—O’ - Z ﬁ (/\2,1 <v< m1)
AL = Az + >\2;1 max{0,m1—A3 ; }<i<ma At — A2+ )\271
SN T AN A -1
with o O O . o
5 Ag=Ag+mi—1 Xg+my—1

O O

and here b, ; € C. Note that v;, (1 <j <N, 0<v <m;) are linearly independent
for any fixed X in a neighborhood of \°.

PROOF. See §2.1 and the proof of Lemma 4.5 (and [O3, Theorem 6.5] in a
more general setting) for the construction of local solutions of Pu = 0.

Note that u;, for j > 3 are holomorphic with respect to A in a neighborhood
of A = \°. Moreover note that the local monodromy generator M of the solutions
Pu = 0 at = 0 satisfies Hj-vzl(Mo — e2™V=TX) = (0 and therefore the functions
(A1 = A2 = A3 1)uj,, of A are holomorphically extended to the point A = \? for
7 =1 and 2, and the values of the functions at A = \° are solutions of the equation
Pu =0 with A = A°.

Suppose A +mq > A§+my. Then u;, (j = 1,2) are holomorphic with respect
to A at A = A\° and there exist b;, € C such that

U2,u|>\=/\D = Ul,v—i-/\g)l |)\=)\° + Z bv,i (ul,i|/\=)\°)
ma+A3  <v<my

and we have the proposition. Here
U2y |r=re = ™2+ Z bl,,i;v’\“” mod x’\Hml(’)o.
m2+A§Y1§u<m1
Next suppose A +m1 < AS + my. Then there exist b;,, € C such that
(A1 = A2+ A3 )u1) |r=ne = Z by,i (Uz,i)x=x°)

max{0,m1—Ag ; }<i<ma

(0 <v< min{mh )\3,1})’

Uly|r=re = Z bui(uzilx=xo) (A5, <v <my)

max{0,m1—Ag ; }<i<mg
and we have the proposition. O

The proposition implies the following corollaries.
Corollary 12.13. Keep the notation and the assumption in Proposition 12.12.

i) Let W;(\ x) be the Wronskian of wji,...,Ujm, forj=1,...,N. Then
(A1 — A2+ A3) Wi () and W;(X) with 2 < j < N are holomorphic with respect
to A in a neighborhood of \° by putting

(12.47) (y = max{0, min{my, ma, A3 1, A3 ; +ma —my}}.



132 12. CONNECTION PROBLEM

ii) Let
N my
w = Z Z @k (AU 0k
j=1v=1
be a local solution defined in a neighborhood of 0 with a holomorphic A in a neigh-
borhood of \°. Then

(= A +28,1)7 det (a7 () 1<om,
1<k<m;
with
lyq = maX{O,min{ml — )\gyl,mg}},
{32 = min{my, ma},
l;=0 (3<j<N)
are holomorphic with respect to X in a neighborhood of \°.

PROOF. i) Proposition 12.12 shows that u;, (2 < j < N, 0 < v < m;) are
holomorphic with respect to A at A°. The functions u; ,, for min{m;, /\371} <v<m
are same. The functions u; ,, for 0 < v < min{m;, A ; } may have poles of order 1
along A2 — A1 = AZ; and their residues are linear combinations of U27i|)\2:)\1+/\g‘1
with max{0,m1 — A§ 1} <i < my. Since

min{#{v; 0 <v <min{my, A }}, #{i; max{0,m1 — A3} <i <my}}
= max{O,min{ml, A3 1, M2, Mg —my + /\g,l}},

we have the claim.
ii) A linear combination of v;, (1 < j < N, 0 < v < m;) may have a pole of
order 1 along A\; — A2 + A3 ; and its residue is a linear combination of

(w1, + > buiag i) o=nag, (A3 < v <minfmy,my +A3,}),
m2+)\g71§i<m1

(uz, + Z bu+)\‘2',1,iu2,i)|)\2:)\1+/\371 (0<v<mg—A3,),

max{0,m1—Ag ; }<i<ma

E by iug

max{0,m1—A3 ; }<i<ma

A2=A1+A3 | (O <v< min{mla )‘g,l})

Since
#{v; A3, <v <min{my,ms + A3} } = max{0, min{my — A3, m2}},
#{r;0<v<my — A3}
+ min{#{i; max{0,m1 — X3 1} <i <mao}, #{v; 0 <v <min{my, A3 ,}}}
= min{my, ma},
we have the claim. (]
Remark 12.14. If the local monodromy of the solutions of Pu = 0 at x = 0 is

locally non-degenerate, the value of (A — Az + A3,)“Wi(X) at A = A° does not
vanish.

Corollary 12.15. Let Pu = 0 be a differential equation of order n with a regular
singularity at © = 0 such that P contains a holomorphic parameter A = (A1,...,An)
defined on CN . Suppose that the set of characteristic exponents of P at x = 0 equals
{[Al](ml), ol [/\N](mN)} withn = my+---+my. Letu;, be the solutions of Pu =0
defined by (12.43).
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i) Let Wi(z, \) denote the Wronskian of u11,...,U1,m,. Then
Wl (1’, )‘)
N
Hj:2 HO§V<min{m1,mj} F(Al - /\j +my — V)

is holomorphic for A € CN.

(12.48)

ii) Let
N mj
(12.49) ) =D Ny 1<k <m)
j=1v=1

be local solutions of Pu = 0 defined in a neighborhood of 0 which have a holomor-
phic parameter X\ € CN. Then

det (al,u,k()‘)> 1<v<m;
(12.50) N T
IT;= H1§u§min{mumf} POy = A —mu+v)

is a holomorphic function of A\ € CN.

PROOF. Let A?; € Z. The order of poles of (12.48) and that of (12.50) along
)\j - /\1 = /\?’1 are
#{v; 0 <v <min{my,m;} and my; —AJ; —v <0}
= ##{v; max{0,m1 — A7} <v < min{m,m;}}

= max{0, min{my,m;, AJ 1 AT +my — mi}}

and
#{v; 1 <v <min{my,m;} and A7, —m; +v <0}
= max{(), min{mi, m;, mi — )\]0471}},
respectively. Hence Corollary 12.13 assures this corollary. O

Remark 12.16. The product of denominator of (12.48) and that of (12.50) equals
the periodic function

min{my,m;}

T min{mi,m;}
H(_l)[ ’ ]+1(Sin(A1 *)\j)’fr) '

Jj=2

Definition 12.17 (generalized connection coefficient). Let Pyu = 0 be the Fuch-
sian differential equation with the Riemann scheme

x=co=0 cp=1 Co ¢y =0
(12.51) [)‘071}.(7%,1) [Al,l]le,l) [>\2,1]'(m2,1) . [)‘pyl].(mp,l)
[)\o,no]'(mo,no) [>\1,’n1].(m1m1) [A27n2].(7"2,n2) o [)‘p,np].(mp,np)
We assume ¢, ¢p1 ¢ [0,1]. Let u(;\?l;y+k (1 <v<mng 0<k<mg,) and
“i\,lu’VJrk (1 <v<mng, 0<k<m,) belocal solutions of Pyu = 0 such that

12.52
( ) u bt = (1 — p)rrwtk mod (1 — x)*wtmir O,

1,v

Ao,vt+k
{UO,OV + = provtk mod £L'>‘O="+m0="00,
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They are uniquely defined on (0,1) C R when A;, — \;,» ¢ Z for j = 0, 1 and
1 <v < v <nj. Then the connection coefficients cZ’]’f (M) are defined by

!
(12.53) up =3 e

v k!

Note that ¢, ,’Ck (A) is a meromorphic function of A when m is rigid.
Fix a positive integer n’ and the integer sequences 1 < 1) < 1§ < --- <12 <,
and 1 Sz/ll <1/21 < - <I/i, < ny such that

(12.54) n' =m0+ M0 =my b+ My,

Then a generalized connection coefficient is defined by

(12.55)
C(O . [/\07V10](m07y?), ey [)\071’2](”10,,,2) ~ 1 [)‘17’/11]("11,”%)’ ey [/\1 o1 ](mlyyl/))

o

_ vk
T det<cu,k ()\)) VE{V?,...,VQ}, 0<k<mg,, °*
V’E{ull,...,ui,}, 0K <my ./

The connection coefficient defined in §12.1 corresponds to the case when n' = 1.

Remark 12.18. i) When mg; = mq 1, Corollary 12.15 assures that

¢(0: [Mot)(moes) ~> 1 [A11)(mes))

IT TOor—Xoj+mor—k)- IT TOw = Xa—mia+k)
2<j<no 2<j <y
0<k<min{mg,1,mo,;} 0<k<min{mi 1, m1 ;}

is holomorphic for A;, € C.

ii) Let vy,...,v, be generic solutions of Pyuu = 0. Then the generalized con-
nection coefficient in Definition 12.17 corresponds to a usual connection coefficient
of the Fuchsian differential equation satisfied by the Wronskian of the n’ func-

tions vy, ...,v, . The differential equation is of order (:,). In particular, when

n’ = n — 1, the differential equation is isomorphic to the dual of the equation
Py = 0 (cf. Theorem 4.19) and therefore the result in §12.1 can be applied to the

connection coefficient. The precise result will be explained in another paper.

Remark 12.19. The following procedure has not been completed in general. But
we give a procedure to calculate the generalized connection coefficient (12.55), which
we put ¢(\) here for simplicity when m is rigid.

(1) Let € = (€;,,) be the shift of the Riemann scheme {Ap,} such that

Gor=-1 (re{1,2,...;,n}\ {#?,...,0%}),
(12.56) G,=1  (we{1,2,....m}\{v,...,vL}),
€, =0  (otherwise).

Then for generic A we show that the connection coefficient (12.55) con-
verges to a non-zero meromorphic function &(A) of A by the shift {\y,} —
{(A+ k&)m} when Z-g 3 k — oo.

(2) Choose suitable linear functions b;(A) of A by applying Proposition 12.12
or Corollary 12.15 to ¢(\) so that e(\) := Hfil F(bi()\))_l ce(N)e(\)~tis
holomorphic for any A.
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In particular, when L = L’ = 1 and 1 = v{ = 1, we may put

no
{bl} = U {)\071 — )\07]‘ +mo1 —V; 0<rv< min{m071,m07j}}
j=2
ni
@] U {)\Lj — )\1’1 — ml,l + V3 1 S 14 S min{mlﬂl,ml,j}}.
j=2
(3) Find the zeros of e(\) some of which are explained by the reducibility or
the shift operator of the equation Pynu = 0 and choose linear functions

ci(A) of Aso that f()\) := Hf\il I'(¢;(X)) - e(A) is still holomorphic for any

A
(4) If N = N"and > ,d;(A) = >, ¢i()\), Lemma 12.20 assures f(\) = ¢(\)
and
N
(12.57) c(A) = M -¢(N)

N

12 (ei(V)
because f{ /&)6) is a rational function of A, which follows from the existence
of a shift operator assured by Theorem 11.2.

Lemma 12.20. Let f(t) be a meromorphic function of t € C such that r(t) =

f(ft(i)l) is a rational function and

(12.58) p k) =1
Then there exists N € Z>q and b;, ¢; € C fori=1,...,n such that
(12.59) bi+-4+by=c1+-+cn,
N
T+ 0b;
(12.60) () = %
[Tz Dt + )

Moreover, if f(t) is an entire function, then f(t) is the constant function 1.

PROOF. Since limg_,o, (¢t + k) = 1, we may assume

= Diatt+ed)

TLL (¢ + i)
and then )
i [yt +ce+v
7y = Lizi L= (e +n)
[Lici [L—o(t+ b +v)
Since | .
nln*—
li — =T'(z),

the assumption implies (12.59) and (12.60).
We may assume b; # ¢j for 1 <7 < N and 1 < j < N. Then the function
(12.60) with (12.59) has a pole if N > 0. O

We have the following proposition for zeros of ¢(A).
Proposition 12.21. Retain the notation in Remark 12.19 and fix X so that
(12.61) Niw =N €Z (j=0,1 and 0<v <v <ny).

i) The relation c¢(X) = 0 is valid if and only if there exists a non-zero function

A k A k
v = 2 : Cuykuoo,u-‘r _ 2 : xl/,kullwu-i_

ve{v?,... 19} ve{l,..,ni\{vi,...v},}
0<k<mo,, 0<k<my .
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on (0,1) with Cyx, C,, , € C.

ii) Fiz a shift e = (¢;,,) compatible to m and let Ry (€, X) be the shift operator
in Theorem 11.2. Suppose Rum(€, ) is bijective, namely, c¢m(e;A) # 0 (cf. Theo-
rem 11.8). Then c¢(A +¢€) =0 if and only if c(N\) =0

PROOF. Assumption (12.61) implies that {uéo"’+k} and {ui‘l’”Jrk} define sets

of basis of local solutions of the equation Pyuu = 0. Hence the claim i) is clear from
the definition of ¢(\).

Suppose ¢(A) = 0 and Rm(€, A) is bijective. Then applying the claim i) to
Rm(e, \)v, we have ¢(A +¢€) = 0. If Rm(e, A) is bijective, so is Rm(—€, A + €) and
c¢(A+¢€) = 0 implies ¢(A\) = 0. O

Corollary 12.22. Let m = m’' ® m” be a rigid decomposition of m such that

(12.62) S>ooomp, > Y. mh,.

Then T'([{A\m }]) - ¢(A) is holomorphic under the condition (12.61).

PROOF. When |{Am}|=0, we have the decomposition Py, = PuyPm and
hence ¢(A) = 0. There exists a shift e compatible to m such that

P nj
’ _
E g m; €50 = 1.

j=0v=1
Let A be generic under |[{Am}| =0 and [{Am'}| € Z\ {0}. Then Theorem 11.9) ii)
assures ¢m(€; ) # 0 and Proposition 12.21 proves the corollary. O

Remark 12.23. Suppose that Remark 12.19 (1) is established. Then Proposi-
tion 12.12 and Proposition 12.21 with Theorem 11.8 assure that the denominator
€Y
c(c)\+€)
tain linear functions of A and therefore (12.57) is valid with suitable linear functions

b;i(M\) and ¢;(\) of A satisfying Zf\;l bi(\) = Zf;l ci(N).

and the numerator of the rational function which equals are products of cer-

Example 12.24 (generalized hypergeometric function). The generalized hyperge-
ometric series (0.7) satisfies the equation P, («; 8)u = 0 given by (13.21) and [Kh,
§4.1.2 Example 9] shows that the equation is isomorphic to the system of Okubo
normal form

. B 1
0 a2 0 1
du a3z, 1 1 ~
(12.63) (x - )— = o i
dx : . .
Qn—1,1 n—3 1
0 Qn1 —Cp—1 —Cp_2 =+ —ca —ci+(n—2)
with
ul n n
u=| |, u=u and E o, = E B,.
Up, v=1 v=1

Let us calculate the connection coefficient
C(O:O ~ 1:_Bn) = Erlrlo(]'_x)B”nanl(ala ceey Qg ﬁla T 7577.71; $) (Re Bn > 0)

Applying Theorem 12.10 to the system of Schlesinger canonical form satisfied by
Ad((1 — z)P»), the connection coefficient satisfies Remark 12.19 i) with ¢(\) = 1,
namely,

(1264) lim C(OIO ~ 1Z_Bn)|aj»—>aj+k, Bj—Bj+k (1<j<n) = 1.

k—4o00
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Then Remark 12.19 ii) shows that H;-lzl ['(B;)-c(0:0 ~ 1:—4,,) is a holomorphic
function of (a, 8) € C**+(n=1),

Corresponding to the Riemann scheme (0.8), the existence of rigid decomposi-
tions

n n n—1 i n—1 i

~ ~

~ ~  ~ —~
1.--1;n-1151---1=0---01;10;0---1---01---10;n —11;1---0---1
for i = 1,...,n proves that [[[_, [(c;) - [[j—; T(B;)~" - ¢(0:0 ~ 1:—f,) is also
entire holomorphic. Then the procedure given in Remark 12.19 assures

(12.65) c(0:0 ~ 1:—f,) = w

| [(a;)

We can also prove (12.65) as in the following way. Since

iF(oz;,é’;ac) = uF(al +1,..,an+ 1814+ 1,..., 81 + L)
dx B Bna
and
L—a) 1+ -0)0) = (1 -2) " (14 (- 2)0)),
we have

c(0:0~ 1:=0y) _ap...op

C(O:OW 1:_6n)‘ajr—>aj+1, Bj—B;+1 Br-.. -
which proves (12.65) because of (12.64).

A further study of generalized connection coefficients will be developed in an-
other paper. In this paper we will only give some examples in §13.5 and §13.7.5.






CHAPTER 13

Examples

When we classify tuples of partitions in this chapter, we identify the tuples
which are isomorphic to each other. For example, 21,111,111 is isomorphic to any
one of 12,111,111 and 111,21, 111 and 21,3, 111, 111.

Most of our results in this paper are constructible and can be implemented in
computer programs. Several reductions and constructions and decompositions of
tuples of partitions and connections coefficients associated with Riemann schemes
etc. can be computed by a program okubo written by the author (cf. §13.11).

In §13.1 and §13.2 we list fundamental and rigid tuples respectively, most of
which are obtained by the program okubo.

In §13.3 and §13.4 we apply our fractional calculus to Jordan-Pochhammer
equations and a hypergeometric family (generalized hypergeometric equations), re-
spectively. Most of the results in these chapters are known but it will be useful to
understand our unifying interpretation and apply it to general Fuchsian equations.

In §13.5 we study an even family and an odd family corresponding to Simpson’s
list [Si]. The differential equations of an even family appear in suitable restrictions
of Heckman-Opdam hypergeometric systems and in particular the explicit calcula-
tion of a connection coefficient for an even family was the original motivation for
the study of Fuchsian differential equations developed in this paper (cf. [OS]). We
also calculate a generalized connection coefficient for an even family of order 4.

In §13.7, §13.8 and §13.9 we study the rigid Fuchsian differential equations
of order not larger than 4 and those of order 5 or 6 and the equations belonging
to 12 maximal series and some minimal series classified by [Ro] which include
the equations in Yokoyama’s list [Yo]. We list sufficient data from which we get
some connection coefficients and the necessary and sufficient conditions for the
irreducibility of the equations as is explained in §13.9.2.

In §13.6 we give some interesting identities of trigonometric functions as a
consequence of the explicit value of connection coefficients.

We examine Appell hypergeometric equations in §13.10, which will be further
discussed in another paper.

In §13.11 we explain computer programs okubo and a library of Risa/Asir
which calculate the results described in this paper.

13.1. Basic tuples

The number of basic tuples and fundamental tuples (cf. Definition 6.15) with
a given Pidx (cf. (4.27)) are as follows.

y Pidx | o] 1[ 2] 3] 4] 5] 6] 7] 8] 9] 10] 11]
# fund. tuples | 1] 4[13[36]67[103 [ 162243 [305 [ 456 [ 578 [ 720
# basic tuples 13 [36 [ 67| 90 | 162 [ 243 | 305 [ 420 | 565 | 720
# basic triplets 9124|144 | 56| 97| 144 | 163 | 223 | 291 | 342

# basic 4-tuples 31 9|17 24| 45| 68| 95| 128 | 169 | 239
maximal order 12118 24| 30| 36| 42| 48| 54| 60| 66

= oo o
| = W =~

139



140 13. EXAMPLES

Note that if m is a basic tuple with idxm < 0, then
(13.1) Pidxkm = 1 + k*(Pidxm — 1)  (k=1,2,...).

Hence the non-trivial fundamental tuple m with Pidx m < 4 or equivalently idx m >
—6 is always basic.

The tuple 2m with a basic tuple m satisfying Pidxm = 2 is a fundamental
tuple and Pidx2m = 5. The tuple 422,44, 44, 44 is this example.

13.1.1. Pidxm =1, idxm = 0. There exist 4 basic tuples: (cf. [Ko], Corol-
lary 6.3)

Dy:11,11,11,11  Eg: 111,111,111 E7: 22,1111,1111  Ej: 33,222,111111

They are not of Okubo type. The tuples of partitions of Okubo type with
minimal order which are reduced to the above basic tuples are as follows.

Dy:21,21,21,111  Eg: 211,211,1111  Er: 32,2111,11111  Eg: 43,322,1111111

The list of simply reducible tuples of partitions whose indices of rigidity equal
0 is given in Example 6.18.

We list the number of realizable tuples of partitions whose indices of rigidity
equal 0 according to their orders and the corresponding fundamental tuple.

[ord | 11,11,11,11 | 111,111,111 [ 22,1111,1111 | 33,222,111111 | total |

2 1 1
3 1 1 2
4 4 1 1 6
5 6 3 1 10
6 21 8 5 1 35
7 28 15 6 1 50
8 74 31 21 4 130
9 107 65 26 ) 203
10 223 113 69 12 417
11 315 204 90 14 623
12 616 361 205 371 1219
13 808 588 256 36 | 1688
14 1432 948 517 80 | 2977
15 1951 1508 659 100 | 4218
16 3148 2324 1214 179 | 6865
17 4064 3482 1531 194 | 9271
18 6425 5205 2641 389 | 14660
19 8067 7503 3246 395 | 19211
20 12233 10794 5400 715 | 29142

13.1.2. Pidxm = 2, idxm = —2. There are 13 basic tuples (cf. Proposi-
tion 6.10, [O6, Proposition 8.4]):

+2:11,11,11,11,11
4:1111,22,22,31
5:11111,221,221
*8:22211,2222,44

¥12:2222211,444,66

Here the number preceding to a tuple is the order of the tuple and the sign “x”
means that the tuple is the one given in Example 7.51 (Dim)7 Eém), Eém) and Eém))
and the sign ”+” means d(m) < 0.

The tuples 22211,422,422 and 4211,422,2222 are of Okubo type with the
minimal order which are reduced to 2211,222,222.

3:111,111,21,21
4:1111,1111,211
6:111111,2211,33
8:11111111,332,44

*4:211,22,22,22
5:11111,11111,32

*6:2211,222,222

10:22222,3331,55
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13.1.3. Pidxm = 3, idxm = —4. There are 36 basic tuples

+2:11,11,11,11,11,11  3:
+3:111,111,111,21 +4:
4:211,211,22,22 4
6:222,222,33,51 +4
5:11111,2111,221 6
6:21111,222,222 6
6:111111,33,33,51 6
7:1111111,331,331 7
8:221111,2222,44 8
9:111111111,333,54 9
10:22222,3322,55 10
*12:33321,3333,66 14:

111,21,21,21,21

1111,22,22,22 4
:1111,211,22,31 *6
$1111,1111,1111 5
:111111,222,321 6
$111111,111111,42 6
12211,2211,222 7
12221,2221,331 8
122211,22211,44 *9
122221,333,441 10
:222211,3331,55 12
2222222,554,77 *18:

4:

22,22,22,31,31

:1111,1111,31,31
:321,33,33,33
:11111,11111,311
:111111,21111,33
:222,33,33,42
:1111111,2221,43
:11111111,3311,44
:3321,333,333
:1111111111,442,55
:22221111,444,66

3333321,666,99

13.1.4. Pidxm =4, idxm = —6. There are 67 basic tuples

+2:11,11,11,11,11,11,11 3:21,21,21,21,21,21 +3:111,111,21,21,21
+4:22,22,22,22,31 4:211,22,22,31,31 4:1111,22,31,31,31
+3:111,111,111,111 +4:1111,1111,22,31 4:1111,211,22,22
4:211,211,211,22 4:1111,211,211,31 5:11111,11111,41,41
5:11111,221,32,41 5:221,221,221,41 5:11111,32,32,32
5:221,221,32,32 6:3111,33,33,33 6:2211,2211,2211
+6:222,33,33,33 6:222,33,33,411 6:2211,222,33,51
*8:431,44,44,44 8:11111111,44,44,71 5:11111,11111,221
5:11111,2111,2111 +6:111111,111111,33 +6:111111,222,222
6:111111,111111,411 6:111111,222,3111 6:21111,2211,222
6:111111,2211,321 6:2211,33,33,42 7:1111111,1111111,52
7:1111111,322,331 7:2221,2221,322 7:1111111,22111,43
7:22111,2221,331 8:11111111,3221,44 8:11111111,2222,53
8:2222,2222,431 8:2111111,2222,44 8:221111,22211,44
9:33111,333,333 9:3222,333,333 9:22221,22221,54
9:222111,333,441 9:111111111,441,441 10:22222,33211,55
10:1111111111,433,55 10:1111111111,4411,55 10:2221111,3331,55
10:222211,3322,55 12:222111111,444,66 12:333111,3333,66
12:33222,3333,66 12:222222,4431,66 *12:4431,444,444
12:111111111111,552,66 12:3333,444,552 14:33332,4442,77
14:22222211,554,77 156:33333,555,771 *16:44431,4444,88
16:333331,5551,88 18:33333111,666,99 18:3333222,666,99
*24:4444431,888,cc

Here a,b, c,... represent 10,11,12,..., respectively.

13.1.5. Dynkin diagrams of basic tuples whose indices of rigidity
equals —2. We express the basic root ay, for Pidxm = 2 using the Dynkin dia-
gram (See (7.11) for Pidxm = 1). The circles in the diagram represent the simple
roots in supp ay, and two circles are connected by a line if the inner product of
the corresponding simple roots is not zero. The number attached to a circle is the
corresponding coefficient n or n;, in the expression (7.12).

For example, if m = 22,22,22,211, then am = 4ag + 2001 + 20011 + 2001 +
2ai3.1 + a2, which corresponds to the second diagram in the following.

The circle with a dot at the center means a simple root whose inner product
with ay, does not vanish. Moreover the type of the root system II(m) (cf. (7.47))
corresponding to the simple roots without a dot is given. The symmetry of the equa-
tion describing the isomonodromic deformation of Fuchsian systems of Schlesinger
canonical form with a given spectral type, which are induced from Katz’s operation
and Schlesinger transformations, is described by the Weyl group corresponding to
the affinization of the Dynkin diagram with simple roots in Iy (cf. §13.1.6).
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11,11,11,11,11 54;  22,22,22,211 D4+ A;

1 2
1 2 3 2 1 1 4 3 2 1
Oo—=0O O—~o0O O O—0O—-~0O
1 2
21,21,111,111  As 31,22,22,1111 Ds
2 1
4 2
2 4 6 4 2 11 2 3 4 3 2 1
o——O0—"—0O—0—0—0 O0—"O0—"O—"O—0C—"—0O—=0
922,222,211 Fe + A, 211,1111,1111 A7 + A,
1
3
1 3 5 4 3 2 1
O—O0O—"C0O0—"O—"0O—"0——=0
221,221,11111 Dy
4
2 4 6 8 6 4 2 1
Oo—O0—O0O0—"O0O—O0O—0—"0—=0
44,2222,22211 E; + A,
5
1 4 7 10 8 6 4 2
O—O0O—O0O—O—"O0O—0O—"C0O—=0
55,3331,22222 Fs
2
1 2 3 4 5 4 3 2 1
O—O0—C0O0—0O0—0—0—"—C0O—0O—=0
32,11111,111111  Aq
3
1 2 4 6 5 4 3 2 1
Oo—0O0—"C0O—0O0—O0—0—"0O—"0O—0
33,2211,111111 Ds + A,
6
4 8 1210 8 6 4 2 1
Oo—O0—"O0O0—O0—"O0O—0O0—"0O—"—0O—0

66,444,2222211 FEs + A;
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4

2 5 8 7 6 5 4 3 2 1

Oo—"OC—""C0—""COC0—""O0O0—"C0C—""C0C0—""0—"—C—=0
44,332,11111111 Do

13.1.6. Isomonodromic deformations. R. Fuchs [Fu] obtained the sixth
Painlevé equation from the isomonodromic deformation of the second order Fuch-
sian equations with 4 essential regular singular points. The other classical Painlevé
equations can be obtained from the degeneration of the sixth Painlevé equation and
this procedure corresponds to the confluence of the Fuchsian equation. Form this
view point the Garnier system corresponds to the equation describing the isomon-
odromic deformation of the Fuchsian system with the spectral type 11,11,--- 11.

Haraoka-Filipuk [HF| proved that the equations describing isomonodromic de-
formations of Fuchsian systems of Schlesinger canonical form are invariant under the
Katz’s additions and middle convolutions. Hence it is important to study isomon-
odromic deformations of Fuchsian systems of Schlesinger canonical form with the
fundamental spectral types. Moreover we ignore the Fuchsian systems with only
three singular points because of the non-existence of their isomonodromic deforma-
tions. Among them the higher-dimensional Painlevé type equations corresponding
to the following spectral types have been deeply studied (cf. [FIS]).

’ order \ index \ Painlevé type equation partitions ‘
2 [ 6-2p Garnier 11,11,---, 11 e P
m+1|2—-2m Fuji-Suzuki-Tsuda 11 1, ml
2m | 2 —2m Sasano 12™ m? m?,2m — 11
2m | 2 — 2m | matrix Painlevé (Dim)) m?,m2, m?, mm — 11

When the index of rigidity equals —2, there are 4 fundamental spectral types that we
should consider. They are in the above list and Sakai [Sa] calculates the Hamilton-
ian functions of the corresponding Painlevé type equations. Then the Painlevé type
equations corresponding to the spectral types 111,111,21,21 and 1111,22,22, 211
coincide with the Fuji-Suzuki system and the Sasano system, respectively, and the
new system called matrix Painlevé system is obtained. These systems in the above
list are now extensively studied together with their degenerations (cf. [KNS], [FIS],
[Ts] etc.). Note that Katz’s operations keeping their spectral types invariant induce
so-called Backlund transformations of the Painlevé type equations.

13.2. Rigid tuples

13.2.1. Simpson’s list. Simpson [Si] classified the rigid tuples containing the
partition 11---1 into 4 types (Simpson’s list), which follows from Proposition 6.17.
They are H,,, EOap,, EO2y,4+1 and Xg in the following table.

See Remark 7.11 ii) for [A(m)] with these rigid tuples m.

The simply reducible rigid tuple (cf. §6.5) which is not in Simpson’s list is
isomorphic to 21111, 222, 33.

’ order \ type \ name \ partitions ‘
n H, hypergeometric family 1™ 1", n—11
2m EOs, even family 12" mm — 11, mm
2m+1 | EOgpmy1 odd family 127+t mml, m+ 1m
6 X6 = 76,2 extra case 111111,222,42
6 76,6 (see §13.9.14) 21111,222,33
n P, Jordan Pochhammer | n—11,n—11,... ¢ ’P,(LTI

H, = EO,, Hy = EOy = Py, Hy = EOs.
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13.2.2. Isomorphic classes of rigid tuples. Let R;fj_)l be the set of rigid

tuples in P Put Rpeq = U, REY, RO = U2, RYY, and R = U, R™.

The sets of isomorphic classes of the elements of Rgfl (resp. Rp+1, R and R)

are denoted 7@1(3_)1 (resp. Rpt1, R(™ and R). Then the number of the elements of

R™ are as follows.

AR [#R™ || n | #RM | #R™ | o] #RMW | #R™

n
2 1 1115 1481 2841 || 28 | 114600 | 190465
3 1 2| 16 2388 4644 || 29 | 143075 | 230110
4 3 6 || 17 3276 6128 || 30 | 190766 | 310804
5 5 11 ]| 18 5186 9790 || 31 | 235543 | 371773
6 13 28 || 19 6954 | 12595 || 32 | 309156 | 493620
7 20 44 || 20 | 10517 | 19269 || 33 | 378063 | 588359
8 45 96 || 21 | 14040 | 24748 || 34 | 487081 | 763126
9 74 157 || 22 | 20210 | 36078 || 35 | 591733 | 903597

10 142 306 || 23 | 26432 | 45391 || 36 | 756752 | 1170966
11 212 441 || 24 | 37815 | 65814 || 37 | 907150 | 1365027
12 421 857 || 25 | 48103 | 80690 || 38 | 1143180 | 1734857
13 588 1177 || 26 | 66409 | 112636 || 39 | 1365511 | 2031018
14 1004 2032 || 27 | 84644 | 139350 || 40 | 1704287 | 2554015

13.2.3. Rigid tuples of order at most 8. We show all the rigid tuples
whose orders are not larger than 8.

2:11,11,11 (Hs: Gauss)

3:111,111,21 (Hs: 3F) 3:21,21,21,21 (Ps)

K

:1111,1111,31 (Hy @ 4F3)
:211,211,211 (By, Iy, ay)
:22,22,22,31 (Py4)

S

:1111,211,22 (EO4: even)
:211,22,31,31 (Iy, IT3)
:31,31,31,31,31 (Py)

S
S

S
S

:11111,11111,41 (Hs : 5F))
:2111,2111,32 (Cs)
:221,221,221 (as)
:221,32,32,41
:32,32,32,32 (Pys)
:41,41,41,41,41,41 (P5)

:11111,221,32 (EOj5: odd)
:2111,221,311 (Bs, I11,)
:221,221,41,41 (J5)
:311,311,32,41 (I, I113)
:32,32,41,41,41 (Ms)

g oo oo

(S22 NG NG BN e

6:111111,111111,51 (Hg:gF5)  6:111111,222,42 (Dg = Xg: extra)
6:111111,321,33 (EOg: even) 6:21111,2211,42 (Ej)
6:21111,222,33 (76) 6:21111,222,411 (Fy, IV)
6:21111,3111,33 (Cp) 6:2211,2211,33 (f;)
6:2211,2211,411 (Gp) 6:2211,321,321
6:222,222,321 (ag) 6:222,3111,321
6:3111,3111,321 (Bg, I13) 6:2211,222,51,51 (Jg)
6:2211,33,42,51 6:222,33,33,51
6:222,33,411,51 6:3111,33,411,51 (I, IT})
6:321,321,42,51 6:321,42,42,42
6:33,33,33,42 (Pue) 6:33,33,411,42
6:33,411,411,42 6:411,411,411,42 (Ng, IV¥)
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NN NANANANNANANNANNANANNANNANN NN

00 00 00 CO 0 0O OO 00 00 00 0O 0O 0O CO CO OO 00 00 00 00 CO 00 O 0 0 0o

13.2. RIGID TUPLES

:33,42,42,51,51 (M)
:411,42,42,51,51

:1111111,1111111,61 (Hy)
:211111,2221,52 (Dy)
:22111,22111,52 (Ey)
:22111,3211,43
:2221,2221,43 ()
:2221,322,421
:2221,331,4111
:31111,322,421
:3211,3211,421
:3211,322,4111
:2221,2221,61,61 (Jy)
:3211,331,52,61
:322,331,511,61
:322,43,52,52
:331,43,511,52
:4111,43,511,52
:421,421,52,52
:43,43,43,43 (Py7)
:331,331,61,61,61 (L)
:43,43,43,61,61

:511,511,52,52,61 (Ny)
:52,52,52,61,61,61 (My)

:11111111,11111111,71 (Hg)
:2111111,2222,62 (Dy)
:2111111,422,44
:221111,2222,611 (Fy)
:221111,332,44 (7g)
:22211,22211,611 (Gg)
:22211,3311,44
:22211,41111,44
:22211,44,53,71
:2222,32111,53
:2222,3311,521
:2222,422,431
:311111,332,521
:32111,32111,53
:32111,3311,521
:32111,422,431
:3221,3311,5111
:332,332,332 (ag)
:332,41111,422
:3221,4211,431
:3311,332,422
:3311,4211,422
:41111,4211,422
:22211,2222,71,71 (Jg)
:3221,332,62,71
:3221,44,62,62

6:321,33,51,51,51 (Kg)
6:51,51,51,51,51,51,51 (P%)

:1111111,331,43 (EOy)
:211111,322,43 (v7)
:22111,2221,511 (F)
:22111,331,421
:2221,31111,43
:2221,331,331
:31111,31111,43 (Cy)
:31111,331,4111 (B, III3)
:3211,322,331
:322,322,322 (o)
:2221,43,43,61
:322,322,52,61
:322,421,43,61
:331,331,43,61
:4111,4111,43,61 (I, IIL%)
:421,421,421,61
:421,43,43,52
:421,43,511,511
:421,43,52,61,61
:43,52,52,52,61
:43,43,61,61,61,61 (K7)

NN NNNSNSNSNSNSNSNSNSNSNSNSNSNSNSNSNSNA

:11111111,431,44 (EOy)
:2111111,332,53
:221111,22211,62 (Ej)
:221111,3311,53
:221111,4211,44
:22211,3221,53
:22211,332,521
:22211,431,431
:2222,2222,53 (fs.2)
:2222,3221,44 (fs.4)
:2222,332,5111
:311111,3221,53
:311111,41111,44 (Cy)
:32111,3221,44
:32111,332,5111
:3221,3221,521
:3221,332,431
:332,332,4211
:332,4211,4211
:3311,3311,431
:3221,422,422
:41111,41111,431 (Bg, I1,)
:4211,4211,4211
:2222,44,44,71
:3221,44,521,71
:3311,3311,62,71

00 00 00 CO 0 0 O 00 00 00 0O GO 00 CO C0 0 0 00 00 0O GO 00 O 0 0 0o

:61,61,61,61,61,61,61,61 (P;)

145
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:3311,332,611,71
:3311,44,611,62
:332,431,44,71
:332,53,53,62
:41111,44,611,62
:4211,44,611,611
:422,422,44,71
:422,431,62,62
:431,44,44,62
:422,53,53,611
:431,521,53,62
:44,5111,521,62
:44,521,53,53
:5111,521,53,611
:332,332,71,71,71
:4211,44,62,71,71

13. EXAMPLES

:3311,431,53,71
:332,422,53,71
:332,44,611,611
:41111,44,5111,71 (Ig, I1})
:4211,422,53,71
:4211,53,53,62
:422,431,521,71
:422,44,53,62
:431,44,53,611
:431,431,611,62
:44,44,44,53 (Pug)
:44,521,521,611
:5111,5111,53,62
:521,521,521,62
:332,44,62,71,71
:422,44,611,71,71

:431,563,53,71,71 :44,44,62,62,71
:44,53,611,62,71 :521,521,563,71,71
:521,53,62,62,71 :53,563,611,611,71

:53,62,62,62,62
:53,53,62,71,71,71
:611,62,62,62,71,71 (Mg)

:611,611,611,62,62 (Ng)
:431,44,71,71,71,71 (K5)
:71,71,71,71,71,71,71,71,71 (Ps)

00 00 00 0O 0 C0 00 00 00 0O 0O OO0 C0 C 00 00 00 00 0O 00 O 0
0 00 00 C0 0 00 0O 00 00 0O 00 GO O C 0 00 00 0O 0O 00 0

Here the underlined tuples are not of Okubo type (cf. (11.33)).

The tuples H,,, FO,, and Xg are tuples in Simpson’s list. The series A,, = FEO,,,
B,, Cy, Dy, E,, Fy,, Gom, I, Jn, Kn, Lam+1, M, and N,, are given in [Ro] and
called submaximal series. The Jordan-Pochhammer tuples are denoted by P, and
the series H,, and P, are called maximal series by [Ro]. The series a,, Bn, v, and
d,, are given in [Ro] and called minimal series. See §13.9 for these series introduced
by [Ro]. Then §, = P, and they are generalized Jordan-Pochhammer tuples
(cf. Example 10.5 and §13.9.13). Moreover IL,, IT;, IIT,,, IIT;, IV and IV* are in
Yokoyama’s list in [Yo] (cf. §13.9.15).

Hierarchy of rigid triplets

12,12,12 ——21,1%3, 13 ———=31,1*,1* ———>41,1°,1° ———>51,1°,1¢

1’1’1\\\\\\\\\\\\\iiiiiiiiiiéi\212\::\\\><\j;ii\221 15— =32 321,16

212,212 212 32, 213,213 42,23 16
312,221,213 321,313, 23

T

2°1,2%1,2°1 ——= 321,321, 2212

Here the arrows represent certain operations dy of tuples given by Definition 5.7.
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13.3. Jordan-Pochhammer family

We have studied the the Riemann scheme of Jordan-Pochhammer family P, in
Example 1.8 iii).
m=(p—1l,p—11,...,p—11) € PP

p+1
r=0 1= % e c,,l_l 00
[O](pfl) [O](pfl) T [O](pfl) [1 - ,UJ](pfl)
)\O‘i’ﬂ >\1+,U/ N )\p_1+u 7A07"'7)\p—17,u‘

A(m) = {ag, ap+1;j=0,...,p}
[A(m)] =177 (p - 1)
Pp:Hl@Pp—l p+1: (pf].)Hl@Hl 01
Here the number of the decompositions of a given type is shown after the decom-
positions. For example, P, = H1 ®P,_1 :p+1 = (p—1)H; & H; : 1 represents the
decompositions

v v

m=10,...,01,...,10®p—21,...,p—10,...,p— 21 (v=0,...,p)
— (p—1)(10,...,10) @ 01,...,01.

The differential equation Pp, (A, u)u = 0 with this Riemann scheme is given by

p—1
Pp, (A, 1) :==RAd(07") o RAd(x*o [Tc- cjx)*f)a
j=1
and then
Zpk )P,
(13.2)
—p+p—1\ & —pu+p-—1 _
(@)= (T ) @)+ (TP T ) )
k k-1
with

(13.3) po(x) :xH(l—cjx), q(x) zpo(ac)<—/\0—|—zl(i);m>.

It follows from Theorem 10.10 that the equation is irreducible if and only if
(13.4) N&Z (j=0,....,p—1), p¢Z and X+ -+ A1+ ué¢Z.

It follows from Proposition 11.13 that the shift operator defined by the map v — du
is bijective if and only if

(13.5) we{1,2,...,p—1} and Ao+ ---+ A1+ 4 #0.

The normalized solution at 0 corresponding to the exponent \g + p is

p—1
FXo+pn+1) . _
Ao+p 0 Ao 1— ¢, Aj _ p\u—1
) = Fo (M)/ (1 ]1:[1( o) )(q; pe-lds
F()\0+,LL+1)/ (= Ap—1)m,
T+ 1T Z Z . 1!
02 . ;”f lt/\o+m1+ +mp 1( _ )M*ldt
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o0 oo

= Z - Z (AO + 1)m1+"'+mp—1(7)‘1)m1 to (7)‘p—1)mp—1

()\0 + u+ 1)m1+...+mp_1m1! s mp_1!

m1=0 myp—1=0
C;n2 "CZL_pll Ao+pt+mitetmp o1
B 1:)‘°+“(1 QoD+ + Ap_lc,,_l)x 4. )
Ao+p+1

This series expansion of the solution is easily obtained from the formula in §3.1
(cf. Theorem 8.1) and Theorem 11.3 gives the contiguity relation

(13.6)  w @) = u) ()

A0 ot
|A1>—>A1—1 7(/\0—1—/1%0 H(@)

Ao—Ao+1 7
)\1>—>)\171

Lemma 12.2 with a = A9, b = A\; and u(z) = Hf;;(l — ¢;x)* gives the following
connection coefficients

T(Ao + p+ 1)I(—
]_i
()\04-11_‘ H C]

c(0:Xg+p~1:XA +p)=

7

1
F(>\0+ﬂ+1)/1A M1 T A
: 0) = ————~—~ tho(1 — )M TH ||17 )N dt
c¢(0: Ao+ p~1:0) L) Ao+ 1) Jo ( ) j:2( CJ)

C(Xo + 1+ DI(A1 + p)
T(u)T(Ao + A1 + o+ 1)

Here we have

(13.7) up M (z) = Y Crla — )P+ Y Cha — 1)tk

F(Xo+1,=X2, 0+ A1 + 1+ 15¢0) (p=3).

for0 <z <1withCy=¢c(0:Ag+pu~1:0)and C) =¢c(0: Ag+p~1:A + p).
Ao+n
Since kz;z is a solution of the equation Pp,(\, u — k)u = 0, we have

—1
L(Ao+p+1) /1 A Mkt ] X
13. = o1 — ) TH 1 —ct)Mdt.

When p = 3,
F(Xo+p+ DA + p— k)

= F(A 13 —A 7>\ A 1— k; .
k F(M—k)r()\0+A1+M+1_k)k| (O+ 2, Ag + 1+#+ 62)
Put

1 T p—1
(@) = I‘()/ (tAO H(1 - Cjt)’\])(x —t)hLdt = 9 Huy,
) Jo ol
p—1
ua(@) =™ [[(1 - ).
j=1
We have
Unprr = 0oy = 07107 Moy = 07 M,
Ung+ Ao = O 0N 41 A, = O o) = —pd7H oy + 207y
(13.9) = —pd~ MU+ Tus s
w1, = 07 (L= ¢y = 7oy + c;pd~* oy — cjzd Moy

=(1—-cjz)ur,+ cj,uafluml.
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From these relations with Pp uy , = 0 we have all the contiguity relations. For
example

(13.10) 5‘10\07 Ap_ 1,41 = UX s
Murng+1,..Ap— 10 = (0 +1 = puxp,
51&...,,\]~+1,...,u = ((1—¢2)d — ¢;(1 — p))urp

and
Pp,(\pu+1) = ij 0P + py,
Pn = (—l)pilcl ...cp_l((—,u— 1 p 1 Z)\ )
P SN WS WY
and hence

(Zpi )oP I 1)“/\7/1 = —DPnUxput1 = _pna_lu/\,p-

Substituting this equation to (13.9), we have Q; € W(a; A, ) such that Qjuy ,
equals u(x, 15, ),_o. 1. 08 j = 0,...,p — 1, respectively. The operators R; €
W (x; A, 1) satisfying R;Qjux,, = ux,, are calculated by the Euclidean algorithm,
namely, we find §; € W(a:; A, i) so that R;Q; + SjPp, = 1. Thus we also have
Ty € W(x; A\, p) such that Tjuy , equals ugx,—s for j=0,....,p—1,
respectively.

As is shown in §2.4 the Versal Jordan-Pochhammer operator Ppp is given by
(13.2) with

v ) v=0,...,p—1:1

P P
(13.11) po(z) = [J(1 = ¢ja), Zx\kx I a-¢a).
j=1 j=k+1
If c1,...,cp are different to each other, the Riemann scheme of ppp is
r=L(=1...p) x
., [0]p—1) = He-y
A (1),
Z ¢ 11 (¢c; —c) a Z c ko
= j 1iu§k J v =1 1.--Ck

The solution of ]E’ppu = 0 is given by

uc(z) = /(}(eXp /Otzi:l HK:jjjg__lcus)ds) (z — t)*Ldt.

Here the path C starting from a singular point and ending at a singular point is

chosen so that the integration has a meaning. In particular when¢; =--- =¢, =0,
we have
» ,
At?
uc(x) = / exp(— Z J—) (x —t)*tdt
c =

and if A, # 0, the path C starts from oo to one of the p independent directions

v/ —1
)\;162 F (t>1, v=0,1,...,p—1) and ends at x.
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Suppose n = 2. The corresponding Riemann scheme for the generic characteris-
tic exponents and its construction from the Riemann scheme of the trivial equation
u' =0 is as follows:

r=0 1 oo

bo co  ao (Fuchs relation: ag+ a1 +bg+b1+co+c1 =1)
by C1 a1
20 (1—z)0 91 —b1—e1 z=0 1 00
7&1760761 70,171)17C0 *a0+a1+1
zm1"bh0 " (1—g)"1"1mc0 (=0 1 o0
0 0 0f°

Then our fractional calculus gives the corresponding equation
(13.12) 2?(1—z)*u" — 2(1 — z)((ao + ar + 1)z + by + by — 1)u’
. + (a0a1x2 — (a0a1 + b0b1 - C()Cl)l‘ + bobl)u = 0,

the connection formula
F(Co — Cl)F<b1 —bo + 1)
((10 —+ b1 —+ C())F(al —+ bl —+ Co)

and expressions of its solution by the integral representation

(13.13) c(0:by ~ 1:cp) = T

/-T xbo(l _ .’L‘)CO (.’17 _ S)a1+b1+c1—18—a1—01—b0(1 _ S)—al—bl—cods
(13.14) 0

_ F(CLO + bl —+ C())F(al —+ b1 + Cl) by
- F(bl _ bO + 1) z d)bl (J")

and the series expansion
(ao + b1 + co)n(ar + b1 + co)n

1— co,.b1+n

= (]. — I)COZL'blF(ao + bl + ¢, a1 + b1 + Co,bl - b() - ].,{L')

Here ¢y, (z) is a holomorphic function in a neighborhood of 0 satisfying ¢, (0) =
1 for generic spectral parameters. We note that the transposition of ¢y and c;
in (13.15) gives a nontrivial equality, which corresponds to Kummer’s relation of
Gauss hypergeometric function and the similar statement is true for (13.14). In
general, different procedures of reduction of a equation give different expressions of
its solution.

13.4. Hypergeometric family

We examine the hypergeometric family H,, which corresponds to the equations
satisfied by the generalized hypergeometric series (0.7). Its spectral type is in
Simpson’s list (cf. §13.2).

m=(1"n—11,1") : ,F,_1(a, 5;2)

1" n—11,1"=1,10,1® 1", n—21,1""!
A(m) ={ag+ao1 + -+ ag, +ags+-+ag,;
0<v<mn, 0<V <n}
7L2
[Am)] =1
H,=H & H,_1:n>

1
H, — H,_
" paEo "1
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Since m is of Okubo type, we have a system of Okubo normal form with the
spectral type m. Then the above R2FE0 represents the reduction of systems of
equations of Okubo normal form due to Yokoyama [Yo2]. The number 1 on the
arrow represents a reduction by a middle convolution and the number shows the
difference of the orders.

rz=0 1 00 z=0 1 00
Aot Ml A2 1-61  [0lm—1y 1
(13.16) : : , j :
Ao,n—1 A2.n—1 1—- B Op—1
>\O,n >\1,2 >\2,n 0 —Bn 78

n

Z(Ao,u +X )+ —DA1+M2=n—1,

v=1

a1++an:ﬂl++ﬂn
It follows from Theorem 11.7 that the universal operators
Pi,(N), Pir,(N), Pr,,(N), Py, (V). P, (V).

are shift operators for the universal model Py, (A\)u = 0.
The Riemann scheme of the operator

P =RAd(O"1) o RAd(z""1) 0 - -- 0o RAA(0™"1) o RAd(z™ (1 — 2)” )

equals
=0 1 00
0 [0](71,1) 1- Hn—1
('Yn—l + ,Un—l) 1- ("Yn—l + Hn—l) — Hn-2
n—1 n—1
> (i + ) L= > (v+1) = s
j=n—2 j=n-—2
(13.17) ,
n—1 n—1
> () L= (v +py) =
j=2 j=2
n—1 n—1 n—1
Stvitm) A+ H —y = (v + 1)
j=1 j=1 j=1

which is obtained by the induction on n with Theorem 5.2 and corresponds to the
second Riemann scheme in (13.16) by putting

/ —

’Yj:aj+1_ﬁj (]:17,71—2), Y = a1+ﬁ1_17

(13.18) ,
pi=—cjp1+ B (G=1...,n=1), ppn1=1—ay,.

The integral representation of the local solutions at = 0 (resp. 1 and oo) corre-
sponding to the exponents Z;L:_ll (vj+4;) (resp. 'y’—l—zy;ll pj and —/ —Z;:ll('yj +
;) are given by
(13.19) I(l;n—lx')’nfl 1571—2 .. -Ié“ m’h (1 _ CE)WI
by putting ¢ = 0 (resp. 1 and o).

For simplicity we express this construction using additions and middle convo-
lutions by

’

(1320) w = O Hn-1pTn-1 . . T H2,72 97 H2 M1 (1 _ .’I})’Y .
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For example, when n = 3, we have the solution

t
/I t(l3*52 (IE _ t)lfﬂt;sdt/ 8042*51(1 _ 8)*a1+ﬁ1*1(t _ 5)*a2*ﬁ2d$'
C C

The operator corresponding to the second Riemann scheme is

n—1 n
(13.21) Po(a;8) == [J@W-8))-0— [ — ).
j=1 j=1

This is clear when n = 1. In general, we have

p)

RAdA(0™H) o RAd(z7) Py (a,
=RAdA(0") o Ad(z” (nl_[ (9 +B) -0 — Hx(ﬂ-l—%’))

= RAd(0™* (1:[ 19+Bj—1—’}/>(19—’7)—H.'L'('l9+0éj—’7)>

j=1 j=1

n—1 n
(H D+ 8= (0 =5+ 00 = [J0+1)(0 +a;-7))

j=1

n—1

=[[0+8—v—w - W=y —p+1) H79+1— (0 +aj =y —p)
=i e

and therefore we have (13.21) by the correspondence of the Riemann schemes with
Y ="n and p = fin.
Suppose A; 1 = 0. We will show that
&0 o,
(13.22) = TT52) o — Aoy + 1)ik!

— xko,nn Fro1((A2,5 = Xo.n) =1, (Ao = Aoj + 1)j=1,...n—15 )

is the local solution at the origin corresponding to the exponent Ag ,. Here

= an 1)k(an)k k
(13.23) W Fu (g, ..., n, 1,y Bno1; @) Z k.
—0 Bn l)kk

We may assume Ao ; = 0 for the proof of (13.22). When n = 1, the correspond-
ing solution equals (1 — z)~*21 and we have (13.22). Note that

c- H;L 1(A2,5 = Aok
T Qo — Ao + ik
o~ L= (os = don)k  TQon+y+k+1)

kOH ()\On—)\oj—kl) MITXopm +y+p+k+1)
TMon+7+1) = IT=i A2 = Aok - Qo + 5+ D)y - atontrteth
S Tom+y+p+1) ,;) [T o — Ao + Dk Qo 47+ 1+ 1)kl

prontk

e
Igx

gcx\o,n+7+u+k

Comparing (13.17) with the first Riemann scheme under A\ = A1 =0and vy =1,
and p = p,, we have the solution (13.22) by the induction on n. The contiguity
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relation in Theorem 11.3 corresponds to the identity

nanl(ala ey Oy 1,0 + 1;51, e ,571,1;1')

(13.24) = nfnorlon, o ani By B )
a ...ani
o F (o + 1+ LB 41, By + L),
ﬁl "'ﬁn—l

The series expansion of the local solution at x = 1 corresponding to the expo-
nent v + py + -+ + pn_1 is a little more complicated.
For the Riemann scheme

T =00 0 1
—p2 +1 [0](2) 0
1=y — 1 — po Yo + p2 ’

e —pe Yt pe et

we have the local solution at z =0

(o)
I(l)w(l — x)7216‘1z'y/(1 — )" = I(l)m(l — )" Z (;Zi'l)Tixn
n=0 :
Iy Z Ly + L+ ) (=) ZY TN — g
Ly +p1 +1+n)n!

n=0

IU’2 Z F(’V/ + 1 + n)(_’h)”(_,m)mx"/-&-m—&-m-i-n
0 L(y 4+ p1 + 1+ n)mln!

m,n=0

B R T R e P P P i
(Y 4+ p1 +p2 +14+m+n)L(Y 4+ p1 + 1+ n)m!n!

m,n=0

_ F(’yl + 1)x7/+u1+u2 - (’Y/ + M1 + 1)m+n(7/ + 1>n(_71)n(_'72)m$m+n
Ly +p1+p2+1) - (V' + w1+ p2 + Dmgn (Y + 1 + 1)mlnl

n=0
Applying the last equality in (3.8) to the above second equality, we have

I (1 — x)wrﬂw’u — )M

_ Z Y +1+n)(=71)n gttt (] )T
I'(y

+u1+1+n)n'
— (Y +m+1+n) (12)m (=72)m ( x )m
o T+t pe+14n) (Y +p 0+ pp+ Dmm! Nz — 1

L'y + 1)$7/+M1+M2<1 —x)” i (V' + Dn(=71)n(=72)m(p2)m xn( £ )m
Ly +p +p2 +1) (Y + p1 + p2 + V)mgnmin! z—1

_ I'(y'+1)
C(y' 4 p1 + p2 + 1)

/ T
TR (1 = 2) Ty (=, =y 2,y 1Y i+ L —),

m,n=0

where Fj is Appell’s hypergeometric function (13.53).
Let ul_ﬁ" (1, .. ap; 81, .., Bno1; ) be the local solution of P, (a,S)u =0 at
z = 1 such that u;”" (o; ;) = (¢ — 1)"#» mod (z — 1)'~P» O, for generic a and
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(. Since the reduction

Aot [0]n—1) A2 01 [Olm—2y Aoy

)

Omaa

Zmaz,
i i /
Aon A2 Aon on—1 A2 2,n—1

satisfies )\/172 = /\172 + )\071 + )\0’2 — 1 and )\{lj + /\/21]- = /\Q,j+1 + /\27j+1 for j =
1,...,n—1, Theorem 11.3 proves

up P (s By x) = uy P (an, o + L Br e Baet + L)

(13.25) 1 — Q1
+ Lui ﬁn(a; 617 s 767171 + 1,$)
1- ﬂn
The condition for the irreducibility of the equation equals
(13.26) Ao +AMatrew ¢Z  (I<v<n, 1<V <n),

which is easily proved by the induction on n (cf. Example 10.17 ii)). The shift
operator under a compatible shift (e;,) is bijective if and only if

(13.27) Ao+ A1+ A2 and Mgy + €0+ A11 e+ Az + €

are simultaneously not integers or positive integers or non-positive integers for each
ve{l,...,n}and v € {1,...,n}.

Connection coefficients in this example are calculated by [Le] and [OTY] etc.
In this paper we get them by Theorem 12.6.

There are the following direct decompositions (v =1,...,n).
v

1..1Tn—11:1...1=0...0T; 1 0;0...010...0
®1...10;n—21;1...101...1.

These n decompositions m = m’ @ m"” satisfy the condition mg ,, = mfy, =1in
(12.10), where ng = n and ny = 2. Since ng +n1 — 2 = n, Remark 12.8 i) shows
that these decompositions give all the decompositions appearing in (12.10). Thus
we have

n—1
H FAon —Aow+1) - T'(A1—Ai2) r(8,)
Mo~ Aig) = - H F(ay)
H FAon + A1+ A2) v=lt
v=1
= lim (1-2)’,F, 1(a,B;) (Re By, > 0).
z—1-0

Other connection coefficients are obtained by the similar way.

c(Aon ~ A2n):  When n =3, we have

111,21, 111=001, 10,100 00T,10,010 10T,11,110 01T,11,110
6110,11,011=110,11,101=010, 10,001 = 100, 10, 001

In general, by the rigid decompositions
i

0L, 1 0,0...010---
10, n—21,1---101--

7

~101---1T,n—21,1---10
..010---00, 1°00---01

11T, n—11,1---11

—oO
—o

@

@l
o
O
=
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fori=1,...,n—1 we have
= )\2k )\2n)
Aon ~ A2 n) :
Doin = 2o 1] T Don da Aer]])
nl:[ F'(Xon — Aok +1)
A v v A n— A v v<n—
= (Ao, )1%#%n Ailin—2)  (A2w)icv<n—t )
A12

Moreover we have

P(A2—A1+1)- | I'(Xow — Aon)
(’{(AO,V)lgygn—l [)\1,1](77,72) (AQ,U)lgygn, u#]}’)

AL2

c(A1,2~Aon) =

E]:

<.
I
—_

F(l - BV)
F(l —ay)’

I
i :j:

Here we use the notation in Definition 4.12 and denote

H1
M1 N
1 " 1 n—1
(hicven = | - | €C" and  (w)i<w<n = | hi: | €C
im v :
fin
for complex numbers g1, ..., f,.
We have
_1(01,,8;17):ZC;€ (1—-1x) —i—ZC’ ) L
k=0
(13.28) Co=nFr_1(e, 5;1) (Reﬂn <0),

(Bv)
NG

S|
I
»':15
.

v=1

for 0 < x < 1 if @ and g are generic. Since

dk
ok ndn-1(a, 6;2)
(o) ()i |
_mnFn—l(al+k7...705n+k761+k’,...7ﬁn_1—|—]§’m)7
D (Bt
we have
(13.29) Cj (1) - () Fpa(ar+k,...,an+k, Btk ..., Bo1+k1).

(51) o (Bno1)kk!"

We examine the monodromy generators for the solutions of the generalized
hypergeometric equation. For simplicity we assume 3; ¢ Z and 8;—3; ¢ Z for i # j.

Then u = (ua\("l, e ué‘”’") is a base of local solution at 0 and the corresponding
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monodromy generator around 0 with respect to this base equals
6271’\/ - 1)\0,1

My =
62‘“—\/—1)\0’“’

and that around oo equals

My = (Z 2™V =2 e\~ A2k )c(Azk ~ Ahj)) 1<i<n

k=1 1<5<n

= <zn: 2V =TAz,y H sin27r(/\07i + A1+ /\2#)
k=1 ve{l,...n}\{k} sin 27r()\0’k _ >\0,u)

sin2m(Xo; + A1+ A2w)
1<i<n’

vetampgy S22~ o) 12720

Lastly we remark that the versal generalized hypergeometric operator is
P =RAA(@1) o RAA((1 — c12) 1 ) 0+-- 0 RAA(")

o RAd ((1 —cpz) i taTE (1 - c2x)ca<c3—m> 0

= RAA(9™" ) o RAdei( =) o--- 0 RAA(9 ")
-G

. " V'
RAd 0
° el<1clx+ (1clx)(1021)>

and when n = 3, we have the integral representation of the solutions
x t s /
N —cou) +7'u 1 z -1
- du)(t = )7 (1= ext) s (o — ) ds .
/C /C exp( /c (1 —cra)(1 = con) u)(t—s) (1—cit)r (z—1) s

L or .
ca

Here ¢ equals i or

13.5. Even/0Odd family

The system of differential equations of Schlesinger canonical form belonging to
an even or odd family FO,, is concretely given by [Gl]. We will examine concrete
connection coefficients of solutions of the single differential equation belonging to
an even or odd family. The corresponding tuples of partitions and their reductions
and decompositions are as follows.

m+ 1m,m?1,1>™*1 =10,10,1 @ m?, mm — 11,1?™
=1%21%0,1> @ mm — 1, (m — 2)*1,1*™~!
m?, mm —11,1*™ = 1,100,1 ® mm — 1, (m — 1)*1,1?™~}
=1%110,1*® (m — 1)*,m — 1m — 21, 1*™~2

EO, = H,® EO,_, :2n = Hy & EO,_o : (Z)
[A(m)) = 1)+
EO, - EO,_,
R1EOROEO
E02 = Hz, EOS = H3

The following operators are shift operators of the universal model Pgo, (A)u = 0:

P}%h (/\)v P]%?On,l()‘)v PéOn,l(A)7 PI2-12 (A)v PElen,g (/\)’ P)%On,g()‘)'
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EOs, (m = (1" mm — 11,mm) : even family)
T = 00 0 1
Ao,1 Al el
: A2lm-1)  [A2,2](m)
)\O,2m )\1,3

2m

Z Ao + m(/\1,1 + X1+ /\2,2) + (m — 1))\172 +A3=2m—1.

v=1
The rigid decompositions
1---11, mm — 11, mm
—0---0T,100, 10 1---10, m — 1m — 11, 01
4 4
=0---11,110,11¢1---00, m — 1m — 21, m — 1m — 1,
which are expressed by EOs,, = Hi ® EOsp—1 = Hy ® EOgyy, o, give

(A — Ais) et I'(Xo,2m — Ao, + 1)
o2 ~ Arg) = e : : :
c(Ao,2 1,3) 11;[1 F(’{/\O,Qm M /\27i}|) HP(H Ao, AL1 )\2,1}

)

)

>\O,2m >\1,2 )\2,2

2 T(MAs— A +1
c(A1,3 ~ Aojom) = H (A1 = A )

1 Malm-y  Pawlm)
F( (/\O,V)ISVSmel [)\1,2}(m,1) [Az’gfi](mfl) )
A1,3
. 2ﬁ1 T'(Xo,; — Xo,2m)
j=1 [Al,l](ﬂl—l) [)\2,1](777,—1)
L(|q Qop)icv<om—1  [Mglm-2)  [M22]m-1)
v#j A 3

These formulas were obtained by the author in 2007 (cf. [O6]), which is a main
motivation for the study in this paper. The condition for the irreducibility is

Xpy+AMi+dr¢Z (I1<v<2m, k=1,2),
)\071, + )\071,/ + )\1’1 + )\1’2 + )\2’1 + )\2’2 —1 ¢ Z (1 <v<v < 2m, k = 172).

The shift operator for a compatible shift (¢; ) is bijective if and only if the values
of each linear function in the above satisfy (11.30).

For the Fuchsian equation Pu = 0 of type EO4 with the Riemann scheme

r=o00 0 1
(@)@ b1 Ol ;=
(13.30) [02}(2) by c1
b3 C2
0
and the Fuchs relation
(13.31) 2a1 +2as + by + by +bs+c1+c2 =3

we have the connection formula

(13.32) ¢(0:0 ~ 1icy) = I'(c1 — c2)T'(—c2) Hi:l I'(l1—b,)
' ' T P(a)T(ag) [P, Tlar + az + by +¢1 — 1)
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Let Q be the Gauss hypergeometric operator with the Riemann scheme

T =00 0 1
ai l—a;1—as—c1 O
as 0 C1

We may normalize the operators by
P=23(1-2)0*+ - and Q=2z(1—- )0+
Then

3
P = SQ Ha1+a2+b —l—Cl—l) 0
v=1

( (1-2)0+ (a1 +az+c1 — (a1 +az+ l)x))a —aias

with a suitable 5, T € W(z] and e € C and as is mentioned in Theorem 11.7, Q is
a shift operator satisfying

rz=o00 0 1 T = 00 0 1
la1]izy b1 [0]2y ;2 5 [ar 4+ 1)@y b1 —1 [0 ;2
(1333) [ag](g) bo Cc1 — [(12 + 1}(2) by — 1 Cq
b3 Co b3 -1 Co — 1
0 0

Let u§ = 1+4--- and u$?> = (1—x)®+--- be the normalized local solutions of Pu = 0
corresponding to the characteristic exponents 0 at 0 and ¢, at 1, respectively. Then
the direct calculation shows

Quo N a1a9 Hi (a1 +as + b +c1 — 1)

0= cee
[—1(1—=by)

Qu? = CQ(CQ — Cl)(]. 1')02 ! + .-

Denoting by ¢(ay,as, by, ba, bs, c1,c2) the connection coefficient ¢(0:0 ~» 1:¢g) for
the equation with the Riemann scheme (13.30), we have

3

a1az H(a1 +az+b,+c1—1)
C(a1,a2,b1,b2,b3,61,62) _ v=1

C(al+1,a2+17b1_1;b2_17b3_1361302_1)_ 3
(Cl—CQ Hl—b

which proves (13.32) since limy o c(a1+k, as+k, by —k,ba—k,bs—k,c1,ca—k) = 1.
Note that the shift operator (13.33) is not bijective if and only if the equation

3
Qu:H(a1+a2+by+cl—1)'3u:0

v=1
has a non-zero solution, which is equivalent to

3
a102 H(a1 +as+b,+c1—1)=0.
v=1

In fact, there is a shift operator

R=2°(1-2)20° — 2*(1 — 2)(2a1 + 2az + T)x + by + by + b3 — 6)9° + - -- € W[a]
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so that
RQ = (Jc(l —2)0— (a1 +az+ Dz + (a1 + a2 + cl))l5
3
+ ajas H(a1 +a2+by+61 —1)
v=1

By the transformation x — —*5 we have

r=00 0 1
Ol 0 [ai])
c1 br  [az]2)
C2 b2
b-
3 T =00 0 1
2 — 2a1 ag

(1—)*191 =1 (1—g)~ 1

l+c¢i—ay ayp+b—1 [Ch-‘rag—l}(g)
1—|—C2—CL1 a1—|—b2—1

a1 =+ b3 — ].
T = 00 0 1
',L‘lfal—bl (1_x)17a1—a2 a2 + bl 1 - a2
a1 +az+by+cp—1 0 [0](2)
a1+a2+b1+02—1 b2—b1
by — b1

and therefore Theorem 12.4 gives the following connection formula for (13.30):
F(bl + 1)F(CL1 - ag)
F(a1 4+ bl)F(l — CLQ)

a1 +ag +by+co—1;b1 —byg —1,by —b3—1;1).

C(Oibl'\ﬁ-)OOIag): -3F2(a2—|—b1,a1+a2+b1+cl—1,

In the same way, we have
F(Cl + 1)F((L1 - G,Q)

F(al + Cl)F(l — ag)
ay +c1,c1 —cog +1;1).

c(licg » 0:ag) =

-3F5(b1 —c1,b9 — 1, b3 — c1;

Remark 13.1. When the parameters are generic under the condition

(1334) l—ay—as—by—c1 € Zzo,

Pu = 0 has a solution such that its monodromy group is isomorphic to the solution
of the hypergeometric equation Qu = 0 and it has 1 — a; — as — by — ¢; apparent
singular points. This solution is constructed by a successive applications of the
shift operators R to Gauss hypergeometric function. This can be considered as a
generalization of Proposition 11.15.

We will calculate generalized connection coefficients defined in Definition 12.17.
In fact, we get

(13.35) c(1:[0](2) ~ 00:[az](2)) = Mooy P2 =) iy Dl = a2 +0) )

I'(a1) [T,—, (ar + by)

1336 cloetlay = 10y = ezt Talles —os 20

according to the procedure given in Remark 12.19, which we will explain.
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T =00 0 1
ar [0z [0
The differential equation with the Riemann scheme Qg Bley m
as Y2
Qg

is Pu = 0 with

4
P=]](W+a;)+0(0—B)((0—20+7 +7 —1)(¥ —B)
(13.37) =1

+ Z a0 — ﬁ—271—272—4)(5—1)—7172—1—1).

1<i<5<3

The equation Pu = 0 is isomorphic to the system

@_é”+ b T
dr _z Tz _1"
0 01 0 00 0 O Uy
13.
(13.38) a_l00o0 ] 5 foooo| o fu
0 0 ¢ 07T " |s 1 a O |us
0 0 0 ¢ r t 0 b Uy
by the correspondence
up = u,
uy = (z— Dav + (1 —a—c)z+a—1)u — su,
us = zu',

ug = 2% (x — D" + (B—a—c)az? + (a— 2)z)u” + (1 —a — ¢ — s)av/,
where we may assume Revy; > Re~ and
6:67 ’Yl:a+]—a 72:b+2a

4
[[E€—a) ="+ (a+b+20)8 + ((a+ ) (b +¢) — 5 —1)&”
v=1
—((b+¢)s+ (a+c)t)E+ st —r.
Here s, t and r are uniquely determined from ay, asg, ag, oy, 5,71, ¥2 because b+c #
a + c¢. We remark that Ad(z~°)u satisfies a system of Okubo normal form.
Note that the shift of parameters (a1, ..., a4, 8,71,72) — (@1, ..., a4, -1, 71+

1,72 + 1) corresponds to the shift (a,b,c,s,t,7) = (a+1,b+1,c—1,s,t,7).

Let uthm,a%ﬂmw () be local holomorphic solutions of Pu = 0 in a neighbor-

hood of x = 0 determined by

A1,y a4,8,71,72 (0) = 6j:0’
d , J _
(Eufll ----- 044,@71,72)(0) - 5j)1

for j =0 and 1. Then Theorem 12.10 proves

. v
kll)n;o (fa:i”ug,ﬁfk,’hﬁ’k,’yl*Fk(x) = (507,} (V = O, 17 2, . )

uniformly on D = {x € C; |z| < 1}
Put w = va,84,,40 = (’}/1 —2)7'uf, 5 Then Theorem 12.10 proves

klgr;o %vaﬁ*kﬁﬁrkﬁfr/@(az) =0 (V =0,1,2,...),

. 2
lim ((33 Ve +(2-B-y)z+m+k-2)% - S>U@7ﬂ—k771+k772+k(m) =1

k—o0
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uniformly on D. Hence

d
klgn dz aﬁ kvt +k(T) =1

uniformly on D. Thus we obtain

lim c(oo:[az]2) ~ 1:[0](2))|arsar—k, crrsertk, carseath = 1
k—oo

for the connection coefficient in (13.36). Then the procedure given in Remark 12.19
and Corollary 12.22 with the rigid decompositions
22,1111,211 = 12,0111,111 & 10, 1000, 100 = 12,1011,111 & 10,0100, 100
— 12,1101, T11 @ 10,0010, T00 = 12,1101, T11 & 10,0010, T00

prove (13.36). Corresponding to Remark 12.19 (4), we note

2 1 3

Z(cy—l)—i—Z(ag—al—i):(l—al)—i—Z(l—al—by)

v=1 =0 v=1

because of the Fuchs relation (13.31). We can similarly obtain (13.35).
The holomorphic solution of Pu = 0 at the origin is given by

up(z) = Y

m>0, n>0

(a1 +a2+bs+ca—1), H,, (@) man(ar +az + by 4+ c1 — 1))
(1 — bl)m+n(1 — b2)m+n(1 — bg)mm'n'

l,ern

and it has the integral representation

[T, T(1—by)
( )I‘(l—al,—b)F(bl,—f—cl,—l—al—l—ag—l))

—b1— ba+ar1—1 —bo—
// / (E—So 1 alsoz 1 (80—81) 2—a2

ba+a2 1 81) b3—c1—az— a1+1( ci1+bi+az+a;—2

. ng+cz+a2+a1 2(1 _ 52)7527b17a27a1+1d52d51d50_

up(z) =

S1 — 82)

The equation is irreducible if and only if any value of the following linear functions
is not an integer.
ap Qa2
ay+br air+by ay+by ax+b ax+by az+b3
ai+as+by+e1—1 ai+ag+by+ca—1 a;+as+by+ecp—1
a1 +as+by+co—1 aj+ay+byg+ci—1 aj+as+by+co—1.

In the same way we have the connection coefficients for odd family.
EO2,41 (m = (12" 'mm1,m + 1m) : odd family)

T =00 0 1
Ao,1 A1y Pe2alimt)

A2lm)  [A22lm)
A072m+1 )\173
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22m+1 >\O,y + m()\l,l + )\1’2 + )\2’2) + (m + 1)/\2)1 + )\1,3 = 2m.

v=1
F()\Lk; - )\1,3)
C([{hozm+1 Ax Aea}])

F()\O,Qm.l,-l - )\O,k + ]-)
A0k A1 A2
1T ’ ’ ’
(‘ {)\o,2m+1 AL,2 )\2,2} )
(A3 — Ak +1)
AL k](m) [/\2,1}(m)

C(AO,2’"L+1 ~ )\1,3) -

—e T

)

ol
Il

C(>\1,3 ~r >\0,27n+1) =

—

k=1
F( ()\O,V)lgug%n [A1,3—k](m71) [AQ,Q (m) )
AL3
_ ﬁ I'(Aok — Ao,2m+1)
fier Ailm—1)  [A2,1)mm)
T ( (Aow)icv<om  [M2lm-1) [A22)m-1) )
v#k
AL,3

s

The condition for the irreducibility is

AO,V+)\1,;€+)\271§£Z (1§V§2m+1,]€:1,2)7
Aoyt FA1t+de+ A1+ —1¢Z 1<v<v <2m+1, k=1,2).

The same statement using the above linear functions as in the case of even family is
valid for the bijectivity of the shift operator with respect to compatible shift (¢; ).

We note that the operation RAd(7*) o RAd(z~*12(1 — x)~*22) transforms
the operator and solutions with the above Riemann scheme of type EQO,, into those

of type EOp41:
Mo Pualgzy  Peales

[Molqezry  DPaelag)
Ao,n A3

)

Aogt A+ A2 [ = A2z A2 — )\2,2]([%1])
E*M,z(l,m)*b,z

: [0]([%1]) [0]([%])
Aon + A2 + A2 A1z — A2
Ao F A+ oo —p A — Ao+ M]([g]) 21— A22 + M]([%D

LA : NEN e
Aon + A2+ Ao — 1 A3z —Aa2+p
L—p

13.6. Trigonometric identities

The connection coefficients corresponding to the Riemann scheme of the hy-
pergeometric family in §13.4 satisfy
Zc(l i A1,20: A0,) - e(0: A 1A 0) =1,
v=1
C(OO : )\2,1‘“‘%0 : )\07,,) 'C(O : )\QWWOO : )\27]‘) = (S”

v=1
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These equations with Remark 12.8 iii) give the identities

o i s s

k=1 Hue{l,_..,n}\{k} sin(zg — z,,)
n sin(y; — @) sin(zy, — y) N
S sin(zy o) II S —5=0 <ij<n.

k=1ve{l,...,n}\{k} sin(zy, — 2y vell, ..o \{j} sin(y; — yu)

We have the following identity from the connection coefficients of even/odd families.

sin(zg + x, + 2u)

n
> _sin(a, +s) - sin(a, +1) - sin(zy — 7,)

k=1 ve{l,...,n}\{k}

n

sin(nu—&-Za:V) sm(s—i—t—i—(n—Q Z ) if n=2m,
v=1 v=1
sin(s—i—(n—l)u—&—Za:l,) Sln(t+ +le,) if m=2m+1.
v=1

The direct proof of these identities using residue calculus is given by [Oc]. It is
interesting that similar identities of rational functions are given in [Gl, Appendix]

which studies the systems of Schlesinger canonical form corresponding to Simpson’s
list (cf. §13.2).

13.7. Rigid examples of order at most 4
13.7.1. order 1. 1,1,1
U(JT) = .’E)\l(l — 1‘)A2 {7)\1 — AQ )\1 )\2}

13.7.2. order 2. 11,11,11 : Hy (Gauss) [A(m)] = 14

B 41 0 0
—ym -
UH, u(x) {_)\1 _ )\2 — 1 )\1 + u1 )\2 + ,Ul}

13.7.3. order 3. There are two types.

111,21,111 : H3 (3F3) [A(m)] =17
=0 g sy,
L — po 0 [0](2)
—A3— 1 —pe+1 A3+ o
“AM = A= A3 = — 2 AL FA3Fpr A+ pe Ao g+ e
21,21,21,21 : P3 (Jordan-Pochhammer) [A(m)] =1*-2

up, = 07 2 (1 — )M (cy — )2

{ [1- ple 0]y 0]y [0]<2)}
“A =A== A+p At+p Atp

13.7.4. order 4. There are 6 types.
211,211,211: a9 [A(m)] =1%0.2
O M2 (1 — )My,

[—p2 + 1](2) [0](2) [O](2)
—p1—A3— A —pe+1 A3+ 2 Ag+ 2
A=A — A3 =g —pr— e A FA3FprF e Ao+ A+ pn e
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1111,31,1111 : Hy (4F3) [A(m)] =116
a—ustuH3
—pz 41 0 [0]3)
Ay —p2 —pz+1 A4
A3 — A —p1—p2—puz+1 A3+ g+ p2 + ps
“A =M — e —py At At petps As g2+ ps
211,22,1111 : EO4 [A(m)] =11
o7 (1— x)f)‘/tu N =X+ 1+ po
Ao+ 1 —p2 —ps+ 1 [0](2) (A2 — p1 — p2 + p3)(2)
A2 — A3 —pu3+1 A3+ p2 + ps
—A1— A3 — 3 A1+ A3+ pa 4+ pe +ps [0] 2y
—ps +1

We have the integral representation of the local solution corresponding to the ex-
ponent at 0:

T t s
///(1—t)_’\z_‘“_”Q(x—t)”3_1s’\3(t—s)’”_lu’\l(l—u)/\2(s—u)“_1dudsdt.
o Jo Jo

211,22,31,31: I,  [A(m)] = 1622

072 ¢y — ) um,

[—p2 + 1] (2) [0](3) [0](3) [0](2)
Xz — 1 —pz+1 [As + p2](2)
A=A —A3—p1—p2 At prtpe A4 pn+ pe

31,31,31,31,31: P, [A(m)] =1°-3
up, = 07 2 (1 — )M (cy — )2 (5 — )

{ [—p+ 13 Olsy  [Olsy  [0lzy  [O]3) }
“Ad—Ae—A3—p X+p AM+p A+pu A3+p

92,22,22,31: P,y [A(m)] = 15-2
oM a1 — 2) M (cy — x) Mup,, Ny=Xj+p, 0 =X+A+ X +2u

{ L=wle M+ retule Potre+ule Aot i+ u](2>}
—Xo — A1 — A2 [0](2) [0](2) [0](2)

13.7.5. Tuple of partitions : 211,211,211. [A(m)] =1%0.2
21172117211:H1®HB6:H2@H24:2H1@H2 01

From the operations

Tr =00 0 1
1—}1,1 O 0
—ar =B —w oa+pm St
Tr =00 0 1
z92 (1—z)P2
—_— 1l—as—fFo— 1 % B2
—ar—ar—B1—Fo—p1 ottt P+ B+
T =00 0 1
o n [—p2 + 1] (2) [0](2) [0]2)
Z 5
1— B —p1 — p2 Qg + g B2 + pi2

—o1—B1—=PBo—p1—p2 o F+pr+pe B4 Batpn 4 pe
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Tr =00 0 1

2
A2al) [Poale) [Auie) . ' | N
A22 0,2 A1,2 with Z(”‘Jvl + X2+ Aj3) =3,

j=0
A23 0,3 A3

—

we have the integral representation of the solutions as in the case of other examples
we have explained and so here we will not discuss them. The universal operator of
type 11,11,11 is

Q= 2*(1—2)%0% — (ax + b)x(1 — 2)0 + (ca® + dx + e).

Here we have

b= )‘6,1 + >‘6,2 -1, €= >\6,1)\6,27
—a—b=XN,+N,—1, c+d+e= N\ o,
c= )\/2,1)\/2,27
)‘6,1 = Qg, )\6,2 = a1 +ag + 1,
11 = B2, 12 = B1+ B+ pa,
b1 =1— P2 —p1 — o, Nyop=—a1 — 1 — P2 — 1 — iz

corresponding to the second Riemann scheme in the above. The operator corre-
sponding to the tuple 211,211,211 is
P =RAd(07"*)Q
= RAA(O ) (9 = o, (9~ Xg.)
+ (=202 4+ (2A) 1 + 2002 + A1y + Ao = DI+ N M 5 — Ao iAo — Ao A5s)
+ 220+ Ny 0) (9 + X))
= 82(19 - )\6,1 - M2)(79 - )\6,2 — p2)
+ 00 — o+ 1) (=209 — p2)® + (2001 + 200 + Ay + Ao — (0 — pio)
+ >‘/1,1>\/1,2 - >\6,1)\6,2 - )\/2,1)‘/2,2)
+ (9 — pa+ 1) — pg +2)(0 + Ny g — p2) (9 + Ny 5 — pa2).

The condition for the irreducibility:

Xo,i+ A1+ A ¢ Z,
Xow+A1+X1 &7, Moi+Mp+Xe1 €Z, o1+ i1+, €72 (v=2,3),
Aot F Ao+ A+ A+ A e €7 (v, V€ {2,3)).

There exist three types of direct decompositions of the tuple and there are 4 direct
decompositions which give the connection coefficient ¢(A\g 3~ A1,3) by the formula
(12.10) in Theorem 12.6:

217,211,211 = 00T, 100, 100 & 210,111, 111
= 111,210,111 @ 100, 001, 100
= 101,110,110 @ 110, 101, 101
= 101,110,101 @ 110, 101, 110
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Thus we have
Hi:1 I'(Mos—Aow +1)
F(Xosz+ A1+ A21) - T(1—= Aot — A1z — A21)
_ [l T —Tus)
Hizg F'(ho1+Aos+ A1 +A2+ A1+ Ao — 1)

We can calculate generalized connection coefficient defined in Definition 12.17:

Aoz~ A1 3) =

ITo—s(Toa = Ao +2) - T(Aiy = Aig — 1)
Hizg (P01 4+ A +A21) - T(1 = Ao — Ar1 — Az1))
This can be proved by the procedure given in Remark 12.19 as in the case of the
formula (13.36). Note that the gamma functions in the numerator of this formula
correspond to Remark 12.19 (2) and those in the denominator correspond to the
rigid decompositions

211,211,211 = 100,010,100 ¢ 111,201,111 = 100,001,100 & 111,210,111

= 210,111,111 & 001, 100, 100 = 201,111,111 & 010, 100, 100.

c([Ao,1]2) ~ [A1]2) =

T =00 0 1
The equation Pu = 0 with the Riemann scheme Poaley Dl Dl is iso-
0,2 A2 A2
0,3 A1z A23
morphic to the system
Uy
B
W= Za a, a= ", u=u,
T r—1 u3
Uy
0 0 0
10 0 O c1
A= 0 0 a1 b1 — bQ — C2 ’
00 0 as
0 0 0 0
B 0 0 0 0
- —a1 —by+c¢; —by +by+co bo 01’
—a1+as+cy —as—by+c1 ar—ax—cx by
a1 = A2,
as = A1,3,
by =Xy — 2,
by = Aoz — 1,
c1 = —Xo,1,
Co =X, 1 +Ao2+ A2+ Ao —1

when Mg 1(Ao1 4+ Az2,2) (Ao + Aoz + Ar2 + A2 3 —2) # 0. Let u(z) be a holomorphic
solution of Pu = 0 in a neighborhood of z = 0. By a direct calculation we have

(a1 — 1)(ag — 1) o

O = G e Db — b — e

0)+

(CLQ +bg + co — 1)(11 — (01 + CQ)CLQ + ((12 —a1 + Cg)bl — (CQ + 1)b2 — C% + Clu

(bl —cC1 + 1)(b1 — b2 — CQ)

(0).
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Since the shift described in Remark 12.19 (1) corresponds to the shift

(a17a2,b17b2,01,02) = (al - k7a2 - k7b1 + kabQ + k701302)7

it follows from Theorem 12.10 that

klggo C([Aoﬁl](z)w [)\171](2)) Xo,2—Xo0,2—k, o,z Xo3—k 1
Ar,2—= A1 24k, A1 31 3+k

as in the proof of (13.36) because u;(0) ~ mu’(()) + Cu(0) with C € C

when k — oo.

Thus we can calculate this generalized connection coefficient by the

procedure described in Remark 12.19.

Using (3.8), we have the series expansion of the local solution at x = 0 corre-
sponding to the exponent a; + 1 + e for the Riemann scheme parametrized by
«;, B; and p; with ¢ =1, 2.

I a2 (1 — x)ﬁQIé“a:al (1—xz)%

oo

I(a; +1) (a1 4+ 1)n(=p1)
— k2 n " p2(] — g 52xa1+/t+n
O T(on +p+1) 2 (1-2)

— (on+ p+1)pn!

_ Dlar + DT (og + ag 4 pg + 1)gertoetrtie

F(Oél + M1 + 1)F(051 + (6%} + 1251 + 125} + 1)

o0

>

m,n=0

(al —+ 1)n(0[1 + ag + M1 + l)ern(_ﬁl)n(_ﬂZ)m wm-&-n

(a1 + p1 + Dp(ar + as + p1 + p2 + Dpapnnlm!

_ (g + DI (aq + ag + pg + 1)zortestimtez (] - :L.)*BQ

oo

2.

m, n=0

(o + p1 + D (a1 + ao 4+ pn + pe + 1)

(a1 + (o + s+ p1 + 1)n(ﬂ2>m(*51)n(*ﬂ2)mxn( T )m
(a1 + p1 + D (ag + as + p1 + p2 + Dmrnmlin! x—1/

Note that when By = 0, the local solution is reduced to a local solution of the

equation at x

= 0 satisfied by the hypergeometric series 3Fs(af, b, ob; 81, By; )

and when as = 0, it is reduced to a local solution of the equation corresponding to
the exponent at x = 1 with free multiplicity.
Let ug(aq, o, f1, Ba, i1, p2; ) be the local solution normalized by

uo(a ﬁ ,u'x) _ ma1+az+u1+uz c $a1+az+u1+u2+1(90
) b )

for generic a, 8, u. Then we have the contiguity relation

uO(avﬁl - 17ﬁ27,u;x) = uo(a7ﬁvlu;x) +

(a1 +1)(a1 +as+p1 +1)
(a1 +p1 +1)(ag + g+ p1 + pa+ 1)
~up(on + 1, az, 81 — 1, Ba, pi5 ).

13.7.6. Tuple of partitions : 211,22,31,31. [A(m)] =1°¢.2

211,22,31,31:H1@P314:HQ@H222:2H1@H212

= 010,10, 10,10 & 201, 12,21, 21 = 010, 01, 10, 10 & 201, 21, 21, 21
= 001,10, 10,10 & 210, 12,21, 21 = 001, 01, 10, 10 & 210, 21, 21, 21
= 110,11,11,20 6 101, 11,20, 11 = 110, 11,20, 11 & 101, 11, 11, 20
= 200,20, 20,20 & 011,02, 11, 11

Omezy 011,02,11, 11
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1

z=0 = & 00
[Ao,1](3) )\1 1] @) el Msile
0,2 AL2 Ao [As2](2)
A23
2o, L(l—crz)” A1, A(1—cox)™ A2,1
z=0 é é (%)
[0](3) [0]¢2) [Az3,1+ Ao1 + A1+ Azt]a)
)\0 2 — )\0 1 A2 — A Aeo— a1 [Azo 4 Ao+ AL+ A
A2z — A1
o, M
z=0 L L 00
c1 Cc2
0 0

M2+ A —Aor A2 FA = A Ao+ A = Ao [As2— Asq 41
Aog+ Al — A2q

The condition for the irreducibility:

Ao+ A+, A3 €2 (ve{l,2,3}, v e{l,2}),
)\071 + )\072 + 2)\1_’1 + )\211 + )\21,, + )\311 + )\3’2 ¢ Z (1/ S {2, 3}),

T'(Ao2 — Ao1 + DT(Ar2 — App)(1— &)*n

Hizg T(Xo1+Ao2+2M 1+ A1+ A, +A31+A32—1) ,

2
I(A23 — A2)
Moz~ Aag) = Sl
¢(Roz 23) H T'(1—Xo1—A11— A23 — A3 )

I'(Xo2 — Ao +1)(1 — %)’\“
F(Mo1+Ao2+2M1+ A1+ Ao+ X310+ A32— 1)

C(>\0,2 ~ >\1,2) =

13.7.7. Tuple of partitions : 22,22 22 31. [A(m)] =18 .2

92,22,22,31 = H, ® Py : 8 = 2(11, 11, 11, 20) & 00, 00, 00, (—1)1
—10,10,10,10 & 12,12, 12,21 = 10, 10,01, 10 & 12, 12, 21,21
—10,01,10,10 @ 12, 21,12, 21 = 10,01,01,10 & 12,21, 21,21
—01,10,10,10 @ 21,12,12,21 = 01, 10,01, 10 & 21, 12, 21, 21
—01,01,10,10 @ 21, 21,12,21 = 01,01,01, 10 @ 21,21, 21,21
212,12,12,21

The condition for the irreducibility:

Mo+ A i+ X+ A1 €2 (4, 5, ke {l,2}),
Aot F A2+ A1+ A2+ A1+ Ao+ A3+ N30 € Z.

13.8. Other rigid examples with a small order
First we give an example which is not of Okubo type.
13.8.1. 221,221,221. The Riemann Scheme and the direct decompositions are

z=0 1 00
2

Moty Moy [Peile
) : ) , 201 +2XN2 + Aj3) =4,
[/\0,2](2) [)\172](2) [/\2,2}(2) jz::o( 7,1 7,2 J73)

0,3 A3 A23
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[A(m)] =12
221,221,221 = H, © 211,211,211 : 8 6=12,2,2|
=Hy,®H;:6 11 =121, 22, 22|
=2H, P H;:1

= 101,110,110 @ 120,111,111 = 01T, 110,110 & 210, 111, 111
= 111,120,111 & 110, 101, 110 = 11T, 210, 111 & 110, 011, 110
— 121,121,121

and a connection coefficient is give by
2
I'Ag3 — Ao +1
Moz~ A3) = H (Ao,3 — Ao +1)
(Ao +Xos+ A1+ Ao+ A1+ A2 —1)

v=1
LA,y — A1s) )
I'(2=Xo, 1 —Ao2 — A1y — A1z — Ao — A22) .

Using this example we explain an idea to get all the rigid decompositions m =
m’ & m”. Here we note that idx(m,m’) = 1. Put m = 221,221,221. We may
assume ord m’ < ord m”.

Suppose ordm’ = 1. Then m’ is isomorphic to 1,1,1 and there exists tuples
of indices (fg,¢1,¢2) such that m;-#, = 0j,¢;- Then idx(m, m’) = mog, + M1, +
mie, — (3 —2)ordm - ordm’ and we have mg g, + M1, + mie, = 6. Hence
(Mo,e0, M0, M10,) = (2,2,2), which is expressed by 6 = |2,2,2| in the above.
Since £; = 1 or 2 for 0 < j < 2, it is clear that there exist 8 rigid decompositions
with ordm’ = 1.

Suppose ordm’ = 2. Then m’ is isomorphic to 11,11,11 and there exists
tuples of indices (£071,€0,2,£171,€172,£271752,2) which satisfies E i—0 Z —1 My,
(3—2)ordm-ordm’+1 = 11. Hence we may assume (£ 1, 60’2751@,51,2, ly1,022) =
(2,1,2,2,2,2) modulo obvious symmetries, which is expressed by 11 = |21, 22, 22]|.
There exist 6 rigid decompositions with ordm’ = 2.

In general, this method to get all the rigid decompositions of m is useful when
ordm is not big. For example if ordm < 7, m’ is isomorphic to 1,1,1 or 11,11,11
or 21,111, 111.

The condition for the irreducibility is given by Theorem 10.10 and it is

>\O,i + >\1,j + >\2,k ¢ Z (Zv j7 ke {172})a
S o e N+ Nz —Xix) €2 (i €{0,1,2}, ke {1,2}).

13.8.2. Other examples. Theorem 12.6 shows that the connection coefhi-
cients between local solutions of rigid differential equations which correspond to
the eigenvalues of local monodromies with free multiplicities are given by direct
decompositions of the tuples of partitions m describing their spectral types.

We list the rigid decompositions m=m’'®m" of rigid indivisible m in P®) U
’P3 satisfying mo n, = min, = my,, = m{,, = 1. The positions of mg n,
and my ,, in m to which Theorem 12.6 applies are indicated by an overline and an
underline, respectively. The number of decompositions in each case equals ng+mn,—2
and therefore the validity of the following list is easily verified.

We show the tuple 0,4, m after —. The type [A(m)] of A(m) is calculated
by (7.42), which is also indicated in the following with this calculation. For exam-
ple, when m = 311,221,2111, we have d(m) = 2, m’ = dm = 111,021,0111,
[A(s(111,021,0111))] = 19, {m}, —ml, € Zso} U {2} = {1,1,1,1,2,2} and
hence [A(m)] = 19 x 1* - 22 = 113. 22 which is a partition of A(m) — 1 = 17.
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Here we note that h(m) is the sum of the numbers attached the Dynkin diagram

12 [53 2 1 corresponding to am € Al

All the decompositions of the tuple m corresponding to the elements in A(m)
are given, by which we easily get the necessary and sufficient condition for the
irreducibility (cf. Theorem 10.13 and §13.9.2).

ordm =25
311,221,2111 = 100,010, 0001 & 211,211, 2110 6=3,21]|
= 100,001, 1000 & 211,220, 1111 6=13,1,2]
= 101,110, 1001 & 210,111, 1110 11 =31,22,21]

= 2(100, 100, 1000) @ 111,021, 0111
2 111,021,0111
[Am)] =1 x1*.2* =1'%.2?
m=H, $211,211,211:6 = Hy ® EO4: 1 = Hy & Hs : 6 = 2H, & Hs : 2
311,22T,2111 = 211,211, 2110 6 100, 010, 0001 = 211,121, 2110 & 100, 100, 0001
= 100,001, 1000 & 211,220, 1111
= 210,111, 1110 6 101, 110, 1001 = 201,111, 1110 & 110, 110, 1001
311, 221,2111 = 211,211, 2110 & 100, 010, 0001 = 211,121, 2110 & 100, 100, 0001
= 201,111, 1110 & 110, 110, 1001
= 101,110, 1010 & 210,111, 1101 = 101,110, 1100 & 210, 111, 1011

32,2111, 2111 = 22,1111,2110 & 10, 1000, 0001 = 10,0001, 1000 & 22,2110, 1111
= 11,1001, 1010 ¢ 21,1110, 1101 = 11,1001, 1100 & 21, 1110, 1011
=21,1101,1110 & 11,1010, 1001 = 21,1011,1110 & 11,1100, 1001
2 12,0111,0111

[Am)] =17 x17.2=1"°.2
m=H OH,:1=H®FEOs :6=Hy O H3:9=2H $ Hsz:1

221,221,41,41 = 001, 100, 10, 10 & 220, 121, 31,31 = 001, 010, 10, 10 & 220, 211, 31, 31
= 211,220, 31,31 & 010,001, 10, 10 = 121,220, 31, 31 & 100, 001, 10, 10
2 021,021,21, 21
[Am)] =1*-2x1*. 2> =1°.2*
m=H, $22211,31,31 :4=H,® Hs :2=2H, ®Ps : 4
221,221,41,41 = 001, 100, 10, 10 & 220, 121, 31,31 = 001, 010, 10, 10 & 220, 211, 31, 31
= 111,111, 30,21 @ 110, 110, 11, 20
221,32,32,41 = 101,11,11,20 & 120,21,21,21 = 011,11, 11,20 & 210, 21,21, 21
=001, 10,10, 10 & 220, 22, 22, 31
2 021,12,12,21
[Am)] =1*-2x1%.22=17.2°
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m=H, $22,22,22,31:1=H;,211,22,31,31:4=Hs® P3 : 2
=2H1 ® P3:2

311, 311, 32,41 = 001, 100, 10, 10 @ 310,211, 22, 31 = 211,301, 22, 31 & 100, 001, 10, 10
= 101,110, 11,20 & 210, 201, 21,21 = 201, 210, 21,21 & 110, 101, 11, 20
3 011,011,02, 11

[Am)]=1*x1*-2.3=1%.2-3
m=H, $211,31,22,31 :4=H, & Ps : 4

=2H,®H3:1=3H, ® H>:1

311,311, 32,41 = 001, 100, 10, 10 & 301,211, 22, 31
= 101,110, 11, 20 & 210, 201, 21,21 = 101,101, 11,20 & 210, 210, 21, 21

32,32,41,41,41 = 11,11, 11,20, 20 & 21,21, 30, 21, 21
=21,21,21,30,21 & 11, 11, 20, 11, 20
302,02,11,11,11
[Am)] =1*x2*.3=1%.2".3
m=H OGP :1=H®Ps:3=2H ®&Ps:2=3H & Hy: 1

ordm =6 and m € Py

321,3111,222 = 311, 2111, 221 & 010, 1000, 001 7=12,3,2|
= 211,2110,211 & 110, 1001, 011 13 = |32, 31, 22|
=210,1110,111 @ 111, 2001, 111
2 121,1111,022 — 111,0111, 012

[Am)] =1" x 1.2 =1".2°
m= H; $311,2111,221 : 3 = Ho $ 211,211,211 : 6 = H3 p H3 : 6

=2H, ®EO,4:3

321,3111, 222 = 211,2110, 211 @ 110, 1001, 011 = 211, 2110, 121 & 110, 1001, 101
=211,2110,112 ¢ 110, 1001, 110
=111,2100, 111 & 210, 1011, 111 = 111, 2010, 111 & 210, 1101, 111

321,311T,3111 = 221,2111, 3110 & 100, 1000, 0001 = 100, 0001, 1000 & 221,3110, 2111

= 211,2101,2110 & 110, 1010, 1001 = 211, 2011, 2110 & 110, 1101, 1001
=110,1001,1100 ¢ 211,2110,2011 = 110,1001, 1010 ¢ 211, 2110, 2101

3,021,0111,0111
[Am)]=1"x1"-2.3=1"%.2.3
m = Hy §221,2111,311: 6 = H; & 32,2111,2111 : 1
= Hy®211,211,211: 9 =2H, ® Hy: 1 = 3H, ® Hs : 1

321,3111, 3111 = 221, 3110, 2111 & 100, 0001, 1000 = 001, 1000, 1000 & 320,2111,2111
=211, 2110, 2110 & 110, 1001, 1001 = 211, 2110, 2011 & 110, 1001, 1100
= 211,2110,2011 & 110, 1001, 1100
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321,321,2211 = 211,220, 1111 @ 110,101, 1100 = 101,110, 1100 & 220,211, 1111
=111,210,1110 @ 210,111, 1101 = 111,210,1101 & 210,111, 1110
2 121,121,0211 — 101,101, 0011

[Am)] =10 2x1*.2> =1™.23
m = H; ®311,221,2111 : 4 = H, & 221,221,221 : 2

=Hy® EO4:2=Hy ®211,211,211: 4 = H3 @ Hj : 2
= 2H; @ 211,211,211 : 2 = 2(110,110,1100) & 101, 101,0011 : 1

321,321, 2211 = 221, 221, 2210 & 100, 100, 0001 = 110,101, 1100 & 211,220, 1111
= 211,211,2110 @ 110, 110, 0101 = 211, 211,1210 & 110, 110, 1001
=210,111,1110 @ 111,210, 1101

417, 2211, 2211 = 311, 2210, 2111 & 100, 0001, 0100 = 311, 2210, 1211 & 100, 0001, 1000
=101,1100,1100 @ 310,1111,1111 = 201,1110, 1110 & 210, 1101, 1101
=201,1110,1101 @ 210, 1101, 1110
2 211,0211,0211 — 011,001, 0011

[Am)] =102 x1*. 28 =1 .2*
m = H; $311,221,2211: 8= Ho @ Hy : 2= Hs @ Hy : 4
=2H, ® 211,211,211 : 4

411,221T,2211 = 311,2111, 2210 & 100, 0100, 0001 = 311, 1211,2210 & 100, 1000, 0001
= 100, 0001, 0100 & 311, 2210, 2111 = 100, 0001, 1000 @ 311, 2210, 1211
=201,1101,1110 @ 210,1110,1101 = 210,1101,1110 & 201, 1110, 1101

41T,222,21111 = 311,221,21110 @ 100,001, 00001 = 311,212, 21110 & 100, 010, 00001
= 311,122,21110 & 100, 100,00001 = 201, 111,11100 @ 210, 111, 10011
=201,111,11010 & 210,111, 10101 = 201, 111,10110 & 210, 111, 11001
2 211,022,01111 — 111,012,00111

[A(m)] = 1" x 1*.2° =1"%. 23
m = H; ®311,221,2111: 12 = H3 ® H3 : 6 = 2H, @ EO4 : 3

42,221T,21111 = 32,2111,21110 & 10,0100, 00001 = 32,1211, 21110 & 10, 1000, 00001
= 10,0001, 10000 & 32,2210,11111 = 31,1111,11110 & 11, 1100, 10001
=21,1101,11100 & 21,1110, 10011 = 21,1101, 11010 & 21,1110, 10101
=21,1101,10110 & 21,1110, 11001
2 22,0211,01111 — 12,0111,00111

[Am)] = 1" x1°.27 =1%0. 22
m=H; ©32,2111,2111 :8 = Hi © EO4:2 = Ho & Hy : 4
=H3;® H3:6=2H, ® EOy:2

33,311T,21111 = 32,2111,21110 & 01, 1000, 00001 = 23,2111, 21110 & 10, 1000, 00001
=22,2101,11110 & 11, 1010, 10001 = 22,2011, 11110 & 11, 1100, 10001
= 11,1001, 11000 & 22,2110, 10111 = 11,1001, 10100 & 22,2110, 11011
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= 11,1001, 10010 & 22,2110, 11101

2 13,1111,01111
[Am)] =1"% x1*. 2> =1%0. 22
m= ®32,2111,2111:8 = Hy & EO4 : 12 = 2H, & Hy : 2

321,3111, 3111 = 221, 3110, 2111 & 100, 0001, 1000 = 001, 1000, 1000 & 320, 2111, 2111
= 211,2110, 2110 & 110, 1001, 1001 = 211,2110, 2101 & 110, 1001, 1010
= 211,2110,2011 & 110, 1001, 1100

3 021,0111,0111
[Am) =1 x17.2.3=1"%.2.3
m = Hy ®221,2111,311: 6 = H; & 32,2111,2111 : 1
= H,®211,211,211: 9 =2H, & Hy : 1 = 3H, & Hs : 1
321,311T,3111 = 100, 0001, 1000 & 221,3110, 2111 = 221, 2111, 3110 & 100, 1000, 0001
=211,2101,2110 & 110, 1010, 1001 = 211,2011,2110 4 110, 1100, 1001
= 110,1001, 1100 & 211, 2110, 2011 = 110, 1001, 1010 & 211, 2110, 2101

33,2217, 2211 = 22,1111,2110 & 11, 1100, 1001 = 22,1111, 1210 & 11, 1100, 0101
=21,1101,1110 4 12,1110, 1011 = 12,1101, 1110 & 21, 1110, 1011
= 11,1001, 1100 & 22,1210, 1111 = 11,0101, 1100 & 22,2110, 1111

= 23,1211,1211 — 21,1011, 1011
[Am)] =1"%.2x1"=1*.2
m = H; ©32,2111,2111 :8 = H, © EO4: 8 = H3 & H3 : 4
= 2(11,1100, 1100) @ 11,0011,0011 : 1

We show all the rigid decompositions of the following simply reducible parti-
tions of order 6, which also correspond to the reducibility of the universal models.

42,222, 111111 = 32,122,011111 & 10, 100, 100000
=21,111,111000 & 21, 111, 000111

1 32,122,011111 — 22,112,001111 — 12,111,000111
[A(m)] = 1%
m:Hl®EO5 : 18:H3@H310
33,222, 21111 = 23,122, 11111 & 10, 100, 10000
=22,112,10111 & 11, 110, 11000
=21,111,11100 & 12,111, 10011
193,122, 11111 — 22,112,01111 — 12,111,00111
[A(m)] =1*
m:Hl@EOg,:6:H2@EO4:12:H369H3:6
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13.9. Submaximal series and minimal series

The rigid tuples m = {m; , } satisfying

(13.39) #{m;,;0<m;, <ordm} >ordm+5
are classified by Roberts [Ro]. They are the tuples of type H,, and P,, which satisfy
(13.40) #{m;,; 0<m;, <ordm} =2ordm + 2

and those of 13 series A, = EO,,, By, Cy, Dy, En, Fn, Gom, In, Jn, Kn, Loms1,
M, N, called submaximal series which satisfy

(13.41) #{m;,; 0<m;, <ordm} =ordm + 5.

The series H,, and P, are called maximal series.

We examine these rigid series and give enough information to analyze the series,
which will be sufficient to construct differential equations including their conflu-
ences, integral representation and series expansion of solutions and get connection
coefficients and the condition of their reducibility.

In fact from the following list we easily get all the direct decompositions and
Katz’s operations decreasing the order. The number over an arrow indicates the
difference of the orders. We also indicate Yokoyama’s reduction for systems of
Okubo normal form using extension and restriction, which are denoted F; and R;
(i =0,1,2), respectively (cf. [Yo2]). Note that the inverse operations of E; are R;,
respectively. In the following we put

up, = 8*"30)‘0(1 — 'I))\I(CQ - I’)/\Q o (eme1 — I)A’"*l,

(13.42) UH, = UP;,
UH,, . = 8_“(m)x)‘ém>uHm.
We give all the decompositions
(13.43) m = (idx(m’,m) - m’) ® m"

for am: € A(m). Here some m}, may be negative if idx(m’,m) > 1 (cf. Re-

mark 7.11 1)) and we will not distinguish between m’ & m” and m” @ m’ when
idx(m’, m) = 1. Moreover note that the inequality assumed for the formula [A(m)]
below assures that the given tuple of partition is monotone.

13.9.1. B,. (Boy1 =11, By, =11, By = H3, By = H>)
UByp 1 = 67“,(1 - :v))‘/uHmJrl
m21,m+ 11", m1™* =10,10,01 & mm — 11, m1™, m1™
=01,10,10 & m?, m1™, m — 11m*!
=1%0,11,11 @ (m — 1)*1,m1™ 1 m — 11™
[A(Bam1)] = 107707 5 1m¥2 2 = pmiasm3 2
Bomy1 = Hy & Bop, :2(m+1)
= H, & Cyy, 01
= Hy ® By :m(m+1)
=mH & Hppr 2

Up,, = 8_“/x)‘/(1 - x)/\”uHm
mm — 11,m1™, m1™ = 100,01,10 ® (m — 1)*1,m1™~ ! m — 11™
=001,10,10 ® mm — 10,m — 11™,m — 11™
=110,11,11 ®m — 1lm —21,m — 11™" 1 m — 11™ 1
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[A(Bap)] = 1™ x 127HL . (m — 1) = 1mD° . (m — 1) - m

Boy, = Hy @ Bay1 1 2m
=H; @& Copm—2 01
= Hy ® Byyy—o :m?
=(m-1)H  ®Hpyr 1
=mH, ¢ H,, 01

m 1 1
B2m+1 R2—E>O an+1a Bn — Bn—h Bn — Cn—l

m—1

m
B2m ? Hma BZm ? Hm+1
R1EO

13.9.2. An example. Using the example of type Ba,,11, we explain how we
get explicit results from the data written in §13.9.1.
The Riemann scheme of type Bay,41 is

o0 0 1
PMolemy  Plemsr)  [A2]om)
[Ao,2] (m) A2 22

Xo.3 :

Almt1 A2, m+-2

p ny
Z Z MjuAj, = 2m (Fuchs relation).

j=0v=1

Theorem 10.13 says that the corresponding equation is irreducible if and only
if any value of the following linear functions is not an integer.

LY =X+ a+dey (=12, v=2,...,m+2),
L® = o3+ A1+ Aot
LS’L =Ao1+ A2 F A F AL A+ A, — 1
(u=2,....m+1, v=2,....m+2),
i = )\071' + )\171 + )\271 (7, =1, 2).
Here Lglu) (resp. L etc.) correspond to the terms 10,01, 01 and H; @ Ba,, : 2(m+1)
(resp. 01,10,10 and H; & Cyyy, ¢ 1 ete.) in §13.9.1.

It follows from Theorem 6.14 and Theorem 10.13 that the Fuchsian differen-

tial equation with the above Riemann scheme belongs to the universal equation
PB2m+1 ()‘)u =0if

LWe¢{-1,-2,...,1-m} (i=1,2).
Theorem 12.6 says that the connection coefficient ¢(A1 41 ~» A2,m+2) equals
T T msr = A+ 1) - T T2 — Amea)
2 1 m+1 3 m 3
Hi:l F(l - Lz(',731+2) . Hu;z F(Lf'nzi-l,u) : Huzz F(l - LL,Zn+2)

and
Il POt = A+ 1) -T2 T = Aoa)
P(1—L@) T[T ,)
T T Ogmra — Ay + 1) - T2, T(Aoi — Aoa)
o, ) - T L)

(A, m41 ~ Ao3) =

)

c(A2,mi2 ~ Ao3) =
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It follows from Theorem 11.7 that the universal operators

Py, (\) Pg,(\) Pg, (N Pp, (\) P, (N P, () P, (N

Py,(\) Pg,(\) Pp, () Pg, (N P3N
define shift operators Rp,,, ., (€, A) under the notation in the theorem.

We also explain how we get the data in §13.9.1. Since Opaz @ Bomy1 = m :=
mml,m + 11m m1™*tt — H, .y = m' := 0m1,11™,01™*L, the equality (7.42)
shows
[A(Bam1)] = [A(Hps1)] U{dia(m)}U{m], —m], > 0}

2 2 2
_ 1(m+1) % ml % 1m+2 . ml _ 1(m+1) % 1m+2 . m2 —1m +3m+3 | m2’

Here we note that {m/, —m/; >0} = {m, 1,17} = 1"*2.m! and [A(H,11)]
is given in §13.4.

We check (7.44) for m as follows: 1
h(m)=2(14---+m)+2m—+1)+2(m+1)+1 Im“
=m?+5m+4,

p lmrl g}
2m+1

The decompositions mH; & H,,+1 and Hy @ Bs,, ete. in §13.9.1 are easily
obtained and we should show that they are all the decompositions (13.43), whose
number is given by [A(Bay,+1)]. There are 2 decompositions of type mHy @ Hp, 1,
namely, Bo,, 1 = mml,m+ 11 m1™T = m(100,10,10) & - - - = m(010, 10, 10) &
.-+, which correspond to LZ(-4) for ¢ = 1 and 2. Then the other decompositions are
of type m’ @ m” with rigid tuples m’ and m” whose number equals m? + 3m + 3.

The numbers of decompositions Hy ® Bs,, etc. given in §13.9.1 are easily calculated
©)

i,V

Yiclam) = (m? +3m + 3) + 2m = m? + 5m + 3. 3.

which correspond to L./ etc. and we can check that they give the required number

of the decompositions.
13.9.3. C,. (Cy = EOy, C3 = H3, Cy = H>)
UComi1 = 8_M/l}\/uHerl
m+ Im,m1™* m1™tt =10,01,10 & m?, m1™,m — 11™*1
=111, 11®&m(m —1),m — 11™m — 11™

[A(Camsr)] = 107D 5 1242 (4 — 1)

) mE)  ( — 1)

Cgm+1:HlEBCQm 2m+ 2
= H2 D Cgm_g : (m + 1)2
= mHl @ H7n+1 01

:(mfl)Hl@Hm_‘_g 01

U, = 8_“/:10’\/(1 - x)_’\l_“_”(z)_m_”(m)UHmH
m?,m1™ m— 11" =1,10,01 @ mm — 1,m — 1™ m — 111
=1%11,11® (m — 1)*,m — 1™ m — 21™
[A(Cam)] = 10D 5 174 — 1)2 = 17 H3m 42 (5 1)
Com = H1 ® Coppp—1 :2m+ 2
= Hy ® Coppn :m(m+1)
=(m-1)H ®Hypy :2
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—1
C N ; C! = H
2t =t Hmts Come m+2

~1 1
Cy m_) H, i1 C, — C,_1
"™ piEOROE0 T " "

13.9.4. D,,. (Dg = X¢ : Extra case, D5 = EOs)

Up, = 075 (1 — g) A THaT Ry b
Up, = 07H (1 — :v)f)‘lf“f“sup5
up, =0 (1 — ;U)*’\,ﬂan_2 (n>7)
(2m — 1)2,2™1,2™215 = 10,01, 10 @ (2m — 2)2,2™,2™ 316
=10,10,01 @ (2m — 2)2,2m 112, 2m =314
= (m—1)1,1"0,1"212 @ m1,1™1,1m %13
m>2 = [A(Dgpyr)] = 15m+2 . 20m=1(m=3) 16 92m=3 _ 16m+8  gm(m=2)
D1 = Hi @ Doy ‘m -2
=H,| P Es,, 1 om
=H,, ® Hyu1 : 10
=2H, ® D1 :m(m —2)
(2m —2)2,2™,2™731°6 = 10,1,01 @ (2m — 3)2,2m 11,2m731°
=(m—-11,1"1"313 ¢ (m - 1)1,1™, 1313
m>3 = [A(Dan)] = 16m+6  g(m—1)(m—4) 16  92m—4 _ {6m+10 gm(m—3)
Ds,, = H ® Do,y 1 6m
=H, ®H, 110
=2H, ® Doypp—g  :m(m —3)
D, — Du_s, Dy — Du_1, Dopmi1 — Eam

" R2E0

13.9.5. E,. (E5s =Cs, B, = EOy, E3 = H3)

Up, = x*)“)*“*“?’aﬂ”(l - :r)/\guH2
uE4 = 8_H4UE3
up, =0 "(1—a)*nup,_, (n>5)
(2m — 1)2,2m7 113 2m7113 = 10,01,10 @ (2m — 2)2,2™ 112, 2m 214
=(m-DL1" 1 e ml, 13 12
_ m—1 m—1 m—112 1m—113
=(m-2)1,1"710, 1™ '0® (m+ 1)1,1™ 12 1™ 11

m>2 = [A(Eamy1)] =172 9(m=2)* 16 . 92m=3 _ 16m+4  9(m—1)*

Eomy1 = H1 @ Eapy, :6(m—1)
=H, 1®Hpio 1
=H,, ® Hp1 19
=2H, @ FEopp_1 s (m —1)?

(2m —2)2,2m~ 112 2m=21% = 10,10,01 & (2m — 3)2,2™ 213, 2m 213
=10,01,10 @ (2m — 3)2,2m~11,2m =315
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=(m—2)1,1"710,1" 21 @ ml, 1™ 112, 1m 213

=(m-11,1" 1,1 212 @ (m — 1)1, 1™, 122
m>2 = [A(Ey,)] =171 2m=2)(m=3) , 16 g2m=4

— 16m+2  9(m—1)(m—-2)

Es, = H ® FEsypy :4(m—1)
=H, ® Doy :2(m—2)
=H, 1®H,1 :4
=H,dH, : 6

:2H1@E2m,2 (mfl)(m72)

2 1 1
En R2‘E)0 En—27 En — En—la EQm — D2m—1

13.9.6. F,,. (F5 = B57 Fy= 15'047 F3 = H3)

UFy = UH,
up, = 01 (1 — x)—,\l—xg@_#(:ﬂuﬁ
up, =0 (1 —2)up,_, (n>5)
(2m — 1)1%,2™1,2™ 113 = 10,10,01 @ (2m — 2)12,2m 112 2m 112
=10,01,10 ® (2m — 2)12, 2™, 2m =214
= (m—1)1,1"0,1" "1 ®m1,1m1,1" 711
m>1 = [AFomsr)] = 14m+1 | g(m—1)(m=2) , 14 92m—2 _ {4m+5 gm(m—1)
Fomi1 = H1 @ Gom :3m
=H, ® Fy, m—1
=H,, ®Hp :6
=2H, P Fore1 :m(m—1)
(2m —2)12,2™ 2™ 21* = 10,1,01 © (2m — 3)12,2m11,2m213
=(m-11,1"1"212 @ (m - 1)1,1™, 1™ 212
m>2 = [A(Fyy)] = 19712 o(m=1(m=3) 14 92m=3 _ 4m+6  gm(m—2)
Fop, = Hy @ Fopp—1 s 4m
=H,®H, 16
=2H, @ Foppa2  :m(m —2)

2 1 1
Fn RQ_E'>OFn_2, Fn—>Fn—17 F2m+1—>G2m

13.9.7. Gam. (G4 = By)

u(;2 = qu
UGy, = g~ Hem (1 - I))\;’"UG%L72
(2m —2)1%,2m~ 112 2m~112 = 10,01,01 & (2m — 3)1%,2™~11,2m 213
=(m— B 0 m B -
( 2)1,1™~ 10,1710 1,1m-112 1m-112
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m>2 = [A(Gyy)] = 14772200727 14, 92m=3 _ q4m+2 o(m-1)*
Gom = H1 @ Fopp—1 s 4dm
=H, 1®Hp1 2
=2H,®Gopm_o :(m—1)?
Gop =H1® Foppo1 = Hpo1 ® Hypq

2 1
Gom — Go(m— Gom — Fop_
2m R2E0 2(m—1)» 2m 2m—1

13.9.8. I,.. (Iomi1 = 1T%,, Loy, =117, Iy = Py)

Ulypy = o N (c— x)xluHm
(2m)1,m+ Im,m + 11™ m + 11™
=10,10,10,01 @ (2m — 1)1, mm, m1™,m 4 11™~*
=20,11,11,11 & (2m — 2)1,mm — 1,m1™ 1 m1m™~?

A(Lms1)] = 1™ x 12™ o (m+1) = 1™ 12" o (m+ 1)

Iopmi1 = Hi @ Ioyy :2m
= Hy ® I 1 :m?
=mH; & Hyp 11 01

=(m+1)H1®H,, :1

U, = 87“’(1 - cx)A”uHm
(2m — 1)1, mm, m1™ m + 11™"!
=10,01,01,10 & (2m — 2)1,mm — 1,m1™ 1 m1m™~*
=20,11,11,11® (2m — 3)1,m — Im — 1,m — 1™~ m1™2
[A(Lz)] = 1™ x 1™ -2 = 170D 2

I, = H{ P Iz,—1 :2m
=Hy®Ipp—o :m(m—1)
=mH & H,, :2

m—+1 m m 1
12m+1 — Hm7 I2m+1 — Hm+17 IQm — Hm7 In — Infl

I2m+1 7 I2m ” 12m72
R1EO R2EOQ

13.9.9. J,. (Ji=1I, J3 = P3)
uy, = (c— a:))‘,qu
Ugy = UP,
L= 3_“ilm)‘:lu‘]n72 (n>4)
(2m)1, (2m)1,2™1,2™1
=10,10,01,10 & (2m — 1)1, (2m — 1)1,2™, 2™~ 111
=(m—1)1,m0,1™0,1m0® (m +1),m1,1™1,1™1
[A(Jamar)] = 12m . 20m=1)% 5 12 92m—1 _ 12m+2 gm?
Jomy1 = Hy @ Jom 1 2m
=H,, ® Hy,1 12
=2H, ® Jom—_o :m>

uy
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(2m — 1)1, (2m — 1)1,2™, 2™ 112
=10,10,1,01 ® (2m — 2)1, (2m — 2)1,2m"11,2m 711
= (m—1)1,m0,1"™, 1™ 'L ® m0, (m — 1)1,1™, 1™ 11
[A(J2m)] — 12m . 9(m=1)(m=2) | 2 92m—2 _ 12m+2 gm(m—1)
Jom = H1 ® Joy—1  :2m
=H,®H, 12
=2H, ® Joap—2 :m(m—1)

Jn — Jnin (R >6), Jn — Juy
R2E0O

13.9.10. K,. (K5 = M;s, Ky = I, K3 = P)
Uiy s = O =) (¢ =) up,

m + 1m,m + 1m, (2m)1, (2m)1, (2m)1, ... € PCTSY

=11,11,11,20,20,... ® mm — 1,mm — 1, (2m — 1)0, (2m — 2)1, (2m — 2)1,...

[AKaman)] = 17 - (m = 1) xm? - (m+1) = 1™ (m = 1) - m? - (m + 1)

Komi1 = Hy @ Kopp—1 tm—+1
= (m—1)H, ® Ppys :1
=mH; ® P11 12
=(m+1)H, @ P, 01

UKy, = 87“’ (C/ - ’I)XUPM
mm,mm — 11, (2m — 1)1, (2m — 1)1, 777(31”2)
= 01,001, 10,10, 10, ... @ mm — 1,mm — 10, (2m — 2)1, (2m — 2)1, ..

=11,110,11,20,20,... & m — lm — 1,m — 1m — 21, (2m — 2)0, 2m—3)1,...

[A(Kyp)] =1 (m = 1) x 1-(m—1)-m? =12 (m — 1)% . m?

Kop, = Hi @ Kopp—q 12
=Hy ® Kopm—2 im
=(m-1)H, ®Ppy1 :2
=mH, ® P, 22

m—+1 m m—1
Komi1 — Pny,  Komia =y P, Komg1r — Prgo

m m—1 1
K2m ?Pma K2m — Perla K2m _>K2m71

13.9.11. Loy y1. (Ls = Js, Ly = Hs)

w N
ULymi1 = ot UP, 41

mml,mml, (2m)1, (2m)1,... € PSTQH)

= 001,010, 10, 10, ... & mm0, mm — 11, (2m — 1)1, (2m — 1)1, . ..

=110,110,11,20,...®m — 1m — 10,m — 1m — 11, (2m — 1)0, (2m — 2)1, ...

[A(Lam1)] = 12 0 x 12 .m3 = 1M ol
Lomi1 = H1 & Ko 4
=Hy®Lop1 :m
=mH &Py :4
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Lopmy1 = Hy @ Koy, Lopmyr = Hy @ Lop—1

1
L = P, L — K.
2m—+1 R2E0O m+1s 2m—+1 2m

13.9.12. M,. (Ms = K5, My = I, M3 = P)

Uy sy = O FNnia ey — )N (g — @) mb2ug,

(2m)1, (2m)1, (2m)1, (2m — 1)2, (2m — 1)2,... € P

=m—11,m0,m0,m—11,m—11,...&m+ 10,m1l,ml,ml,ml,...

=m—10,m —10,m —10,m —21,m — 21,...
e&m+11l,m+11,m+11,m+11,m+ 11, ...
[A(Mapy1)] =11 x 2™ (2m —1) =1*-2™. (2m — 1)

Maomi1 = Pr—1 ® Py 01
=P, ® P 03
=2H, ® Ms,,_1 tm
—@m-D)H & H, :1

’ ’ ’
Unty, = 071 (c3 — ) - (Emgr — &)V ug,

(2m —2)12, (2m — D)1, (2m — D1, (2m - 2)2,... € PCTY

=01,10,10,10,...® (2m — 2)1, (2m — 2)1, (2m — 2)1, (2m — 3)2, . ..

=m-21,m—10,m —10,m —21,...®&ml,ml,ml,ml,...

=m—-11m-11,m0Om—-11,...&dm—11,m0,m—11,m —11,...

[A(Ms,,)] =1 x 12.2m7 1. (2m —2) =1°. 2™ . (2m — 2)
Moy, = Hy @& Map,_1 )
=P,-1® Prt1 2
=P,®P, 12

= 2H, & Mop_o cm—
=(2m—-2)H, ® Hy :1

1

n—2 2 1
Mn — H27 Mn — Mn_g, Mgm Iﬁ)O Mgm_l H) Mgm_g

13.9.13. N,. (Ng =1IV*, N5 =I5, Ny = G4, N3 = Hj)

2 (g1 — @) M ugy,

(2m — 1)12, (2m — D12, (2m)1, (2m — 1)2, (2m — 1)2,... € P
=10,01,10,10,10.. .
& (2m —2)12,(2m — 1)1, (2m — 1)1, (2m — 2)2, (2m — 2)2, ...

Usz+1 = aiﬂlx)\/(CB - IE)

=m—-11m—-11,m0,m—11,m —11,...&ml,ml,ml,ml,ml,...

[A(Ngpy1)] =14 x 12277 2m — 1) =13 271 (2m — 1)

Noms1 = Hy © My, 4
= P ® Ppia -4
:2H1@N2m_1 :m—1

:(2M71)H1@H2 01
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UN,,, = 8_“/30’\6(1 - x))‘ll(c;; - sr:))‘,3 e (em — x)’\:nqu (m > 2)
(2m —2)12, (2m — 2)1%, (2m — 2)12, (2m — 2)2, (2m — 2)2,... € PT)
=01,10,10,10,10...
@ (2m —2)1,(2m — 3)12,(2m — 3)1%, (2m — 3)2, (2m — 3)2, ...
=m-11m-11,m-11,m—-11,m —11,...
e&m—-11,m—-11,m—11,m —11,m — 11, ...
[A(Noy)] =14 x16.2m72. (2m — 2) = 11°.2m72 . (2m — 2)
Nopm = H1 ® N1
=P,® P, 14
=2H, & Noyp—o tm—2
=©2m-2)H,®Hy, :1

n—2 2 1 1
Nn ? H27 Nn ? Nn72; N2m+1 > M2m7 NQm > N2m71
R1EO R1EO

13.9.14. minimal series. The tuple 11,11,11 corresponds to Gauss hyper-
geometric series, which has three parameters. Since the action of additions is easily
analyzed, we consider the number of parameters of the equation corresponding to
a rigid tuple m = (m;,,) o<j<p € 77;1)1 modulo additions and the Fuchs condition

1<v<n;
equals
(13.44) no+ni+---+n,—(p+1).
Here we assume that 0 <m;, <nfor1 <v <njand j=0,...,p.

We call the number given by (13.44) the effective length of m. The tuple
11,11,11 is the unique rigid tuple of partitions whose effective length equals 3.
Since the reduction 0,4, never increase the effective length and the tuple m € P;
satisfying Opnee = 11, 11,11 is 21,111,111 or 211,211,211, it is easy to see that the
non-trivial rigid tuple m € P3 whose effective length is smaller than 6 is Hy or Hj.

The rigid tuple of partitions with the effective length 4 is also uniquely deter-
mined by its order, which is

Piomi1:m+1m,m+ 1Im,m+1m,m+1m

13.45
( ) Pyom :m+ 1m — 1, mm, mm, mm

with m € Z-o. Here Py oy, 41 is a generalized Jordan-Pochhammer tuple in Exam-
ple 10.5 i).
In fact, if m € P is rigid with the effective length 4, the argument above shows

m € Pyand nj =2for j =0,...,3. Then 2 = Z?:o ms —|—Z§:O(n—mj,1)2 —2n?

and Z?zo(n — 2mj,1)2 = 4 and therefore m = Py 9,511 0OF Py opm,.
We give decompositions of Py ,:
m+1l,mm+1,mm+1,mm+1m
=k k+1Lk+1,kkE+1,kE+1EK
em—-k+1l,m—-k—1m—-km—-km—-km—-—km-—km-—k
=2(k+1,k;k+ 1,k k+1,k;...)
&m—2k—1,m—2k;m—2k—1,m—2k;m—2k—1,m —2k;...
[A(Pyomi1)] = 14m74.2m7 1t 2 = 14m . 9™
Piomy1 = Piokt1 D Pyopm—r) 4 (k=0,...,m—1)
=2Pioky1 ® Prom-ak—1 1 (k=0,...,m—1)
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Here Py _, = —P;, and in the above decompositions there appear “tuples of
partitions” with negative entries corresponding formally to elements in A" with
(7.12) (cf. Remark 7.11 1)).

It follows from the above decompositions that the Fuchsian equation with the
Riemann scheme

00 0 1 c3
Nolmtny  [Auimeny  P2almen  [Asa]ms)
[Xo,2](m) [A1,2](m) [A2,1](m) [A3,2](m)

4
Z((m + 1A +mAj2) =2m (Fuchs relation).
7=0

is irreducible if and only if

SN (k40w +1-26,1)8)Nw ¢Z  (i=0,1,...,5, k=0,1,...,m).

j=0v=1
When m = Py 5,,, we have the following.
m+1,m—1Lm,m;m,m;m,m
=k+1kk+1,kk+1,kk+1k
em—km—-k—1m—-k—1m-km—-k—1m—-km-k—1,m—k
=2k+1,k—1;k ki k, k; k, k)
®m—2k—1,m—2k+1;m—2k,m — 2k;m — 2k, m — 2k;m — 2k;m — 2k
[A(Pyom)] = 14m7% . 2m=1 14 = 4m . gm—l
Piom =Pioky1(=k+ 1L kik+1,k;...) & Piomory1 4 (k=0,...,m—1)
= 2Py 25 @ Paom—ak 1

1 2
Pypn = Pyn—1, Pioms1 = Piom—1

Roberts [Ro] classifies the rigid tuples m € P41 so that

1 1
(13.46) — 4t —2>p-1

no np
They are tuples m in 4 series «, 3, 7, d, which are close to the tuples rEs, rE7,
rEs and rDy, namely, (no,...,np) = (3,3,3), (2,2,4), (2,3,6) and (2,2,2,2), re-
spectively (cf. (7.46)), and the series are called minimal series. Then §,, = Py, and
the tuples in the other three series belong to P3. For example, the tuples m of type
« are
(13.47) Qsm = m+ Imm — 1,m>, m?, as = Hs,
. 341 zmzmil,m2mi17m2mi1, ay = By,
which are characterized by the fact that their effective lengths equal 6 when n > 4.
As in other series, we have the following:

a5 a ne1, Q3me1 2, amo1
[Aasm)] = [Alasm_1)] X 1°, [A(zm_1)] = [Alazm_2)] x 1%,
[A(azm-—2)] = [A(azm_4)] x 1°-2
[A(azm_1)] = [A(ag)] x 1100m=1) . gm=1 _ 110m—6  gm—1
[A(asy,)] = 110m=1 . gm=1
[A(agm_p)] = 110m~10. gm~1
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asm =m+ lmm — ng’,m3

= kkk — 1,k*k — 1, k*k —
©(m—k+D(m—k)(m—k),(m—-k?*m-k+1),(m—Ek?*m-k+1)
=k+ 1k — 1k, k3, k3
©(m—k+1D(m—Fk)(m—Fk—1),(m—k)> (m—k)?

=2(k + 1kk — 1,k3 k%)

® (m — 2k — 1)(m — 2k)(m — 2k + 1), (m — 2k)3, (m — 2k)?

Q3m = Q31 D A3(m-ky41 9 (k=1,...,m)
a3k D a3(m—k) 1 (k=1,...,m—1)
:2a3k@a3(m_2k) 01 (kzl,...,m—l)

agm—1 = mmm — 1L, mmm — 1,mmm — 1
=kk—1k—1,kk — 1k — 1, kk — 1k —1
&(m—-—km-k+1)(m—k),(m—k(m-k+1)(m-—Fk),- -
=k+1kk -1,k k3
d(m—k—1)(m—k)(m—k),(m—k)(m-—k)(m—Fk—1),---
= 2(kkk — 1,kkk — 1, kkk — 1)
® (m —2k)(m — 2k)(m — 2k + 1), (m — 2k)(m — 2k)(m — 2k + 1), - -

a3m-1 = azp—2(=k,k =1,k —1;---) ® a3(m—r)+1 4 (k=1,...,m)

= a3k © A3(m—k)-1 6 (k=1,...,m—1)
= 20351 D A3(m—2k)+1 1 (k=1,...,m—1)
agm-o=mm—1Im—-1,mm—-—Im—-1,mm—1m—1
= kkk — 1, kkk — 1,kkk — 1
®(m—k)(m—-k—-1(m—-k),m—-k)(m-k—-1)(m-k),---
=k+1kk — 1,3 k3
&m—-k—1)(m—-k—1)(m-—k),m—k)m—k—-1)(m—-k—1),---

=2(kk — 1k — 1,kk — 1k — 1,kk — 1k — 1)

& (m —2k)(m — 2k +1)(m — 2k + 1), (m — 2k)(m — 2k + 1)(m — 2k + 1), - - -

O[3m_2:Oégk_l(:k,k—l,k—l;"')@ag(m,k),l 4 (k:177m_1)
= azk © A3(m—k)—2 6 (k=1,...,m—1)
= 2a3k_2 D O3(m—2k)+2 01 (k =1,...,m— 1)
The analysis of the other minimal series
Bam,2 = (2m + )(2m71) m*, m* Bao = Hy
Bam,a = (2m)*,m*, (m + 1)m*(m — 1) Bia=EO4
ﬁ4m:|:1 (2m)(2m + 1) (m + 1) 37 (m + 1)m3 55 = 053 53 = H3
Bamea = (2m+ 1), (m +1)?m2, (m + 1)*m?
Yom2 = (3m +1)(3m — 1), (2m)*, m° Y6,2 = Do = X
Yom,3 = (3m)?, (2m +1)(2m)(2m — 1), m° v6,3 = EOs
Yom,s = (3m)?, (2m)?, (m + L)m*(m — 1)
Yome1 = (3m)(3m £ 1), (2m)?(2m £ 1),m°(m £ 1) 75 = EOs
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Yomeo = (3m+1)(B3m £ 1), 2m)(2m £ 1)>, m*(m £1)?  ~, = EO,
Yomas = (3m +2)(3m + 1), (2m + 1)3, (m + 1)3>m? v3 = Hj
and general P, , will be left to the reader as an exercise.
13.9.15. Relation between series. We have studied the following sets of

families of spectral types of Fuchsian differential equations which are closed under
the irreducible subquotients in the Grothendieck group.

{H,} (hypergeometric family)

{P.} (Jordan-Pochhammer family)

{4, = EO,} (even/odd family)

{Bn, Cpn, H,} (3 singular points)

{Cy, Hy,} (3 singular points)

{Dn, E,, H,} (3 singular points)

{F,, Gom, Hp} (3 singular points)

{I,, H,} (4 singular points)

{Jn, Hp} (4 singular points)

{K,, P.} ([2£2] singular points)

{Lomt1, Kn, Pn} (m + 2 singular points)

{M,, P,} ([2£2] singular points) O {Mam+1, Pn}
{Nn, M,, P,} (["T*?’] singular points) D {Namt1, Mp. Pp}
{P1n =0} (4 effective parameters)

{an} (6 effective parameters and 3 singular points)

Yokoyama classified m = (m;,,) o<j<p € Pp41 such that

(13.48) m is irreducibly realizable,
(13.49) mo1+ - +mp_11=(p—1)ordm (i.e. mis of Okubo type),
(13.50) mi, =1 (0<j<p—1,2<wv<n;).

The tuple m satisfying the above conditions is in the following list given by [Yo,
Theorem 2] (cf. [Ro]).

’ Yokoyama \ type \ order \ p+1 \ tuple of partitions ‘
I, H, n 3 1" n—11,1"
I, P, n n+1 n—11,n—-11,...,n—11
11, Bs,, 2n 3 nl™ nl" nn — 11
1T, I, 2n 4 nl® n+11""1 2n —11,nn
I11,, Bony1 | 2n+1 3 n1™ 1 n 4+ 11" nnl
11T, Iopit | 2n+1 4 n+ 11" n+ 11" (2n)l,n+ 1n
Y Fy 6 3 21111,411, 222
IivA Ng 6 4 411,411,411, 42

13.10. Appell’s hypergeometric functions

First we recall the Appell hypergeometric functions.

(13.51) ICHCNCIETERNE Y (a)(”;;"iﬁ);;g gy

m,n=0

)
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/ ’ - (a)m n(ﬁ)m(ﬁ/)n m, n
(13'52) F2<a;5a5 VY ;x,y) = m;:() (7 ;(’Y’)nm!n! z ,
1858) Bl S = 3 OOy,
(13.54) Fy(o; By, 'sz,y) = mzn;() Ww y".

They satisfy the following equations

(13.55) ((ﬁm 0y + a) (Vg + B) — Op (D + 0, + — 1))F1 —0,
(13.56) ((1% O, + )Wy + B) — (0 + — 1))F2 —0,
(13.57) (Wa + ) (W + B) = 0u(Wa + 9y +7 = 1)) By =0,
(13.58) ((ﬁx 0y + a) (g + 0y + B) — Op (D + — 1))F4 ~0
Similar equations hold under the symmetry z < y with (a, 8,7) < (o, 8,7')

13.10.1. Appell’s F;. First we examine Fj. Put
u(z,y) = / t*(1—t)P(y — )" — )M tdt (t=ms)
0

1
= / 21 — 5)P (y — zs) 711 — 5)* " Lds
0

= gt Ayl / s¥(1—s)M 11— xs)5<1 - g3) ds,
O m

hy == 2%(x — 1) (z —y) L.

Since the left ideal of Wz, ] is not necessarily generated by a single element, we
want to have good generators of RAd(8;*) o RAd(hy) (W [z, y]0, + Wz, y]0,) and
we have

P Ad(h)d, —0, - S P 171

r x—1 x—y
v—1
= Ad(h,)0, = ,
Q = Ad(hs)dy =0+ T—

R::xP—f—yQ:frax—i—yay—(a—i—’y—l)—xﬁ_xl,

S=0;(x—1)R= U+ 1)V +0y —a—B—7+1) = 0,(V+Vy —a—vy+1)
T:=09;%08500)
=W, A+ +9y—a—F—7—A+1) =0, (Vs +9y —a—y—A+1)

with
a=—a—[F—v7=A4+1L b=1-X c=2—a—v— A\

This calculation shows the equation Tu(z,y) = 0 and we have a similar equation by
changing (z,y,7,A) — (y,z, A, 7). Note that TF(a;b,b'; ¢; z,y) = 0 with b’ = 1—~.



13.10. APPELL’S HYPERGEOMETRIC FUNCTIONS 187

Putting

v(w,2) = Iy, (2% (1 = 2)° (1 — z2)7)
xT
= / t(1 =) (1 — 2t) Ha —t) e
0
1
= anr“/ sY(1 —28)P (1 — x28) 11 — s)*ds,
0
we have
u(z,y) =y " o(z, ),

191 — 1) (1 — 24)71 = i (B)m(L = N jatmetn

)

m!n!
m,n=0
=T D(=B)m(1l =)
U(IL‘,Z): Z (a+m+n+ )( ﬁ) ( 'Y) xa+'y+m+nzn
i~ Tla+p+m+n+1l)minl

— xa+u F(a + 1) i (a + 1)7R+n(_/8)m(1 B V)me-s-n n

z
Dla+p+1) & (a+p+1)mpamin!
I(a+1)
=2t _Fi(a+1;-8,1—-ya+p+ 1 z,22).
Matpur Sl :

Using a versal addition to get the Kummer equation, we introduce the functions

Uc(may) = /OI ta(]' - Ct)g(y - t)’Yil('T - t))\ilv

hey =21 —cz)e (x—y)" "t

ol

Then we have

Bx

1—cz’

Ri= Ad(he,)(0, +0,) = 0, + 0, — (a+7 - 1)+
S:=0,(1—cx)R
=W+ D)(B—cWe+Vy—a—7+1) + (s + 9y —a—y+1),
T:=Ad(0"")R
=W —A+1D)(B—c(Wo+Vy—A—a—7+1)) + 00, +0y —A—a—7+1)
and hence u.(z,y) satisfies the differential equation
(z(l — cx)0? + y(1 — cx)0,0,
+2-—a—-7=-A+B+A=2+cla+y+A=1))z)d + (A —1)9,
—(\— 1)(ﬁ+c(a+7+A—1)))u=0.

13.10.2. Appell’s F,;. To examine F; we consider the function
v(w,y) == / M2 (st — s — 1) (1 — sz — ty)Pds dt
A

and the transformation

(1350)  Jh(u)(@) ::/ Wty ) (L= by — - — b edty -~ i,
A
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for function u(x1,...,u,). For example the region A is given by

v(z,y) = /<0 . M2 (st — 5 — 1) (1 — sz — ty)Hds dt.
t

Putting s — s, t — ¢t~ and |z] + |y| < ¢ < 5, Aomoto [Ao] shows

(13.60) ()

T(T()D(e—v =7 +2)

which follows from the integral formula

Fy(a; B;7,752,y),

1 . 1 .
1 w1 Toor apr oot Lo —Qnt1
(2mi)™ /L i \/L ; Htj J(liztj) dh
n+1 ]

— 00T

nt1 0t =1 J=1

(13.61) . R !

_ F(Z] +11 o — n)

175 T(ay)
Since
Tiw) = T8 w) =Y w, JE (@)

and

)(1 - Ztl,x,,)“)

1= ) — pult)ai (1 -y tya,) !

we have

T (Opu) () = pri 4 (u) ()
Se— /ti_lu(t)é(l — St dt

(
(

= px; JJH(u) + pa; Yz, JEH(z,u)
)+ sz‘]( V(T ))
)

and therefore

(13.62) Ji (i) = (=1 — 2;0;) J (u),
(13.63) TE(Oiu) = @i (p = 2 2,0,) J¢ (u).
Thus we have

Proposition 13.2. For a differential operator

(13.64) P= 3 capdf Ol ok,
(a1,...,an ) €LY,

a= =
B=(B1,....6n) €L,

c+o001 c+oot , -B
/ / ST (1= s — )yt —o2 (1 T y) dsdt
c c—o001 5 3

- dt,
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we have
JH (Pu(x)) = JH(P)JH (u(ac))7

(13.65) - -
Jg(P)::an’g H(mk(u—z H 19k—1
a, B k=1 v=1 k=1
Using this proposition, we obtain the system of differential equations satisfied
by JE(u) from that satisfied by u(x). Denoting the Laplace transform of the variable
x = (x1,...,2n) by L (cf. Definition 1.1), we have

n

(13.66) JELN0:) =05, JEL () = ai(p— Y 0y).
v=1
‘We have
Ad(ey (ay — z — y)) 9, =9, — 21 W=D
T Ty —xT—Y
)\2 /\3(1‘ — 1)

Ad(zMyM(zy — 2 —y)™)0, =9, — &= — ——2,
( Y (zy Y) )y vy Ty ——y

Ad(x)‘ly)‘2 (xy —x — y)>‘3) (z(z —1)0,)
~ala =10, = ho -1 - 2N,
Ad(a,‘>‘1;y)‘2 (vy —x — y)>‘3) (x(x - 10, — y(?y)
=2(x—1)0; —y0y — M(z —1) — Xa — A3(z — 1)
=20, — U — ¥y — (M + A3)z + A1 — Ao+ s,
0z Ad (2™ (zy — 2 — y)™*) (2(z — 1)0: — y0,)
= 0px(Vy — M1 — A3) — Op (Vs + 0y — A1 + X2 — A3)

(13.67)

and
Ji (813:(19:” — A —A3) =0 (Vg + 9y — A1+ Ao — )\3))
=01+ + M+ A3) —x(—p+ 9 +9,)(2+ 0y + 9y + A1 — Ao+ A3).
Putting
=W+ — )W+ + A — Ao+ A3+2) —0,(Vg + A1+ A3+ 1)
with
a=—u, B=A—A+A3+2, 7y=A1+A3+2,

we have Tv(xz,y) = 0 and moreover it satisfies a similar equation by replacing
(z,y,A1,23,7) by (y,z,A3,A1,7"). Hence v(z,y) is a solution of the system of
differential equations satisfied by Fy(«; 857,75z, y).
In the same way we have
v~ f ~ e
l—z—y

)

Ad(2P 1y (1~ m—y)”‘ﬂ_'gl_l)ﬁmzﬁz—ﬂ—i-l—i-(

Ad( B-1 ﬂ (17Z7y)7*5*5/71)(ﬁx7x(19m+19y))
=W, —B+1)— (s +Uy —v+3),
Jgﬁy(&;(ﬁz —B+1) = 0pz(Vs + Iy — 7+ 3))

- x((ﬁz—i-i‘}y — 1) (0 + B) — Bu(Vg + 0y +y — 1)).
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which is a differential operator killing F («; 3, 8';v; ¢, y) by putting 4 = —« and in
fact we have

gP1p -1 BB =1(1 _ o . y—a
//>0 >0 7 (1 —s—1) (1= sz —ty) “dsdt
—s—t>0

50, t>0 Z N t)'y_ﬁ_ﬁl—l()"”rinyd dt

>0, t> m!n!
1—s—t>0 m,n=0

i F@B+m)I(B +n)l(y—B-F) (@)min m x

_mn:0 L(y+m+n) minl © Y
_TErEHriy-8-59 A oA
— F(’Y) Fl(aaﬁ,ﬂa’y’xvy)‘
Here we use the formula
(1369) A171t>\271(1 —5— t)A371d3 dt _ F(Al)F(AQ)F(A:S) .
220, £20 T(A1 + A2 + A3)

13.10.3. Appell’s F3. Since

Ty o= J; % a7 T (00 (90 — B+ 1) — 0px(Vy + 9y — v +3))
- Jy_a (Vs — ) (=% — B) + Ou(—Vs + 9y — 7+ 2))
=W+ )0z + ) — 0.V +9y +7—1)

with (13.68), the operator T3 kills the function

B=148'=1(1 _ ¢ _ ) =B=B'=1(1 _ 26)=%(1 — ut)~%
/ﬁ>0,t>os t (1—-s—1) (1 —as) (1 —yt)"“dsdt

1—s—t>0

// Z st tnt(g _ g g1 (Om( @t g,
>0, t>0 m!n!

Zs—t>0m,n=0

o~ LB +m)TB +m)(y =B =) @)m(@)n m n
Z I'(y +m 4+ n)m!n! ey

m, n=0

_LBrEra-6-4),
- 1—1(7) (aa,ﬁﬂ ’y,xy)

Moreover since

T = Ad(9; ") Ad(9, ") (95 + 1) (Ve — A — Ag) — 0u(P + Uy — A1 + X2 — A3))
:(193;+1—u)(19x—)\1—/\3—u)—8x(19x+19y—/\1+)\2—/\3—,u—u’)

with (13.67) and
a=-MA—A3—p, B=l-p y=-M+d—-—p—py+1,

the function
y o ,
(13.70) us(x,y) := / / M2 (st — 5 — 1) (x — )Py — )" dsdt

satisfies Tus(x,y) = 0. Hence uz(z,y) is a solution of the system of the equations
that Fs(a, s B8, 8';7; x,y) satisfies.



13.11. 0KUBO AND RISA/ASIR 191

13.10.4. Appell’s F5. Since
Oz Ad(:ﬂ)‘lfl(l - :c>‘2*1)):n(1 — )0y
= 0,x(1 — )0z — (A1 — 1)z + 0:(M1 + A2 — 2)z
= 0,2(—Ve + M1+ A2 —2)+0,(¥— A1 +1)

and
Ty = Jb (0um(—0s + M+ A2 — 2) + 0u(V0 — A1 + 1))
= Voo +1+M+A=2)+ta(p—J; —0y)(-1-d — A1 +1)
= (W0 + A)(@a + 0y = 1) = 0al0s + M1 + X0 — 1))
with

a=—p, B=A, 7=+,
the function

(z,9) / / ML =g e M (L - )N (1 — s — yt)Pds dt
_ / / )\1+m71(1 B S)/\zflt)\'lJrnfl(l o t))\éfl (_:u‘)m+n xmynds dt
o m!n!

o

Z L1 +m)I(A2) TN +10)0() (=) mtn m,
JTOU+ Ao+ m) TN, + Xy +m)  mln]

_ F()\l)l“()\g)l“()\’l)l“()\g) i A)mA)n(=fmtn m, n
F(/\l + )\2)1“()\’1 + /\/2) 0 (/\1 + )\g)m()\/l + /\’2)nm'n'

is a solution of the equation Tou = 0 that Fy(«; 5, 8';7,7'; ¢, y) satisfies.
Note that the operator T3 transformed from T3 by the coordinate transforma-
tion (z,y) — (1 1) equals

= (=Us + a)(=Va + B) — 2(=02) (V2 = Uy +7 - 1)
=Wy —a)(0y — B) —20,(0s + 9, — v+ 1)
and the operator
Ad(xfayfo‘/)fg =9, +ta—8)—z(s + )V + 9y +a+a’ —y+1)

together with the operator obtained by the transpositions z <> y, a < o' and
B <+ B’ defines the system of the equations satisfied by the functions

(13.71) {Fg(a—l—a'—v—kl a,o;a—B+1,0 — B+ 1;3,y),

Yy @ Fg(Ol aaﬂ ﬂ/ ’77177),

which also follows from the integral representation (13.70) with the transformation
(I, Y, S, t) — (%7 l7 l7 l)
y?'s’t

13.11. Okubo and Risa/Asir

Most of our results in this paper are constructible and they can be explicitly
calculated and implemented in computer programs.

The computer program okubo [O8] written by the author handles combina-
torial calculations in this paper related to tuples of partitions. It generates basic
tuples (cf. §13.1) and rigid tuples (cf. §13.2), calculates the reductions originated by
Katz and Yokoyama, the position of accessory parameters in the universal operator
(cf. Theorem 6.14 iv)) and direct decompositions etc.
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The author presented Theorem 12.6 in the case when p = 3 as a conjecture
in the fall of 2007, which was proved in May in 2008 by a completely different
way from the proof given in §12.1, which is a generalization of the original proof
of Gauss’s summation formula of the hypergeometric series explained in §12.3.
The original proof of Theorem 12.6 in the case when p = 3 was reduced to the
combinatorial equality (12.16). The author verified (12.16) by okubo and got the
concrete connection coeflicients for the rigid tuples m satisfying ord m < 40. Under
these conditions (ordm < 40, p = 3, mon, = Min, = 1) there are 4,111,704
independent connection coefficients modulo obvious symmetries and it took about
one day to got all of them by a personal computer with okubo.

Several operations on differential operators such as additions and middle con-
volutions defined in Chapter 1 can be calculated by a computer algebra and the
author wrote a program for their results under Risa/Asir, which gives a reduc-
tion procedure of the operators (cf. Definition 5.12), integral representations and
series expansions of the solutions (cf. Theorem 8.1), connection formulas (cf. The-
orem 12.5), differential operators (cf. Theorem 6.14 iv)), the condition of their
reducibility (cf. Corollary 10.12 1)), contiguity relations (cf. Theorem 11.3 ii)) etc.
for any given spectral type or Riemann scheme (0.11) and displays the results using
TEX. This program for Risa/Asir written by the author contains many useful func-
tions calculating rational functions, Weyl algebra and matrices. These programs
can be obtained from

http://www.math.kobe-u.ac. jp/Asir/asir.html
ftp://akagi.ms.u-tokyo.ac.jp/pub/math/muldif
ftp://akagi.ms.u-tokyo.ac.jp/pub/math/okubo.



CHAPTER 14

Further problems

14.1. Multiplicities of spectral parameters

Suppose a Fuchsian differential equation and its middle convolution are given.
Then we can analyze the corresponding transformation of a global structure of
its local solution associated with an eigenvalue of the monodromy generator at a
singular point if the eigenvalue is free of multiplicity.

When the multiplicity of the eigenvalue is larger than one, we have not a satis-
factory result for the transformation (cf. Theorem 12.5). The value of a generalized
connection coefficient defined by Definition 12.17 may be interesting. Is the proce-
dure in Remark 12.19 always valid? In particular, is there a general result assuring
Remark 12.19 (1) (cf. Remark 12.23)7 Are the multiplicities of zeros of the gener-
alized connection coefficients of a rigid Fuchsian differential equation free?

14.2. Schlesinger canonical form

Can we define a natural universal Fuchsian system of Schlesinger canonical
form (1.79) with a given realizable spectral type? Here we recall Example 9.2.

Let P, be the universal operator in Theorem 6.14. Is there a natural system of
Schlesinger canonical form which is isomorphic to the equation Pyuu = 0 together
with the explicit correspondence between them?

14.3. Apparent singularities

Katz [Kz] proved that any irreducible rigid local system is constructed from
the trivial system by successive applications of middle convolutions and additions
and it is proved in this paper that the system is realized by a single differential
equation without an apparent singularity.

In general, an irreducible local system cannot be realized by a single differential
equation without an apparent singularity but it is realized by that with apparent
singularities. Hence it is expected that there exist some natural operations of
single differential equations with apparent singularities which correspond to middle
convolutions of local systems or systems of Schlesinger canonical form.

The Fuchsian ordinary differential equation satisfied by an important special
function often hasn’t an apparent singularity even if the spectral type of the equa-
tion is not rigid. Can we understand the condition that a W(z)-module has a
generator so that it satisfies a differential equation without an apparent singular-
ity? Moreover it may be interesting to study the existing of contiguous relations
among differential equations with fundamental spectral types which have no appar-
ent singularity.

14.4. Irregular singularities

Our fractional operations defined in Chapter 1 give transformations of ordinary
differential operators with polynomial coefficients, which have irregular singularities
in general. The reduction of ordinary differential equations under these operations
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is a problem to be studied. Note that versal additions and middle convolutions
construct such differential operators from the trivial equation.

A similar result as in this paper is obtained for certain classes of ordinary
differential equations with irregular singularities, namely, unramified irregular sin-
gularities (cf. [Hi], [HiO], [010]).

A “versal” path of integral in an integral representation of the solution and
a “versal” connection coefficient and Stokes multiplier should be studied. Here
“versal” means a natural expression corresponding to the versal addition.

We define a complete model with a given spectral type as follows. For sim-
plicity we consider differential operators without singularities at the origin. For a
realizable irreducible tuple of partitions m = (m;,) o<j<p of a positive integer n

1<v<n;

Theorem 6.14 constructs the universal differential operator

p dn n—1 dk
(14.1) Py = H(l—cjx)"~?—FZak(x,c,)\,g)W
j=1 k=0
with the Riemann scheme
T = oo 1 ... 1
C1 Cp
P‘O,l](nLOVl) [Al,l](mlyl) o [)\p,l](mp‘l)
P‘O,no](mmno) P‘l,m](ml,nl) to [)‘Pynp](mp,np)
and the Fuchs relation
P U idxm
DD My =n— :
‘ 2
j=0v=1
Here ¢ = (co,-.-,¢p); A = (A\j) and ¢ = (¢1,...,9n) are parameters. We have

cicj(c; —¢j) # 0 for 0 < ¢ < j < p. The parameters g; are called accessory
parameters and we have idxm = 2 — 2N. We call the Zariski closure Py, of Py in
W z] the complete model of differential operators with the spectral type m, whose
dimension equals p + Z?:o n; + N — 1. It is an interesting problem to analyze the
complete model Py,.

When m = 11,11, 11, the complete model equals

2
(1- clx)z(l - czx)Qdd? —(1-c2)(1—coz)(ar12 + a1,0)% + a0,2w2 + ao,12 + a0,

whose dimension equals 7. Any differential equation defined by the operator belong-
ing to this complete model is transformed into a Gauss hypergeometric equation,
a Kummer equation, an Hermite equation or an Airy equation by a suitable gauge
transformation and a coordinate transformation. A good understanding together
with a certain completion of our operators is required even in this fundamental
example (cf. [Yos]). It is needless to say that the good understanding is important
in the case when m is fundamental.

14.5. Special parameters

Let Py be the universal operator of the form (14.1) for an irreducible tuple
of partition m. When a decomposition m = m’ + m” with realizable tuples of
partitions m’ and m” is given, Theorem 4.19 gives the values of the parameters of
Py, corresponding to the product Py Py A W(x, €)-automorphism of Ppu = 0
gives a transformation of the parameters (), g), which is a contiguous relation and
called Schlesinger transformation in the case of systems of Schlesinger canonical
form. How can we describe the values of the parameters obtained in this way and
characterize their position in all the values of the parameters when the universal
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operator is reducible? In general, they are not all even in a rigid differential equa-
tion. A direct decomposition 32,32,32,32 = 12,12,12,12 @ 2(10, 10,10, 10) of a
rigid tuples 32, 32,32, 32 gives this example (cf. (10.64)).

Analyse the reducible differential equation with an irreducibly realizable spec-
tral type. This is interesting even when m is a rigid tuple. For example, describe
the monodromy of its solutions.

Describe the characteristic exponents of the generalized Riemann scheme with
an irreducibly realizable spectral type such that there exists a differential operator
with the Riemann scheme which is outside the universal operator (cf. Example 5.6
and Remark 6.16). In particular, when the spectral type is not fundamental nor
simply reducible, does there exist such a differential operator?

The classification of rigid and simply reducible spectral types coincides with
that of indecomposable objects described in [MWZ, Theorem 2.4]. Is there some
meaning in this coincidence?

Has the condition (6.28) a similar meaning in the case of Schlesinger canonical
form? What is the condition on the local system or a (single) Fuchsian differential
equation which has a realization of a system of Schlesinger canonical form?

Give the condition so that the monodromy group is finite (cf. [BH]).

Give the condition so that the centralizer of the monodromy is the set of scalar
multiplications.

Suppose m is fundamental. Study the condition so that the connection coeffi-
cients is a quotient of the products of gamma functions as in Theorem 12.6 or the
solution has an integral representation only by using elementary functions.

14.6. Shift operators

Calculate the intertwining polynomial ¢y, (€; A) of A defined in Theorem 11.8.
Is it square free? See Conjecture 11.12.

Is the shift operator Ry (€, A\) Fuchsian?

Is there a natural operator in Ry, (€, \) + W (z; A) P (A)?

Study the shift operators given in Theorem 11.7.

Study the condition on the characteristic exponents and accessory parameters
assuring the existence of a shift operator for a Fuchsian differential operator with
a fundamental spectral type.

Study the shift operator or Schlesinger transformation of a system of Schlesinger
canonical form with a fundamental spectral type. When is it not defined or when
is it not bijective?

14.7. Isomonodromic deformations

The isomonodromic deformations of Fuchsian systems of Schlesinger canonical
form give Painlevé type equations and their degenerations correspond to confluence
of the systems (cf. §13.1.6). Can we get a nice theory for these equations? Is it
true that two Painlevé type equations corresponding to Fuchsian systems with
fundamental spectral types are not isomorphic to each other if their spectral types
are different?

14.8. Several variables

We have analyzed Appell hypergeometric equations in §13.10. What should be
the geometric structure of singularities of more general system of equations when
it has a good theory?

Describe or define operations of differential operators that are fundamental to
analyze good systems of differential equations.
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A series expansion of a local solution of a rigid ordinal differential equation
indicates that it may be natural to think that the solution is a restriction of a
solution of a system of differential equations with several variables (cf. Theorem 8.1
and §§13.3-13.4). Study the system.

14.9. Other problems

1. Given a rigid tuple m and a root a € A’ with (a|am) > 0. Is there a good
necessary and sufficient condition so that & € A(m)? See Proposition 7.9 iv)
and Remark 7.11 i).

For example, for a rigid decomposition m = m’ @ m”, can we determine
whether oy, € A(m) or ayr € A(m)?

2. Is there a direct expression of A(K); sk, in (12.10) for a given Riemann scheme
{Am}?

3. Are there analyzable series £ of rigid tuples of partitions different from the
series given in §13.9?7 Namely, £ C P, the elements of £ are rigid, the number
of isomorphic classes of £ NP are bounded for n € Zs and the following
condition is valid.

Let m = km’ + m” with k € Z-( and rigid tuples of partitions m, m’
and m”. If m € £, then m’ € £ and m” € L. Moreover for any m” € L,
this decomposition m = km’ + m” exists with m € £, m’ € £ and k € Z-,.
Furthermore £ is indecomposable. Namely, if £ = £’ U £” so that £ and L£”
satisfy these conditions, then £’ = L or £" = L.

4. Characterize the ring of automorphisms and that of endomorphisms of the lo-
calized Weyl algebra W (z). Can we find a good class of endomorphisms? These
questions are more important in the case of several variables.

5. In general, different procedures of the reduction of the universal operator Pyu =
0 give different integral representations and series expansions of its solution
(cf. Example 8.2, Remark 8.3 and the last part of §13.3). Analyze the difference.

6. Analyse the differential equation whose solutions are spanned by the Wronskians
of k independent solutions of the equation Py,u = 0 with a universal operator
Py, such that 1 < k < ordm (cf. Remark 12.18 ii)).

7. Generalize our results for differential equations on some compact complex man-
ifolds.

8. Generalize our results for difference equations (cf. [Yal).



Appendix

In Appendix we give a theorem which is proved by K. Nuida. The author
greatly thanks to K. Nuida for allowing the author to put the theorem with its
proof in this chapter.

Let (W,S) be a Coxeter system. Namely, W is a group with the set S of
generators and under the notation S = {s;;i € I}, the fundamental relations
among the generators are

(15.1) s = (si8;)™ =e and m;; =m;,; for Vi, j, k € satisfying i # j.

Here m; ; € {2,3,4,...} U {oo} and the condition m, ; = co means (s;5;)™ # e for
any m € Zsg. Let E be a real vector space with the basis set Il = {a; ; ¢ € I'} and
define a symmetric bilinear form ( | ) on E by

(15.2) (oslai) =2 and (aslay) = —2cos ——.

My 5
Then the Coxeter group W is naturally identified with the reflection group gen-
erated by the reflections s,, with respect to o; (¢ € I). The set A of the
roots of (W, S) equals WII, which is a disjoint union of the set of positive roots
Aff == ApnN > acr Z>o and the set of negative roots Ay = —Aj. Forw e W
the length L(w) is the minimal number k with the expression w = s;,8;, - s;
(i1,...,ir € I). Defining Ap(w) := Afi Nw™ 1A}, we have L(w) = #An(w).

Fix f and ' € Ay and put

k

(15.3) VVBL? ={weW;p =wp} and W* .= Wg
Theorem 15.1 (K. Nuida). Retain the notation above. Suppose VV; £ 0 and

there exist no sequence Si,, Si,, - - - Si, of elements of S such that
k>3,
31’,,7531"” (1§V<1//§]€>,

M, iy and my, g, are odd integers (1 <v <k).

(15.4)

Then an element w € VVBﬁ, s uniquely determined by the condition
(15.5) L(w) < L(v) (Vv e W}).
PRrROOF. Put Aﬁ = {v € Af;; (B]7) = 0}. First note that the following lemma.

Lemma 15.2. If w € %@ satisfies (15.5), then wAﬁ C Afr.

In fact, if w € Wg, satisfies (15.5) and there exists v € Aﬁ satisfying wy €

A, then there exists j for a minimal expression w = s;, ---s; such that
I 1 Ly (w)

Sijr1 Sing Y = Qg which implies Wg, DV I= WSy = 84y 1t Si;_y Sijq
and contradicts to (15.5).

TS (w)
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It follows from [Br| that the assumption (15.4) implies that W# is generated
by {sy; 7 € Aﬁ} Putting

° = Aﬁ\{rl'yl + 1oy € Ag; Yo & Ry, 5 € Aﬁ and r; > 0 for j =1,2}
and S? = {s,; v € I’} the pair (W*,59) is a Coxeter system and moreover the
minimal length of the expression of w € W# by the product of the elements of S#
equals #(Aﬁ Nw™tAp) (cf. [Nu, Theorem 2.3]).

Suppose there exist two elements w; and wq € VVBB, satisfying L(w;) < L(v)
for any v € I/Vﬁﬁ, and j = 1, 2. Since e # wl_lwg € WP, there exists v € Aﬁ
such that wflwgv € Ap. Since —wflwgfy € Aﬁ, Lemma 15.2 assures —wsy =
wi (—wy 'way) € Aj, which contradicts to Lemma 15.2. O

The above proof shows the following corollary.

Corollary 15.3. Retain the assumption in Theorem 15.1. For an element w &€
Wg,, the condition (15.5) is equivalent to wAﬁ C Af;.
Let w € Wg, satisfying (15.5). Then

(15.6) Wi =w(sy; (7]8) =0, v € Af).
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Dy, Es, E7, Eg, 70, 140 Z>0, Z>0, 2

p{™ . ES™, B EM™ 78, 96 -

de(m), 50 accessory parameter, 40
dmaz, Z’muzy 51 addition, 5

EO,, 60, 156 confluence, 22

fm, 65 around the origin, 23
nFn_1, xiii affine, 70

ged, 35 Airy equation, 8, 194
GL(n,R), 11 apparent singularity, 20, 21, 35
h(a), T4

Hn, 59, 150 Bécklund transformation, 143
b:ﬂv UX1 hpa 727 73

I, 1,69 characteristic exponent, 17
¥ I* 5 (compatible) shift, 109
idx, 36 distinct, 35

idxm, 104 distinguished, 38

Iy, 72 generalized, 31

L, 2 confluence, 21

L(m; \), 37 addition, 22

L(w), 74 connection coefficient, 119
mcy, 5 generalized, 133, 159, 166
m(k), A(k), p(k), £(k), 53 contiguity relation, 29, 109, 111, 112
M(n,C), M(m1,m2,C), 11, 37 convolution, 49

N, (m), 55, 57, 59, 66 coordinate transformation, 2
0, 0, O, Oc(p,m), 17 linear fractional, 51

ord, 2, 35 Coxeter system, 197
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Deligne-Simpson problem, x, 55
differential equation/operator
complete model, 194
cyclic vector, 11
degree, 2
dual, 41
Euclidean algorithm, 9
greatest common divisor, 9
irreducible, 12, 20
least common multiple, 9
mutually prime, 9
order, 2
reduced representative, 2
direct decomposition, 96
example, 100
dual partition, 33
Dynkin diagram, 70, 142

Euler transformation, 5
even family, x, 157
EQy, 115, 157
series expansion, 161
shift operator, 158
connection coefficient, 157
generalized, 159
reducibility, 157, 161

fractional derivation, 5
Fuchs relation, 20, 34, 36, 72
Fuchsian differential equation/operator, 19
dual, 41
locally non-degenerate, 89
normal form, 39
normalized, 32
universal operator, 63, 176
fundamental, 78

gauge transformation, 2

Heun’s equation, 21, 50, 60
hypergeometric equation/function

Appell, 185
F1, 186
Fy, 191
Fs, 190
Fy, 187
confluence, 187

Gauss, ix, 6, 83, 112
confluence, 24
Euler transformation, 84
exceptional parameter, 21
integral expression, 84
reducibility, 105
versal, 24

generalized, xiii, 150
connection coefficient, 136, 154
contiguity relation, 153, 154
integral expression, 151
local solution, 152
series expansion, 152
shift operator, 117
versal, 156

imaginary root, 70

INDEX

indicial equation, 17
intertwining polynomial, 114, 195
irregular singularity, 17, 193

Jordan-Pochhammer, 8, 99, 121, 147
connection coefficient, 121, 148
contiguity relation, 148, 149
exceptional parameter, 50
generalized, 98, 107, 182
integral expression, 8, 147, 149
series expansion, 147
versal, 23, 149

Kac-Moody root system, 69
Katz’s operation, 5

Katz’s rigidity, 92
Kummer’s equation, 24

Laplace transformation, 2, 3
linear fractional transformation, 51
locally non-degenerate, 89

middle convolution, 5
minimal expression, 74, 197
monodromy, 20, 88

generator, 88

irreducible, 85

isomonodromic deformation, 141, 143

odd family, 161
connection coefficient, 161
reducibility, 162

Okubo normal form, 13

Okubo type, 42, 49, 116, 140, 185
polynomial solution, 118

Painlevé equation, 143, 195
parabolic cylinder function, 24
Pell equation, 99
Pochhammer contour, 5
polynomial solution, 118
positive root, 70

real root, 70

reduced representative, 2

reflection, 69

regular singularity, 17
local solution, 17
normalized, 17

Riemann scheme, 7, 8, 26
generalized, 34
reduction, 53

Riemann-Liouville integral, 5

Risa/Asir, 191

Schlesinger canonical form, 13, 86, 127

Schlesinger transformation, 113

Scott’s lemma, 91

series expansion, 27, 81

shift operator, 109, 113, 158, 176

simple reflection, 69

simple root, 69

Simpson’s list, 143

spectral type, see also tuple of partitions,
34
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tuple of partitions, 35

basic, 51, 139
Dynkin diagram, 142
index of rigidity = —2, 61
index of rigidity = 0, 56, 60
index of rigidity > —6, 140

direct decomposition, 96

divisible, 35, 62

fundamental, 65

index, 70

index of rigidity, 40
=0, 140

indivisible, 35

irreducibly realizable, 39

isomorphic, 36

monotone, 35

order, 36

realizable, 39

reduction, 52

rigid, 40, 143
(sub)maximal series, 174
1111,211,22, 115, 160
21,21,21,21, 49
211,211,211, 163, 164
211,22,31,31, 167
21111,222,33, 66, 143
22,2222 31, 168
221,221,221, 168
831,93,93,93, 108
minimal series, 181-183
order < 4, 163
order < 8, 144
Simpson’s list, 143
Yokoyama’s list, 185

rigid decomposition, 100

simply reducible, 65-67, 173

standard, 35

trivial, 35

universal model, 63

versal
addition, 22
operator, 23

Weber’s equation, 24
Weyl algebra, 1
Weyl group, 69
length, 74
minimal expression, 74
Wronskian, 21, 131, 132, 159, 166, 196

Yokoyama’s list, 185
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