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Abstract. We give a unified interpretation of confluences, contiguity relations
and Katz’s middle convolutions for linear ordinary differential equations with

polynomial coefficients and their generalization to partial differential equa-
tions. The integral representations and series expansions of their solutions
are also within our interpretation. As an application to Fuchsian differential

equations on the Riemann sphere, we construct a universal model of Fuchsian
differential equations with a given spectral type, in particular, we construct sin-
gle ordinary differential equations without apparent singularities corresponding
to the rigid local systems, whose existence was an open problem presented by

N. Katz. Furthermore we obtain an explicit solution to the connection problem
for the rigid Fuchsian differential equations and the necessary and sufficient
condition for their irreducibility. We give many examples calculated by our
fractional calculus.



Contents

Preface ix

Chapter 1. Fractional operations 1
1.1. Weyl algebra 1
1.2. Laplace and gauge transformations and reduced representatives 2
1.3. Examples of ordinary differential operators 4
1.4. Ordinary differential equations 9
1.5. Okubo normal form and Schlesinger canonical form 13

Chapter 2. Confluences 17
2.1. Regular singularities 17
2.2. A confluence 21
2.3. Versal additions 22
2.4. Versal operators 23

Chapter 3. Series expansion and Contiguity relation 27
3.1. Series expansion 27
3.2. Contiguity relation 29

Chapter 4. Fuchsian differential equation and generalized Riemann scheme 31
4.1. Generalized characteristic exponents 31
4.2. Tuples of partitions 35
4.3. Conjugacy classes of matrices 37
4.4. Realizable tuples of partitions 38

Chapter 5. Reduction of Fuchsian differential equations 43

Chapter 6. Deligne-Simpson problem 55
6.1. Fundamental lemmas 55
6.2. Existence theorem 57
6.3. Divisible spectral types 62
6.4. Universal model 63
6.5. Simply reducible spectral type 66

Chapter 7. A Kac-Moody root system 69
7.1. Correspondence with a Kac-Moody root system 69
7.2. Fundamental tuples 78

Chapter 8. Expression of local solutions 81

Chapter 9. Monodromy 85
9.1. Middle convolution of monodromies 85
9.2. Scott’s lemma and Katz’s rigidity 91

Chapter 10. Reducibility 95
10.1. Direct decompositions 95

vii



viii CONTENTS

10.2. Reduction of reducibility 100

Chapter 11. Shift operators 109
11.1. Construction of shift operators and contiguity relations 109
11.2. Relation to reducibility 114
11.3. Polynomial solutions 118

Chapter 12. Connection problem 119
12.1. Connection formula 119
12.2. An estimate for large exponents 125
12.3. Zeros and poles of connection coefficients 129

Chapter 13. Examples 139
13.1. Basic tuples 139
13.2. Rigid tuples 143
13.3. Jordan-Pochhammer family 147
13.4. Hypergeometric family 150
13.5. Even/Odd family 156
13.6. Trigonometric identities 162
13.7. Rigid examples of order at most 4 163
13.8. Other rigid examples with a small order 168
13.9. Submaximal series and minimal series 174
13.10. Appell’s hypergeometric functions 185
13.11. Okubo and Risa/Asir 191

Chapter 14. Further problems 193
14.1. Multiplicities of spectral parameters 193
14.2. Schlesinger canonical form 193
14.3. Apparent singularities 193
14.4. Irregular singularities 193
14.5. Special parameters 194
14.6. Shift operators 195
14.7. Isomonodromic deformations 195
14.8. Several variables 195
14.9. Other problems 196

Appendix 197

Bibliography 199

Index 201



Preface

Gauss hypergeometric functions and the functions in their family, such as Bessel
functions, Whittaker functions, Hermite functions, Legendre polynomials and Ja-
cobi polynomials etc. are the most fundamental and important special functions
(cf. [E–, Wa, WW]). Many formulas related to the family have been studied and
clarified together with the theory of ordinary differential equations, the theory of
holomorphic functions and relations with other fields. They have been extensively
used in various fields of mathematics, mathematical physics and engineering.

Euler studied the hypergeometric equation

(0.1) x(1− x)y′′ +
(
c− (a+ b+ 1)x

)
y′ − aby = 0

with constant complex numbers a, b and c and he got the solution

(0.2) F (a, b, c;x) :=

∞∑
k=0

a(a+ 1) · · · (a+ k − 1) · b(b+ 1) · · · (b+ k − 1)

c(c+ 1) · · · (c+ k − 1) · k!
xk.

The series F (a, b, c;x) is now called Gauss hypergeometric series or function and
Gauss proved the Gauss summation formula

(0.3) F (a, b, c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

when the real part of c is sufficiently large. Then in the study of this function an
important concept was introduced by Riemann. That is the Riemann scheme

(0.4)

x = 0 1 ∞
0 0 a ; x

1− c c− a− b b


which describes the property of singularities of the function and Riemann proved
that this property characterizes the Gauss hypergeometric function.

The equation (0.1) is a second order Fuchsian differential equation on the Rie-
mann sphere with the three singular points {0, 1,∞}. One of the main purpose of
this paper is to generalize these results to the general Fuchsian differential equation
on the Riemann sphere. In fact, our study will be applied to the following three
kinds of generalizations.

One of the generalizations of the Gauss hypergeometric family is the hyperge-
ometric family containing the generalized hypergeometric function nFn−1(α, β;x)
or the solutions of Jordan-Pochhammer equations. Some of their global structures
are concretely described as in the case of the Gauss hypergeometric family.

The second generalization is a class of Fuchsian differential equations such as
the Heun equation which is of order 2 and has 4 singular points in the Riemann
sphere. In this case, there appear accessory parameters. The global structure of the
generic solution is quite transcendental and the Painlevé equation which describes
the deformations preserving the monodromies of solutions of the equations with an
apparent singular point is interesting and has been quite deeply studied and now
it becomes an important field of mathematics.

ix
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The third generalization is a class of hypergeometric functions of several vari-
ables, such as Appell’s hypergeometric functions (cf. [AK]), Gelfand’s generalized
hypergeometric functions (cf. [Ge]) and Heckman-Opdam’s hypergeometric func-
tions (cf. [HeO]). The author and Shimeno [OS] studied the ordinary differential
equations satisfied by the restrictions of Heckman-Opdam’s hypergeometric func-
tion on singular lines through the origin and we found that some of the equations
belong to the even family classified by Simpson [Si], which is now called a class of
rigid differential equations and belongs to the first generalization in the above.

The author’s original motivation related to the study in this paper is a general-
ization of Gauss summation formula, namely, to calculate a connection coefficient
for a solution of this even family, which is solved in Chapter 12 as a direct conse-
quence of the general formula (0.24) of certain connection coefficients described in
Theorem 12.6. This paper is the author’s first step to a unifying approach for these
generalizations and the recent development in general Fuchsian differential equa-
tions described below with the aim of getting concrete and computable results. In
this paper, we will avoid intrinsic arguments and results if possible and hence the
most results can be implemented in computer programs. Moreover the arguments
in this paper will be understood without referring to other papers.

Rigid differential equations are the differential equations which are uniquely
determined by the data describing the local structure of their solutions at the
singular points. From the point of view of the monodromy of the solutions, the rigid
systems are the local systems which are uniquely determined by local monodromies
around the singular points and Katz [Kz] studied rigid local systems by defining
and using the operations called middle convolutions and additions, which enables
us to construct and analyze all the rigid local systems. In fact, he proved that
any irreducible rigid local system is transformed into a trivial equation du

dz = 0
by successive application of the operations. In another word, any irreducible rigid
local system is obtained by successive applications of the operations to the trivial
equation because the operations are invertible.

The arguments there are rather intrinsic by using perverse sheaves. Dettweiler-
Reiter [DR, DR2] interprets Katz’s operations on monodromy generators and
those on the systems of Fuchsian differential equations of Schlesinger canonical
form

(0.5)
du

dx
=

p∑
j=1

Aj

x− cj
u

with constant square matrices A1, . . . , Ap. These operations are useful also for
non-rigid Fuchsian systems.

Here Aj are called the residue matrices of the system at the singular points
x = cj , which describe the local structure of the solutions. For example, the

eigenvalues of the monodromy generator at x = cj are e2π
√
−1λ1 , . . . , e2π

√
−1λn ,

where λ1, . . . , λn are eigenvalues of Aj . The residue matrix of the system at x =∞
equals A0 := −(A1 + · · ·+Ap).

Related to the Riemann-Hilbert problem, there is a natural problem to deter-
mine the condition on matrices B0, B1, . . . , Bp of Jordan canonical form such that
there exists an irreducible system of Schlesinger canonical form with the residue
matrices Aj conjugate to Bj for j = 0, . . . , p, respectively. An obvious necessary
condition is the equality

∑p
j=0 TraceBj = 0. A similar problem for monodromy

generators, namely its multiplicative version, is equally formulated. The latter is
called a mutiplicative version and the former is called an additive version. Kostov
[Ko, Ko2, Ko3, Ko4] called them Deligne-Simpson problems and gave an answer
under a certain genericity condition. We note that the addition is a kind of a gauge
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transformation

u(x) 7→ (x− c)λu(x)

and the middle convolution is essentially an Euler transformation or a transforma-
tion by an Riemann-Liouville integral

u(x) 7→ 1

Γ(µ)

∫ x

c

u(t)(x− t)µ−1dt

or a fractional derivation.
Crawley-Boevey [CB] found a relation between the Deligne-Simpson problem

and representations of certain quivers and gave an explicit answer for the additive
Deligne-Simpson problem in terms of a Kac-Moody root system.

Yokoyama [Yo2] defined operations called extensions and restrictions on the
systems of Fuchsian ordinary differential equations of Okubo normal form

(0.6)
(
x− T

)du
dx

= Au.

Here A and T are constant square matrices such that T are diagonalizable. He
proved that the irreducible rigid system of Okubo normal form is transformed
into a trivial equation du

dz = 0 by successive applications of his operations if the
characteristic exponents are generic.

The relation between Katz’s operations and Yokoyama’s operations is clarified
by [O7] and it is proved there that their algorithms of reductions of Fuchsian
systems are equivalent and so are those of the constructions of the systems.

These operations are quite powerful and in fact if we fix the number of accessory
parameters of the systems, they are connected into a finite number of fundamental
systems (cf. [O6, Proposition 8.1 and Theorem 10.2] and Proposition 7.13), which
is a generalization of the fact that the irreducible rigid Fuchsian system is connected
to the trivial equation.

Hence it is quite useful to understand how does the property of the solutions
transform under these operations. In this point of view, the system of the equations,
the integral representation and the monodromy of the solutions are studied by
[DR, DR2, HY] in the case of the Schlesinger canonical form. Moreover the
equation describing the deformation preserving the monodromy of the solutions
doesn’t change, which is proved by [HF]. In the case of the Okubo normal form the
corresponding transformation of the systems, that of the integral representations
of the solutions and that of their connection coefficients are studied by [Yo2], [Ha]
and [Yo3], respectively. These operation are explicit and hence it will be expected
to have explicit results in general Fuchsian systems.

To avoid the specific forms of the differential equations, such as Schlesinger
canonical form or Okubo normal form and moreover to make explicit calculations
easier under the transformations, we introduce certain operations on differential
operators with polynomial coefficients in Chapter 1. The operations in Chapter 1
enables us to equally handle equations with irregular singularities or systems of
equations with several variables.

The ring of differential operators with polynomial coefficients is called a Weyl
algebra and denoted by W [x] in this paper. The endomorphisms of W [x] do not
give a wide class of operations and Dixmier [Dix] conjectured that they are the
automorphisms of W [x]. But when we localize coordinate x, namely in the ring
W (x) of differential operators with coefficients in rational functions, we have a
wider class of operations.

For example, the transformation of the pair (x, d
dx ) into (x, d

dx −h(x)) with any
rational function h(x) induces an automorphism of W (x). This operation is called
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a gauge transformation. The addition in [DR, DR2] corresponds to this operation
with h(x) = λ

x−c and λ, c ∈ C, which is denoted by Ad
(
(x− c)λ

)
.

The transformation of the pair (x, d
dx ) into (− d

dx , x) defines an important au-
tomorphism L of W [x], which is called a Laplace transformation. In some cases
the Fourier transformation is introduced and it is a similar transformation. Hence
we may also localize d

dx and introduce the operators such as λ( d
dx − c)−1 and

then the transformation of the pair (x, d
dx ) into (x − λ( d

dx )
−1, d

dx ) defines an en-
domorphism in this localized ring, which corresponds to the middle convolution
or an Euler transformation or a fractional derivation and is denoted by Ad(∂−λ)
or mcλ. But the simultaneous localizations of x and d

dx produce the operator

( d
dx )

−1 ◦ x−1 =
∑∞

k=0 k!x
−k−1( d

dx )
−k−1 which is not algebraic in our sense and

hence we will not introduce such a microdifferential operator in this paper and we
will not allow the simultaneous localizations of the operators.

Since our equation Pu = 0 studied in this paper is defined on the Riemann
sphere, we may replace the operator P in W (x) by a suitable representative P̃ ∈
C(x)P ∩W [x] with the minimal degree with respect to x and we put RP = P̃ .
Combining these operations including this replacement gives a wider class of op-
erations on the Weyl algebra W [x]. In particular, the operator corresponding to
the addition is RAd

(
(x − c)λ

)
and that corresponding to the middle convolution

is RAd(∂−µ) in our notation. The operations introduced in Chapter 1 correspond
to certain transformations of solutions of the differential equations defined by ele-
ments of Weyl algebra and we call the calculation using these operations fractional
calculus of Weyl algebra.

To understand our operations, we show that, in Example 1.8, our operations
enables us to construct Gauss hypergeometric equations, the equations satisfied by
Airy functions and Jordan-Pochhammer equations and to give integral representa-
tions of their solutions.

In this paper we mainly study ordinary differential equations and since any
linear ordinary differential equation is cyclic, namely, it is isomorphic to a single
differential operator Pu = 0 (cf. §1.4), we study a single ordinary differential equa-
tion Pu = 0 with P ∈W [x]. In many cases, we are interested in a specific function
u(x) which is characterized by differential equations and if u(x) is a function with
the single variable x, the differential operators P ∈W (x) satisfying Pu(x) = 0 are
generated by a single operator and hence it is natural to consider a single differential
equation. A relation between our fractional calculus and Katz’s middle convolution
is briefly explained in §1.5.

In §2.1 we review fundamental results on Fuchsian ordinary differential equa-
tions. Our Weyl algebra W [x] is allowed to have some parameters ξ1, . . . and in
this case the algebra is denoted by W [x; ξ]. The position of singular points of the
equations and the characteristic exponents there are usually the parameters and the
analytic continuation of the parameters naturally leads the confluence of additions
(cf. §2.3).

Combining this with our construction of equations leads the confluence of the
equations. In the case of Jordan-Pochhammer equations, we have versal Jordan-
Pochhammer equations. In the case of Gauss hypergeometric equation, we have
a unified expression of Gauss hypergeometric equation, Kummer equation and
Hermite-Weber equation and get a unified integral representation of their solu-
tions (cf. Example 2.5). After this chapter in this paper, we mainly study single
Fuchsian differential equations on the Riemann sphere. Equations with irregular
singularities will be discussed elsewhere (cf. [HiO], [O10]).
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In Chapter 3 we examine the transformation of series expansions and contiguity
relations of the solutions of Fuchsian differential equations under our operations.
The results in this chapter will be used in later chapters.

The Fuchsian equation satisfied by the generalized hypergeometric series

(0.7)
nFn−1(α1, . . . , αn, β1, . . . , βn−1;x) =

∞∑
k=0

(α1)k . . . (αn)k
(β1)k . . . (βn−1)kk!

xk

with (γ)k := γ(γ + 1) · · · (γ + k − 1)

is characterized by the fact that it has (n− 1)-dimensional local holomorphic solu-
tions at x = 1, which is more precisely as follows. The set of characteristic exponents
of the equation at x = 1 equals {0, 1, . . . , n−1,−βn} with α1+· · ·+αn = β1+· · ·+βn
and those at 0 and ∞ are {1− β1, . . . , 1− βn−1, 0} and {α1, . . . , αn}, respectively.
Then if αi and βj are generic, the Fuchsian differential equation Pu = 0 is uniquely
characterized by the fact that it has the above set of characteristic exponents at
each singular point 0 or 1 or ∞ and the monodromy generator around the point is
semisimple, namely, the local solution around the singular point has no logarithmic
term. We express this condition by the (generalized) Riemann scheme

x = 0 1 ∞
1− β1 [0](n−1) α1

...
... ; x

1− βn−1 αn−1

0 −βn αn


, [λ](k) :=


λ

λ+ 1
...

λ+ k − 1

 ,

α1 + · · ·+ αn = β1 + · · ·+ βn.

(0.8)

In particular, when n = 3, the (generalized) Riemann scheme is
x = 0 1 ∞
1− β1
1− β2

(
0
1

)
α1

α2 ; x
0 −β3 α3

 .

The corresponding usual Riemann scheme is obtained from the generalized Rie-

mann scheme by eliminating the parentheses
(
and

)
. Here [0](n−1) in the above

Riemann scheme means the characteristic exponents 0, 1, . . . , n− 2 but it also indi-
cates that the corresponding monodromy generator is semisimple in spite of integer
differences of the characteristic exponents. Thus the set of (generalized) charac-
teristic exponents {[0](n−1),−βn} at x = 1 is defined. Here we remark that the
coefficients of the Fuchsian differential operator P which is uniquely determined by
the generalized Riemann scheme for generic αi and βj are polynomial functions of
αi and βj and hence P is naturally defined for any αi and βj as is given by (13.21).
Similarly the Riemann scheme of Jordan-Pochhammer equation of order p is

(0.9)


x = c0 c1 · · · cp−1 ∞
[0](p−1) [0](p−1) · · · [0](p−1) [λ′p](p−1) ; x
λ0 λ1 · · · λp−1 λp

 ,

λ0 + · · ·+ λp−1 + λp + (p− 1)λ′p = p− 1.

The last equality in the above is called a Fuchs relation.
In Chapter 4 we define the set of generalized characteristic exponents at a

regular singular point of a differential equation Pu = 0. In fact, when the order of
P is n, it is the set {[λ1](m1), . . . , [λk](mk)} with a partition n = m1 + · · ·+mk and
complex numbers λ1, . . . , λk. It means that the set of characteristic exponents at
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the point equals

(0.10) {λj + ν ; ν = 0, . . . ,mj − 1 and j = 1, . . . , k}

and the corresponding monodromy generator is semisimple if λi − λj 6∈ Z for 1 ≤
i < j ≤ k. In §4.1 we define the set of generalized characteristic exponents without
the assumption λi − λj 6∈ Z for 1 ≤ i < j ≤ k. Here we only remark that when
λi = λ1 for i = 1, . . . , k, it is characterized by the fact that the Jordan normal form
of the monodromy generator is defined by the dual partition of n = m1 + · · ·+mk

together with the usual characteristic exponents (0.10).
Thus for a single Fuchsian differential equation Pu = 0 on the Riemann sphere

which has p+1 regular singular points c0, . . . , cp, we define a (generalized) Riemann
scheme

(0.11)


x = c0 c1 · · · cp

[λ0,1](m0,1) [λ1,1](m1,1) · · · [λp,1](mp,1)

...
...

...
... ; x

[λ0,n0 ](m0,n0 )
[λ1,n1 ](m1,n1 )

· · · [λp,np ](mp,np )

 .

Here n = mj,1 + · · · + mj,nj for j = 0, . . . , p, n is the order of P , λj,ν ∈ C and
{[λj,1](mj,1), . . . , [λj,nj ](mj,nj

)} is the set of generalized characteristic exponents of

the equation at x = cj . The (p + 1)-tuple of partitions of n, which is denoted
by m =

(
mj,ν

)
j=0,...,p
ν=1,...,nj

, is called the spectral type of P and the Riemann scheme

(0.11).
We note that the Riemann scheme (0.11) should always satisfy the Fuchs rela-

tion

|{λm}| :=
p∑

j=0

nj∑
ν=1

mj,νλj,ν − ordm+ 1
2 idxm

= 0.

(0.12)

Here

idxm :=

p∑
j=0

nj∑
ν=1

m2
j,ν − (p− 1) ordm(0.13)

and idxm coincides with the index of rigidity introduced by [Kz].
In Chapter 4, after introducing certain representatives of conjugacy classes of

matrices and some notation and concepts related to tuples of partitions, we define
that the tuple m is realizable if there exists a Fuchsian differential operator P with
the Riemann scheme (0.11) for generic complex numbers λj,ν under the condition
(0.12). Furthermore, if there exists such an operator P so that Pu = 0 is irreducible,
we define that m is irreducibly realizable.

Lastly in Chapter 4, we examine the generalized Riemann schemes of the prod-
uct of Fuchsian differential operators and the dual operators.

In Chapter 5 we examine the transformations of the Riemann scheme under
our operations corresponding to the additions and the middle convolutions, which
define transformations within Fuchsian differential operators. The operations in-
duce transformations of spectral types of Fuchsian differential operators, which keep
the indices of rigidity invariant but change the orders in general. Looking at the
spectral types, we see that the combinatorial aspect of the reduction of Fuchsian
differential operators is parallel to that of systems of Schlesinger canonical form.
In this chapter, we also examine the combination of these transformation and the
fractional linear transformations.
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As our interpretation of Deligne-Simpson problem introduced by Kostov, we
examine the condition for the existence of a Fuchsian differential operator with a
given Riemann scheme in Chapter 6. We determine the conditions on m such that
m is realizable and irreducibly realizable, respectively, in Theorem 6.14. Moreover
if m is realizable, Theorem 6.14 gives an explicit construction of the universal
Fuchsian differential operator

(0.14)
Pm =

( p∏
j=1

(x− cj)n
) dn
dxn

+
n−1∑
k=0

ak(x, λ, g)
dk

dxk
,

λ =
(
λj,ν

)
j=0,...,p
ν=1,...,nj

, g = (g1, . . . , gN ) ∈ CN

with the Riemann scheme (0.11), which has the following properties.
For fixed complex numbers λj,ν satisfying (0.12) the operator with the Riemann

scheme (0.11) satisfying c0 = ∞ equals Pm for a suitable g ∈ CN up to a left
multiplication by an element of C(x) if λj,ν are “generic”, namely,

(Λ(λ)|α) /∈
{
−1,−2, . . . , 1− (α|αm)

}
for any α ∈ ∆(m) satisfying (α|αm) > 1

(0.15)

under the notation used in (0.22). Here g1, . . . , gN are called accessory parameters
and if m is irreducibly realizable, N = 1 − 1

2 idxm. Example 5.6 shows the ne-
cessity of the above condition (0.15) but the condition is always satisfied if m is
fundamental or simply reducible (cf. Definition 6.15 and Proposition 6.17), etc. In
particular, if there is an irreducible and locally non-degenerate (cf. Definition 9.8)
operator P with the Riemann scheme (0.11), then λj,ν are “generic”. The simply
reducible spectral type is studied in Chapter 6 §6.5, which happens to correspond
to the indecomposable object studied by [MWZ] when the spectral type is rigid.

The coefficients ak(x, λ, g) of the differential operator Pm are polynomials of the

variables x, λ and g. The coefficients satisfy ∂2ak

∂gν∂gν′
= 0 and furthermore gν can be

equal to suitable aiν ,jν under the expression Pm =
∑
ai,j(λ, g)x

i dj

dxj and the pairs
(iν , jν) for ν = 1, . . . , N are explicitly given in the theorem. Hence the universal
operator Pm is uniquely determined from their values at generic λj,ν without the
assumption of the irreducibility of the equation Pmu = 0, which is not true in the
case of the systems of Schlesinger canonical form (cf. Example 9.2).

The universal operator Pm is a classically well-known operator in the case of
Gauss hypergeometric equation, Jordan-Pochhammer equation or Heun’s equation
etc. and the theorem assures the existence of such a good operator for any realizable
tuple m. We define the tuple m is rigid if m is irreducibly realizable and moreover
N = 0, namely, Pm is free from accessory parameters.

In particular, the theorem gives the affirmative answer for the following ques-
tion. Katz asked a question in the introduction in the book [Kz] whether a rigid
local system is realized by a single Fuchsian differential equation Pu = 0 without
apparent singularities (cf. Corollary 10.12 iii)).

It is a natural problem to examine the Fuchsian differential equation Pmu =
0 with an irreducibly realizable spectral type m which cannot be reduced to an
equation with a lower order by additions and middle convolutions. The tuple m
with this condition is called fundamental.

The equation Pmu = 0 with an irreducibly realizable spectral type m can
be transformed by the operation ∂max (cf. Definition 5.7) into a Fuchsian equation
Pm′v = 0 with a fundamental spectral type m′. Namely, there exists a non-negative
integer K such that Pm′ = ∂KmaxPm and we define fm := m′. Then it turns out
that a realizable tuple m is rigid if and only if the order of fm, which is the order



xvi PREFACE

of Pfm by definition, equals 1. Note that the operator ∂max is essentially a product
of suitable operators RAd

(
(x− cj)λj

)
and RAd

(
∂−µ

)
.

In this paper we study the transformations of several properties of the Fuchsian
differential equation Pmu = 0 under the additions and middle convolutions. If they
are understood well, the study of the properties are reduced to those of the equation
Pfmv = 0, which are of order 1 if m is rigid. We note that there are many rigid
spectral types m and for example there are 187 different rigid spectral types m
with ordm ≤ 8 as are given in §13.2.

As in the case of the systems of Schlesinger canonical form studied by Crawley-
Boevey [CB], the combinatorial aspect of transformations of the spectral type m
of the Fuchsian differential operator P induced from our fractional operations is
described in Chapter 7 by using the terminology of a Kac-Moody root system
(Π,W∞). Here Π is the fundamental system of a Kac-Moody root system with the
following star-shaped Dynkin diagram and W∞ is the Weyl group generated by the
simple reflections sα for α ∈ Π. The elements of Π are called simple roots.

Associated to a tuple m of (p+ 1) partitions of a positive integer n, we define
an element αm in the positive root lattice (cf. §7.1, (7.5)):

Π := {α0, αj,ν ; j = 0, 1, . . . , ν = 1, 2, . . .},
W∞ := 〈sα ; α ∈ Π〉,

αm := nα0 +

p∑
j=0

nj−1∑
ν=1

( nj∑
i=ν+1

mj,i

)
αj,ν ,

(αm|αm) = idxm,

α0�������� α1,1�������� α1,2�������� · · ·
α2,1��������III

III
α2,2�������� · · ·

α0,1��������
yyyyyy

α0,2�������� · · ·

α3,1��������88
88

88
88

α3,2�������� · · ·00
00

00
00

))
))

))
)(0.16)

We can define a fractional operation on Pm which is compatible with the action of
w ∈W∞ on the root lattice (cf. Theorem 7.5):

(0.17){
Pm : Fuchsian differential operators with {λm}

}
→

{
(Λ(λ), αm) ; αm ∈ ∆+

}
↓ fractional operations � ↓W∞-action, +τΛ0

0,j{
Pm : Fuchsian differential operators with {λm}

}
→

{
(Λ(λ), αm) ; αm ∈ ∆+

}
.

Here λj,ν ∈ C, τ ∈ C, m =
(
mj,ν

)
j=0,...,p
ν=1,2,...

with mj,ν = 0 for ν > nj ,

Λ0 := α0 +

∞∑
ν=1

(1 + ν)α0,ν +

p∑
j=1

∞∑
ν=1

(1− ν)αj,ν ,

Λ0
i,j :=

∞∑
ν=1

ν(αi,ν − αj,ν),

Λ0 :=
1

2
α0 +

1

2

p∑
j=0

∞∑
ν=1

(1− ν)αj,ν ,

Λ(λ) := −Λ0 −
p∑

j=0

∞∑
ν=1

( ν∑
i=1

λj,i

)
αj,ν

(0.18)

and these linear combinations of infinite simple roots are identified with each other
if their differences are in CΛ0. We note that

(0.19) |{λm}| = (Λ(λ) + 1
2αm|αm).
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The realizable tuples exactly correspond to the elements of the set ∆+ of pos-
itive integer multiples of the positive roots of the Kac-Moody root system whose
support contains α0 and the rigid tuples exactly correspond to the positive real
roots whose support contain α0. For an element w ∈ W∞ and an element α ∈ ∆+

we do not consider wα in the commutative diagram (0.17) when wα /∈ ∆+.
Hence the fact that any irreducible rigid Fuchsian equation Pmu = 0 is trans-

formed into the trivial equation dv
dx = 0 by our invertible fractional operations

corresponds to the fact that there exists w ∈W∞ such that wαm = α0 because αm

is a positive real root. The monotone fundamental tuples of partitions correspond
to α0 or the positive imaginary roots α in the closed negative Weyl chamber which
are indivisible or satisfies (α|α) < 0. A tuple of partitions m =

(
mj,ν

)
j=0,...,p
ν=1,...,nj

is

said to be monotone if mj,1 ≥ mj,2 ≥ · · · ≥ mj,nj for j = 0, . . . , p. For example, we
prove the exact estimate

(0.20) ordm ≤ 3| idxm|+ 6

for any fundamental tuple m in §7.2. Since we may assume

(0.21) p ≤ 1
2 | idxm|+ 3

for a fundamental tuple m, there exist only finite number of monotone fundamental
tuples with a fixed index of rigidity. We list the fundamental tuples of the index of
rigidity 0 or −2 in Remark 6.9 or Proposition 6.10, respectively.

Our results in Chapter 3, Chapter 5 and Chapter 6 give an integral expression
and a power series expression of a local solution of the universal equation Pmu = 0
corresponding to the characteristic exponent whose multiplicity is free in the local
monodromy. These expressions are in Chapter 8.

In §9.1 we review the monodromy of solutions of a Fuchsian differential equation
from the view point of our operations. The theorems in this chapter are given
by [DR, DR2, Kz, Ko2]. In §9.2 we review Scott’s lemma [Sc] and related
results with their proofs, which are elementary but important for the study of the
irreducibility of the monodromy.

In §10.1 we examine the condition for the decomposition Pm = Pm′Pm′′ of
universal operators with or without fixing the exponents {λj,ν}, which implies the
reducibility of the equation Pmu = 0. In §10.2 we study the value of spectral
parameters which makes the equation reducible and obtain Theorem 10.10. In
particular we have a necessary and sufficient condition on characteristic exponents
so that the monodromy of the solutions of the equation Pmu = 0 with a rigid
spectral type m is irreducible, which is given in Corollary 10.12 or Theorem 10.13.
When mj,1 ≥ mj,2 ≥ · · · for any j ≥ 0, the condition equals

(0.22) (Λ(λ)|α) /∈ Z (∀α ∈ ∆(m)).

Here ∆(m) denotes the totality of positive real roots α such that wmα are
negative and wm is the element of W∞ with the minimal length so that α0 =
wmαm (cf. Definition 7.8 and Proposition 7.9 v)). The number of elements of
∆(m) equals the length of wm, which is the minimal length of the expressions of
wm as products of simple reflections sα with α ∈ Π. Proposition 7.9 examines this
set ∆(m). The set

{
(α|αm) | α ∈ ∆(m)

}
gives a partition of a positive integer,

which is denoted by [∆(m)] and called the type of ∆(m) (cf. Remark 7.11 ii)).
If m is monotone and rigid, [∆(m)] is a partition of the positive integer ordm +∑p

j=0

∑nj−1
ν=1 (

∑nj

i=ν+1mj,i) − 1. Moreover m is simply reducible if and only if

[∆(m)] = 1 + · · ·+ 1 = 1#∆(m).
In Chapter 11 we construct shift operators between rigid Fuchsian differential

equations with the same spectral type such that the differences of the corresponding
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characteristic exponents are integers. Theorem 11.3 gives a contiguity relation of
certain solutions of the rigid Fuchsian equations, which is a generalization of the
formula

(0.23) c
(
F (a, b+ 1, c;x)− F (a, b, c;x)

)
= axF (a+ 1, b+ 1, c+ 1;x)

and moreover gives relations between the universal operators and the shift operators
in Theorem 11.3 and Theorem 11.7. In particular, Theorem 11.7 gives a condition
which assures that a universal operator is this shift operator.

The shift operators are useful for the study of Fuchsian differential equations
when they are reducible because of special values of the characteristic exponents.
Theorem 11.9 give a necessary condition and a sufficient condition so that the shift
operator is bijective. In many cases we get a necessary and sufficient condition by
this theorem. As an application of a shift operator we examine polynomial solutions
of a rigid Fuchsian differential equation of Okubo type in §11.3.

In Chapter 12 we study a connection problem of the Fuchsian differential equa-
tion Pmu = 0. First we give Lemma 12.2 which describes the transformation of a
connection coefficient under an addition and a middle convolution. In particular,
for the equation Pmu = 0 satisfying m0,n0 = m1,n1 = 1, Theorem 12.4 says that the
connection coefficient c(c0 : λ0,n0  c1 : λ1,n1) from the local solution correspond-
ing to the exponent λ0,n0 to that corresponding to λ1,n1 in the Riemann scheme
(0.11) equals the connection coefficient of the reduced equation Pfmv = 0 up to
the gamma factors which are explicitly calculated.

In particular, if the equation is rigid, Theorem 12.6 gives the connection coeffi-
cient as a quotient of products of gamma functions and an easier non-zero term. For
example, when p = 2, the easier term doesn’t appear and the connection coefficient
has the universal formula

(0.24) c(c0 :λ0,n0 c1 :λ1,n1) =

n0−1∏
ν=1

Γ
(
λ0,n0

− λ0,ν + 1
)
·
n1−1∏
ν=1

Γ
(
λ1,ν − λ1,n1

)
∏

m′⊕m′′=m
m′

0,n0
=m′′

1,n1
=1

Γ
(
|{λm′}|

) .

Here the notation (0.12) is used and m = m′⊕m′′ means that m = m′ +m′′ with
rigid tuples m′ and m′′. Moreover in the right hand side of (0.24), the number
of gamma factors appearing in the denominator equals to that in the numerator,
the sum of the numbers ∗ in gamma factors Γ(∗) in the denominator also equals
to that in the numerator and the decomposition m = m′ ⊕m′ is characterized by
the condition that αm′ ∈ ∆(m) or αm′′ ∈ ∆(m) (cf. Corollary 12.7). The author
conjectured this formula (0.24) in 2007 and proved it in 2008 (cf. [O6]). The proof
in §12.1 based on the identity (12.8) is different from the original proof, which is
explained in §12.3.

Suppose p = 2, ordm = 2, mj,ν = 1 for 0 ≤ j ≤ 2 and 1 ≤ ν ≤ 2, Then (0.24)
equals

(0.25)
Γ(λ0,2 − λ0,1 + 1) · Γ(λ1,2 − λ1,1)

Γ(λ0,1 + λ1,2 + λ2,1) · Γ(λ0,1 + λ1,2 + λ2,2)
,

which implies (0.3) under (0.4).
The hypergeometric series F (a, b, c;x) satisfies limk→+∞ F (a, b, c + k;x) = 1

if |x| ≤ 1, which obviously implies limk→+∞ F (a, b, c + k; 1) = 1. Gauss proves
the summation formula (0.3) by this limit formula and the recurrence relation

F (a, b, c; 1) = (c−a)(c−b)
c(c−a−b) F (a, b, c + 1; 1). We have limk→+∞ c(c0 : λ0,n0 + k c1 :

λ1,n1−k) = 1 in the connection formula (0.24) (cf. Corollary 12.7). This suggests a
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similar limit formula for a local solution of a general Fuchsian differential equation,
which is given in §12.2.

In §12.3 we propose a procedure to calculate the connection coefficient (cf. Re-
mark 12.19), which is based on the calculation of its zeros and poles. This procedure
is different from the proof of Theorem 12.6 in §12.1 and useful to calculate a cer-
tain connection coefficient between local solutions with multiplicities larger than 1
in eigenvalues of local monodromies. The coefficient is defined in Definition 12.17
by using Wronskians.

In Chapter 13 we show many examples which explain our fractional calculus
in this paper and also give concrete results of the calculus. In §13.1 we list all
the fundamental tuples whose indices of rigidity are not smaller than −6 and in
§13.2 we list all the rigid tuples whose orders are not larger than 8, most of which
are calculated by a computer program okubo explained in §13.11. In §13.3 and
§13.4 we apply our fractional calculus to Jordan-Pochhammer equations and the
hypergeometric family, respectively, which helps us to understand our unifying
study of rigid Fuchsian differential equations. In §13.5 we apply our fractional
calculus to the even/odd family classified by [Si] and most of the results there have
been first obtained by our calculus. In §13.6, we show some interesting identities of
trigonometric functions as a consequence of the concrete value (0.24) of connection
coefficients.

In §13.7, §13.8 and §13.9 we study the rigid Fuchsian differential equations
of order not larger than 4 and those of order 5 or 6 and the equations belonging
to 12 submaximal series classified by Roberts [Ro], respectively. Note that these
12 maximal series contain Yokoyama’s list [Yo]. In §13.9.2, we explain how we
read the condition of irreducibility, connection coefficients, shift operators etc. of
the corresponding differential equation from the data given in §§13.7–13.9. We
examine Appell’s hypergeometric equations in §13.10 by our fractional calculus,
which will be further discussed in another paper.

In Chapter 14 we give some problems to be studied related to the results in
this paper.
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CHAPTER 1

Fractional operations

In this chapter we define several operations on a Weyl algebra. The operations
are elementary or well-known but their combinations will be important.

In §1.4 we review on the ordinary differential equations and the ring of ordinary
differential operators. We give Lemma 1.10 which is elementary but assures the
existence of a cyclic vector of a determined ordinary equation. In §1.5 we also
review on certain system of differential equations of the first order.

1.1. Weyl algebra

Let C[x1, . . . , xn] denote the polynomial ring of n variables x1, . . . , xn over C
and let C(x1, . . . , xn) denote the quotient field of C[x1, . . . , xn]. The Weyl algebra
W [x1, . . . , xn] of n variables x1, . . . , xn is the algebra over C generated by x1, . . . , xn
and ∂

∂x1
, . . . , ∂

∂xn
with the fundamental relation

(1.1) [xi, xj ] = [ ∂
∂xi

, ∂
∂xj

] = 0, [ ∂
∂xi

, xj ] = δi,j (1 ≤ i, j ≤ n).

We introduce a Weyl algebra W [x1, . . . , xn][ξ1, . . . , ξn] with parameters ξ1, . . . , ξN
by

W [x1, . . . , xn][ξ1, . . . , ξN ] := C[ξ1, . . . , ξN ]⊗
C
W [x1, . . . , xn]

and put

W [x1, . . . , xn; ξ1, . . . , ξN ] := C(ξ1, . . . , ξN )⊗
C
W [x1, . . . , xn],

W (x1, . . . , xn; ξ1, . . . , ξN ) := C(x1, . . . , xn, ξ1, . . . , ξN ) ⊗
C[x1,...,xn]

W [x1, . . . , xn].

Here we have

[xi, ξν ] = [ ∂
∂xi

, ξν ] = 0 (1 ≤ i ≤ n, 1 ≤ ν ≤ N),(1.2) [ ∂

∂xi
,
g

f

]
=

∂

∂xi

(
g

f

)
=

∂g
∂xi
· f − g · ∂f

∂xi

f2
(f, g ∈ C[x1, . . . , xn, ξ1, . . . , ξN ])

(1.3)

and [ ∂
∂xi

, f ] = ∂f
∂xi
∈ C[x1, . . . , xn, ξ1, . . . , ξN ].

For simplicity we put x = (x1, . . . , xn) and ξ = (ξ1, . . . , ξN ) and the algebras
C[x1, . . . , xn], C(x1, . . . , xn), W [x1, . . . , xn][ξ1, . . . , ξN ], W [x1, . . . , xn; ξ1, . . . , ξN ],
W (x1, . . . , xn; ξ1, . . . , ξN ) etc. are also denoted by C[x], C(x), W [x][ξ], W [x; ξ],
W (x; ξ) etc., respectively. Then

(1.4) C[x, ξ] ⊂W [x][ξ] ⊂W [x; ξ] ⊂W (x; ξ).

The element P of W (x; ξ) is uniquely written by

P =
∑

α=(α1,...,αn)∈Zn
≥0

pα(x, ξ)
∂α1+···+αn

∂xα1
1 · · · ∂x

αn
n

(pα(x, ξ) ∈ C(x, ξ)).(1.5)

1
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Here Z≥0 = {0, 1, 2, . . . }. Similar we will denote the set of positive integers by
Z>0. If P ∈ W (x; ξ) is not zero, the maximal integer α1 + · · · + αn satisfying
pα(x, ξ) 6= 0 is called the order of P and denoted by ordP . If P ∈W [x; ξ], pα(x, ξ)
are polynomials of x with coefficients in C(ξ) and the maximal degree of pα(x, ξ)
as polynomials of x is called the degree of P and denoted by degP .

1.2. Laplace and gauge transformations and reduced representatives

First we will define some fundamental operations on W [x; ξ].

Definition 1.1. i) For a non-zero element P ∈ W (x; ξ) we choose an element
(C(x, ξ) \ {0})P ∩W [x; ξ] with the minimal degree and denote it by RP and call
it a reduced representative of P . If P = 0, we put RP = 0. Note that RP is
determined up to multiples by non-zero elements of C(ξ).

ii) For a subset I of {1, . . . , n} we define an automorphism LI of W [x; ξ]:

LI(
∂

∂xi
) =

{
xi (i ∈ I)
∂

∂xi
(i 6∈ I)

, LI(xi) =

{
− ∂

∂xi
(i ∈ I)

xi (i 6∈ I)
and LI(ξν) = ξν .(1.6)

We put L = L{1,...,n} and call L the Laplace transformation of W [x; ξ].
iii) Let WL(x; ξ) be the algebra isomorphic to W (x; ξ) which is defined by the

Laplace transformation

(1.7) L :W (x; ξ)
∼→ WL(x; ξ)

∼→ W (x; ξ).

For an element P ∈WL(x; ξ) we define

(1.8) RL(P ) := L−1 ◦R ◦L(P ).

Note that the element of WL(x; ξ) is a finite sum of products of elements of
C[x] and rational functions of ( ∂

∂x1
, . . . , ∂

∂xn
, ξ1, . . . , ξN ).

We will introduce an automorphism of W (x; ξ).

Definition 1.2 (gauge transformation). Fix an element (h1, . . . , hn) ∈ C(x, ξ)n
satisfying

(1.9)
∂hi
∂xj

=
∂hj
∂xi

(1 ≤ i, j ≤ n).

We define an automorphism Adei(h1, . . . , hn) of W (x; ξ) by

(1.10)

Adei(h1, . . . , hn)(xi) = xi (i = 1, . . . , n),

Adei(h1, . . . , hn)(
∂

∂xi
) = ∂

∂xi
− hi (i = 1, . . . , n),

Adei(h1, . . . , hn)(ξν) = ξν (ν = 1, . . . , N).

Choose functions f and g satisfying ∂g
∂xi

= hi for i = 1, . . . , n and put f = eg and

Ad(f) = Ade(g) = Adei(h1, . . . , hn).(1.11)

We will define a homomorphism of W (x; ξ).

Definition 1.3 (coordinate transformation). Let φ = (φ1, . . . , φn) be an element
of C(x1, . . . , xm, ξ)n such that the rank of the matrix

(1.12) Φ :=
(∂φj
∂xi

)
1≤i≤m
1≤j≤n

equals n for a generic point (x, ξ) ∈ Cm+N . Let Ψ =
(
ψi,j(x, ξ)

)
1≤i≤n
1≤j≤m

be an

left inverse of Φ, namely, ΨΦ is an identity matrix of size n and m ≥ n. Then a
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homomorphism T ∗
φ from W (x1, . . . , xn; ξ) to W (x1, . . . , xm; ξ) is defined by

(1.13)

T ∗
φ (xi) = φi(x) (1 ≤ i ≤ n),

T ∗
φ (

∂
∂xi

) =
m∑
j=1

ψi,j(x, ξ)
∂

∂xj
(1 ≤ i ≤ n).

Ifm > n, we choose linearly independent elements hν = (hν,1, . . . , hν,m) of C(x, ξ)m
for ν = 1, . . . ,m − n such that ψi,1hν,1 + · · · + ψi,mhν,m = 0 for i = 1, . . . , n and
ν = 1, . . . ,m− n and put

(1.14) K∗(φ) :=
m−n∑
ν=1

C(x, ξ)
m∑
j=1

hν,j
∂

∂xj
∈W (x; ξ).

The meaning of these operations are clear as follows.

Remark 1.4. Let P be an element of W (x; ξ) and let u(x) be an analytic solution
of the equation Pu = 0 with a parameter ξ. Then under the notation in Defini-
tions 1.1–1.2, we have (RP )u(x) =

(
Ad(f)(P )

)
(f(x)u(x)) = 0. Note that RP is

defined up to the multiplications of non-zero elements of C(ξ).
If a Laplace transform

(1.15) (Rku)(x) =

∫
C

e−x1t1−···−xktku(t1, . . . , tk, xk+1, . . . , xn)dt1 · · · dtk

of u(x) is suitably defined, then
(
L{1,...,k}(RP )

)
(Rku) = 0, which follows from

the equalities ∂Rku
∂xi

= Rk(−xiu) and 0 =
∫
C

∂
∂ti

(
e−x1t1−···−xktku(t, xk+1, . . .)

)
dt =

−xiRku+Rk(
∂u
∂ti

) for i = 1, . . . , k. Moreover we have

f(x)Rk RPu = f(x)
(
L{1,...,k}(RP )

)
(Rku) =

(
Ad(f)L{1,...,k}(RP )

)(
f(x)Rku

)
.

Under the notation of Definition 1.3, we have T ∗
φ (P )u(φ1(x), . . . , φn(x)) = 0 and

Qu
(
φ1(x), . . . , φn(x)

)
= 0 for Q ∈ K∗(φ).

Another transformation of W [x; ξ] based on an integral transformation fre-
quently used will be given in Proposition 13.2.

We introduce some notation for combinations of operators we have defined.

Definition 1.5. Retain the notation in Definitions 1.1–1.3 and recall that f = eg

and hi =
∂g
∂xi

.

RAd(f) = RAde(g) = RAdei(h1, . . . , hn) := R ◦Adei(h1, . . . , hn),(1.16)

AdL(f) = AdeL(h) = AdeiL(h1, . . . , hn)

:= L−1 ◦Adei(h1, . . . , hn) ◦ L,
(1.17)

RAdL(f) = RAdeL(h) = RAdeiL(h1, . . . , hn)

:= L−1 ◦RAdei(h1, . . . , hn) ◦ L,
(1.18)

Ad(∂µxi
) := L−1 ◦Ad(xµi ) ◦ L,(1.19)

RAd(∂µxi
) := L−1 ◦RAd(xµi ) ◦ L .(1.20)

Here µ is a complex number or an element of C(ξ) and Ad(∂µxi
) defines an endo-

morphism of WL(x; ξ).

We will sometimes denote ∂
∂xi

by ∂xi or ∂i for simplicity. If n = 1, we usually

denote x1 by x and ∂
∂x1

by d
dx or ∂x or ∂. We will give some examples.
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Since the calculation Ad
(
x−µ)∂ = x−µ◦∂ ◦xµ = x−µ(xµ∂+µxµ−1) = ∂+µx−1

is allowed, the following calculation is justified by the isomorphism (1.7):

Ad(∂−µ)xm = ∂−µ ◦ xm ◦ ∂µ

= (xm∂−µ + (−µ)m
1! xm−1∂−µ−1 + (−µ)(−µ−1)m(m−1)

2! xm−2∂−µ−2

+ · · ·+ (−µ)(−µ−1)···(−µ−m+1)m!
m! ∂−µ−m)∂µ

=
m∑

ν=0

(−1)ν(µ)ν
(
m

ν

)
xm−ν∂−ν .

This calculation is in a ring of certain pseudo-differential operators according to
Leibniz’s rule. In general, we may put Ad(∂−µ)P = ∂−µ ◦ P ◦ ∂µ for P ∈ W [x; ξ]
under Leibniz’s rule. Here m is a positive integer and we use the notation

(1.21) (µ)ν :=
ν−1∏
i=0

(µ+ i),

(
m

ν

)
:=

Γ(m+ 1)

Γ(m− ν + 1)Γ(ν + 1)
=

m!

(m− ν)!ν!
.

1.3. Examples of ordinary differential operators

In this paper we mainly study ordinary differential operators. We give exam-
ples of the operations we have defined, which are related to classical differential
equations.

Example 1.6 (n = 1). For a rational function h(x, ξ) of x with a parameter ξ
we denote by

∫
h(x, ξ)dx the function g(x, ξ) satisfying d

dxg(x, ξ) = h(x, ξ). Put

f(x, ξ) = eg(x,ξ) and define

(1.22) ϑ := x
d

dx
.

Then we have the following identities.

Adei(h)∂ = ∂ − h = Ad(e
∫
h(x)dx)∂ = e

∫
h(x)dx ◦ ∂ ◦ e−

∫
h(x)dx,(1.23)

Ad(f)x = x, AdL(f)∂ = ∂,(1.24)

Ad(λf) = Ad(f) AdL(λf) = AdL(f),(1.25)

Ad(f)∂ = ∂ − h(x, ξ) ⇒ AdL(f)x = x+ h(∂, ξ),(1.26)

Ad
(
(x− c)λ

)
= Ade

(
λ log(x− c)

)
= Adei

(
λ

x−c

)
,(1.27)

Ad
(
(x− c)λ

)
x = x, Ad

(
(x− c)λ

)
∂ = ∂ − λ

x−c ,(1.28)

RAd
(
(x− c)λ

)
∂ = Ad

(
(x− c)λ

)(
(x− c)∂

)
= (x− c)∂ − λ,(1.29)

RAdL
(
(x− c)λ

)
x = L−1 ◦ RAd

(
(x− c)λ

)
(−∂)

= L−1
(
(x− c)(−∂) + λ

)
= (∂ − c)x+ λ = x∂ − cx+ 1 + λ,

(1.30)

RAdL
(
(x− c)λ

)
∂ = ∂, RAdL

(
(x− c)λ

)(
(∂ − c)x

)
= (∂ − c)x+ λ,(1.31)

Ad(∂λ)ϑ = AdL(xλ)ϑ = ϑ+ λ,(1.32)

Ad
(
e
λ(x−c)m

m
)
x = x, Ad

(
e
λ(x−c)m

m
)
∂ = ∂ − λ(x− c)m−1,(1.33)

RAdL
(
e

λ(x−c)m

m

)
x =

{
x+ λ(∂ − c)m−1 (m ≥ 1),

(∂ − c)1−mx+ λ (m ≤ −1),
(1.34)

T ∗
(x−c)m(x) = (x− c)m, T ∗

(x−c)m(∂) = 1
m (x− c)1−m∂.(1.35)

Here m is a non-zero integer and λ is a non-zero complex number.
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Some operations are related to Katz’s operations defined by [Kz]. The opera-
tion RAd

(
(x− c)µ

)
corresponds to the addition given in [DR] and the operator

(1.36) mcµ := RAd(∂−µ) = RAdL(x−µ)

corresponds to Katz’s middle convolution and the Euler transformation or the
Riemann-Liouville integral (cf. [Kh, §5.1]) or the fractional derivation

(1.37) (Iµc (u))(x) =
1

Γ(µ)

∫ x

c

u(t)(x− t)µ−1dt.

Here c is suitably chosen. In most cases, c is a singular point of the multi-valued
holomorphic function u(x). The integration may be understood through an analytic
continuation with respect to a parameter or in the sense of generalized functions.
When u(x) is a multi-valued holomorphic function on the punctured disk around
c, we can define the complex integral

(1.38) (Ĩµc (u))(x) :=

∫ (x+,c+,x−,c−)

u(z)(x− z)µ−1dz

c x

×8?9>=<HOINM ×89:=;<INJMKL
starting point

//•
oo

oo

//��
��
�JJ TTKK

through Pochhammer contour (x+, c+, x−, c−) along a double loop circuit (cf.
[WW, 12.43]). If (z − c)−λu(z) is a meromorphic function in a neighborhood
of the point c, we have

(1.39) (Ĩµc (u))(x) =
(
1− e2πλ

√
−1
)(
1− e2πµ

√
−1
) ∫ x

c

u(t)(x− t)µ−1dt.

For example, we have

Iµc
(
(x− c)λ

)
=

1

Γ(µ)

∫ x

c

(t− c)λ(x− t)µ−1dt

=
(x− c)λ+µ

Γ(µ)

∫ 1

0

sλ(1− s)µ−1ds (x− t = (1− s)(x− c))

=
Γ(λ+ 1)

Γ(λ+ µ+ 1)
(x− c)λ+µ,

(1.40)

Ĩµc
(
(x− c)λ

)
=

4π2eπ(λ+µ)
√
−1

Γ(−λ)Γ(1− µ)Γ(λ+ µ+ 1)
(x− c)λ+µ+1.(1.41)

For k ∈ Z≥0 we have

Ĩµc
(
(x− c)k log(x− c)

)
=

−4π2k!eπλ
√
−1

Γ(1− µ)Γ(µ+ k + 1)
(x− c)µ+k+1.(1.42)

We note that since

d
dt

(
u(t)(x− t)µ−1

)
= u′(t)(x− t)µ−1 − d

dx

(
u(t)(x− t)µ−1

)
and

d
dt

(
u(t)(x− t)µ

)
= u′(t)(x− t)µ − u(t) d

dx (x− t)
µ

= xu′(t)(x− t)µ−1 − tu′(t)(x− t)µ−1 − µu(t)(x− t)µ−1,

we have

Iµc (∂u) = ∂Iµc (u),

Iµc (ϑu) = (ϑ− µ)Iµc (u).
(1.43)
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Remark 1.7. i) The integral (1.37) is naturally well-defined and the equalities
(1.43) are valid if Reλ > 1 and limx→c x

−1u(x) = 0. Depending on the definition of
Iλc , they are also valid in many cases, which can be usually proved in this paper by
analytic continuations with respect to certain parameters (for example, cf. (3.6)).

Note that (1.43) is valid if Iµc is replaced by Ĩµc defined by (1.38).
ii) Let ε be a positive number and let u(x) be a holomorphic function on

U+
ε,θ := {x ∈ C ; |x− c| < ε and e−iθ(x− c) /∈ (−∞, 0]}.

Suppose that there exists a positive number δ such that |u(x)(x− c)−k| is bounded
on {x ∈ U+

ε.θ ; |Arg(x − c) − θ| < δ} for any k > 0. Note that the function Pu(x)
also satisfies this estimate for P ∈ W [x]. Then the integration (1.37) is defined
along a suitable path C : γ(t) (0 ≤ t ≤ 1) such that γ(0) = c, γ(1) = x and
|Arg

(
γ(t)− c

)
− θ| < δ for 0 < t < 1

2 and the equalities (1.43) are valid.

Example 1.8. We apply additions, middle convolutions and Laplace transforma-
tions to the trivial ordinary differential equation

(1.44)
du

dx
= 0,

which has the solution u(x) ≡ 1.
i) (Gauss hypergeometric equation). Put

Pλ1,λ2,µ := RAd
(
∂−µ

)
◦ RAd

(
xλ1(1− x)λ2

)
∂

= RAd(∂−µ
)
◦ R(∂ − λ1

x + λ2

1−x )

= RAd(∂−µ
)(
x(1− x)∂ − λ1(1− x) + λ2x

)
= RAd(∂−µ

)(
(ϑ− λ1)− x(ϑ− λ1 − λ2)

)
= Ad(∂−µ

)(
(ϑ+ 1− λ1)∂ − (ϑ+ 1)(ϑ− λ1 − λ2)

)
= (ϑ+ 1− λ1 − µ)∂ − (ϑ+ 1− µ)(ϑ− λ1 − λ2 − µ)
= (ϑ+ γ)∂ − (ϑ+ β)(ϑ+ α)

= x(1− x)∂2 +
(
γ − (α+ β + 1)x

)
∂ − αβ

(1.45)

with

(1.46)


α = −λ1 − λ2 − µ,
β = 1− µ,
γ = 1− λ1 − µ.

We have a solution

u(x) = Iµ0 (x
λ1(1− x)λ2)

=
1

Γ(µ)

∫ x

0

tλ1(1− t)λ2(x− t)µ−1dt

=
xλ1+µ

Γ(µ)

∫ 1

0

sλ1(1− s)µ−1(1− xs)λ2ds (t = xs)

=
Γ(λ1 + 1)xλ1+µ

Γ(λ1 + µ+ 1)
F (−λ2, λ1 + 1, λ1 + µ+ 1;x)

=
Γ(λ1 + 1)xλ1+µ(1− x)λ2+µ

Γ(λ1 + µ+ 1)
F (µ, λ1 + λ2 + µ, λ1 + µ+ 1;x)

=
Γ(λ1 + 1)xλ1+µ(1− x)−λ2

Γ(λ1 + µ+ 1)
F (µ,−λ2, λ1 + µ+ 1;

x

x− 1
)

(1.47)
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of the Gauss hypergeometric equation Pλ1,λ2,µu = 0 with the Riemann scheme

(1.48)

 x = 0 1 ∞
0 0 1− µ ; x

λ1 + µ λ2 + µ −λ1 − λ2 − µ

 ,

which is transformed by the middle convolution mcµ from the Riemann scheme{
x = 0 1 ∞
λ1 λ2 −λ1 − λ2 ;x

}
of xλ1(1− x)λ2 . Here using Riemann’s P symbol, we note that

P

 x = 0 1 ∞
0 0 1− µ ; x

λ1 + µ λ2 + µ −λ1 − λ2 − µ


= xλ1+µP

 x = 0 1 ∞
−λ1 − µ 0 λ1 + 1 ; x

0 λ2 + µ −λ2


= xλ1+µ(1− x)λ2+µP

 x = 0 1 ∞
−λ1 − µ −λ2 − µ λ1 + λ2 + µ+ 1 ; x

0 0 µ


= xλ1+µP


x = 0 1 ∞
−λ1 − µ λ1 + 1 0 ;

x

x− 1
0 −λ2 λ2 + µ


= xλ1+µ(1− x)−λ2P


x = 0 1 ∞
−λ1 − µ λ1 + λ2 + 1 −λ2 ;

x

x− 1
0 0 µ

 .

In general, the Riemann scheme and its relation to mcµ will be studied in Chapter
4 and the symbol ‘P ’ will be omitted for simplicity.

The function u(x) defined by (1.47) corresponds to the characteristic exponent
λ1 +µ at the origin and depends meromorphically on the parameters λ1, λ2 and µ.
The local solutions corresponding to the characteristic exponents λ2 + µ at 1 and
−λ1 − λ2 − µ at ∞ are obtained by replacing Iµ0 by Iµ1 and Iµ∞, respectively.

When we apply Ad(xλ
′
1(x− 1)λ

′
2) to Pλ1,λ2,µ, the resulting Riemann scheme is

(1.49)

 x = 0 1 ∞
λ′1 λ′2 1− λ′1 − λ′2 − µ ; x

λ1 + λ′1 + µ λ2 + λ′2 + µ −λ1 − λ2 − λ′1 − λ′2 − µ,

 .

Putting λ1,1 = λ′1, λ1,2 = λ1 + λ′1 + µ, λ2,1 = λ′2, λ2,2 = λ2 + λ′2 + µ, λ0,1 =
1− λ′1 − λ′2 − µ and λ0,2 = −λ1 − λ2 − λ′1 − λ′2 − µ, we have the Fuchs relation

(1.50) λ0,1 + λ0,2 + λ1,1 + λ1,2 + λ2,1 + λ2,2 = 1

and the corresponding operator

Pλ = x2(x− 1)2∂2 + x(x− 1)
(
(λ0,1 + λ0,2 + 1)x+ λ1,1 + λ1,2 − 1

)
∂

+ λ0,1λ0,2x
2 + (λ2,1λ2,2 − λ0,1λ0,2 − λ1,1λ1,2)x+ λ1,1λ1,2

(1.51)

has the Riemann scheme

(1.52)

x = 0 1 ∞
λ0,1 λ1,1 λ2,1 ; x
λ0,2 λ1,2 λ2,2

 .

By the symmetry of the transposition λj,1 and λj,2 for each j, we have integral
representations of other local solutions.
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ii) (Airy equations). For a positive integer m we put

Pm := L ◦Ad(e
xm+1

m+1 )∂

= L(∂ − xm) = x− (−∂)m.
(1.53)

Thus the equation

(1.54)
dmu

dxm
− (−1)mxu = 0

has a solution

(1.55) uj(x) =

∫
Cj

exp

(
zm+1

m+ 1
− xz

)
dz (0 ≤ j ≤ m),

where the path Cj of the integration is

Cj : z(t) = e
(2j−1)π

√
−1

m+1 −t + e
(2j+1)π

√
−1

m+1 +t (−∞ < t <∞).

Here we note that u0(x) + · · ·+ um(x) = 0. The equation has the symmetry under

the rotation x 7→ e
2π

√
−1

m+1 x.
iii) (Jordan-Pochhammer equation). For {c1, . . . , cp} ∈ C \ {0} put

Pλ1,...,λp,µ := RAd(∂−µ) ◦ RAd
( p∏
j=1

(1− cjx)λj

)
∂

= RAd(∂−µ) ◦ R
(
∂ +

p∑
j=1

cjλj
1− cjx

)
= RAd(∂−µ)

(
p0(x)∂ + q(x)

)
= ∂−µ+p−1

(
p0(x)∂ + q(x)

)
∂µ =

p∑
k=0

pk(x)∂
p−k

with

p0(x) =

p∏
j=1

(1− cjx), q(x) = p0(x)

p∑
j=1

cjλj
1− cjx

,

pk(x) =

(
−µ+ p− 1

k

)
p
(k)
0 (x) +

(
−µ+ p− 1

k − 1

)
q(k−1)(x),(

α

β

)
:=

Γ(α+ 1)

Γ(β + 1)Γ(α− β + 1)
(α, β ∈ C).

We have solutions

uj(x) =
1

Γ(µ)

∫ x

1
cj

p∏
ν=1

(1− cνt)λν (x− t)µ−1dt (j = 0, 1, . . . , p, c0 = 0)

of the Jordan-Pochhammer equation Pλ1,...,λp,µu = 0 with the Riemann scheme

(1.56)


x = 1

c1
· · · 1

cp
∞

[0](p−1) · · · [0](p−1) [1− µ](p−1) ; x
λ1 + µ · · · λp + µ −λ1 − · · · − λp − µ

 .

Here and hereafter we use the notation

(1.57) [λ](k) :=


λ

λ+ 1
...

λ+ k − 1
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for a complex number λ and a non-negative integer k. If the component [λ](k) is
appeared in a Riemann scheme, it means the corresponding local solutions with the
exponents λ+ ν for ν = 0, . . . , k− 1 have a semisimple local monodromy when λ is
generic.

1.4. Ordinary differential equations

We will study the ordinary differential equation

(1.58) M : Pu = 0

with an element P ∈ W (x; ξ) in this paper. The solution u(x, ξ) of M is at least
locally defined for x and ξ and holomorphically or meromorphically depends on x
and ξ. Hence we may replace P by RP and we similarly choose P in W [x; ξ].

We will identifyM with the left W (x; ξ)-module W (x; ξ)/W (x; ξ)P . Then we
may consider (1.58) as the fundamental relation of the generator u of the module
M.

The results in this section are standard and well-known but for our convenience
we briefly review them.

1.4.1. Euclidian algorithm. First note that W (x; ξ) is a (left) Euclidean
ring. Let P , Q ∈ W (x; ξ) with P 6= 0. Then there uniquely exists R, S ∈ W (x; ξ)
such that

(1.59) Q = SP +R (ordR < ordP ).

Hence we note that dimC(x,ξ)
(
W (x; ξ)/W (x; ξ)P

)
= ordP . We get R and S in

(1.59) by a simple algorithm as follows. Put

(1.60) P = an∂
n + · · ·+ a1∂ + a0 and Q = bm∂

m + · · ·+ b1∂ + b0

with an 6= 0, bm 6= 0. Here an, bm ∈ C(x, ξ). The division (1.59) is obtained by the
induction on ordQ. If ordP > ordQ, (1.59) is trivial with S = 0. If ordP ≤ ordQ,
(1.59) is reduced to the equality Q′ = S′P + R with Q′ = Q − a−1

n bm∂
m−nP and

S′ = S − a−1
n bm∂

m−n and then we have S′ and R satisfying Q′ = S′P + R by the
induction because ordQ′ < ordQ. The uniqueness of (1.59) is clear by comparing
the highest order terms of (1.59) in the case when Q = 0.

By the standard Euclidean algorithm using the division (1.59) we have M ,
N ∈W (x; ξ) such that

(1.61) MP +NQ = U, P ∈W (x; ξ)U and Q ∈W (x; ξ)U.

Hence in particular any left ideal of W (x; ξ) is generated by a single element of
W [x; ξ], namely, W (x; ξ) is a principal ideal domain.

Definition 1.9. The operators P and Q in W (x; ξ) are defined to be mutually
prime if one of the following equivalent conditions is valid.

W (x; ξ)P +W (x; ξ)Q =W (x; ξ),(1.62)

there exists R ∈W (x; ξ) satisfying RQu = u for the equation Pu = 0,(1.63) {
the simultaneous equation Pu = Qu = 0 has not a non-zero solution

for a generic value of ξ.
(1.64)

The operator S satisfyingW (x; ξ)P +W (x; ξ)Q =W (x; ξ)S is called the great-
est common left divisor of P and Q and the operator T satisfying W (x; ξ)P ∩
W (x; ξ)Q = W (x; ξ)T is called the the least common left multiple of P and Q.
These operators are defined uniquely up to the multiples of elements of C(x; ξ)\{0}.
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Put (P1, P2, P3, S1) = (Q,P,R, S) in (1.59). Then

(
P1

P2

)
=

(
S1 1
1 0

)(
P2

P3

)
and in the same way we successively get P3, . . . , PN such that(

Pj

Pj+1

)
=

(
Sj 1
1 0

)(
Pj+1

Pj+2

)
,

ordPj = ordSj + ordPj+1,

ordPj+2 < ordPj+1 or Pj+2 = 0

(1.65)

for j = 1, 2, . . . , N − 1 with PN+1 = 0. Putting

Ũ (j) =

(
U

(j)
11 U

(j)
12

U
(j)
21 U

(j)
22

)
:= S̃1 · · · S̃j , S̃j :=

(
Sj 1
1 0

)

Ṽ (j) =

(
V

(j)
11 V

(j)
12

V
(j)
21 V

(j)
22

)
:= S̃−1

j · · · S̃
−1
1 , S̃−1

j =

(
0 1
1 −Sj

)
,

Uii′ := U
(N)
ii′ , Vii′ := V

(N)
ii′ (1 ≤ i, i′ ≤ 2),

we have

(1.66)
P1 = U11PN , PN = V11P1 + V12P2,

P2 = U21PN , 0 = V21P1 + V22P2.

Note that

U
(j+2)
12 = U

(j+1)
11 = U

(j)
11 Sj + U

(j)
12 , U

(1)
11 = S1, U

(1)
12 = 1,

U
(j+2)
22 = U

(j+1)
21 = U

(j)
21 Sj + U

(j)
22 , U

(1)
21 = 1, U

(1)
22 = 0,

V
(j+2)
11 = V

(j+1)
21 = −SjV

(j)
21 + V

(j)
11 , V

(1)
21 = 1, V

(1)
11 = 0,

V
(j+2)
12 = V

(j+1)
22 = −SjV

(j)
22 + V

(j)
12 , V

(1)
22 = −S1, V

(1)
12 = 1.

Hence by the relation ordSj = ordPj − ordPj+1, we inductively have

ordU
(j+1)
11 = ordV

(j+1)
22 = ordP1 − ordPj+1,

ordU
(j+1)
21 = ordV

(j+1)
21 = ordP2 − ordPj+1

and therefore

ordU11 = ordV22 = ordP1 − ordPN , ordU21 = ordV21 = ordP2 − ordPN ,

ordU12 = ordV12 = ordP1 − ordPN−1, ordU22 = ordV11 = ordP2 − ordPN−1.

Moreover we have

(1.67) T1P1 + T2P2 = 0 ⇔ (T1, T2) ∈W (x; ξ)(V21, V22),

which is proved as follows. We have only to prove the implication ⇒ in the above.
Replacing (P1, P2) by (U11, U21), we may assume ordPN = 0. Suppose T1P1 +
T2P2 = 0 and T1 /∈ W (x; ξ)V21. Putting T1 = BV21 + A with ordA < ordV21 =
ordP2, we have (BV21 +A)P1 + T2P2 = 0 and therefore AP1 + (P2−BV22)P2 = 0.
Hence for j = 1 we have non-zero operators Aj and Bj satisfying

AjPj +BjPj+1 = 0, ordAj < ordPj+1 and ordBj < ordPj .

Since Pj = SjPj+1+Pj+2, the above equality implies (AjSj+Bj)Pj+1+AjPj+2 = 0
with ordAj < ordPj+1 and therefore the existence of the above non-zero (Aj , Bj) is
inductively proved for j = 1, 2, . . . , N−1. The relations AN−1PN−1+BN−1PN = 0
and ordBN−1 < ordPN−1 contradict to the fact that ordPN = 0.
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The operator U := PN is the greatest common left divisor of P and Q, which
equals U in (1.61), and the operator T := V21P = −V22Q ∈ W (x; ξ) is the least
common left multiple of P and Q. Note that

(1.68) ordT + ordU = ordP + ordQ.

1.4.2. cyclic vector. In general, for a positive integerm and any leftW (x; ξ)-
submodule N of W (x; ξ)m, we can find elements v1, . . . , vm′ ∈ N such that N =
W (x; ξ)v1+· · ·+W (x; ξ)vm′ andm′ ≤ m. In particular, any leftW (x; ξ)-submodule
of W (x; ξ)m is finitely generated.

This is proved by the induction onm. In fact, we can find v1 = (v
(1)
1 , . . . , v

(m)
1 ) ∈

N such that {v(1) | (v(1), . . . , v(m)) ∈ N} = w(x; ξ)v
(1)
1 and then N is generated by

v1 and the elements generating N ′ = {(0, v2, . . . , vm) ∈ N} ⊂W (x; ξ)m−1.
Moreover we have the following.

(1.69) Any left W (x; ξ)-module R with dimC(x,ξ)R <∞ is cyclic,

namely, it is generated by a suitable single element, which is called a cyclic vec-
tor. Hence any system of ordinary differential equations is isomorphic to a single
differential equation under the algebra W (x; ξ).

To prove (1.69) it is sufficient to show that the direct sumM⊕N ofM : Pu = 0
and N : Qv = 0 is cyclic. In fact M⊕N = W (x; ξ)w with w = u + (x − c)nv ∈
M ⊕ N and n = ordP if c ∈ C is generic. For the proof we have only to show
dimC(x,ξ)W (x; ξ)w ≥ m + n and we may assume that P and Q are in W [x; ξ]
and they are of the form (1.60). Fix ξ generically and we choose c ∈ C such
that an(c)bm(c) 6= 0. Since the function space V = {φ(x) + (x− c)nϕ(x) ; Pφ(x) =
Qϕ(x) = 0} is of dimensionm+n in a neighborhood of x = c, dimC(x;ξ)W (x; ξ)w ≥
m+n because the relation Rw = 0 for an operator R ∈W (x; ξ) implies Rψ(x) = 0
for ψ ∈ V .

LetM be a system of linear ordinary differential equations, namely, a finitely
generated left W (x; ξ)-module. Then there exist finite elements u1, . . . , un of M
such thatM =W (x; ξ)u1+· · ·+W (x; ξ)un. Then N := {(P1, . . . , Pn) ∈W (x; ξ)n |
P1u1+ · · ·+Pnun = 0} is generated by suitable elements Ai = (Ai,1, . . . , Ai,n) ∈ N
(1 ≤ i ≤ m) with m ≤ n. Then M is isomorphic to W (x; ξ)n/N and N =
W (x; ξ)A1 + · · ·+W (x; ξ)Am.

We give a lemma, which implies (1.69) by putting A = (Ai,j)1≤i≤m
1≤j≤n

in the

above.

Lemma 1.10. Let A ∈ M
(
m,n,W (x; ξ)

)
. Here m and n are positive integers

and A 6= 0. Then there exist S ∈ GL
(
m,W (x; ξ)

)
, T ∈ GL

(
n,W (x; ξ)

)
, P ∈

W (x; ξ) \ {0} and k ∈ Z≥0 such that (Bi,j) = B = SAT is the following form:

(1.70) B = SAT =


1 ...

1
P

0 ...

 , Bi,j =


1 (1 ≤ i = j ≤ k),
P (i = j = k + 1),

0 (i 6= j or i > k + 1).

Here k and ordP do not depend on the choice of S and T and in general,M(m,n,R)
denotes the linear space of matrices of size m×n whose elements are in R and when
R is a ring with the unit, GL(n,R) denotes the group whose elements are invertible
matrices of M(n, n,R).

Proof. Consider the following standard transformations of the matrix C in
M
(
m,n,W (x; ξ)

)
as in the linear algebra:

(1) Multiply a row of C from the left by a non-zero element of C(x; ξ).
(2) Choose two rows of C and permute them.
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(3) Consider a row vector which equals a left multiplication of a row of C by
an element of W (x; ξ) and add it to another row of C.

(4) Multiply a column of C from the right by a non-zero element of C(x; ξ).
(5) Choose two columns of C and permute them.
(6) Consider a column vector which equals a right multiplication of a column

of C by an element of W (x; ξ) and add it to another column of C.

Let Ã be a matrix obtained by a suitable successive applications of these trans-
formation to A. First we will prove that we may assume B = Ã. Let d denote the
minimal order of non-zero elements in the matrices obtained by successive applica-
tions of these transformations to A. We may assume Ã1,1 6= 0 and ord Ã1,1 = d.

By suitable transformations (3) and (6), we may moreover assume Ãi,1 = Ã1,j = 0

if i ≥ 2 and j ≥ 2 because of the minimality of d. Put A′ =
(
Ãi,j

)
2≤i≤m
2≤j≤n

. If A′ = 0,

then B = Ã.
We may assume A′ 6= 0. If d = 0, we get B by the induction on m. Hence we

may assume d > 0 and Ã2,2 6= 0. Putting d′ = ord Ã2,2 ≥ d > 0, we may moreover

assume ord(Ã2,2 − ∂d
′
) < d′. Add the right multiplication of the second column of

Ã by xs (s = 0, 1, 2, . . . ) to the first column. Then add the left multiplication of the
first row by an element −P ∈ W (x; ξ) to the second row. Then the (2, 1)-element
of the resulting matrix equals

Ã2,2x
s − PÃ1,1.

We can choose P so that ord(Ã2,2x
s−PÃ1,1) < d. Then the minimality of d implies

Ã2,2x
s ∈W (x; ξ)Ã1,1. Put

xd
′−sÃ2,2x

s = Ã2,2,0 + sÃ2,2,1 + · · ·+ sd
′
Ã2,2,d′ .

Here Ã2,2,ν ∈W (x; ξ) do not depend on s. Note that Ã2,2,d′ = xd
′
Ã2,2 and Ã2,2,0 =

1. The condition Ã2,2x
s ∈W (x; ξ)Ã1,1 for s = 0, 1, . . . implies Ã2,2,ν ∈W (x; ξ)Ã1,1,

which contradicts to Ã2,2,0 = 1 because d ≥ 1. Hence A′ = 0.
Define a left W (x; ξ)-module by M = W (x; ξ)n/

∑m
i=1W (x; ξ)(Ai,1, . . . , Ai,n)

and put M′ := {u ∈ M | ∃P ∈ W (x; ξ) \ {0} such that Pu = 0}. Note that
the above transformations give isomorphisms between finitely generated W (x; ξ)-
modules. Note that dimW (x;ξ)M′ = ordP and M/M′ ' W (x; ξ)n−k−1 as left
W (x; ξ)-modules. Thus we have the lemma by the following.

Suppose W (x; ξ)m is isomorphic to W (x; ξ)n as left W (x; ξ) modules. Suppose
moreover A gives the isomorphism. Then we have ordP = 1 and m = n by using
the transformation of A into B. �

Corollary 1.11. i) If m and n are positive integers satisfying m 6= n, then
W (x; ξ)m is not isomorphic to W (x; ξ)n as left W (x; ξ)-modules.

ii) Any element of GL
(
n,W (x; ξ)

)
is a product of fundamental matrices corre-

sponding to the transformations (1)–(6) in the above proof.

1.4.3. irreducibility. Lastly we give the following standard definition.

Definition 1.12. Fix P ∈ W (x; ξ) with ordP > 0. The equation (1.58) is irre-
ducible if and only if one of the following equivalent conditions is valid.

The left W (x; ξ)-moduleM is simple.(1.71)

The left W (x; ξ)-ideal W (x; ξ)P is maximal.(1.72)

P = QR with Q, R ∈W (x; ξ) implies ordQ · ordR = 0.(1.73)

∀Q 6∈W (x; ξ)P, ∃M, N ∈W (x; ξ) satisfying MP +NQ = 1.(1.74)
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ST ∈W (x; ξ)P with S, T ∈W (x; ξ) and ordS < ordP

⇒ S = 0 or T ∈W (x; ξ)P.
(1.75)

The equivalence of the above conditions is standard and easily proved. The last
condition may be a little non-trivial.

Suppose (1.75) and P = QR and ordQ · ordR 6= 0. Then R /∈ W (x; ξ)P and
therefore Q = 0, which contradicts to P = QR. Hence (1.75) implies (1.73).

Suppose (1.71), (1.74), ST ∈ W (x; ξ)P and T /∈ W (x; ξ)P . Then there exists
P ′ such that {J ∈ W (x; ξ) ; JT ∈ W (x; ξ)P} = W (x; ξ)P ′, ordP ′ = ordP and
moreover P ′v = 0 is also simple. Since Sv = 0 with ordS < ordP ′, we have S=0.

In general, a system of ordinary differential equations is defined to be irreducible
if it is simple as a left W (x; ξ)-module.

Remark 1.13. Suppose the equationM given in (1.58) is irreducible.
i) Let u(x, ξ) be a non-zero solution of M, which is locally defined for the

variables x and ξ and meromorphically depends on (x, ξ). If S ∈ W [x; ξ] satisfies
Su(x, ξ) = 0, then S ∈W (x; ξ)P . Therefore u(x, ξ) determinesM.

ii) Suppose ordP > 1. Fix R ∈ W (x; ξ) such that ordR < ordP and R 6= 0.
For Q ∈ W (x; ξ) and a positive integer m, the condition RmQu = 0 is equivalent
to Qu = 0. Hence for example, if Q1u+ ∂mQ2u = 0 with certain Qj ∈W (x; ξ), we
will allow the expression ∂−mQ1u+Q2u = 0 and ∂−mQ1u(x, ξ) +Q2u(x, ξ) = 0.

iii) For T 6∈W (x; ξ)P we construct a differential equation Qv = 0 satisfied by
v = Tu as follows. Put n = ordP . We have Rj ∈ W (x; ξ) such that ∂jTu = Rju
with ordRj < ordP . Then there exist b0, . . . , bn ∈ C(x, ξ) such that bnRn + · · ·+
b1R1 + b0R0 = 0. Then Q = bn∂

n + · · ·+ b1∂ + b0.

1.5. Okubo normal form and Schlesinger canonical form

In this section we briefly explain the interpretation of Katz’s middle convolution
(cf. [Kz]) by [DR] and its relation to our fractional operations.

For constant square matrices T and A of size n′, the ordinary differential equa-
tion

(1.76) (xIn′ − T )du
dx

= Au

is called Okubo normal form of Fuchsian system when T is a diagonal matrix. Then

(1.77) mcµ
(
(xIn′ − T )∂ −A

)
= (xIn′ − T )∂ − (A+ µIn′)

for generic µ ∈ C, namely, the system is transformed into

(1.78) (xIn′ − T )duµ
dx

=
(
A+ µIn′

)
uµ

by the operation mcµ. Hence for a solution u(x) of (1.76), the Euler transformation
uµ(x) = Iµc (u) of u(x) satisfies (1.78).

For constant square matrices Aj of size m and the Schlesinger canonical form

(1.79)
dv

dx
=

p∑
j=1

Aj

x− cj
v

of a Fuchsian system of the Riemann sphere, we have

du

dx
=

p∑
j=1

Ãj(−1)
x− cj

u with u :=


v

x−c1
...
v

x−cp

 ,(1.80)
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Ãj(µ) :=


j
^

j) A1 · · · Aj−1 Aj + µ Aj+1 · · · Ap

(1.81)

since v
x−cj

+ (x − cj) d
dx

v
x−cj

= dv
dx =

∑p
ν=1

Aν

x−cν
v. Here Ãj are square matrices

of size pm. The addition Ad
(
(x − ck)

µk
)
transforms Aj into Aj + µkδj,kIm for

j = 1, . . . , p in the system (1.79). Putting

A(µ) = A(0) + µIpm = Ã1(µ) + · · ·+ Ãp(µ) and T =

(
c1Im

. . .
cpIm

)
,

the equation (1.80) is equivalent to (1.76) with n′ = pm and A = A(−1). Define
square matrices of size n′ by

Ã :=

A1

. . .

Ap

(1.82)

Then ker Ã and kerA(µ) are invariant under Ãj(µ) for j = 1, . . . , p and therefore

Ãj(µ) induce endomorphisms of V := Cpm/
(
ker Ã + kerA(µ)

)
, which correspond

to square matrices of size N := dimV , which we put Āj(µ), respectively, under a
fixed basis of V . Then the middle convolution mcµ of (1.79) is the system

(1.83)
dw

dx
=

p∑
j=1

Āj(µ)

x− cj
w

of rank N , which is defined and studied by [DR, DR2]. Here ker Ã∩kerA(µ) = {0}
if µ 6= 0.

We define another realization of the middle convolution as in [O5, §2]. Suppose
µ 6= 0. The square matrices of size n′

A∨
j (µ) :=



j
^

A1

...

j ) Aj + µ

...

Ap


and A∨(µ) := A∨

1 (µ) + · · ·+A∨
p (µ)(1.84)

satisfy

Ã(A+ µIn′) = A∨(µ)Ã =
(
AiAj + µδi,jAi

)
1≤i≤p
1≤j≤p

∈M(n′,C),(1.85)

Ã(A+ µIn′)Ãj(µ) = A∨
j (µ)Ã(A+ µIn′).(1.86)

Hence w∨ := Ã(A+ µIn′)u satisfies

dw∨

dx
=

p∑
j=1

A∨
j (µ)

x− cj
w∨,(1.87)

p∑
j=1

A∨
j (µ)

x− cj
=

(
Ai + µδi,jIm

x− cj

)
1≤i≤p,
1≤j≤p
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and Ã(A+ µIn′) induces the isomorphism

(1.88) Ã(A+ µIn′) : V = Cn′
/(K + Lµ)

∼→ V ∨ := Im Ã(A+ µIn′) ⊂ Cn′
.

Hence putting Ā∨
j (µ) := A∨

j (µ)|V ∨ , the system (1.83) is isomorphic to the system

(1.89)
dw∨

dx
=

p∑
j=1

Ā∨
j (µ)

x− cj
w∨

of rank N , which can be regarded as a middle convolution mcµ of (1.79). Here

(1.90) w∨ =

w
∨
1
...
w∨

p

 , w∨
j =

p∑
ν=1

(AjAν + µδj,ν)(uµ)ν (j = 1, . . . , p)

and if v(x) is a solution of (1.79), then

(1.91) w∨(x) =

( p∑
ν=1

(AjAν + µδj,ν)I
µ
c

( v(x)

x− cν

))
j=1,...,p

satisfies (1.89).
Since any non-zero homomorphism between irreducible W (x)-modules is an

isomorphism, we have the following remark (cf. §1.4 and §3.2).

Remark 1.14. Suppose that the systems (1.79) and (1.89) are irreducible. More-
over suppose the system (1.79) is isomorphic to a single Fuchsian differential equa-
tion Pũ = 0 as leftW (x)-modules and the equationmcµ(P )w̃ = 0 is also irreducible.
Then the system (1.89) is isomorphic to the single equation mcµ(P )w̃ = 0 because
the differential equation satisfied by Iµc (ũ(x)) is isomorphic to that of Iµc (Qũ(x))
for a non-zero solution v(x) of Pũ = 0 and an operator Q ∈W (x) with Qũ(x) 6= 0
(cf. §3.2, Remark 5.4 iii) and Proposition 6.13).

In particular, if the systems are rigid and their spectral parameters are generic,
all the assumptions here are satisfied (cf. Remark 4.17 ii) and Corollary 10.12).

Yokoyama [Yo2] defines extension and restriction operations among the sys-
tems of differential equations of Okubo normal form. The relation of Yokoyama’s
operations to Katz’s operations is clarified by [O7], which shows that they are
equivalent from the view point of the construction and the reduction of systems of
Fuchsian differential equations.





CHAPTER 2

Confluences

In this chapter we first review on regular singularities of ordinary differential
equations and then we give a procedure for constructing irregular singularities by
confluences of regular singular points.

2.1. Regular singularities

In this section we review fundamental facts related to the regular singularities
of the ordinary differential equations.

2.1.1. Characteristic exponents. The ordinary differential equation

(2.1) an(x)
dnu
dxn + an−1(x)

dn−1u
dxn−1 + · · ·+ a1(x)

du
dx + a0(x)u = 0

of order n with meromorphic functions aj(x) defined in a neighborhood of c ∈ C
has a singularity at x = c if the function

aj(x)
an(x)

has a pole at x = c for a certain j.

The singular point x = c of the equation is a regular singularity if it is a removable
singularity of the functions bj(x) := (x − c)n−jaj(x)an(x)

−1 for j = 0, . . . , n. In
this case bj(c) are complex numbers and the n roots of the indicial equation

(2.2)

n∑
j=0

bj(c)s(s− 1) · · · (s− j + 1) = 0

are called the charactersitic exponents of (2.1) at c.
Let {λ1, . . . , λn} be the set of these characteristic exponents at c.
If λj − λ1 /∈ Z>0 for 1 < j ≤ n, then (2.1) has a unique solution (x− c)λ1φ1(x)

with a holomorphic function φ1(x) in a neighborhood of c satisfying φ1(c) = 1.
The singular point of the equation which is not regular singularity is called

irregular singularity.

Definition 2.1. The regular singularity and the characteristic exponents for the
differential operator

(2.3) P = an(x)
dn

dxn + an−1(x)
dn−1

dxn−1 + · · ·+ a1(x)
d
dx + a0(x)

are defined by those of the equation (2.1), respectively. Suppose P has a regular
singularity at c. We say P is normalized at c if an(x) is holomorphic at c and

(2.4) an(c) = a(1)n (c) = · · · = a(n−1)
n (c) = 0 and a(n)n (c) 6= 0.

In this case aj(x) are analytic and have zeros of order at least j at x = c for
j = 0, . . . , n− 1.

2.1.2. Local solutions. The ring of convergent power series at x = c is de-
noted by Oc and for a complex number µ and a non-negative integer m we put

(2.5) Oc(µ,m) :=
m⊕

ν=0

(x− c)µ logν(x− c)Oc.

17
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Let P be a differential operator of order n which has a regular singularity at
x = c and let {λ1, · · · , λn} be the corresponding characteristic exponents. Suppose
P is normalized at c. If a complex number µ satisfies λj − µ /∈ {0, 1, 2, . . . } for
j = 1, . . . , n, then P defines a linear bijective map

(2.6) P : Oc(µ,m)
∼→ Oc(µ,m)

for any non-negative integer m.
Let Ôc be the ring of formal power series

∑∞
j=0 aj(x − c)j (aj ∈ C) of x at c.

For a domain U of C we denote by O(U) the ring of holomorphic functions on U .
Put

(2.7) Br(c) := {x ∈ C ; |x− c| < r}
for r > 0 and

Ôc(µ,m) :=
m⊕

ν=0

(x− c)µ logν(x− c)Ôc,(2.8)

OBr(c)(µ,m) :=
m⊕

ν=0

(x− c)µ logν(x− c)OBr(c).(2.9)

Then OBr(c)(µ,m) ⊂ Oc(µ,m) ⊂ Ôc(µ,m).

Suppose aj(x) ∈ O
(
Br(c)

)
and an(x) 6= 0 for x ∈ Br(c) \ {c} and moreover

λj − µ /∈ {0, 1, 2, . . .}, we have

P : OBr(c)(µ,m)
∼→ OBr(c)(µ,m),(2.10)

P : Ôc(µ,m)
∼→ Ôc(µ,m).(2.11)

The proof of these results are reduced to the case when µ = m = c = 0 by the
translation x 7→ x−c, the operation Ad

(
x−µ

)
, and the fact P (

∑m
j=0 fj(x) log

j x) =

(Pfm(x)) logj x+
∑m−1

j=0 φj(x) log
j x with suitable φj(x) and moreover we may as-

sume

P =
n∏

j=0

(ϑ− λj)− xR(x, ϑ),

xR(x, ϑ) = x

n−1∑
j=0

rj(x)ϑ
j (rj(x) ∈ O

(
Br(c)

)
).

When µ = m = 0, (2.11) is easy and (2.10) and hence (2.6) are also easily proved
by the method of majorant series (for example, cf. [O1]).

For the differential operator

Q = dn

dxn + bn−1(x)
dn−1

dxn−1 + · · ·+ b1(x)
d
dx + b0(x)

with bj(x) ∈ O
(
Br(c)

)
, we have a bijection

(2.12)

Q : O
(
Br(c)

) ∼→ O
(
Br(c)

)
⊕ Cn

∈ ∈

u(x) 7→ Pu(x)⊕
(
u(j)(c)

)
0≤j≤n−1

because Q(x−c)n has a regular singularity at x = c and the characteristic exponents
are −1,−2, . . . ,−n and hence (2.10) assures that for any g(x) ∈ C[x] and f(x) ∈
O
(
Br(c)

)
there uniquely exists v(x) ∈ O

(
Br(c)

)
such that Q(x− c)nv(x) = f(x)−

Qg(x).
If λν − λ1 /∈ Z>0, the characteristic exponents of R := Ad

(
(x − c)−λ1−1

)
P at

x = c are λν −λ1−1 for ν = 1, . . . , n and therefore R = S(x− c) with a differential
operator R whose coefficients are in O

(
Br(c)

)
. Then there exists v1(x) ∈ O

(
Br(c)

)
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such that −S1 = S(x − c)v1(x), which means P
(
(x − c)λ1(1 + (x − c)v1(x))

)
= 0.

Hence if λi − λj /∈ Z for 1 ≤ i < j ≤ n, we have solutions uν(x) of Pu = 0 such
that

(2.13) uν(x) = (x− c)λνφν(x)

with suitable φν ∈ O
(
Br(c)

)
satisfying φν(c) = 1 for ν = 1, . . . , n.

Put k = #{ν ; λν = λ1} and m = #{ν ; λν − λ1 ∈ Z≥0}. Then we have
solutions uν(x) of Pu = 0 for ν = 1, . . . , k such that

(2.14) uν(x)− (x− c)λ1 logν−1(x− c) ∈ OBr(c)(λ1 + 1,m− 1).

If OBr(c) is replaced by Ôc, the solution

uν(x) = (x−c)λ1 logν−1(x−c)+
∞∑
i=1

m−1∑
j=0

cν,i,j(x−c)λ1+i logj(x−c) ∈ Ôc(λ1,m−1)

is constructed by inductively defining cν,i,j ∈ C. Since

P
( ∞∑
i=N+1

m−1∑
j=0

cν,i,j(x− c)λ1+i logj(x− c)
)
= −P

(
(x− c)λ1 logν−1(x− c)

+

N∑
i=1

cν,i,j(x− c)λ1+i logj(x− c)
)
∈ OBr(c)(λ1 +N,m− 1)

for an integer N satisfying Re(λ` − λ1) < N for ` = 1, . . . , n, we have

∞∑
i=N+1

m−1∑
j=0

cν,i,j(x− c)λ1+i logj(x− c) ∈ OBr(c)(λ1 +N,m− 1)

because of (2.10) and (2.11), which means uν(x) ∈ OBr(c)(λ1,m).

2.1.3. Fuchsian differential equations. The regular singularity at ∞ is
similarly defined by that at the origin under the coordinate transformation x 7→ 1

x .

When P ∈ W (x) and the singular points of P in C := C ∪ {∞} are all regular

singularities, the operator P and the equation Pu = 0 are called Fuchsian. Let C′

be the subset of C deleting singular points c0, . . . , cp from C. Then the solutions of
the equation Pu = 0 defines a map

(2.15) F : C′ ⊃ U : (simply connected domain) 7→ F(U) ⊂ O(U)

by putting F(U) := {u(x) ∈ O(U) ; Pu(x) = 0}. Put

Uj,ε,R =

{
{x = cj + re

√
−1θ ; 0 < r < ε, R < θ < R+ 2π} (cj 6=∞)

{x = re
√
−1θ ; r > ε−1, R < θ < R+ 2π} (cj =∞).

For simply connected domains U , V ⊂ C′
, the map F satisfies

F(U) ⊂ O(U) and dimF(U) = n,(2.16)

V ⊂ U ⇒ F(V ) = F(U)|V ,(2.17) 
∃ε > 0, ∀φ ∈ F(Uj,ε,R), ∃C > 0, ∃m > 0 such that

|φ(x)| <


C|x− cj |−m (cj 6=∞, x ∈ Uj,ε,R),

C|x|m (cj =∞, x ∈ Uj,ε,R)

for j = 0, . . . , p, ∀R ∈ R.

(2.18)
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Then we have the bijection
(2.19){

∂n +
n−1∑
j=0

aj(x)∂
j ∈W (x) : Fuchsian

} ∼→
{
F satisfying (2.16)–(2.18)

}

∈ ∈

P 7→
{
U 7→ {u ∈ O(U) ; Pu = 0}

}
.

Here if F(U) =
∑n

j=1 Cφj(x),

(2.20) aj(x) = (−1)n−j detΦj

detΦn
with Φj =



φ
(0)
1 (x) · · · φ

(0)
n (x)

...
...

...

φ
(j−1)
1 (x) · · · φ

(j−1)
n (x)

φ
(j+1)
1 (x) · · · φ

(j+1)
n (x)

...
...

...

φ
(n)
1 (x) · · · φ

(n)
n (x)


.

The elements F1 and F2 of the right hand side of (2.19) are naturally identified if
there exists a simply connected domain U such that F1(U) = F2(U).

Let
P = ∂n + an−1(x)∂

n−1 + · · ·+ a0(x)

be a Fuchsian differential operator with p + 1 regular singular points c0 = ∞,
c1, . . . , cp and let λj,1, . . . , λj,n be the characteristic exponents of P at cj , re-
spectively. Since an−1(x) is holomorphic at x = ∞ and an−1(∞) = 0, there
exists an−1,j ∈ C such that an−1(x) = −

∑p
j=1

an−1,j

x−cj
. For b ∈ C we have

xn(∂n − bx−1∂n−1
)
= ϑn −

(
b + n(n−1)

2

)
ϑn−1 + bn−2ϑ

n−2 + · · · + b0 with bj ∈ C.
Hence we have

λj,1 + · · ·+ λj,n =

{
−
∑p

j=1 an−1,j − n(n−1)
2 (j = 0),

an−1,j +
n(n−1)

2 (j = 1, . . . , p),

and the Fuchs relation

(2.21)

p∑
j=0

n∑
ν=1

λj,ν =
(p− 1)n(n− 1)

2
.

Suppose Pu = 0 is reducible. Then P = SR with S, R ∈ W (x) so that
n′ = ordR < n. Since the solution v(x) of Rv = 0 satisfies Pv(x) = 0, R is also
Fuchsian. Note that the set of m characteristic exponents {λ′j,ν ; ν = 1, . . . , n′} of
Rv = 0 at cj is a subset of {λj,ν ; ν = 1, . . . , n}. The operator R may have other
singular points c′1, . . . , c

′
q called apparent singular points where any local solutions

at the points is analytic. Hence the set characteristic exponents at x = c′j are
{λ′j,ν ν = 1, . . . , n′} such that 0 ≤ µj,1 < µj,2 < · · · < µj,n′ and µj,ν ∈ Z for

ν = 1, . . . , n′ and j = 1, . . . , q. Since µj,1+ · · ·+µj,n′ ≥ n′(n′−1)
2 , the Fuchs relation

for R implies

(2.22) Z 3
p∑

j=0

n′∑
ν=1

λ′j,ν ≤
(p− 1)n′(n′ − 1)

2
.

Fixing a generic point q and paths γj around cj as in (9.25) and moreover a
base {u1, . . . , un} of local solutions of the equation Pu = 0 at q, we can define
monodromy generators Mj ∈ GL(n,C). We call the tuple M = (M0, . . . ,Mp)
the monodromy of the equation Pu = 0. The monodromy M is defined to be
irreducible if there exists no subspace V of Cn such that MjV ⊂ V for j = 0, . . . , p
and 0 < dimV < n, which is equivalent to the condition that P is irreducible.
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Suppose Qv = 0 is another Fuchsian differential equation of order n with the
same singular points. The monodromy N = (N0, . . . , Np) is similarly defined by
fixing a base {v1, . . . , vn} of local solutions of Qv = 0 at q. Then

M ∼ N
def⇔ ∃g ∈ GL(n,C) such that Nj = gMjg

−1 (j = 0, . . . , p)

⇔ Qv = 0 is W (x)-isomorphic to Pu = 0.
(2.23)

If Qv = 0 is W (x)-isomorphic to Pu = 0, the isomorphism defines an isomor-
phism between their solutions and then Nj =Mj under the bases corresponding to
the isomorphism.

Suppose there exists g ∈ GL(n,C) such that Nj = gMjg
−1 for j = 0, . . . , p.

The equations Pu = 0 and Qu = 0 are W (x)-isomorphic to certain first order
systems U ′ = A(x)U and V ′ = B(x)V of rank n, respectively. We can choose
bases {U1, . . . , Un} and {V1, . . . , Vn} of local solutions of PU = 0 and QV = 0 at
q, respectively, such that their monodromy generators corresponding γj are same

for each j. Put Ũ = (U1, . . . , Un) and Ṽ = (V1, . . . , Vn). Then the element of the

matrix Ṽ Ũ−1 is holomorphic at q and can be extended to a rational function of x
and then Ṽ Ũ−1 defines a W (x)-isomorphism between the equations U ′ = A(x)U
and V ′ = B(x)V .

Example 2.2 (apparent singularity). The differential equation

(2.24) x(x− 1)(x− c)d
2u

dx2 + (x2 − 2cx+ c)dudx = 0

is a special case of Heun’s equation (6.19) with α = β = λ = 0 and γ = δ = 1. It
has regular singularities at 0, 1, c and ∞ and its Riemann scheme equals

(2.25)

x =∞ 0 1 c
0 0 0 0
0 0 0 2

 .

The local solution at x = c corresponding to the characteristic exponent 0 is
holomorphic at the point and therefore x = c is an apparent singularity, which
corresponds to the zero of the Wronskian detΦn in (2.20). Note that the equation
(2.24) has the solutions 1 and c log x+ (1− c) log(x− 1).

The equation (2.24) is not W (x)-isomorphic to Gauss hypergeometric equation
if c 6= 0 and c 6= 1, which follows from the fact that c is a modulus of the isomorphic
classes of the monodromy. It is easy to show that any tuple of matrices M =
(M0,M1,M2) ∈ GL(2,C) satisfying M2M1M0 = I2 is realized as the monodromy
of the equation obtained by applying a suitable addition RAd

(
xλ0(1 − x)λ1

)
to a

certain Gauss hypergeometric equation or the above equation.

2.2. A confluence

The non-trivial equation (x − a)dudx = µu obtained by the addition RAd
(
(x −

a)µ
)
∂ has a solution (x−a)µ and regular singularities at x = c and∞. To consider

the confluence of the point x = a to ∞ we put a = 1
c . Then the equation is(

(1− cx)∂ + cµ
)
u = 0

and it has a solution u(x) = (1− cx)µ.
The substitution c = 0 for the operator (1 − cx)∂ + cµ ∈ W [x; c, µ] gives the

trivial equation du
dx = 0 with the trivial solution u(x) ≡ 1. To obtain a nontrivial

equation we introduce the parameter λ = cµ and we have the equation(
(1− cx)∂ + λ

)
u = 0
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with the solution (1−cx)λ
c . The function (1−cx)λ

c has the holomorphic parameters
c and λ and the substitution c = 0 gives the equation (∂+λ)u = 0 with the solution

e−λx. Here (1− cx)∂ + λ = RAdei
(

λ
1−cx

)
∂ = RAd

(
(1− cx)λ

c

)
∂.

This is the simplest example of the confluence and we define a confluence of
simultaneous additions in this section.

2.3. Versal additions

For a function h(c, x) with a holomorphic parameter c ∈ C we put

hn(c1, . . . , cn, x) :=
1

2π
√
−1

∫
|z|=R

h(z, x)dz∏n
j=1(z − cj)

=
n∑

k=1

h(ck, x)∏
1≤i≤n, i 6=k(ck − ci)

(2.26)

with a sufficiently large R > 0. Put

(2.27) h(c, x) := c−1 log(1− cx) = −x− c

2
x2 − c2

3
x3 − c3

4
x4 − · · · .

Then

(2.28) (1− cx)h′(c, x) = −1

and

h′n(c1, . . . , cn, x)
∏

1≤i≤n

(1− cix) = −
n∑

k=1

∏
1≤i≤n, i6=k(1− cix)∏
1≤i≤n, i6=k(ck − ci)

= −xn−1.

(2.29)

The last equality in the above is obtained as follows. Since the left hand side of
(2.29) is a holomorphic function of (c1, . . . , cn) ∈ Cn and the coefficient of xm is
homogeneous of degree m− n+ 1, it is zero if m < n− 1. The coefficient of xn−1

proved to be −1 by putting c1 = 0. Thus we have

hn(c1, . . . , cn, x) = −
∫ x

0

tn−1dt∏
1≤i≤n(1− cit)

,(2.30)

eλnhn(c1,...,cn,x) ◦
( ∏
1≤i≤n

(
1− cix

))
∂ ◦ e−λnhn(c1,...,cn,x)

=
( ∏
1≤i≤n

(
1− cix

))
∂ + λnx

n−1,
(2.31)

eλnhn(c1,...,cn,x) =

n∏
k=1

(
1− ckx

) λn
ck

∏
1≤i≤n
i 6=k

(ck−ci)

.(2.32)

Definition 2.3 (versal addition). We put

AdV( 1
c1

,..., 1
cp

)(λ1, . . . , λp) := Ad

 p∏
k=1

(
1− ckx

)∑p
n=k

λn
ck

∏
1≤i≤n
i 6=k

(ck−ci)


= Adei

(
−

p∑
n=1

λnx
n−1∏n

i=1(1− cix)

)
,

(2.33)

RAdV( 1
c1

,..., 1
cp

)(λ1, . . . , λp) = R ◦AdV( 1
c1

,..., 1
cp

)(λ1, . . . , λp).(2.34)

We call RAdV( 1
c1

,..., 1
cp

)(λ1, . . . , λp) a versal addition at the p points 1
c1
, . . . , 1

cp
.
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Putting

h(c, x) := log(x− c),

we have

h′n(c1, . . . , cn, x)
∏

1≤i≤n

(x− ci) =
n∑

k=1

∏
1≤i≤n, i 6=k(x− ci)∏
1≤i≤n, i 6=k(ck − ci)

= 1

and the conflunence of additions around the origin is defined by

AdV0
(a1,...,ap)(λ1, . . . , λp) := Ad

 p∏
k=1

(x− ak)

∑p
n=k

λn∏
1≤i≤n
i 6=k

(ak−ai)


= Adei

(
p∑

n=1

λn∏
1≤i≤n(x− ai)

)
,

(2.35)

RAdV0
(a1,...,ap)(λ1, . . . , λp) = R ◦AdV0

(a1,...,ap)(λ1, . . . , λp).(2.36)

Remark 2.4. Let gk(c, x) be meromorphic functions of x with the holomorphic
parameter c = (c1, . . . , cp) ∈ Cp for k = 1, . . . , p such that

gk(c, x) ∈
p∑

i=1

C
1

1− cix
if 0 6= ci 6= cj 6= 0 (1 ≤ i < j ≤ p, 1 ≤ k ≤ p).

Suppose g1(c, x), . . . , gp(c, x) are linearly independent for any fixed c ∈ Cp. Then
there exist entire functions ai,j(c) of c ∈ Cp such that

gk(x, c) =

p∑
n=1

ak,n(c)x
n−1∏n

i=1(1− cix)

and
(
ai,j(c)

)
∈ GL(p,C) for any c ∈ Cp (cf. [O3, Lemma 6.3]). Hence the versal

addition is essentially unique.

2.4. Versal operators

If we apply a middle convolution to a versal addition of the trivial operator ∂,
we have a versal Jordan-Pochhammer operator.

P := RAd(∂−µ) ◦ RAdV( 1
c1

,..., 1
cp

)(λ1, . . . , λp)∂(2.37)

= RAd(∂−µ) ◦ R
(
∂ +

p∑
k=1

λkx
k−1∏k

ν=1(1− cνx)

)
= ∂−µ+p−1

(
p0(x)∂ + q(x)

)
∂µ =

p∑
k=0

pk(x)∂
p−k

with

p0(x) =

p∏
j=1

(1− cjx), q(x) =

p∑
k=1

λkx
k−1

p∏
j=k+1

(1− cjx),

pk(x) =

(
−µ+ p− 1

k

)
p
(k)
0 (x) +

(
−µ+ p− 1

k − 1

)
q(k−1)(x).

We naturally obtain the integral representation of solutions of the versal Jordan-
Pochhammer equation Pu = 0, which we show in the case p = 2 as follows.
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Example 2.5. We have the versal Gauss hypergeometric operator

Pc1,c2;λ1,λ2,µ := RAd(∂−µ) ◦ RAdV( 1
c1

, 1
c2

)(λ1, λ2)∂

= RAd(∂−µ) ◦ RAd
(
(1− c1x)

λ1
c1

+
λ2

c1(c1−c2) (1− c2x)
λ2

c2(c2−c1)

)
= RAd(∂−µ) ◦ RAdei

(
− λ1

1−c1x
− λ2x

(1−c1x)(1−c2x)

)
∂

= RAd(∂−µ) ◦ R
(
∂ + λ1

1−c1x
+ λ2x

(1−c1x)(1−c2x)

)
= Ad(∂−µ) (∂(1− c1x)(1− c2x)∂ + ∂(λ1(1− c2x) + λ2x))

=
(
(1− c1x)∂ + c1(µ− 1)

)(
(1− c2x)∂ + c2µ

)
+ λ1∂ + (λ2 − λ1c2)(x∂ + 1− µ)

= (1− c1x)(1− c2x)∂2

+
(
(c1 + c2)(µ− 1) + λ1 + (2c1c2(1− µ) + λ2 − λ1c2)x

)
∂

+ (µ− 1)(c1c2µ+ λ1c2 − λ2),

whose solution is obtained by applying Iµc to

Kc1,c2;λ1,λ2(x) = (1− c1x)
λ1
c1

+
λ2

c1(c1−c2) (1− c2x)
λ2

c2(c2−c1)

The equation Pu = 0 has the Riemann scheme

(2.38)


x = 1

c1
1
c2

∞
0 0 1− µ ; x

λ1

c1
+ λ2

c1(c1−c2)
+ µ λ2

c2(c2−c1)
+ µ −λ1

c1
+ λ2

c1c2
− µ

 .

Thus we have the following well-known confluent equations

Pc1,0;λ1,λ2,µ = (1− c1x)∂2 +
(
c1(µ− 1) + λ1 + λ2x

)
∂ − λ2(µ− 1), (Kummer)

Kc1,0;λ1,λ2 = (1− c1x)
λ1
c1

+
λ2
c21 exp(λ2x

c1
),

P0,0;0,−1,µ = ∂2 − x∂ + (µ− 1), (Hermite)

Ad(e
1
4x

2

)P0,0;0,1,µ = (∂ − 1
2x)

2 + x(∂ − 1
2x)− (µ− 1)

= ∂2 + ( 12 − µ−
x2

4 ), (Weber)

K0,0;0,∓1 = exp
(∫ x

0

±tdt
)
= exp(±x2

2 ).

The solution

D−µ(x) := (−1)−µe
x2

4 Iµ∞(e−
x2

2 ) =
e

x2

4

Γ(µ)

∫ ∞

x

e−
t2

2 (t− x)µ−1dt

=
e

x2

4

Γ(µ)

∫ ∞

0

e−
(s+x)2

2 sµ−1ds =
e−

x2

4

Γ(µ)

∫ ∞

0

e−xs− t2

2 sµ−1ds

∼ x−µe−
x2

4 2F0(
µ
2 ,

µ
2 + 1

2 ;−
2
x2 ) =

∞∑
k=0

x−µe−
x2

4
(µ2 )k(

µ
2 + 1

2 )k

k!

(
− 2

x2

)k
of Weber’s equation d2u

dx2 = (x
2

4 + µ − 1
2 )u is called a parabolic cylinder function

(cf. [WW, §16.5]). Here the above last line is an asymptotic expansion when
x→ +∞.

The normal form of Kummer equation is obtained by the coordinate transfor-
mation y = x− 1

c1
but we also obtain it as follows:

Pc1;λ1,λ2,µ := RAd(∂−µ) ◦ R ◦Ad(xλ2) ◦AdV 1
c1

(λ1)∂
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= RAd(∂−µ) ◦ R
(
∂ − λ2

x + λ1

1−c1x

)
= Ad(∂−µ)

(
∂x(1− c1x)∂ − ∂(λ2 − (λ1 + c1λ2)x)

)
= (x∂ + 1− µ)

(
(1− c1x)∂ + c1µ)− λ2∂ + (λ1 + c1λ2)(x∂ + 1− µ)

= x(1− c1x)∂2 +
(
1− λ2 − µ+ (λ1 + c1(λ2 + 2µ− 2))x

)
∂

+ (µ− 1)
(
λ1 + c1(λ2 + µ)

)
,

P0;λ1,λ2,µ = x∂2 + (1− λ2 − µ+ λ1x)∂ + λ1(µ− 1),

P0;−1,λ2,µ = x∂2 + (1− λ2 − µ− x)∂ + 1− µ (Kummer),

Kc1;λ1,λ2(x) := xλ2(1− c1x)
λ1
c1 , K0;λ1,λ2(x) = xλ2 exp(−λ1x).

The Riemann scheme of the equation Pc1;λ1,λ2,µu = 0 is
x = 0 1

c1
∞

0 0 1− µ ; x

λ2 + µ λ1

c1
+ µ −λ1

c1
− λ2 − µ

(2.39)

and the local solution at the origin corresponding to the characteristic exponent
λ2 + µ is given by

Iµ0 (Kc1;λ1,λ2)(x) =
1

Γ(µ)

∫ x

0

tλ2(1− c1t)
λ1
c1 (x− t)µ−1dt.

In particular, we have a solution

u(x) = Iµ0 (K0;−1,λ2)(x) =
1

Γ(µ)

∫ x

0

tλ2et(x− t)µ−1dt

=
xλ2+µ

Γ(µ)

∫ 1

0

sλ2(1− s)µ−1exsds (t = xs)

=
Γ(λ2 + 1)xλ2+µ

Γ(λ2 + µ+ 1)
1F1(λ2 + 1, µ+ λ2 + 1;x)

of the Kummer equation P0;−1,λ2,µu = 0 corresponding to the exponent λ2 + µ at
the origin. If c1 /∈ (−∞, 0] and x /∈ [0,∞] and λ2 /∈ Z≥0, the local solution at −∞
corresponding to the exponent −λ2 − λ1

c1
− µ is given by

1

Γ(µ)

∫ x

−∞
(−t)λ2(1− c1t)

λ1
c1 (x− t)µ−1dt

=
(−x)λ2

Γ(µ)

∫ ∞

0

(
1− s

x

)λ2 (
1 + c1(s− x)

)λ1
c1 sµ−1ds (s = x− t)

λ1=−1−−−−→
c1→+0

(−x)λ2

Γ(µ)

∫ ∞

0

(
1− s

x

)λ2

ex−ssµ−1ds

=
(−x)λ2ex

Γ(µ)

∫ ∞

0

sµ−1e−s
(
1− s

x

)λ2

ds

∼
∞∑

n=0

Γ(µ+ n)Γ(−λ2 + n)

Γ(µ)Γ(−λ2)n!xn
(−x)λ2ex = (−x)λ2ex2F0(−λ2, µ; 1

x ).

Here the above last line is an asymptotic expansion of a rapidly decreasing solution
of the Kummer equation when R 3 −x → +∞. The Riemann scheme of the
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equation P0;−1,λ2,µu = 0 can be expressed by

(2.40)

 x = 0 ∞ (1)
0 1− µ 0

λ2 + µ −λ2 −1

 .

In general, the expression

{
∞ (r1) · · · (rk)
λ α1 · · · αk

}
with 0 < r1 < · · · < rk means

the existence of a solution u(x) satisfying

(2.41) u(x) ∼ x−λ exp
(
−

k∑
ν=1

αν
xrν

rν

)
for |x| → ∞

under a suitable restriction of Arg x. Here k ∈ Z≥0 and λ, αν ∈ C.



CHAPTER 3

Series expansion and Contiguity relation

In this chapter we examine the transformation of series expansions and contigu-
ity relations of the solutions of Fuchsian differential equations under our operations,
which will be used in Chapter 8 and Chapter 11.

3.1. Series expansion

In this section we review the Euler transformation and remark on its relation
to middle convolutions.

First we note the following which will be frequently used:∫ 1

0

tα−1(1− t)β−1dt =
Γ(α)Γ(β)

Γ(α+ β)
,(3.1)

(1− t)−γ =
∞∑
ν=0

(−γ)(−γ − 1) · · · (−γ − ν + 1)

ν!
(−t)ν

=
∞∑
ν=0

Γ(γ + ν)

Γ(γ)ν!
tν =

∞∑
ν=0

(γ)ν
ν!

tν .

(3.2)

The integral (3.1) converges if Reα > 0 and Reβ > 0 and the right hand side
is meromorphically continued to α ∈ C and β ∈ C. If the integral in (3.1) is
interpreted in the sense of generalized functions, (3.1) is valid if α /∈ {0,−1,−2, . . .}
and β /∈ {0,−1,−2, . . .}.

Euler transformation Iµc is sometimes expressed by ∂−µ and as is shown in
([Kh, §5.1]), we have

Iµc u(x) :=
1

Γ(µ)

∫ x

c

(x− t)µ−1u(t)dt

=
(x− c)µ

Γ(µ)

∫ 1

0

(1− s)µ−1u((x− c)s+ c)ds,

(3.3)

Iµc ◦ Iµ
′

c = Iµ+µ′

c ,(3.4)

I−n
c u(x) =

dn

dxn
u(x),(3.5)

Iµc

∞∑
n=0

cn(x− c)λ+n =

∞∑
n=0

Γ(λ+ n+ 1)

Γ(λ+ µ+ n+ 1)
cn(x− c)λ+µ+n

=
Γ(λ+ 1)

Γ(λ+ µ+ 1)

∞∑
n=0

(λ+ 1)ncn
(λ+ µ+ 1)n

(x− c)λ+µ+n,

(3.6)

Iµ∞

∞∑
n=0

cnx
λ−n = eπ

√
−1µ

∞∑
n=0

Γ(−λ− µ+ n)

Γ(−λ+ n)
cnx

λ+µ−n.(3.7)

27
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Moreover the following equalities which follow from (1.47) are also useful.

Iµ0

∞∑
n=0

cnx
λ+n(1− x)β

=
Γ(λ+ 1)

Γ(λ+ µ+ 1)

∞∑
m,n=0

(λ+ 1)m+n(−β)mcn
(λ+ µ+ 1)m+nm!

xλ+µ+m+n

=
Γ(λ+ 1)

Γ(λ+ µ+ 1)
(1− x)−β

∞∑
m,n=0

(λ+ 1)n(µ)m(−β)mcn
(λ+ µ+ 1)m+nm!

xλ+µ+n
( x

x− 1

)m
.

(3.8)

If λ /∈ Z<0 (resp. λ + µ /∈ Z≥0) and moreover the power series
∑∞

n=0 cnt
n

has a positive radius of convergence, the equalities (3.6) (resp. (3.7)) is valid since
Iµc (resp. Iµ∞) can be defined through analytic continuations with respect to the
parameters λ and µ. Note that Iµc is an invertible map of Oc(x− c)λ onto Oc(x−
c)λ+µ if λ /∈ {−1,−2,−3, . . .} and λ+ µ /∈ {−1,−2,−3, . . .}.

Proposition 3.1. Let λ and µ be complex numbers satisfying λ /∈ Z<0. Differen-
tiating the equality (3.6) with respect to λ, we have the linear map

(3.9) Iµc : Oc(λ,m)→ Oc(λ+ µ,m)

under the notation (2.5), which is also defined by (3.3) if Reλ > −1 and Reµ > 0.
Here m is a non-negative integer. Then we have

(3.10) Iµc
( m∑
j=0

φj log
j(x− c)

)
− Iµc (φm) logm(x− c) ∈ O(λ+ µ,m− 1)

for φj ∈ Oc and Iµc satisfies (1.43). The map (3.9) is bijective if λ + µ /∈ Z<0.
In particular for k ∈ Z≥0 we have Iµc ∂

k = ∂kIµc = Iµ−k
c on Oc(λ,m) if λ − k /∈

{−1,−2,−3, . . . }.
Suppose that P ∈ W [x] and φ ∈ Oc(λ,m) satisfy Pφ = 0, P 6= 0 and φ 6= 0.

Let k and N be non-negative integers such that

(3.11) ∂kP =
N∑
i=0

∑
j≥0

ai,j∂
i
(
(x− c)∂

)j
with suitable aj,j ∈ C and put Q =

∑N
i=0

∑
j≥0 ci,j∂

i
(
(x − c)∂ − µ

)j
. Then if

λ /∈ {N − 1, N − 2, . . . , 0,−1, . . .}, we have

(3.12) Iµc ∂
kPu = QIµc (u) for u ∈ Oc(λ,m)

and in particular QIµc (φ) = 0.

Fix ` ∈ Z. For u(x) =
∑∞

i=`

∑m
j=0 ci,j(x − c)i log

j(x − c) ∈ Oc(`,m) we put

(ΓNu)(x) =
∑∞

ν=max{`,N−1}
∑m

j=0 ci,j(x− c)i log
j(x− c). Then( ∏

`−N≤ν≤N−1

(
(x− c)∂ − ν

)m+1
)
∂kP

(
u(x)− (ΓNu)(x)

)
= 0

ane therefore ( ∏
`−N≤ν≤N−1

(
(x− c)∂ − µ− ν

)m+1
)
QIµc (ΓNu)

= Iµc

( ∏
`−N≤ν≤N−1

(
(x− c)∂ − ν

)m+1
)
∂kPu.

(3.13)

In particular,
∏

`−N≤ν≤N−1

(
(x− c)∂ − µ− ν

)m+1 ·QIµc
(
ΓN (u)

)
= 0 if Pu = 0.
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Suppose moreover λ /∈ Z and λ + µ /∈ Z and Q = ST with S, T ∈ W [x]
such that x = c is not a singular point of the operator S. Then TIµc (φ) = 0. In
particular,

(3.14)
(
RAd(∂−µ)P

)
Iµc (φ) = 0.

Hence if the differential equation
(
RAd(∂−µ)P

)
v = 0 is irreducible, we have

(3.15) W (x)
(
RAd(∂−µ)P

)
= {T ∈W (x) ; TIµc (φ) = 0}.

The statements above are also valid even if we replace x− c, Iµc by 1
x , I

µ
∞, respec-

tively.

Proof. It is clear that (3.9) is well-defined and (3.10) is valid. Then (3.9) is
bijective because of (3.6) and (3.10). Since (1.43) is valid when m = 0, it is also
valid when m = 1, 2, . . . by the definition of (3.9).

The equalities (3.6) and (3.7) assure that QIµc (φ) = 0. Note that TIµc (φ) ∈
O(λ+ µ−N,m) with a suitable positive integer N . Since λ+ µ−N /∈ Z and any
solution of the equation Sv = 0 is holomorphic at x = c, the equality S

(
TIµc (φ)

)
= 0

implies TIµc (φ) = 0.
The remaining claims in the theorem are similarly clear. �

Remark 3.2. i) Let γ : [0, 1] → C be a path such that γ(0) = c and γ(1) = x.
Suppose u(x) is holomorphic along the path γ(t) for 0 < t ≤ 1 and u(γ(t)) = φ(γ(t))
for 0 < t� 1 with a suitable function φ ∈ Oc(λ,m). Then Iµc (u) is defined by the
integration along the path γ. In fact, if the path γ(t) with t ∈ [0, 1] splits into the
three paths corresponding to the decomposition [0, 1] = [0, ε] ∪ [ε, 1− ε] ∪ [1− ε, 1]
with 0 < ε � 1. Let c1 = c, . . . , cp be points in Cn and suppose moreover u(x) is
extended to a multi-valued holomorphic function on C \ {c1, . . . , cp}. Then Ixc (u)
also defines a multi-valued holomorphic function on C \ {c1, . . . , cp}.

ii) Proposition 3.1 is also valid if we replace Oc(λ,m) by the space of functions
given in Remark 1.7 ii). In fact the above proof also works in this case.

3.2. Contiguity relation

The following proposition is clear from Proposition 3.1.

Proposition 3.3. Let φ(x) be a non-zero solution of an ordinary differential equa-
tion Pu = 0 with an operator P ∈ W [x]. Let Pj and Sj ∈ W [x] for j = 1, . . . , N

so that
∑N

j=1 PjSj ∈W [x]P . Then for a suitable ` ∈ Z we have

(3.16)
∑

Qj

(
Iµc (φj)

)
= 0

by putting

φj = Sjφ,

Qj = ∂`−µ ◦ Pj ◦ ∂µ ∈W [x],
(j = 1, . . . , N)(3.17)

if φ(x) ∈ O(λ,m) with a non-negative integer m and a complex number λ satis-
fying λ /∈ Z and λ + µ /∈ Z or φ(x) is a function given in Remark 1.7 ii). If
Pj =

∑
k≥0, `≥0 cj,k,`∂

kϑ` with cj,k,` ∈ C, then we can assume ` ≤ 0 in the above.
Moreover we have

(3.18) ∂
(
Iµ+1
c (φ1)

)
= Iµc (φ1).

Proof. Fix an integer k such that ∂kPj = P̃j(∂, ϑ) =
∑

i1,i2
ci1,i2∂

i1ϑi2 with

ci1,i2 ∈ C. Since 0 =
∑N

j=1 ∂
kPjSjφ, Proposition 3.1 proves

0 =
N∑
j=1

Iµc (P̃j(∂, ϑ)Sjφ) =
N∑
j=1

P̃j(∂, ϑ− µ)Iµc (Sjφ),
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which implies the first claim of the proposition.
The last claim is clear from (3.4) and (3.5). �

Corollary 3.4. Let P (ξ) and K(ξ) be non-zero elements of W [x; ξ]. If we substi-
tute ξ and µ by generic complex numbers, we assume that there exists a solution
φξ(x) satisfying the assumption in the preceding proposition and that Iµc (φξ) and
Iµc (K(ξ)φξ) satisfy irreducible differential equations T1(ξ, µ)v1 = 0 and T2(ξ, µ)v2 =
0 with T1(ξ, µ) and T2(ξ, µ) ∈ W (x; ξ, µ), respectively. Then the differential equa-
tion T1(ξ, µ)v1 = 0 is isomorphic to T2(ξ, µ)v2 = 0 as W (x; ξ, µ)-modules.

Proof. Since K(ξ) · 1− 1 ·K(ξ) = 0, we have Q(ξ, µ)Iµc (φξ) = ∂`Iµc (K(ξ)φξ)
withQ(ξ, µ) = ∂`−µ◦K(ξ)◦∂µ. Since ∂`Iµc (φξ) 6= 0 and the equations Tj(ξ, µ)vj = 0
are irreducible for j = 1 and 2, there exist R1(ξ, µ) and R2(ξ, µ) ∈W (x; ξ, µ) such
that Iµc (φξ) = R1(ξ, µ)Q(ξ, µ)Iµc (φξ) = R1(ξ, µ)∂

`Iµc (K(ξ)φξ) and Iµc (K(ξ)φξ) =
R2(ξ, µ)∂

`Iµc (K(ξ)φξ) = R2(ξ, µ)Q(ξ, µ)Iµc (φξ). Hence we have the corollary. �
Using the proposition, we get the contiguity relations with respect to the pa-

rameters corresponding to powers of linear functions defining additions and the
middle convolutions.

For example, in the case of Gauss hypergeometric functions, we have

uλ1,λ2,µ(x) := Iµ0 (x
λ1(1− x)λ2),

uλ1,λ2,µ−1(x) = ∂uλ1,λ2,µ(x),

∂uλ1+1,λ2,µ(x) = (x∂ + 1− µ)uλ1,λ2,µ(x),

∂uλ1,λ2+1,µ(x) = ((1− x)∂ + µ− 1)uλ1,λ2,µ(x).

Here Proposition 3.3 with φ = xλ1(1 − x)λ2 , (P1, S1, P2, S2) = (1, x,−x, 1) and
` = 1 gives the above third identity.

Since Pλ1,λ2,µuλ1,λ2,µ(x) = 0 with

Pλ1,λ2,µ =
(
x(1− x)∂ + (1− λ1 − µ− (2− λ1 − λ2 − 2µ)x

)
∂

− (µ− 1)(λ1 + λ2 + µ)

as is given in Example 1.8, the inverse of the relation uλ1,λ2,µ−1(x) = ∂uλ1,λ2,µ(x)
is

uλ1,λ2,µ(x) = −
x(1− x)∂ + (1− λ1 − µ− (2− λ1 − λ2 − 2µ)x

)
(µ− 1)(λ1 + λ2 + µ)

uλ1,λ2,µ−1(x).

The equalities uλ1,λ2,µ−1(x) = ∂uλ1,λ2,µ(x) and (1.47) mean

Γ(λ1 + 1)xλ1+µ−1

Γ(λ1 + µ)
F (−λ2, λ1 + 1, λ1 + µ;x)

=
Γ(λ1 + 1)xλ1+µ−1

Γ(λ1 + µ)
F (−λ2, λ1 + 1, λ1 + µ+ 1;x)

+
Γ(λ1 + 1)xλ1+µ

Γ(λ1 + µ+ 1)

d

dx
F (−λ2, λ1 + 1, λ1 + µ+ 1;x)

and therefore uλ1,λ2,µ−1(x) = ∂uλ1,λ2,µ(x) is equivalent to

(γ − 1)F (α, β, γ − 1;x) = (ϑ+ γ − 1)F (α, β, γ;x).

The contiguity relations are very important for the study of differential equations.
For example the author’s original proof of the connection formula (0.24) announced
in [O6] is based on the relations (cf. §12.3).

Some results related to contiguity relations will be given in Chapter 11 but we
will not go further in this subject and it will be discussed in another paper.



CHAPTER 4

Fuchsian differential equation and generalized
Riemann scheme

In this chapter we introduce generalized characteristic exponents at every singu-
lar point of a Fuchsian differential equation which are refinements of characteristic
exponents and then we have the generalized Riemann scheme as the corresponding
refinement of the Riemann scheme of the equation. We define the spectral type
of the equation by the generalized Riemann scheme, which equals the multiplicity
data of eigenvalues of the local monodromies when they are semisimple.

4.1. Generalized characteristic exponents

We examine the Fuchsian differential equations

(4.1) P = an(x)
dn

dxn + an−1(x)
dn−1

dxn−1 + · · ·+ a0(x)

with given local monodromies at regular singular points. For this purpose we first
study the condition so that monodromy generators of the solutions of a Fuchsian
differential equation is semisimple even when its exponents are not free of multi-
plicity.

Lemma 4.1. Suppose that the operator (4.1) defined in a neighborhood of the origin
has a regular singularity at the origin. We may assume aν(x) are holomorphic at

0 and an(0) = a′n(0) = · · · = a
(n−1)
n (0) = 0 and a

(n)
n (0) 6= 0. Then the following

conditions are equivalent for a positive integer k.

P = xkR with a suitable holomorphic differential operator R(4.2)

at the origin,

Pxν = o(xk−1) for ν = 0, . . . , k − 1,(4.3)

Pu = 0 has a solution xν + o(xk−1) for ν = 0, . . . , k − 1,(4.4)

P =
∑
j≥0

xjpj(ϑ) with polynomials pj satisfying pj(ν) = 0(4.5)

for 0 ≤ ν < k − j and j = 0, . . . , k − 1.

Proof. (4.2) ⇒ (4.3) ⇔ (4.4) is clear.
Assume (4.3). Then Pxν = o(xk−1) for ν = 0, . . . , k−1 implies aj(x) = xkbj(x)

for j = 0, . . . , k−1. Since P has a regular singularity at the origin, aj(x) = xjcj(x)
for j = 0, . . . , n. Hence we have (4.2).

Since Pxν =
∑∞

j=0 x
ν+jpj(ν), the equivalence (4.3) ⇔ (4.5) is clear. �

Definition 4.2. Suppose P in (4.1) has a regular singularity at x = 0. Under the
notation (1.57) we define that P has a (generalized) characteristic exponent [λ](k)
at x = 0 if xn−k Ad(x−λ)(an(x)

−1P ) ∈W [x].

Note that Lemma 4.1 shows that P has a characteristic exponent [λ](k) at x = 0
if and only if

(4.6) xnan(x)
−1P =

∑
j≥0

xjqj(ϑ)
∏

0≤i<k−j

(ϑ− λ− i)

31
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with polynomials qj(t). By a coordinate transformation we can define generalized
characteristic exponents for any regular singular point as follows.

Definition 4.3 (generalized characteristic exponents). Suppose P in (4.1) has
regular singularity at x = c. Let n = m1 + · · ·+mN be a partition of the positive
integer n and let λ1, . . . , λN be complex numbers. We define that P has the (set
of generalized) characteristic exponents {[λ1](m1), . . . , [λN ](mN )} and the spectral
type {m1, . . . ,mN} at x = c ∈ C ∪ {∞} if there exist polynomials q`(s) such that

(4.7) (x− c)nan(x)−1P =
∑
`≥0

(x− c)`q`
(
(x− c)∂

) N∏
ν=1

∏
0≤i<mν−`

(
(x− c)∂−λν − i

)
in the case when c 6=∞ and

(4.8) x−nan(x)
−1P =

∑
`≥0

x−`q`
(
ϑ)

N∏
ν=1

∏
0≤i<mν−`

(
ϑ+ λν + i

)
in the case when c =∞. Here if mj = 1, [λj ](mj) may be simply written as λj .

Remark 4.4. i) In Definition 4.3 we may replace the left hand side of (4.7) by
φ(x)an(x)

−1P where φ is analytic function in a neighborhood of x = c such that
φ(c) = · · · = φ(n−1)(c) = 0 and φ(n)(c) 6= 0. In particular when an(c) = · · · =
a
(n)
n (c) = 0 and an(c) 6= 0, P is said to be normalized at the singular point x = c

and the left hand side of (4.7) can be replaced by P .
In particular when c = 0 and P is normalized at the regular singular point

x = 0, the condition (4.7) is equivalent to

(4.9)

N∏
ν=1

∏
0≤i<mν−`

(s− λν − i)
∣∣ pj(s) (∀` = 0, 1, . . . ,max{m1, . . . ,mN} − 1)

under the expression P =
∑∞

j=0 x
jpj(ϑ).

ii) In Definition 4.3 the condition that the operator P has a set of generalized
characteristic exponents {λ1, . . . , λn} is equivalent to the condition that it is the
set of the usual characteristic exponents.

iii) Any one of {λ, λ+ 1, λ+ 2}, {[λ](2), λ+ 2} and {λ, [λ+ 1](2)} is the set of
characteristic exponents of

P = (ϑ− λ)(ϑ− λ− 1)(ϑ− λ− 2 + x) + x2(ϑ− λ+ 1)

at x = 0 but {[λ](3)} is not.
iv) Suppose P has a holomorphic parameter t ∈ B1(0) (cf. (2.7)) and P has

regular singularity at x = c. Suppose the set of the corresponding characteristic ex-
ponents is {[λ1(t)](m1), . . . , [λN (t)](mN )} for t ∈ B1(0)\{0} with λν(t) ∈ O

(
B1(0)

)
.

Then this is also valid in the case t = 0, which clearly follows from the definition.
When

P =
∑
`≥0

x−`q`
(
(x− c)∂

) N∏
ν=1

∏
0≤i<mν−`

(
(x− c)∂ − λν − i

)
,

we put

Pt =
∑
`≥0

x−`q`
(
(x− c)∂

) N∏
ν=1

∏
0≤i<mν−`

(
(x− c)∂ − λν − νt− i

)
.

Here λν ∈ C, q0 6= 0 and ordP = m1+ · · ·+mN . Then the set of the characteristic
exponents of Pt is {[λ̃1(t)](m1), . . . , [λ̃N (t)](mN )} with λ̃j(t) = λj + jt. Since λ̃i(t)−
λ̃j(t) /∈ Z for 0 < |t| � 1, we can reduce certain claims to the case when the
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values of characteristic exponents are generic. Note that we can construct local
independent solutions which holomorphically depend on t (cf. [O4]).

Lemma 4.5. i) Let λ be a complex number and let p(t) be a polynomial such that
p(λ) 6= 0. Then for non-negative integers k and m we have the exact sequence

0 −→ O0(λ, k − 1) −→ O0(λ,m+ k − 1)
p(ϑ)(ϑ−λ)k−−−−−−−→ O0(λ,m− 1) −→ 0

under the notation (2.5).
ii) Let m1, . . . ,mN be non-negative integers. Let P be a differential operator

of order n whose coefficients are in O0 such that

(4.10) P =
∞∑
`=0

x`r`(ϑ)
N∏

ν=1

∏
0≤k<mν−`

(
ϑ− k

)
with polynomials r`. Put mmax = max{m1, . . . ,mN} and suppose r0(ν) 6= 0 for
ν = 0, . . . ,mmax − 1.

Let m∨ = (m∨
1 , . . . ,m

∨
mmax

) be the dual partition of m := (m1, . . . ,mN ),
namely,

(4.11) m∨
ν = #{j ; mj ≥ ν}.

Then for i = 0, . . . ,mmax − 1 and j = 0, . . . ,m∨
i+1 − 1 we have the functions

(4.12) ui,j(x) = xi logj x+

mmax−1∑
µ=i+1

j∑
ν=0

cµ,νi,j x
µ logν x

such that cµ,νi,j ∈ C and Pui,j ∈ O0(mmax, j).

iii) Let m′
1, . . . ,m

′
N be non-negative integers and let P ′ be a differential oper-

ator of order n′ whose coefficients are in O0 such that

(4.13) P ′ =
∞∑
`=0

x`r′`(ϑ)
N∏

ν=1

∏
0≤k<m′

ν−`

(
ϑ−mν − k

)
with polynomials q′`. Then for a differential operator P of the form (4.10) we have

(4.14) P ′P =
∞∑
`=0

x`
(∑̀
ν=0

r′`−ν(ϑ+ ν)rν(ϑ)
) N∏

ν=1

∏
0≤k<mν+m′

ν−`

(
ϑ− k

)
.

Proof. i) The claim is easy if (p, k) = (1, 1) or (ϑ − µ, 0) with µ 6= λ. Then
the general case follows from induction on deg p(t) + k.

ii) Put P =
∑

`≥0 x
`p`(ϑ) and m

∨
ν = 0 if ν > mmax. Then for a non-negative

integer ν, the multiplicity of the root ν of the equation p`(t) = 0 is equal or larger
than m∨

ν+`+1 for ` = 1, 2, . . . . If 0 ≤ ν ≤ mmax − 1, the multiplicity of the root ν
of the equation p0(t) = 0 equals m∨

ν+1.
For non-negative integers i and j, we have

x`p`(ϑ)x
i logj x = xi+`

∑
0≤ν≤j−m∨

i+`+1

ci,j,`,ν log
ν x

with suitable ci,j,`,ν ∈ C. In particular, p0(ϑ)x
i logj x = 0 if j < m∨

i . If ` > 0 and
i+ ` < mmax, there exist functions

vi,j,` = xi+`

j∑
ν=0

ai,j,`,ν log
ν x
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with suitable ai,j,`,ν ∈ C such that p0(ϑ)vi,j,` = x`p`(ϑ)x
i logj x and we define a

C-linear map Q by

Qxi logj x = −
mmax−i−1∑

`=1

vi,j,` = −
mmax−i−1∑

`=1

j∑
ν=0

ai,j,`,νx
i+` logν x,

which implies p0(ϑ)Qx
i logj x = −

∑mmax−i−1
`=1 x`p`(ϑ)x

i logj and Qmmax = 0.

Putting Tu :=
∑mmax−1

ν=0 Qνu for u ∈
∑mmax−1

i=0

∑N−1
j=0 Cxi logj x, we have

PTu ≡ p0(ϑ)Tu+

mmax−1∑
`=1

x`p`(ϑ)Tu mod O0(mmax, j)

≡ p0(ϑ)(1−Q)Tu mod O0(mmax, j)

≡ p0(ϑ)(1−Q)(1 +Q+ · · ·+Qmmax−1)u mod O0(mmax, j)

= p0(ϑ)u.

Hence if j < m∨
i , PTx

i logj x ≡ 0 mod O0(mmax, j) and ui,j(x) := Txi logj x are
required functions.

iii) Since

x`
′
r′`′(ϑ)

N∏
ν=1

∏
0≤k′<m′

ν−`′

(ϑ−mν − k′) · x`r`(ϑ)
N∏

ν=1

∏
0≤k<mν−`

(ϑ− k)

= x`+`′r′`′(ϑ+ `)r`(ϑ)
N∏

ν=1

∏
0≤k′<m′

ν−`′

(ϑ−mν − k′ + `)
∏

0≤k<mν−`

(ϑ− k)

= x`+`′r′`′(ϑ+ `)r`(ϑ)

N∏
ν=1

∏
0≤k<mν+mν′−`−`′

(ϑ− k),

we have the claim. �
Definition 4.6 (generalized Riemann scheme). Let P ∈ W [x]. Then we call P
is Fuchsian in this paper when P has at most regular singularities in C ∪ {∞}.
Suppose P is Fuchsian with regular singularities at x = c0 = ∞, c1,. . . , cp and

the functions
aj(x)
an(x)

are holomorphic on C \ {c1, . . . , cp} for j = 0, . . . , n. Moreover

suppose P has the set of characteristic exponents {[λj,1](mj,1), . . . , [λj,nj ](mj,nj
)} at

x = cj . Then we define the Riemann scheme of P or the equation Pu = 0 by

(4.15)


x = c0 =∞ c1 · · · cp
[λ0,1](m0,1) [λ1,1](m1,1) · · · [λp,1](mp,1)

...
...

...
...

[λ0,n0 ](m0,n0 )
[λ1,n1 ](m1,n1 )

· · · [λp,np ](mp,np )

 .

Remark 4.7. The Riemann scheme (4.15) always satisfies the Fuchs relation
(cf. (2.21)):

(4.16)

p∑
j=0

nj∑
ν=1

mj,ν−1∑
i=0

(
λj,ν + i

)
=

(p− 1)n(n− 1)

2
.

Definition 4.8 (spectral type). In Definition 4.6 we put

m = (m0,1, . . . ,m0,n0 ;m1,1, . . . ;mp,1, . . . ,mp,np),

which will be also written as m0,1m0,2 · · ·m0,n0 ,m1,1 · · · ,mp,1 · · ·mp,np for simplic-
ity. Then m is a (p+1)-tuple of partitions of n and we define that m is the spectral
type of P .
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If the set of (usual) characteristic exponents

(4.17) Λj := {λj,ν + i ; 0 ≤ i ≤ mj,ν − 1 and ν = 1, . . . , nν}
of the Fuchsian differential operator P at every regular singular point x = cj are n
different complex numbers, P is said to have distinct exponents.

Remark 4.9. We remark that the Fuchsian differential equation M : Pu = 0 is
irreducible (cf. Definition 1.12) if and only if the monodromy of the equation is
irreducible.

If P = QR with Q and R ∈W (x; ξ), the solution space of the equation Qv = 0
is a subspace of that of M and closed under the monodromy and therefore the
monodromy is reducible. Suppose the space spanned by certain linearly indepen-
dent solutions u1, . . . , um is invariant under the monodromy. We have a non-trivial

simultaneous solution of the linear relations bmu
(m)
j + · · · + b1u

(1)
j + b0uj = 0 for

j = 1, . . . ,m. Then
bj
bm

are single-valued holomorphic functions on C∪{∞} exclud-
ing finite number of singular points. In view of the local behavior of solutions, the

singularities of
bj
bm

are at most poles and hence they are rational functions. Then

we may assume R = bm∂
m + · · ·+ b0 ∈W (x; ξ) and P ∈W (x; ξ)R.

Here we note that R is Fuchsian but R may have a singularity which is not a
singularity of P and is an apparent singularity. For example, we have

(4.18) x(1−x)∂2+(γ−αx)∂+α =
(γ
α
−x
)−1(

x(1−x)∂+(γ−αx)
)((γ

α
−x
)
∂+1

)
.

We also note that the equation ∂2u = xu is irreducible and the monodromy of its
solutions is reducible.

4.2. Tuples of partitions

For our purpose it will be better to allow some mj,ν equal 0 and we generalize
the notation of tuples of partitions as in [O6].

Definition 4.10. Let m =
(
mj,ν

)
j=0,1,...
ν=1,2,...

be an ordered set of infinite number of

non-negative integers indexed by non-negative integers j and positive integers ν.
Then m is called a (p + 1)-tuple of partitions of n if the following two conditions
are satisfied.

∞∑
ν=1

mj,ν = n (j = 0, 1, . . .),(4.19)

mj,1 = n (∀j > p).(4.20)

A (p+ 1)-tuple of partition m is called monotone if

(4.21) mj,ν ≥ mj,ν+1 (j = 0, 1, . . . , ν = 1, 2, . . .)

and called trivial if mj,ν = 0 for j = 0, 1, . . . and ν = 2, 3, . . .. Moreover m is
called standard if m is monotone and mj,2 > 0 for j = 0, . . . , p. The greatest
common divisor of {mj,ν ; j = 0, 1, . . . , ν = 1, 2, . . .} is denoted by gcdm and m is
called divisible (resp. indivisible) if gcdm ≥ 2 (resp. gcdm = 1). The totality of

(p+ 1)-tuples of partitions of n are denoted by P(n)
p+1 and we put

Pp+1 :=
∞∪

n=0

P(n)
p+1, P(n) :=

∞∪
p=0

P(n)
p+1, P :=

∞∪
p=0

Pp+1,(4.22)

ordm := n if m ∈ P(n),(4.23)

1 := (1, 1, . . .) =
(
mj,ν = δν,1

)
j=0,1,...
ν=1,2,...

∈ P(1),(4.24)
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idx(m,m′) :=

p∑
j=0

∞∑
ν=1

mj,νm
′
j,ν − (p− 1) ordm · ordm′,(4.25)

idxm := idx(m,m) =

p∑
j=0

∞∑
ν=1

m2
j,ν − (p− 1) ordm2,(4.26)

Pidxm := 1− idxm

2
.(4.27)

Here ordm is called the order of m. For m, m′ ∈ P and a non-negative integer
k, m+ km′ ∈ P is naturally defined. Note that

idx(m+m′) = idxm+ idxm′ + 2 idx(m,m′),(4.28)

Pidx(m+m′) = Pidxm+ Pidxm′ − idx(m,m′)− 1.(4.29)

For m ∈ P(n)
p+1 we choose integers n0, . . . , np so that mj,ν = 0 for ν > nj and

j = 0, . . . , p and we will sometimes express m as

m = (m0,m1, . . . ,mp)

= m0,1, . . . ,m0,n0 ; . . . ;mk,1, . . . ,mp,np

= m0,1 · · ·m0,n0 ,m1,1 · · ·m1,n1 , . . . ,mk,1 · · ·mp,np

if there is no confusion. Similarly m = (m0,1, . . . ,m0,n0) if m ∈ P1. Here

mj = (mj,1, . . . ,mj,nj ) and ordm = mj,1 + · · ·+mj,nj (0 ≤ j ≤ p).

For example m = (mj,ν) ∈ P(4)
3 with m1,1 = 3 and m0,ν = m2,ν = m1,2 = 1 for

ν = 1, . . . , 4 will be expressed by

m = 1, 1, 1, 1; 3, 1; 1, 1, 1, 1 = 1111, 31, 1111 = 14, 31, 14

and mostly we use the notation 1111, 31, 1111 in the above. To avoid the confusion
for the number larger than 10, we sometimes use the convention given in §13.1.3.

Let S∞ be the restricted permutation group of the set of indices Z≥0 =
{0, 1, 2, 3, . . .}, which is generated by the transpositions (j, j + 1) with j ∈ Z≥0.
Put S′

∞ = {σ ∈ S∞ ; σ(0) = 0}, which is isomorphic to S∞.

Definition 4.11. The transformation groups S∞ and S′
∞ of P are defined by

S∞ := H n S′
∞,

S′
∞ := {(σi)i=0,1,... ; σi ∈ S′

∞, σi = 1 (i� 1)}, H ' S∞,

m′
j,ν = mσ(j),σj(ν) (j = 0, 1, . . . , ν = 1, 2, . . .)

(4.30)

for g = (σ, σ1, . . .) ∈ S∞, m = (mj,ν) ∈ P and m′ = gm. A tuple m ∈ P is
isomorphic to a tuple m′ ∈ P if there exists g ∈ S∞ such that m′ = gm. We
denote by sm the unique monotone element in S′

∞m.

Definition 4.12. For a tuple of partitions m =
(
mj,ν

)
1≤ν≤nj

0≤j≤p

∈ Pp+1 and λ =(
λj,ν

)
1≤ν≤nj

0≤j≤p

with λj,ν ∈ C, we define

(4.31)
∣∣{λm}∣∣ := p∑

j=0

nj∑
ν=1

mj,νλj,ν − ordm+
idxm

2
.

We note that the Fuchs relation (4.16) is equivalent to

(4.32) |{λm}| = 0
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because

p∑
j=0

nj∑
ν=1

mj,ν−1∑
i=0

i =
1

2

p∑
j=0

nj∑
ν=1

mj,ν(mj,ν − 1) =
1

2

p∑
j=0

nj∑
ν=1

m2
j,ν −

1

2
(p+ 1)n

=
1

2

(
idxm+ (p− 1)n2

)
− 1

2
(p+ 1)n

=
1

2
idxm− n+

(p− 1)n(n− 1)

2
.

4.3. Conjugacy classes of matrices

Now we review on the conjugacy classes of matrices. For m = (m1, . . . ,mN ) ∈
P(n)
1 and λ = (λ1, . . . , λN ) ∈ CN we define a matrix L(m;λ) ∈M(n,C) as follows,

which is introduced and effectively used by [O2] and [O6]:
If m is monotone, then

L(m;λ) :=
(
Aij

)
1≤i≤N
1≤j≤N

, Ai,j ∈M(mi,mj ,C),

Aij =


λiImi (i = j),

Imi,mj :=
(
δµν

)
1≤µ≤mi
1≤ν≤mj

=

(
Imj

0

)
(i = j − 1),

0 (i 6= j, j − 1).

(4.33)

Here Imi denote the identity matrix of size mi and M(mi,mj ,C) means the set of
matrices of size mi ×mj with components in C and M(m,C) :=M(m,m,C).

For example

L(2, 1, 1;λ1, λ2, λ3) :=


λ1 0 1
0 λ1 0

λ2 1
λ3

 .

Suppose m is not monotone. Then we fix a permutation σ of {1, . . . , N} so that
(mσ(1), . . . ,mσ(N)) is monotone and put

L(m;λ) = L(mσ(1), . . . ,mσ(N);λσ(1), . . . , λσ(N)).

When λ1 = · · · = λN = µ, L(m;λ) may be simply denoted by L(m, µ).
We denote A ∼ B for A, B ∈M(n,C) if and only if there exists g ∈ GL(n,C)

with B = gAg−1.
When A ∼ L(m;λ), m is called the spectral type of A and denoted by spcA

with a monotone m.

Remark 4.13. i) If m = (m1, . . . ,mN ) ∈ P(n)
1 is monotone, we have

A ∼ L(m;λ) ⇔ rank

j∏
ν=1

(A− λν) = n− (m1 + · · ·+mj) (j = 0, 1, . . . , N).

ii) For µ ∈ C, put

(4.34) (m;λ)µ = (mi1 , . . . ,miN ;µ) with {i1, . . . , iN} = {i ; λi = µ}.

Then we have

(4.35) L(m;λ) ∼
⊕
µ∈C

L
(
(m;λ)µ

)
.
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iii) Suppose m is monotone. Then for µ ∈ C

L(m, µ) ∼
m1⊕
j=1

J
(
max{ν ; mν ≥ j}, µ

)
,

J(k, µ) := L(1k, µ) ∈M(k,C).

(4.36)

iv) For A ∈ M(n,C), we put Z(A) = ZM(n,C)(A) := {X ∈ M(n,C) ; AX =
XA}. Then

dimZM(n,C)
(
L(m, λ)

)
= m2

1 +m2
2 + · · ·

v) (cf. [O8, Lemma 3.1]). Let A(t) : [0, 1) → M(n,C) be a continuous
function. Suppose there exist a continuous function λ = (λ1, . . . , λN ) : [0, 1)→ CN

such that A(t) ∼ L(m;λ(t)) for t ∈ (0, 1). Then

(4.37) A(0) ∼ L
(
m;λ(0)

)
if and only if dimZ

(
A(0)

)
= m2

1 + · · ·+m2
N .

Note that the Jordan canonical form of L(m;λ) is easily obtained by (4.35)
and (4.36). For example, L(2, 1, 1;µ) ' J(3, µ)⊕ J(1, µ).

4.4. Realizable tuples of partitions

Proposition 4.14. Let Pu = 0 be a differential equation of order n which has a
regular singularity at 0. Let {[λ1](m1), . . . , [λN ](mN )} be the corresponding set of the
characteristic exponents. Here m = (m1, . . . ,mN ) a partition of n.

i) Suppose there exists k such that

λ1 = λ2 = · · · = λk,

m1 ≥ m2 ≥ · · · ≥ mk,

λj − λ1 /∈ Z (j = k + 1, . . . , N).

Let m∨ = (m∨
1 , . . . ,m

∨
r ) be the dual partition of (m1, . . . ,mk) (cf. (4.11)). Then

for i = 0, . . . ,m1 − 1 and j = 0, . . . ,m∨
i+1 − 1 the equation has the solutions

(4.38) ui,j(x) =

j∑
ν=0

xλ1+i logν x · φi,j,ν(x).

Here φi,j,ν(x) ∈ O0 and φi,ν,j(0) = δν,j for ν = 0, . . . , j − 1.
ii) Suppose

(4.39) λi − λj 6= Z \ {0} (0 ≤ i < j ≤ N).

In this case we say that the set of characteristic exponents {[λ1](m1), . . . , [λN ](mN )}
is distinguished. Then the monodromy generator of the solutions of the equation at
0 is conjugate to

L
(
m; (e2π

√
−1λ1 , . . . , e2π

√
−1λN )

)
.

Proof. Lemma 4.5 ii) shows that there exist ui,j(x) of the form stated in i)
which satisfy Pui,j(x) ∈ O0(λ1 +m1, j) and then we have vi,j(x) ∈ O0(λ1 +m1, j)
such that Pui,j(x) = Pvi,j(x) because of (2.6). Thus we have only to replace ui,j(x)
by ui,j(x)−vi,j(x) to get the claim in i). The claim in ii) follows from that of i). �

Remark 4.15. i) Suppose P is a Fuchsian differential operator with regular sin-
gularities at x = c0 =∞, c1, . . . , cp and moreover suppose P has distinct exponents.
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Then the Riemann scheme of P is (4.15) if and only if Pu = 0 has local solutions
uj,ν,i(x) of the form

(4.40) uj,ν,i(x) =


(x− cj)λj,ν+i

(
1 + o(|x− cj |mj ,ν−i−1)

)
(x→ cj , i = 0, . . . ,mj,ν − 1, j = 1, . . . , p),

x−λ0,ν−i
(
1 + o(x−m0,ν+i+1)

)
(x→∞, i = 0, . . . ,m0,ν).

Moreover suppose λj,ν − λj,ν′ /∈ Z for 1 ≤ ν < ν′ ≤ nj and j = 0, . . . , p. Then

(4.41) uj,ν,i(x) =

{
(x− cj)λj,ν+iφj,ν,i(x) (1 ≤ j ≤ p)
x−λ0,ν−iφ0,ν,i(x) (j = 0)

with φj,ν,i(x) ∈ Ocj satisfying φj,ν,i(cj) = 1. In this case P has the Riemann
scheme (4.15) if and only if at the each singular point x = cj , the set of characteristic
exponents of the equation Pu = 0 equals Λj in (4.17) and the monodromy generator
of its solutions is semisimple.

ii) Suppose P has the Riemann scheme (4.15) and λ1,1 = · · · = λ1,n1
. Then

the monodromy generator of the solutions of Pu = 0 at x = c1 has the eigenvalue

e2π
√
−1λ1,1 with multiplicity n. Moreover the monodromy generator is conjugate to

the matrix L
(
(m1,1, . . . ,m1,n1

), e2π
√
−1λ1,1

)
, which is also conjugate to

J(m∨
1,1, e

2π
√
−1λ1,1)⊕ · · · ⊕ J(m∨

1,n′
1
, e2π

√
−1λ1,1).

Here (m∨
1,1, . . . ,m

∨
1,n∨

1
) is the dual partition of (m1,1, . . . ,m1,n1

). A little weaker

condition for λj,ν assuring the same conclusion is given in Proposition 9.9.

Definition 4.16 (realizable spectral type). Let m = (m0, . . . ,mp) be a (p + 1)-
tuple of partitions of a positive integer n. Here mj = (mj,1, . . . ,mj,nj ) and n =
mj,1+· · ·+mj,nj for j = 0, . . . , p andmj,ν are non-negative numbers. Fix p different
points cj (j = 1, . . . , p) in C and put c0 =∞.

Then m is a realizable spectral type if there exists a Fuchsian operator P with
the Riemann scheme (4.15) for generic λj,ν satisfying the Fuchs relation (4.16).
Moreover in this case if there exists such P so that the equation Pu = 0 is ir-
reducible, which is equivalent to say that the monodromy of the equation is irre-
ducible, then m is irreducibly realizable.

Remark 4.17. i) In the above definition {λj,ν} are generic if, for example, 0 <
m0,1 < ordm and {λj,ν ; (j, ν) 6= (0, 1), j = 0, . . . , p, 1 ≤ ν ≤ nj}∪{1} are linearly
independent over Q.

ii) It follows from the facts (cf. (2.22)) in §2.1 that if m ∈ P satisfies

|{λm′}| /∈ Z≤0 = {0,−1,−2, . . .} for any m′, m′′ ∈ P
satisfying m = m′ +m′′ and 0 < ordm′ < ordm,

(4.42)

the Fuchsian differential equation with the Riemann scheme (4.15) is irreducible.
Hence if m is indivisible and realizable, m is irreducibly realizable.

Fix distinct p points c1, . . . , cp in C and put c0 =∞. The Fuchsian differential
operator P with regular singularities at x = cj for j = 1, . . . , n has the normal form

(4.43) P =
( p∏
j=1

(x− cj)n
)
∂n + an−1(x)∂

n−1 + · · ·+ a1(x)∂ + a0(x),
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where ai(x) ∈ C[x] satisfy

deg ai(x) ≤ (p− 1)n+ i,(4.44)

(∂νai)(cj) = 0 (0 ≤ ν ≤ i− 1)(4.45)

for i = 0, . . . , n− 1.
Note that the condition (4.44) (resp. (4.45)) corresponds to the fact that P has

regular singularities at x = cj for j = 1, . . . , p (resp. at x =∞).

Since ai(x) = bi(x)
∏p

j=1(x − cj)
i with bi(x) =

∑(p−1)(n−i)
r=0 bi,rx

r ∈ W [x]

satisfying deg bi(x) ≤ (p − 1)n + i − pi = (p − 1)(n − i), the operator P has the
parameters {bi,r}. The numbers of the parameters equals

n−1∑
i=0

(
(p− 1)(n− i) + 1

)
=

(pn+ p− n+ 1)n

2
,

The condition (x − cj)−kP ∈ W [x] implies (∂`ai)(cj) = 0 for 0 ≤ ` ≤ k − 1 and
0 ≤ i ≤ n, which equals (∂`bi)(cj) = 0 for 0 ≤ ` ≤ k − 1 − i and 0 ≤ i ≤ k − 1.
Therefore the condition

(4.46) (x− cj)−mj,ν Ad
(
(x− cj)−λj,ν

)
P ∈W [x]

gives
(mj,ν+1)mj,ν

2 independent linear equations for {bν,r} since
∑mj,ν−1

i=0 (mj,ν −
i) =

(mj,ν+1)mj,ν

2 . If all these equations have a simultaneous solution and they are
independent except for the relation caused by the Fuchs relation, the number of
the parameters of the solution equals

(pn+ p− n+ 1)n

2
−

p∑
j=0

nj∑
ν=1

mj,ν(mj,ν + 1)

2
+ 1

=
(pn+ p− n+ 1)n

2
−

p∑
j=0

nj∑
ν=1

m2
j,ν

2
− (p+ 1)

n

2
+ 1

=
1

2

(
(p− 1)n2 −

p∑
j=0

nj∑
ν=1

m2
j,ν + 1

)
= Pidxm.

(4.47)

Remark 4.18 (cf. [O6, §5]). Katz [Kz] introduced the index of rigidity of an
irreducible local system by the number idxm whose spectral type equals m =
(mj,ν)j=0,...,p

ν=1,...,nj

and proves idxm ≤ 2, if the local system is irreducible.

Assume the local system is irreducible. Then Katz [Kz] shows that the local
system is uniquely determined by the local monodromies if and only if idxm = 2
and in this case the local system and the tuple of partition m are called rigid. If
idxm > 2, the corresponding system of differential equations of Schleginger normal
form

(4.48)
du

dx
=

p∑
j=1

Aj

x− aj
u

has 2Pidxm parameters which are independent from the characteristic exponents
and local monodromies. They are called accessory parameters. Here Aj are con-
stant square matrices of size n. The number of accessory parameters of the single
Fuchsian differential operator without apparent singularities will be the half of this
number 2Pidxm (cf. Theorem 6.14 and [Sz]).

Lastly in this section we calculate the Riemann scheme of the products and the
dual of Fuchsian differential operators.
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Theorem 4.19. Let P be a Fuchsian differential operator with the Riemann scheme
(4.15). Suppose P has the normal form (4.43).

i) Let P ′ be a Fuchsian differential operator with regular singularities also at
x = c0 =∞, c1, . . . , cp. Then if P ′ has the Riemann scheme

(4.49)


x = c0 =∞ cj (j = 1, . . . , p)

[λ0,1 +m0,1 − (p− 1) ordm](m′
0,1)

[λj,1 +mj,1](m′
j,1)

...
...

[λ0,n0 +m0,n0 − (p− 1) ordm](m′
0,n0

) [λj,nj +mj,nj ](m′
j,nj

)

 ,

the Fuchsian operator P ′P has the spectral type m+m′ and the Riemann scheme

(4.50)


x = c0 =∞ c1 · · · cp

[λ0,1](m0,1+m′
0,1)

[λ1,1](m1,1+m′
1,1)

· · · [λp,1](mp,1+m′
p,1)

...
...

...
...

[λ0,n0 ](m0,n0+m′
0,n0

) [λ1,n1 ](m1,n1+m′
1,n1

) · · · [λp,np ](mp,np+m′
1,np

)

 .

Suppose the Fuchs relation (4.32) for (4.15). Then the Fuchs relation for (4.49) is
valid if and only if so is the Fuchs relation for (4.50).

ii) For Q =
∑

k≥0 qk(x)∂
k ∈W (x), we define the formal adjoint Q∗ of Q by

(4.51) Q∗ :=
∑
k≥0

(−∂)kqk(x)

and the dual operator P∨ of P by

(4.52) P∨ := an(x)(an(x)
−1P )∗

when P =
∑n

k=0 ak(x)∂
k. Then the Riemann scheme of P∨ equals

(4.53)


x = c0 =∞ cj (j = 1, . . . , p)

[2− n−m0,1 − λ0,1](m0,1) [n−mj,1 − λj,1](mj,1)

...
...

[2− n−m0,n0 − λ0,n0 ](m0,n0 )
[n−mj,nj − λj,nj ](mj,nj

)

 .

Proof. i) It is clear that P ′P is a Fuchsian differential operator of the nor-
mal form if so is P ′ and Lemma 4.5 iii) shows that the characteristic exponents
of P ′P at x = cj for j = 1, . . . , p are just as given in the Riemann scheme
(4.50). Put n = ordm and n′ = m′. We can also apply Lemma 4.5 iii) to

x−(p−1)nP and x−(p−1)n′
P ′ under the coordinate transformation x 7→ 1

x , we have

the set of characteristic exponents as is given in (4.50) because x−(p−1)(n+n′)P ′P =(
Ad(x−(p−1)n)x−(p−1)n′

P ′)(x−(p−1)n)P .
The Fuchs relation for (4.49) equals

p∑
j=0

nj∑
ν=1

m′
j,ν

(
λj,ν +mj,ν − δj,0(p− 1) ordm

)
= ordm′ − idxm′

2
.

Since
p∑

j=0

nj∑
ν=1

m′
j,ν

(
mj,ν − δj,0(p− 1) ordm

)
= idx(m,m′),

the condition is equivalent to

(4.54)

p∑
j=0

nj∑
ν=1

m′
j,νλj,ν = ordm′ − idxm

2
− idx(m,m′)
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and also to

(4.55)

p∑
j=0

nj∑
ν=1

(mj,ν +m′
j,ν)λj,ν = ord(m+m′)− idx(m+m′)

2

under the condition (4.32).
ii) We may suppose c1 = 0. Then

an(x)
−1P =

∑
`≥0

x`−nq`(ϑ)
∏

1≤ν≤n1
0≤i<m1,ν−`

(ϑ− λ1,ν − i),

an(x)
−1P∨ =

∑
`≥0

q`(−ϑ− 1)
∏

1≤ν≤n1
0≤i<m1,ν−`

(−ϑ− λ1,ν − i− 1)x`−n

=
∑
`≥0

x`−ns`(ϑ)
∏

1≤ν≤n1
0≤i<m1,ν−`

(ϑ+ λ1,ν + i+ 1 + `− n)

=
∑
`≥0

x`−ns`(ϑ)
∏

1≤ν≤n1
0≤j<m1,ν−`

(ϑ+ λ1,ν − j +m1,ν − n)

with suitable polynomials q` and s` such that q0, s0 ∈ C×. Hence the set of
characteristic exponents of P∨ at c1 is {[n−m1,ν − λ1,ν ](m1,ν) ; ν = 1, . . . , n1}.

At infinity we have

an(x)
−1P =

∑
`≥0

x−`−nq`(ϑ)
∏

1≤ν≤n1
0≤i<m0,ν−`

(ϑ+ λ0,ν + i),

(an(x)
−1P )∗ =

∑
`≥0

x−`−ns`(ϑ)
∏

1≤ν≤n0
0≤i<m0,ν−`

(ϑ− λ0,ν − i+ 1− `− n)

=
∑
`≥0

x−`−ns`(ϑ)
∏

1≤ν≤n1
0≤j<m0,ν−`

(ϑ− λ0,ν + j + 2− n−m0,ν)

with suitable polynomials q` and s` with q0, s0 ∈ C× and the set of characteristic
exponents of P∨ at c1 is {[2− n−m0,ν − λ0,ν ](m0,ν) ; ν = 1, . . . , n0} �
Example 4.20. i) The Riemann scheme of the dual P∨

λ1,...,λp,µ
of the Jordan-

Pochhammer operator Pλ1,...,λp,µ given in Example 1.8 iii) is
1
c1

· · · 1
cp

∞
[1](p−1) · · · [1](p−1) [2− 2p+ µ](p−1)

λ1 − µ+ p− 1 · · · −λp − µ+ p− 1 λ1 + · · ·+ λp + µ− p+ 1

 .

ii) (Okubo type) Suppose P̄m(λ) ∈W [x] is of the form (11.34). Moreover sup-
pose P̄m(λ) has the the Riemann scheme (11.34) with (11.33). Then the Riemann
scheme of P̄m(λ)∗ equals

(4.56)



x =∞ x = cj (j = 1, . . . , p)
[2−m0,1 − λ0,1](m0,1) [0](mj,1)

[2−m0,2 − λ0,2](m0,2) [mj,1 −mj,2 − λj,2](mj,2)

...
...

[2−m0,n0 − λ0,n0 ](m0,n0 )
[mj,1 −mj,nj − λj,nj ](mj,nj

)


.



CHAPTER 5

Reduction of Fuchsian differential equations

Additions and middle convolutions introduced in Chapter 1 are transformations
within Fuchsian differential operators and in this chapter we examine how their
Riemann schemes change under the transformations.

Proposition 5.1. i) Let Pu = 0 be a Fuchsian differential equation. Suppose there
exists c ∈ C such that P ∈ (∂ − c)W [x]. Then c = 0.

ii) For φ(x) ∈ C(x), λ ∈ C, µ ∈ C and P ∈W [x], we have

P ∈ C[x] RAdei
(
−φ(x)

)
◦ RAdei

(
φ(x)

)
P,(5.1)

P ∈ C[∂] RAd
(
∂−µ

)
◦ RAd

(
∂µ
)
P.(5.2)

In particular, if the equation Pu = 0 is irreducible and ordP > 1, RAd
(
∂−µ

)
◦

RAd
(
∂µ
)
P = cP with c ∈ C×.

Proof. i) Put P = (∂−c)Q. Then there is a function u(x) satisfying Qu(x) =
ecx. Since Pu = 0 has at most a regular singularity at x = ∞, there exist C > 0
and N > 0 such that |u(x)| < C|x|N for |x| � 1 and 0 ≤ arg x ≤ 2π, which implies
c = 0.

ii) This follows from the fact

Adei
(
−φ(x)

)
◦Adei

(
φ(x)

)
= id,

Adei
(
φ(x)

)
f(x)P = f(x)Adei

(
φ(x)

)
P (f(x) ∈ C(x))

and the definition of RAdei
(
φ(x)

)
and RAd(∂µ). �

The addition and the middle convolution transform the Riemann scheme of the
Fuchsian differential equation as follows.

Theorem 5.2. Let Pu = 0 be a Fuchsian differential equation with the Riemann
scheme (4.15). We assume that P has the normal form (4.43).

i) (addition) The operator Ad
(
(x− cj)τ

)
P has the Riemann scheme

x = c0 =∞ c1 · · · cj · · · cp
[λ0,1 − τ ](m0,1) [λ1,1](m1,1) · · · [λj,1 + τ ](mj,1) · · · [λp,1](mp,1)

...
...

...
...

...
...

[λ0,n0 − τ ](m0,n0 )
[λ1,n1 ](m1,n1 )

· · · [λj,nj + τ ](mj,1) · · · [λp,np ](mp,np )

 .

ii) (middle convolution) Fix µ ∈ C. By allowing the condition mj,1 = 0, we
may assume

(5.3) µ = λ0,1 − 1 and λj,1 = 0 for j = 1, . . . , p

and #{j ; mj,1 < n} ≥ 2 and P is of the normal form (4.43). Putting

(5.4) d :=

p∑
j=0

mj,1 − (p− 1)n,

43
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we suppose

mj,1 ≥ d for j = 0, . . . , p,(5.5) {
λ0,ν /∈ {0,−1,−2, . . . ,m0,1 −m0,ν − d+ 2}
if m0,ν + · · ·+mp,1 − (p− 1)n ≥ 2, m1,1 · · ·mp,1 6= 0 and ν ≥ 1,

(5.6) 
λ0,1 + λj,ν /∈ {0,−1,−2, . . . ,mj,1 −mj,ν − d+ 2}
if m0,1 + · · ·+mj−1,1 +mj,ν +mj+1,1 + · · ·+mp,1 − (p− 1)n ≥ 2,

mj,1 6= 0, 1 ≤ j ≤ p and ν ≥ 2.

(5.7)

Then S := ∂−dAd(∂−µ)
∏p

j=1(x − cj)−mj,1P ∈ W [x] and the Riemann scheme of
S equals

(5.8)



x = c0 =∞ c1 · · · cp
[1− µ](m0,1−d) [0](m1,1−d) · · · [0](mp,1−d)

[λ0,2 − µ](m0,2) [λ1,2 + µ](m1,2) · · · [λp,2 + µ](mp,2)

...
...

...
...

[λ0,n0 − µ](m0,n0 )
[λ1,n1 + µ](m1,n1 )

· · · [λp,np + µ](mp,np )


.

More precisely, the condition (5.5) and the condition (5.6) for ν = 1 assure S ∈
W [x]. In this case the condition (5.6) (resp. (5.7) for a fixed j) assures that the
sets of characteristic exponents of P at x =∞ (resp. cj) are equal to the sets given
in (5.8), respectively.

Here we have RAd(∂−µ)RP = S, if

(5.9)

{
λj,1 +mj,1 are not characteristic exponents of P

at x = cj for j = 0, . . . , p, respectively,

and moreover

(5.10) m0,1 = d or λ0,1 /∈ {−d,−d− 1, . . . , 1−m0,1}.

Using the notation in Definition 1.3, we have

S = Ad
(
(x− c1)λ0,1−2

)
(x− c1)dT ∗

1
x−c1

(−∂)−d Ad(∂−µ)T ∗
1
x+c1

· (x− c1)d
p∏

j=1

(x− cj)−mj,1 Ad
(
(x− c1)λ0,1

)
P

(5.11)

under the conditions (5.5) and

(5.12)

{
λ0,ν /∈ {0,−1,−2, . . . ,m0,1 −m0,ν − d+ 2}
if m0,ν +m1,1 + · · ·+mp,1 − (p− 1)n ≥ 2, m1,1 6= 0 and ν ≥ 1.

iii) Suppose ordP > 1 and P is irreducible in ii). Then the conditions (5.5),
(5.6), (5.7) are valid. The condition (5.10) is also valid if d ≥ 1.

All these conditions in ii) are valid if #{j ; mj,1 < n} ≥ 2 and m is realizable
and moreover λj,ν are generic under the Fuchs relation with λj,1 = 0 for j =
1, . . . , p.

iv) Let m =
(
mj,ν

)
j=0,...,p
ν=1,...,nj

∈ P(n)
p+1. Define d by (5.4). Suppose λj,ν are

complex numbers satisfying (5.3). Suppose moreover mj,1 ≥ d for j = 1, . . . , p.
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Defining m′ ∈ P(n)
p+1 and λ′j,ν by

m′
j,ν = mj,ν − δν,1d (j = 0, . . . , p, ν = 1, . . . , nj),(5.13)

λ′j,ν =


2− λ0,1 (j = 0, ν = 1),

λj,ν − λ0,1 + 1 (j = 0, ν > 1),

0 (j > 0, ν = 1),

λj,ν + λ0,1 − 1 (j > 0, ν > 1),

(5.14)

we have

(5.15) idxm = idxm′, |{λm}| = |{λ′m′}|.

Proof. The claim i) is clear from the definition of the Riemann scheme.
ii) Suppose (5.5), (5.6) and (5.7). Then

(5.16) P ′ :=
( p∏
j=1

(x− cj)−mj,1

)
P ∈W [x].

Note that RP = P ′ under the condition (5.9). Put Q := ∂(p−1)n−
∑p

j=1 mj,1P ′. Here
we note that (5.5) assures (p− 1)n−

∑p
j=1mj,1 ≥ 0.

Fix a positive integer j with j ≤ p. For simplicity suppose j = 1 and cj = 0.
Since P ′ =

∑n
j=0 aj(x)∂

j with deg aj(x) ≤ (p− 1)n+ j −
∑p

j=1mj,1, we have

xm1,1P ′ =
N∑
`=0

xN−`r`(ϑ)
∏

1≤ν≤n0
0≤i<m0,ν−`

(ϑ+ λ0,ν + i)

and

N := (p− 1)n−
p∑

j=2

mj,1 = m0,1 +m1,1 − d

with suitable polynomials r` such that r0 ∈ C×. Suppose

(5.17)
∏

1≤ν≤n0
0≤i<m0,ν−`

(ϑ+ λ0,ν + i) /∈ xW [x] if N −m1,1 + 1 ≤ ` ≤ N.

Since P ′ ∈W [x], we have

xN−`r`(ϑ) = xN−`x`−N+m1,1∂`−N+m1,1s`(ϑ) if N −m1,1 + 1 ≤ ` ≤ N

for suitable polynomials s`. Putting s` = r` for 0 ≤ ` ≤ N −m1,1, we have

P ′ =

N−m1,1∑
`=0

xN−m1,1−`s`(ϑ)
∏

1≤ν≤n0
0≤i<m0,ν−`

(ϑ+ λ0,ν + i)

+
N∑

`=N−m1,1+1

∂`−N+m1,1s`(ϑ)
∏

1≤ν≤n0
0≤i<m0,ν−`

(ϑ+ λ0,ν + i).

(5.18)

Note that s0 ∈ C× and the condition (5.17) is equivalent to the condition λ0,ν+i 6= 0
for any ν and i such that there exists an integer ` with 0 ≤ i ≤ m0,ν − ` − 1 and
N −m1,1 +1 ≤ ` ≤ N . This condition is valid if (5.6) is valid, namely, m1,1 = 0 or

λ0,ν /∈ {0,−1, . . . ,m0,1 −m0,ν − d+ 2}
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for ν satisfying m0,ν ≥ m0,1 − d+ 2. Under this condition we have

Q =
N∑
`=0

∂`s`(ϑ)
∏

1≤i≤N−m1,1−`

(ϑ+ i) ·
∏

1≤ν≤n0
0≤i<m0,ν−`

(ϑ+ λ0,ν + i),

Ad(∂−µ)Q =

N∑
`=0

∂`s`(ϑ− µ)
∏

1≤i≤N−m1,1−`

(ϑ− µ+ i)

·
∏

1≤i≤m0,1−`

(ϑ+ i) ·
∏

2≤ν≤n0
0≤i<m0,ν−`

(ϑ− µ+ λ0,ν + i)

since µ = λ0,1 − 1. Hence ∂−m0,1Ad(∂−µ)Q equals

m0,1−1∑
`=0

xm0,1−`s`(ϑ− µ)
∏

1≤i≤N−m1,1−`

(ϑ− µ+ i)
∏

2≤ν≤n0
0≤i<m0,ν−`

(ϑ− µ+ λ0,ν + i)

+
N∑

`=m0,1

∂`−m0,1s`(ϑ− µ)
∏

1≤i≤N−m1,1−`

(ϑ− µ+ i)
∏

2≤ν≤n0
0≤i<m0,ν−`

(ϑ− µ+ λ0,ν + i)

and then the set of characteristic exponents of this operator at ∞ is

{[1− µ](m0,1−d), [λ0,2 − µ](m0,2), . . . , [λ0,n0
− µ](m0,n0 )

}.

Moreover ∂−m0,1−1Ad(∂−µ)Q /∈W [x] if λ0,1+m0,1 is not a characteristic exponent
of P at ∞ and −λ0,1 + 1 + i 6= m0,1 + 1 for 1 ≤ i ≤ N −m1,1 = m0,1 − d, which
assures xm0,1s0

∏
1≤i≤N−m1,1

(ϑ− µ+ i)
∏

2≤ν≤n0
0≤i<m0,ν

(ϑ− µ+ λ1,ν + i) /∈ ∂W [x].

Similarly we have

P ′ =

m1,1∑
`=0

∂m1,1−`q`(ϑ)
∏

2≤ν≤n1
0≤i<m1,ν−`

(ϑ− λ1,ν − i)

+

N∑
`=m1,1+1

x`−m1,1q`(ϑ)
∏

2≤ν≤n1
0≤i<m1,ν−`

(ϑ− λ1,ν − i),

Q =

m1,1∑
`=0

∂N−`q`(ϑ)
∏

2≤ν≤n1
0≤i<m1,ν−`

(ϑ+ λ1,ν − i)

+

N∑
`=m1,1+1

∂N−`q`(ϑ)

`−m1,1∏
i=1

(ϑ+ i)
∏

2≤ν≤n1
0≤i<m1,ν−`

(ϑ− λ1,ν − i).

Ad(∂−µ)Q =
N∑
`=0

∂N−`q`(ϑ− µ)
∏

1≤i≤`−m1,1

(ϑ− µ+ i)

·
∏

2≤ν≤n1
0≤i<m1,ν−`

(ϑ− µ− λ1,ν − i)

with q0 ∈ C×. Then the set of characteristic exponents of ∂−m0,1Ad(∂−µ)Q equals

{[0](m1,1−d), [λ1,2 + µ](m1,2), . . . , [λ1,n1 + µ](m1,n1 )
}
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if ∏
2≤ν≤n1

0≤i<m1,ν−`

(ϑ− µ− λ1,ν − i) /∈ ∂W [x]

for any integers ` satisfying 0 ≤ ` ≤ N and N−` < m0,1. This condition is satisfied
if (5.7) is valid, namely, m0,1 = 0 or

λ0,1 + λ1,ν /∈ {0,−1, . . . ,m1,1 −m1,ν − d+ 2}
for ν ≥ 2 satisfying m1,ν ≥ m1,1 − d+ 2

because m1,ν − `−1 ≤ m1,ν +m0,1−N −2 = m1,ν −m1,1+d−2 and the condition
ϑ− µ− λ1,ν − i ∈ ∂W [x] means −1 = µ+ λ1,ν + i = λ0,1 − 1 + λ1,ν + i.

Now we will prove (5.11). Under the conditions, it follows from (5.18) that

P̃ := xm0,1−N Ad
(
xλ0,1

) p∏
j=2

(x− cj)−mj,1P

= xm0,1+m1,1−N Ad
(
xλ0,1

)
P ′

=
N∑
`=0

xm0,1−` Ad
(
xλ0,1

)
s`(ϑ)

∏
0≤ν<`−N+m1,1

(ϑ− ν)
∏

1≤ν≤n0
0≤i<m0,ν−`

(ϑ+ λ0,ν + i),

Q̃ := (−∂)N−m0,1T ∗
1
x
P̃

= (−∂)N−m0,1

N∑
`=0

x`−m0,1s`(−ϑ− λ0,1)
∏

0≤ν<`−N+m1,1

(−ϑ− λ0,1 − ν)

·
∏

2≤ν≤n0
0≤i<m0,ν−`

(−ϑ+ λ0,ν − λ0,1 + i)
∏

0≤i≤m0,1−`

(−ϑ+ i)

=

N∑
`=0

(−∂)N−`s`(−ϑ− λ0,1)
∏

1≤i≤`−m0,1

(−ϑ− i)

·
∏

0≤ν<`−N+m1,1

(−ϑ− λ0,1 − ν)
∏

2≤ν≤n0
0≤i<m0,ν−`

(−ϑ+ λ0,ν − λ0,1 + i)

and therefore

Ad(∂−µ)Q̃ =
N∑
`=0

(−∂)N−`s`(−ϑ− 1)
∏

1≤i≤`−m0,1

(−ϑ+ λ0,1 − 1− i)

·
∏

0≤ν<`−N+m1,1

(−ϑ− 1− ν)
∏

2≤ν≤n0
0≤i<m0,ν−`

(−ϑ+ λ0,ν − 1 + i).

Since

(−∂)N−`−m1,1

∏
0≤ν<`−N+m1,1

(−ϑ− 1− ν) =

{
x`−N+m1,1 (N − ` < m1,1)

(−∂)N−`−m1,1 (N − ` ≥ m1,1)

= x`−N+m1,1

∏
0≤ν<N−`−m1,1

(−ϑ+ ν),
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we have

Q̃′ := (−∂)−m1,1 Ad(∂−µ)Q̃ =
N∑
`=0

x`−N+m1,1

∏
0≤ν<N−`−m1,1

(−ϑ+ ν)

· s`(−ϑ− 1)
∏

0≤ν<`−m0,1

(−ϑ+ λ0,1 − 2− ν)
∏

2≤ν≤n0
0≤i<m0,ν−`

(−ϑ+ λ0,ν − 1 + i)

and

xm0,1+m1,1−N Ad(xλ0,1−2)T ∗
1
x
Q̃′ =

N∑
`=0

xm0,1−`
∏

0≤ν<`−m0,1

(ϑ− ν) · s`(ϑ− λ0,1 + 1)

·
∏

0≤ν<N−m1,1−`

(ϑ− λ0,1 + 2 + ν)
∏

2≤ν≤n0
0≤i<m0,ν−`

(ϑ+ λ0,ν − λ0,1 + 1 + i),

which equals ∂−m0,1Ad(∂−µ)Q because
∏

0≤ν<k(ϑ− ν) = xk∂k for k ∈ Z≥0.

iv) (Cf. Remark 7.4 ii) for another proof.) Since

idxm− idxm′ =

p∑
j=0

m2
j,1 − (p− 1)n2 −

p∑
j=0

(mj,1 − d)2 + (p− 1)(n− d)2

= 2d

p∑
j=0

mj,1 − (p+ 1)d2 − 2(p− 1)nd+ (p− 1)d2

= d
(
2

p∑
j=0

mj,1 − 2d− 2(p− 1)n
)
= 0

and

p∑
j=0

nj∑
ν=1

mj,νλj,ν −
p∑

j=0

nj∑
ν=1

m′
j,νλ

′
j,ν

= m0,1(µ+ 1)− (m0,1 − d)(1− µ) + µ(n−m0,1 −
p∑

j=1

(n−mj,1))

=
( p∑
j=0

mj,1 − d− (p− 1)n
)
µ−m0,1d− (m0,1 − d) = d,

we have the claim.
The claim iii) follows from the following lemma when P is irreducible.
Suppose λj,ν are generic in the sense of the claim iii). Put m = gcd(m)m.

Then an irreducible subspace of the solutions of Pu = 0 has the spectral type `′m
with 1 ≤ `′ ≤ gcd(m) and the same argument as in the proof of the following
lemma shows iii). �

The following lemma is known which follows from Scott’s lemma (cf. §9.2).

Lemma 5.3. Let P be a Fuchsian differential operator with the Riemann scheme
(4.15). Suppose P is irreducible. Then

(5.19) idxm ≤ 2.

Fix ` = (`0, . . . , `p) ∈ Zp+1
>0 and suppose ordP > 1. Then

(5.20) m0,`0 +m1,`1 + · · ·+mp,`p − (p− 1) ordm ≤ mk,`k for k = 0, . . . , p.
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Moreover the condition

(5.21) λ0,`0 + λ1,`1 + · · ·+ λp,`p ∈ Z

implies

(5.22) m0,`0 +m1,`1 + · · ·+mp,`p ≤ (p− 1) ordm.

Proof. LetMj be the monodromy generators of the solutions of Pu = 0 at cj ,
respectively. Then dimZ(Mj) ≥

∑nj

ν=1m
2
j,ν and therefore

∑p
j=0 codimZ(Mj) ≤

(p + 1)n2 −
(
idxm + (p − 1)n2) = 2n2 − idxm. Hence Corollary 9.12 (cf. (9.47))

proves (5.19).
We may assume `j = 1 for j = 0, . . . , p and k = 0 to prove the lemma. By

the map u(x) 7→
∏p

j=1(x − cj)
−λj,1u(x) we may moreover assume λj,`j = 0 for

j = 1, . . . , p. Suppose λ0,1 ∈ Z. We may assume Mp · · ·M1M0 = In. Since
dimkerMj ≥ mj,1, Scott’s lemma (Lemma 9.11) assures (5.22).

The condition (5.20) is reduced to (5.22) by putting m0,`0 = 0 and λ0,`0 =
−λ1,`1 − · · · − λp,`p because we may assume k = 0 and `0 = n0 + 1. �

Remark 5.4. i) Retain the notation in Theorem 5.2. The operation in Theo-
rem 5.2 i) corresponds to the addition and the operation in Theorem 5.2 ii) corre-
sponds to Katz’s middle convolution (cf. [Kz]), which are studied by [DR] for the
systems of Schlesinger canonical form.

The operation c(P ) := Ad(∂−µ)∂(p−1)nP is always well-defined for the Fuchsian
differential operator of the normal form which has p + 1 singular points including
∞. This corresponds to the convolution defined by Katz. Note that the equation
Sv = 0 is a quotient of the equation c(P )ũ = 0.

ii) Retain the notation in the previous theorem. Suppose the equation Pu = 0
is irreducible and λj,ν are generic complex numbers satisfying the assumption in
Theorem 5.2. Let u(x) be a local solution of the equation Pu = 0 corresponding to
the characteristic exponent λi,ν at x = ci. Assume 0 ≤ i ≤ p and 1 < ν ≤ ni. Then
the irreducible equations

(
Ad
(
(x − cj)r

)
P
)
u1 = 0 and

(
RAd(∂−µ) ◦ RP

)
u2 = 0

are characterized by the equations satisfied by u1(x) = (x− cj)ru(x) and u2(x) =
Iµci(u(x)), respectively.

Moreover for any integers k0, k1, . . . , kp the irreducible equation Qu3 = 0
satisfied by u3(x) = Iµ+k0

ci

(∏p
j=1(x − cj)

kju(x)
)
is isomorphic to the equation(

RAd(∂−µ) ◦ RP
)
u2 = 0 as W (x)-modules (cf. §1.4 and §3.2).

Example 5.5 (Okubo type). Suppose P̄m(λ) ∈W [x] is of the form (11.35). More-
over suppose P̄m(λ) has the the Riemann scheme (11.34) satisfying (11.33) and
λj,ν /∈ Z. Then for any µ ∈ C, the Riemann scheme of Ad

(
∂−µ

)
P̄m(λ) equals

(5.23)



x = c0 =∞ c1 · · · cp
[λ0,1 − µ](m0,1) [0](m1,1) · · · [0](mp,1)

[λ0,2 − µ](m0,2) [λ1,2 + µ](m1,2) · · · [λp,2 + µ](mp,2)

...
...

...
...

[λ0,n0 − µ](m0,n0 )
[λ1,n1 + µ](m1,n1 )

· · · [λp,np + µ](mp,np )


.

In particular we have Ad
(
∂1−λ0,1

)
P̄m(λ) ∈ ∂m0,1W [x].

Example 5.6 (exceptional parameters). The Fuchsian differential equation with
the Riemann scheme x =∞ 0 1 c

[δ](2) [0](2) [0](2) [0](2)
2− α− β − γ − 2δ α β γ





50 5. REDUCTION OF FUCHSIAN DIFFERENTIAL EQUATIONS

is a Jordan-Pochhammer equation (cf. Example 1.8 ii)) if δ 6= 0, which is proved
by the reduction using the operation RAd(∂1−δ)R given in Theorem 5.2 ii).

The Riemann scheme of the operator

Pr = x(x− 1)(x− c)∂3

−
(
(α+ β + γ − 6)x2 − ((α+ β − 4)c+ α+ γ − 4)x+ (α− 2)c

)
∂2

−
(
2(α+ β + γ − 3)x− (α+ β − 2)c− (α+ γ − 2)− r

)
∂

equals  x =∞ 0 1 c
[0](2) [0](2) [0](2) [0](2)

2− α− β − γ α β γ

 ,

which corresponds to a Jordan-Pochhammer operator when r = 0. If the param-
eters are generic, RAd(∂)Pr is Heun’s operator (6.19) with the Riemann scheme

 x =∞ 0 1 c
2 0 0 0

3− α− β − γ α− 1 β − 1 γ − 1

 ,

which contains the accessory parameter r. This transformation doesn’t satisfy (5.6)
for ν = 1.

The operator RAd(∂1−α−β−γ)Pr has the Riemann scheme x =∞ 0 1 c
α+ β + γ − 1 0 0 0
α+ β + γ 1− β − γ 1− γ − α 1− α− β


and the monodromy generator at ∞ is semisimple if and only if r = 0. This
transformation doesn’t satisfy (5.6) for ν = 2.

Definition 5.7. Let

P = an(x)∂
n + an−1(x)∂

n−1 + · · ·+ a0(x)

be a Fuchsian differential operator with the Riemann scheme (4.15). Here some

mj,ν may be 0. Fix ` = (`0, . . . , `p) ∈ Zp+1
>0 with 1 ≤ `j ≤ nj . Suppose

(5.24) #{j ; mj,`j 6= n and 0 ≤ j ≤ p} ≥ 2.

Put

(5.25) d`(m) := m0,`0 + · · ·+mp,`p − (p− 1) ordm

and

∂`P := Ad
( p∏
j=1

(x− cj)λj,`j )

p∏
j=1

(x− cj)mj,`j
−d`(m)∂−m0,`0 Ad(∂1−λ0,`0

−···−λp,`p )

· ∂(p−1)n−m1,`1
−···−mp,`pa−1

n (x)

p∏
j=1

(x− cj)n−mj,`j Ad
( p∏
j=1

(x− cj)−λj,`j )P.

(5.26)
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If λj,ν are generic under the Fuchs relation or P is irreducible, ∂`P is well-defined
as an element of W [x] and

∂2`P = P with P of the form (4.43),(5.27)

∂`P ∈W (x)RAd
( p∏
j=1

(x− cj)λj,`j )RAd(∂1−λ0,`0
−···−λp,`p )

· RAd
( p∏
j=1

(x− cj)−λj,`j )P

(5.28)

and ∂` gives a correspondence between differential operators of normal form (4.43).
Here the spectral type ∂`m of ∂`P is given by

∂`m :=
(
m′

j,ν

)
0≤j≤p
1≤ν≤nj

and m′
j,ν = mj,ν − δ`j ,ν · d`(m)(5.29)

and the Riemann scheme of ∂`P equals

(5.30) ∂`
{
λm
}
:=
{
λ′m′

}
with λ′j,ν =


λ0,ν − 2µ` (j = 0, ν = `0)

λ0,ν − µ` (j = 0, ν 6= `0)

λj,ν (1 ≤ j ≤ p, ν = `j)

λ0,ν + µ` (1 ≤ j ≤ p, ν 6= `j)

by putting

(5.31) µ` :=

p∑
j=0

λj,`j − 1.

It follows from Theorem 5.2 that the above assumption is satisfied if

(5.32) mj,`j ≥ d`(m) (j = 0, . . . , p)

and
p∑

j=0

λj,`j+(ν−`j)δj,k /∈
{
i ∈ Z ; (p− 1)n−

p∑
j=0

mj,`j+(ν−`j)δj,k + 2 ≤ i ≤ 0
}

for k = 0, . . . , p and ν = 1, . . . , nk.

(5.33)

Note that ∂`m ∈ Pp+1 is well-defined for a given m ∈ Pp+1 if (5.32) is valid.
Moreover we define

∂m := ∂(1,1,...)m,(5.34)

∂maxm := ∂`max(m)m with

`max(m)j := min
{
ν ; mj,ν = max{mj,1,mj,2, . . .}

}
,

(5.35)

dmax(m) :=

p∑
j=0

max{mj,1,mj,2, . . . ,mj,nj} − (p− 1) ordm.(5.36)

For a Fuchsian differential operator P with the Riemann scheme (4.15) we define

(5.37) ∂maxP := ∂`max(m)P and ∂max

{
λm
}
= ∂`max(m)

{
λm
}
.

A tuple m ∈ P is called basic if m is indivisible and dmax(m) ≤ 0.

Proposition 5.8 (linear fractional transformation). Let φ be a linear fractional

transformation of P1(C), namely there exists
(

α β
γ δ

)
∈ GL(2,C) such that φ(x) =

αx+β
γx+δ . Let P be a Fuchsian differential operator with the Riemann scheme (4.15).

We may assume − δ
γ = cj with a suitable j by putting cp+1 = − δ

γ , λp+1,1 = 0 and
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mp+1,1 = n if necessary. Fix ` = (`0, · · · `p) ∈ Zp+1
>0 . If (5.32) and (5.33) are valid,

we have

∂`P ∈W (x)Ad
(
(γx+ δ)2µ

)
T ∗
φ−1∂`T

∗
φP,

µ = λ0,`0 + · · ·+ λp,`p − 1.
(5.38)

Proof. The claim is clear if γ = 0. Hence we may assume φ(x) = 1
x and the

claim follows from (5.11). �
Remark 5.9. i) Fix λj,ν ∈ C. If P has the Riemann scheme {λm} with
dmax(m) = 1, ∂`P is well-defined and ∂maxP has the Riemann scheme ∂max{λm}.
This follows from the fact that the conditions (5.5), (5.6) and (5.7) are valid when
we apply Theorem 5.2 to the operation ∂max : P 7→ ∂maxP .

ii) We remark that

idxm = idx ∂`m,(5.39)

ord ∂maxm = ordm− dmax(m).(5.40)

Moreover if idxm > 0, we have

(5.41) dmax(m) > 0

because of the identity

(5.42)
( p∑
j=0

mj,`j − (p− 1) ordm
)
· ordm = idxm+

p∑
j=0

nj∑
ν=1

(mj,`j −mj,ν) ·mj,ν .

If idxm = 0, then dmax(m) ≥ 0 and the condition dmax(m) = 0 impliesmj,ν = mj,1

for ν = 2, . . . , nj and j = 0, 1, . . . , p (cf. Corollary 6.3).
iii) The set of indices `max(m) is defined in (5.35) so that it is uniquely deter-

mined. It is sufficient to impose only the condition

(5.43) mj,`max(m)j = max{mj,1,mj,2, . . .} (j = 0, . . . , p)

on `max(m) for the arguments in this paper.

Thus we have the following result.

Theorem 5.10. A tuple m ∈ P is realizable if and only if sm is trivial (cf. Defi-
nitions 4.10 and 4.11) or ∂maxm is well-defined and realizable.

Proof. We may assume m ∈ P(n)
p+1 is monotone.

Suppose #{j ; mj,1 < n} < 2. Then ∂maxm is not well-defined. We may
assume p = 0 and the corresponding equation Pu = 0 has no singularities in C by
applying a suitable addition to the equation and then P ∈ W (x)∂n. Hence m is
realizable if and only if #{j ; mj,1 < n} = 0, namely, m is trivial.

Suppose #{j ; mj,1 < n} ≥ 2. Then Theorem 5.2 assures that ∂maxm is
realizable if and only if ∂maxm is realizable. �

In the next chapter we will prove that m is realizable if dmax(m) ≤ 0. Thus
we will have a criterion whether a given m ∈ P is realizable or not by successive
applications of ∂max.

Example 5.11. There are examples of successive applications of s◦∂ to monotone
elements of P:

411, 411, 42, 33
15−2·6=3−→ 111, 111, 21

4−3=1−→ 11, 11, 11
3−2=1−→ 1, 1, 1 (rigid)

211, 211, 1111
5−4=1−→ 111, 111, 111

3−3=0−→ 111, 111, 111 (realizable, not rigid)

211, 211, 211, 31
9−8=1−→ 111, 111, 111, 21

5−6=−1−→ (realizable, not rigid)

22, 22, 1111
5−4=1−→ 21, 21, 111

5−3=2−→ × (not realizable)
The numbers on the above arrows are d(1,1,... )(m). We sometimes delete the trivial
partition as above.
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The transformation of the generalized Riemann scheme of the application of
∂kmax is described in the following definition.

Definition 5.12 (Reduction of Riemann schemes). Let m =
(
mj,ν

)
j=0,...,p
ν=1,...,nj

∈

Pp+1 and λj,ν ∈ C for j = 0, . . . , p and ν = 1, . . . , nj . Suppose m is realizable.
Then there exists a positive integer K such that

ordm > ord ∂maxm > ord ∂2maxm > · · · > ord ∂Kmaxm

and s∂Kmaxm is trivial or dmax

(
∂Kmaxm

)
≤ 0.

(5.44)

Define m(k) ∈ Pp+1, `(k) ∈ Z, µ(k) ∈ C and λ(k)j,ν∈C for k = 0, . . . ,K by

m(0) = m and m(k) = ∂maxm(k − 1) (k = 1, . . . ,K),(5.45)

`(k) = `max

(
m(k)

)
and d(k) = dmax

(
m(k)

)
,(5.46) {

λ(k)m(k)

}
= ∂kmax

{
λm
}

and µ(k) = λ(k + 1)1,ν − λ(k)1,ν (ν 6= `(k)1).(5.47)

Namely, we have

λ(0)j,ν = λj,ν (j = 0, . . . , p, ν = 1, . . . , nj),(5.48)

µ(k) =

p∑
j=0

λ(k)j,`(k)j − 1,(5.49)

λ(k + 1)j,ν =


λ(k)0,ν − 2µ(k) (j = 0, ν = `(k)0),

λ(k)0,ν − µ(k) (j = 0, 1 ≤ ν ≤ n0, ν 6= `(k)0),

λ(k)j,ν (1 ≤ j ≤ p, ν = `(k)j),

λ(k)j,ν + µ(k) (1 ≤ j ≤ p, 1 ≤ ν ≤ nj , ν 6= `(k)j)

= λ(k)j,ν +
(
(−1)δj,0 − δν,`(k)j

)
µ(k),

(5.50)

{
λm
} ∂`(0)−−−→· · · −→

{
λ(k)m(k)

} ∂`(k)−−−→
{
λ(k + 1)m(k+1)

} ∂`(k+1)−−−−→ · · · .(5.51)





CHAPTER 6

Deligne-Simpson problem

In this chapter we give an answer for the existence and the construction of
Fuchsian differential equations with given Riemann schemes and examine the irre-
ducibility for generic spectral parameters.

6.1. Fundamental lemmas

First we prepare two lemmas to construct Fuchsian differential operators with
a given spectral type.

Definition 6.1. For m =
(
mj,ν

)
j=0,...,p
1≤ν≤nj

∈ P(n)
p+1, we put

Nν(m) := (p− 1)(ν + 1) + 1

−#{(j, i) ∈ Z2 ; i ≥ 0, 0 ≤ j ≤ p, m̃j,i ≥ n− ν},
(6.1)

m̃j,i :=

nj∑
ν=1

max
{
mj,ν − i, 0

}
.(6.2)

See the Young diagram in (6.32) and its explanation for an interpretation of
the number m̃j,i.

Lemma 6.2. We assume that m =
(
mj,ν

)
j=0,...,p
1≤ν≤nj

∈ P(n)
p+1 satisfies

(6.3) mj,1 ≥ mj,2 ≥ · · · ≥ mj,nj > 0 and n > m0,1 ≥ m1,1 ≥ · · · ≥ mp,1

and

(6.4) m0,1 + · · ·+mp,1 ≤ (p− 1)n.

Then

(6.5) Nν(m) ≥ 0 (ν = 2, 3, . . . , n− 1)

if and only if m is not any one of

(6.6)

(k, k; k, k; k, k; k, k), (k, k, k; k, k, k; k, k, k),

(2k, 2k; k, k, k, k; k, k, k, k)

and (3k, 3k; 2k, 2k, 2k; k, k, k, k, k, k) with k ≥ 2.

Proof. Put

φj(t) :=

nj∑
ν=1

max{mj,ν − t, 0},

φ̄j(t) := n
(
1− t

mj,1

)
for j = 0, . . . , p.

?
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?
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?
?

?
?

?
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Then φj(t) and φ̄j(t) are strictly decreasing continuous functions of t ∈ [0,mj,1]
and

φj(0) = φ̄j(0) = n,

φj(mj,1) = φ̄j(mj,1) = 0,

2φj(
t1+t2

2 ) ≤ φj(t1) + φj(t2) (0 ≤ t1 ≤ t2 ≤ mj,1),

φ′j(t) = −nj ≤ − n
mj,1

= φ̄′j(t) (0 < t < 1).

Hence we have

φj(t) = φ̄j(t) (0 < t < mj,1, n = mj,1nj),

φj(t) < φ̄j(t) (0 < t < mj,1, n < mj,1nj)

and for ν = 2, . . . , n− 1

p∑
j=0

#{i ∈ Z≥0 ; φj(i) ≥ n− ν} =
p∑

j=0

[
φ−1
j (n− ν) + 1

]
≤

p∑
j=0

(
φ−1
j (n− ν) + 1

)
≤

p∑
j=0

(
φ̄−1
j (n− ν) + 1

)
=

p∑
j=0

(νmj,1

n
+ 1
)

≤ (p− 1)ν + (p+ 1) = (p− 1)(ν + 1) + 2.

Here [r] means the largest integer which is not larger than a real number r.
Suppose there exists ν with 2 ≤ ν ≤ n− 1 such that (6.5) doesn’t hold. Then

the equality holds in the above each line, which means

(6.7)

φ−1
j (n− ν) ∈ Z (j = 0, . . . , p),

n = mj,1nj (j = 0, . . . , p),

(p− 1)n = m0,1 + · · ·+mp,1.

Note that n = mj,1nj implies mj,1 = · · · = mj,nj = n
nj

and p− 1 = 1
n0

+ · · ·+ 1
np
≤

p+1
2 . Hence p = 3 with n0 = n1 = n2 = n3 = 2 or p = 2 with 1 = 1

n0
+ 1

n1
+ 1

n2
. If

p = 2, {n0, n1, n2} equals {3, 3, 3} or {2, 4, 4} or {2, 3, 6}. Thus we have (6.6) with
k = 1, 2, . . .. Moreover since

φ−1
j (n− ν) = φ̄−1

j (n− ν) = νmj,1

n
=

ν

nj
∈ Z (j = 0, . . . , p),

ν is a common multiple of n0, . . . , np and thus k ≥ 2. If ν is the least common
multiple of n0, . . . , np and k ≥ 2, then (6.7) is valid and the equality holds in the
above each line and hence (6.5) is not valid. �

Corollary 6.3 (Kostov [Ko]). Let m ∈ P satisfying dmax(m) ≤ 0. When idxm =
0, m is isomorphic to one of the tuples in (6.6) with k = 1, 2, 3, . . ..

Proof. Remark 5.9 assures that dmax(m) = 0 and n = mj,1nj . Then the
proof of the final part of Lemma 6.2 shows the corollary. �

Lemma 6.4. Let c0, . . . , cp be p+ 1 distinct points in C∪ {∞}. Let n0, n1, . . . , np

be non-negative integers and let aj,ν be complex numbers for j = 0, . . . , p and ν =
1, . . . , nj. Put ñ := n0 + · · · + np. Then there exists a unique polynomial f(x) of
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degree ñ− 1 such that

f(x) = aj,1 + aj,2(x− cj) + · · ·+ aj,nj (x− cj)nj−1

+ o(|x− cj |nj−1) (x→ cj , cj 6=∞),

x1−ñf(x) = aj,1 + aj,2x
−1 + aj,njx

1−nj + o(|x|1−nj )

(x→∞, cj =∞).

(6.8)

Moreover the coefficients of f(x) are linear functions of the ñ variables aj,ν .

Proof. We may assume cp =∞ with allowing np = 0. Put ñi = n0+· · ·+ni−1

and ñ0 = 0. For k = 0, . . . , ñ− 1 we define

fk(x) :=

{
(x− ci)k−ñi

∏i−1
ν=0(x− cν)nν (ñi ≤ k < ñi+1, 0 ≤ i < p),

xk−ñp
∏np−1

ν=0 (x− cν)nν (ñp ≤ k < ñ).

Since deg fk(x) = k, the polynomials f0(x), f1(x), . . . , fñ−1(x) are linearly indepen-

dent over C. Put f(x) =
∑ñ−1

k=0 ukfk(x) with ck ∈ C and

vk =

{
ai,k−ñi+1 (ñi ≤ k < ñi+1, 0 ≤ i < p),

ap,ñ−k (ñp ≤ k < ñ)

by (6.8). The correspondence which maps the column vectors u := (uk)k=0,...,ñ−1 ∈
Cñ to the column vectors v := (vk)k=0,...,ñ−1 ∈ Cñ is given by v = Au with a square
matrix A of size ñ. Then A is an upper triangular matrix of size ñ with non-zero
diagonal entries and therefore the lemma is clear. �

6.2. Existence theorem

Definition 6.5 (top term). Let

P = an(x)
dn

dxn + an−1(x)
dn−1

dxn−1 + · · ·+ a1(x)
d
dx + a0(x)

be a differential operator with polynomial coefficients. Suppose an 6= 0. If an(x) is
a polynomial of degree k with respect to x, we define TopP := an,kx

k∂n with the
coefficient an,k of the term xk of an(x). We put TopP = 0 when P = 0.

Theorem 6.6. Suppose m ∈ P(n)
p+1 satisfies (6.3). Retain the notation in Defini-

tion 6.1.
i) We have N1(m) = p− 2 and

(6.9)

n−1∑
ν=1

Nν(m) = Pidxm.

ii) Suppose p ≥ 2 and Nν(m) ≥ 0 for ν = 2, . . . , n− 1. Put

q0ν := #{i ; m̃0,i ≥ n− ν, i ≥ 0},(6.10)

Im := {(j, ν) ∈ Z2 ; q0ν ≤ j < q0ν +Nν(m) and 1 ≤ ν ≤ n− 1}.(6.11)

Then there uniquely exists a Fuchsian differential operator P of the normal form
(4.43) which has the Riemann scheme (4.15) with c0 =∞ under the Fuchs relation
(4.16) and satisfies

(6.12)
1

(degP − j − ν)!
ddegP−j−νan−ν−1

dxdegP−j−ν
(0) = gj,ν (∀(j, ν) ∈ Im).
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Here
(
gj,ν
)
(j,ν)∈Im

∈ CPidxm is arbitrarily given. Moreover the coefficients of P

are polynomials of x, λj,ν and gj,ν and satisfy
(6.13)

xj+ν Top
( ∂P

∂gj,ν

)
∂ν+1 = TopP and

∂2P

∂gj,ν∂gj′,ν′
= 0 ((j, ν), (j′, ν′) ∈ Im).

Fix the characteristic exponents λj,ν ∈ C satisfying the Fuchs relation. Then
all the Fuchsian differential operators of the normal form with the Riemann scheme
(4.15) are parametrized by (gj,ν) ∈ CPidxm. Hence the operators are unique if and
only if Pidxm = 0.

Proof. i) Since m̃j,1 = n−nj ≤ n− 2, N1(m) = 2(p− 1)+1− (p+1) = p− 2
and

n−1∑
ν=1

#{(j, i) ∈ Z2 ; i ≥ 0, 0 ≤ j ≤ p, m̃j,i ≥ n− ν}

=

p∑
j=0

(n−1∑
ν=0

#{i ∈ Z≥0 ; m̃j,i ≥ n− ν} − 1
)

=

p∑
j=0

(mj,1∑
i=0

m̃j,i − 1
)
=

p∑
j=0

(mj,1∑
i=0

nj∑
ν=1

max{mj,ν − i, 0} − 1
)

=

p∑
j=0

( nj∑
ν=1

mj,ν(mj,ν + 1)

2
− 1
)

=
1

2

( p∑
j=0

nj∑
ν=1

m2
j,ν + (p+ 1)(n− 2)

)
,

n−1∑
ν=1

Nν(m) = (p− 1)
(n(n+ 1)

2
− 1
)
+ (n− 1)− 1

2

( p∑
j=0

nj∑
ν=1

m2
j,ν + (p+ 1)(n− 2)

)

=
1

2

(
(p− 1)n2 + 2−

p∑
j=0

nj∑
ν=1

m2
j,ν

)
= Pidxm.

ii) Put

P =

pn∑
`=0

xpn−`pP0,`(ϑ)

=

pn∑
`=0

(x− cj)`pPj,`
(
(x− cj)∂

)
(1 ≤ j ≤ p),

hj,`(t) :=

{∏n0

ν=1

∏
0≤i<m0,ν−`

(
t+ λ0,ν + i

)
(j = 0),∏nj

ν=1

∏
0≤i<mj,ν−`

(
t− λj,ν − i

)
(1 ≤ j ≤ p),

pPj,`(t) = qPj,`(t)hj,`(t) + rPj,`(t) (deg rPj,`(t) < deg hj,`(t)).

Here pPj,`(t), q
P
j,`(t), r

P
j,`(t) and hj,`(t) are polynomials of t and

(6.14) deg hj,` =

nj∑
ν=1

max{mj,ν − `, 0}.

The condition that P of the form (4.43) have the Riemann scheme (4.15) if and
only if rPj,` = 0 for any j and `. Note that an−k(x) ∈ C[x] should satisfy

(6.15) deg an−k(x) ≤ pn−k and a
(ν)
n−k(cj) = 0 (0 ≤ ν ≤ n−k−1, 1 ≤ k ≤ n),
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which is equivalent to the condition that P is of the Fuchsian type.

Put P (k) :=
(∏p

j=1(x− cj)n
)

dn

dxn + an−1(x)
dn−1

dxn−1 + · · ·+ an−k(x)
dn−k

dxn−k .

Assume that an−1(x), . . . , an−k+1(x) have already defined so that deg r
P (k−1)
j,` <

n− k + 1 and we will define an−k(x) so that deg r
P (k)
j,` < n− k.

When k = 1, we put

an−1(x) = −an(x)
p∑

j=1

(x− cj)−1

( nj∑
ν=1

mj,ν−1∑
i=0

(λj,ν + i)− n(n− 1)

2

)
and then we have deg r

P (1)
j,` < n− 1 for j = 1, . . . , p. Moreover we have deg r

P (1)
0,` <

n− 1 because of the Fuchs relation (cf. (2.21)).
Suppose k ≥ 2 and put

an−k(x) =

{∑
`≥0 c0,k,`x

pn−k−`,∑
`≥0 cj,k,`(x− cj)n−k+` (j = 1, . . . , p)

with ci,j,` ∈ C. Note that

an−k(x)∂
n−k =

∑
`≥0

c0,k,`x
(p−1)n−`

n−k−1∏
i=0

(ϑ− i)

=
∑
`≥0

cj,k,`(x− cj)`
n−k−1∏
i=0

(
(x− cj)∂ − i

)
.

Then deg r
P (k)
j,` < n− k if and only if deg hj,` ≤ n− k or

(6.16) cj,k,` = −
1

(n− k)!

( dn−k

dtn−k
r
P (k−1)
j,` (t)

)∣∣∣
t=0

.

Namely, we impose the condition (6.16) for all (j, `) satisfying

m̃j,` =

nj∑
ν=1

max{mj,ν − `, 0} > n− k.

The number of the pairs (j, `) satisfying this condition equals (p−1)k+1−Nk−1(m).

Together with the conditions a
(ν)
n−k(cj) = 0 for j = 1, . . . , p and ν = 0, . . . , n−k−1,

the total number of conditions imposing to the polynomial an−k(x) of degree pn−k
equals

p(n− k) + (p− 1)k + 1−Nk−1(m) = (pn− k + 1)−Nk−1(m).

Hence Lemma 6.4 shows that an−k(x) is uniquely defined by giving c0,k,` arbitrarily
for q0k−1 ≤ ` < q0k−1 +Nk−1(m) because q0k−1 = #{` ≥ 0 ; m̃0,` > n− k}. Thus we
have the theorem. �

Remark 6.7. The numbers Nν(m) don’t change if we replace a (p + 1)-tuple m
of partitions of n by the (p+ 2)-tuple of partitions of n defined by adding a trivial
partition n = n of n to m.

Example 6.8. We will examine the number Nν(m) in Theorem 6.6. In the case
of Simpson’s list (cf. §13.2) we have the following.

m = n− 11, 1n, 1n
(Hn: hypergeometric family)

m̃ = n, n− 2, n− 3, . . . 1;n;n
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m = mm,mm− 11, 12m(EO2m: even family)

m̃ = 2m, 2m− 2, . . . , 2; 2m, 2m− 3, . . . , 1; 2m

m = m+ 1m,mm1, 12m+1(EO2m+1: odd family)

m̃ = 2m+ 1, 2m− 1, . . . , 1; 2m+ 1, 2m− 2, . . . , 2; 2m+ 1

m = 42, 222, 16(X6: extra case)

m̃ = 6, 4, 2, 1; 6, 3; 6

In these cases p = 2 and we have Nν(m) = 0 for ν = 1, 2, . . . , n− 1 because

m̃ := {m̃j,ν ; ν = 0, . . . ,mj,1 − 1, j = 0, . . . , p
}

= {n, n, n, n− 2, n− 3, n− 4, . . . , 2, 1}.
(6.17)

See Proposition 6.17 ii) for the condition that Nν(m) ≥ 0 for ν = 1, . . . , ordm− 1.
We give other examples:

m Pidx m̃ N1, N2, . . . , Nordm−1

221, 221, 221 0 52, 52, 52 0, 1,−1, 0
21, 21, 21, 21 (P3) 0 31, 31, 31, 31 1,−1

22, 22, 22 −3 42, 42, 42 0,−2,−1
11, 11, 11, 11 (D̃4) 1 2, 2, 2, 2 1

111, 111, 111 (Ẽ6) 1 3, 3, 3 0, 1

22, 1111, 1111 (Ẽ7) 1 42, 4, 4 0, 0, 1

33, 222, 111111 (Ẽ8) 1 642, 63, 6 0, 0, 0, 0, 1
21, 21, 21, 111 1 31, 31, 31, 3 1, 0
222, 222, 222 1 63, 63, 63 0, 1,−1, 0, 1

11, 11, 11, 11, 11 2 2, 2, 2, 2, 2 2
55, 3331, 22222 2 10, 8, 6, 4, 2; 10, 6, 3; 10, 5 0, 0, 1, 0, 0, 0, 0, 0, 1
22, 22, 22, 211 2 42, 42, 42, 41 1, 0, 1
22, 22, 22, 22, 22 5 42, 42, 42, 42, 42 2, 0, 3
32111, 3221, 2222 8 831, 841, 84 0, 1, 2, 1, 1, 2, 1

Note that if Pidxm = 0, in particular, if m is rigid, then m doesn’t satisfy
(6.4). The tuple 222, 222, 222 of partitions is the second case in (6.6) with k = 2.

Remark 6.9. Note that [O6, Proposition 8.1] proves that there exit only finite
basic tuples of partitions with a fixed index of rigidity.

Those with index of rigidity 0 are of only 4 types, which are D̃4, Ẽ6, Ẽ7 and
Ẽ8 given in the above (cf. Corollary 6.3, Kostov [Ko]). Namely, those are in the
S∞-orbit of

(6.18) {11, 11, 11, 11 111, 111, 111 22, 1111, 1111 33, 222, 111111}

and the operator P in Theorem 6.6 with any one of this spectral type has one
accessory parameter in its 0-th order term.

The equation corresponding to 11, 11, 11, 11 is called Heun’s equation (cf. [SW,
WW]), which is given by the operator

Pα,β,γ,δ,λ = x(x− 1)(x− c)∂2 +
(
γ(x− 1)(x− c) + δx(x− c)

+ (α+ β + 1− γ − δ)x(x− 1)
)
∂ + αβx− λ

(6.19)

with the Riemann scheme

(6.20)

x = 0 1 c ∞
0 0 0 α ; x

1− γ 1− δ γ + δ − α− β β ; λ

 .



6.2. EXISTENCE THEOREM 61

Here λ is an accessory parameter. Our operation cannot decrease the order of
Pα,β,γ,δ,λ but gives the following transformation.

Ad(∂1−α)Pα,β,γ,δ,λ = Pα′,β′,γ′,δ′,λ′ ,{
α′ = 2− α, β′ = β − α+ 1, γ′ = γ − α+ 1, δ′ = δ − α+ 1,

λ′ = λ+ (1− α)
(
β − δ + 1 + (γ + δ − α)c

)
.

(6.21)

Proposition 6.10. ([O6, Proposition 8.4]). The basic tuples of partitions with
index of rigidity −2 are in the S∞-orbit of the set of the 13 tuples{

11, 11, 11, 11, 11 21, 21, 111, 111 31, 22, 22, 1111 22, 22, 22, 211

211, 1111, 1111 221, 221, 11111 32, 11111, 11111 222, 222, 2211

33, 2211, 111111 44, 2222, 22211 44, 332, 11111111 55, 3331, 22222

66, 444, 2222211
}
.

Proof. Here we give the proof in [O6].
Assume that m ∈ Pp+1 is basic and monotone and idxm = −2. Note that

(5.42) shows

0 ≤
p∑

j=0

nj∑
ν=2

(mj,1 −mj,ν) ·mj,ν ≤ − idxm = 2.

Hence (5.42) implies
∑p

j=0

∑nj

ν=2(mj,1 −mj,ν)mj,ν = 0 or 2 and we have only to
examine the following 5 possibilities.

(A) m0,1 · · ·m0,n0 = 2 · · · 211 and mj,1 = mj,nj for 1 ≤ j ≤ p.
(B) m0,1 · · ·m0,n0

= 3 · · · 31 and mj,1 = mj,nj
for 1 ≤ j ≤ p.

(C) m0,1 · · ·m0,n0 = 3 · · · 32 and mj,1 = mj,nj for 1 ≤ j ≤ p.
(D) mi,1 · · ·mi,n0

= 2 · · · 21 and mj,1 = mj,nj
for 0 ≤ i ≤ 1 < j ≤ p.

(E) mj,1 = mj,nj for 0 ≤ j ≤ p and ordm = 2.

Case (A). If 2 · · · 211 is replaced by 2 · · · 22, m is transformed into m′ with
idxm′ = 0. If m′ is indivisible, m′ is basic and idxm′ = 0 and therefore m is
211, 14, 14 or 33, 2211, 16. If m′ is not indivisible, 1

2m
′ is basic and idx 1

2m
′ = 0

and hence m is one of the tuples in

{211, 22, 22, 22 2211, 222, 222 22211, 2222, 44 2222211, 444, 66}.
Put m = n0 − 1 and examine the identity

p∑
j=0

mj,1

ordm
= p− 1 + (ordm)−2

(
idxm+

p∑
j=0

nj∑
ν=1

(mj,1 −mj,ν)mj,ν

)
Case (B). Note that ordm = 3m+1 and therefore 3

3m+1+
1
n1

+· · ·+ 1
np

= p−1.
Since nj ≥ 2, we have 1

2p− 1 ≤ 3
3m+1 < 1 and p ≤ 3.

If p = 3, we have m = 1, ordm = 4, 1
n1

+ 1
n2

+ 1
n3

= 5
4 , {n1, n2, n3} = {2, 2, 4}

and m = 31, 22, 22, 1111.
Assume p = 2. Then 1

n1
+ 1

n2
= 1 − 3

3m+1 . If min{n1, n2} ≥ 3, 1
n1

+ 1
n2
≤ 2

3

and m ≤ 2. If min{n1, n2} = 2, max{n1, n2} ≥ 3 and 3
3m+1 ≥

1
6 and m ≤ 5. Note

that 1
n1

+ 1
n2

= 13
16 ,

10
13 ,

7
10 ,

4
7 and 1

4 according to m = 5, 4, 3, 2 and 1, respectively.

Hence we have m = 3, {n1, n2} = {2, 5} and m = 3331, 55, 22222.

Case (C). We have 3
3m+2+

1
n1

+· · ·+ 1
np

= p−1. Since nj ≥ 2, 1
2p−1 ≤

3
3m+2 < 1

and p ≤ 3. If p = 3, then m = 1, ordm = 5 and 1
n1

+ 1
n2

+ 1
n3

= 7
5 , which never

occurs.
Thus we have p = 2, 1

n1
+ 1

n2
= 1 − 3

3m+2 and hence m ≤ 5 as in Case (B).

Then 1
n1

+ 1
n2

= 14
17 ,

11
14 ,

8
11 ,

5
8 and 2

5 according to m = 5, 4, 3, 2 and 1, respectively.
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Hence we have m = 1 and n1 = n2 = 5 and m = 32, 11111, 11111 or m = 2 and
n1 = 2 and n2 = 8 and m = 332, 44, 11111111.

Case (D). We have 2
2m+1 + 2

2m+1 + 1
n2

+ · · · + 1
np

= p − 1. Since nj ≥ 3 for

j ≥ 2, we have p − 1 ≤ 3
2

4
2m+1 = 6

2m+1 and m ≤ 2. If m = 1, then p = 3 and
1
n2

+ 1
n3

= 2 − 4
3 = 2

3 and we have m = 21, 21, 111, 111. If m = 2, then p = 2,
1
n2

= 1− 4
5 and m = 221, 221, 11111.

Case (E). Since mj,1 = 1 and (5.42) means −2 =
∑p

j=0 2mj,1 − 4(p − 1), we
have p = 4 and m = 11, 11, 11, 11, 11. �
Remark 6.11. A generalization of Proposition6.10 is given in [HiO] which can be
applied to equations with irregular singularities.

6.3. Divisible spectral types

Proposition 6.12. Let m be any one of the partition of type D̃4, Ẽ6, Ẽ7 or Ẽ8

in Example 6.8 and put n = ordm. Then km is realizable but it isn’t irreducibly
realizable for k = 2, 3, . . .. Moreover we have the operator P of order k ordm
satisfying the properties in Theorem 6.6 ii) for the tuple km.

Proof. Let P (k, g) be the operator of the normal form with the Riemann
scheme 

x = c0 =∞ x = cj (j = 1, . . . , p)
[λ0,1 − k(p− 1)n+ km0,1](m0,1) [λj,1 + kmj,1](mj,1)

...
...

[λ0,n1 − k(p− 1)n+ km0,1](m0,n1 )
[λj,nj + kmj,nj ](mj,nj

)


of type m. Here m =

(
mj,ν

)
j=0,...,p
ν=1,...,nj

, n = ordm and g is the accessory parameter

contained in the coefficient of the 0-th order term of P (k, g). Since Pidxm = 0
means

p∑
j=0

nj∑
ν=1

m2
j,ν = (p− 1)n2 =

n0∑
ν=0

(p− 1)nm0,ν ,

the Fuchs relation (4.16) is valid for any k. Then it follows from Lemma 4.1
that the Riemann scheme of the operator Pk(g1, . . . , gk) = P (k − 1, gk)P (k −
2, gk−1) · · ·P (0, g1) equals

(6.22)


x = c0 =∞ x = cj (j = 1, . . . , p)
[λ0,1](km0,1) [λj,1](kmj,1)

...
...

[λ0,n1 ](km0,n1 )
[λj,nj ](kmj,nj

)


and it contain an independent accessory parameters in the coefficient of νn-th order
term of Pk(g1, . . . , gk) for ν = 0, . . . , k − 1 because for the proof of this statement
we may assume λj,ν are generic under the Fuchs relation.

Note that

Nν(km) =


1 (ν ≡ n− 1 mod n),

−1 (ν ≡ 0 mod n),

0 (ν 6≡ 0, n− 1 mod n)

for ν = 1, . . . , kn− 1 because

k̃m =


{2i, 2i, 2i, 2i ; i = 1, 2, . . . , k} if m is of type D̃4,

{ni, ni, ni, ni− 2, ni− 3, . . . , ni− n+ 1 ; i = 1, 2, . . . , k}
if m is of type Ẽ6, Ẽ7 or Ẽ8
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under the notation (6.2) and (6.17). Then the operator Pk(g1, . . . , gk) shows that
when we inductively determine the coefficients of the operator with the Riemann
scheme (6.22) as in the proof of Theorem 6.6, we have a new accessory parameter
in the coefficient of the

(
(k − j)n

)
-th order term and then the conditions for the

coefficients of the
(
(k − j)n − 1

)
-th order term are overdetermined but they are

automatically compatible for j = 1, . . . , k − 1.
Thus we can conclude that the operators of the normal form with the Riemann

scheme (6.22) are Pk(g1, . . . , gk), which are always reducible. �

Proposition 6.13. Let k be a positive integer and let m be an indivisible (p+ 1)-
tuple of partitions of n. Suppose km is realizable and idxm < 0. Then any
Fuchsian differential equation with the Riemann scheme (6.22) is always irreducible
if λj,ν is generic under the Fuchs relation

(6.23)

p∑
j=0

nj∑
ν=1

mj,νλj,ν = ordm− k idxm
2

.

Proof. Since ord km = k ordm and idx km = k2 idxm, the above Fuchs
relation follows from (4.32).

Suppose Pu = 0 is reducible. Then Remark 4.17 ii) says that there ex-
ist m′, m′′ ∈ P such that km = m′ + m′′ and 0 < ordm′ < k ordm and
|{λm′}| ∈ {0,−1,−2, . . .}. Suppose λj,ν are generic under (6.23). Then the condi-
tion |{λm′}| ∈ Z implies m′ = `m with a positive integer satisfying ` < k and

|{λ`m}| =
p∑

j=0

nj∑
ν=1

`mj,νλj,ν − ord `m+ `2 idxm

= `
(
ordm− k idxm

2

)
− ` ordm+ `2 idxm

= `(`− k) idxm > 0.

Hence |{λm′}| > 0. �

6.4. Universal model

Now we have a main result in Chapter 6 which assures the existence of Fuchsian
differential operators with given spectral types.

Theorem 6.14. Fix a tuple m =
(
mj,ν

)
0≤j≤p
1≤ν≤nj

∈ P(n)
p+1.

i) Under the notation in Definitions 4.10, 4.16 and 5.7, the tuple m is realizable
if and only if there exists a non-negative integer K such that ∂imaxm are well-defined
for i = 1, . . . ,K and

ordm > ord ∂maxm > ord ∂2maxm > · · · > ord ∂Kmaxm,

dmax(∂
K
maxm) = 2 ord ∂Kmaxm or dmax(∂

K
maxm) ≤ 0.

(6.24)

ii) Fix complex numbers λj,ν . If there exists an irreducible Fuchsian operator
with the Riemann scheme (4.15) such that it is locally non-degenerate (cf. Defini-
tion 9.8), then m is irreducibly realizable.

Here we note that if P is irreducible and m is rigid, P is locally non-degenerate
(cf. Definition 9.8).

Hereafter in this theorem we assume m is realizable.
iii) m is irreducibly realizable if and only if m is indivisible or idxm < 0.
iv) There exists a universal model Pmu = 0 associated with m which has the

following property.
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Namely, Pm is the Fuchsian differential operator of the form

Pm =
( p∏
j=1

(x− cj)n
) dn
dxn

+ an−1(x)
dn−1

dxn−1
+ · · ·+ a1(x)

d

dx
+ a0(x),

aj(x) ∈ C[λj,ν , g1, . . . , gN ],
∂2aj(x)

∂gi∂gi′
= 0 (1 ≤ i ≤ i′ ≤ N, 0 ≤ j < n)

(6.25)

such that Pm has regular singularities at p + 1 fixed points x = c0 = ∞, c1, . . . , cp
and the Riemann scheme of Pm equals (4.15) for any gi ∈ C and λj,ν ∈ C under
the Fuchs relation (4.16). Moreover the coefficients aj(x) are polynomials of x, λj,ν
and gi with the degree at most (p − 1)n + j for j = 0, . . . , n, respectively. Here gi
are called accessory parameters and we call Pm the universal operator of type m.

The non-negative integer N will be denoted by Ridxm and given by

(6.26) N = Ridxm :=


0 (idxm > 0),

gcdm (idxm = 0),

Pidxm (idxm < 0).

Put m =
(
mj,ν

)
0≤j≤p
1≤ν≤nj

:= ∂Kmaxm with the non-negative integer K given in i).

When idxm ≤ 0, we define

q0` := #{i ;
n̄0∑
ν=1

max{m0,ν − i, 0} ≥ ordm− `, i ≥ 0},

Im := {(j, ν) ∈ Z2 ; q0ν ≤ j ≤ q0ν +Nν − 1, 1 ≤ ν ≤ ordm− 1}.

When idxm > 0, we put Im = ∅.
Then #Im = Ridxm and we can define Ii such that Im = {Ii ; i = 1, . . . , N}

and gi satisfy (6.13) by putting gIi = gi for i = 1, . . . , N .
v) Retain the notation in Definition 5.12. If λj,ν ∈ C satisfy

(6.27)


∑p

j=0 λ(k)j,`(k)j+δj,jo (νo−`(k)j)

/∈ {0,−1,−2,−3, . . . ,m(k)jo,`(k)jo −m(k)jo,νo − d(k) + 2}
for any k = 0, . . . ,K − 1 and (j0, νo) satisfying

m(k)jo,νo ≥ m(k)jo,`(k)jo − d(k) + 2,

any Fuchsian differential operator P of the normal form which has the Riemann
scheme (4.15) belongs to Pm with a suitable (g1, . . . , gN ) ∈ CN .{

If m is a scalar multiple of a fundamental tuple or simply reducible,

(6.27) is always valid for any λj,ν .
(6.28) 

Fix λj,ν ∈ C. Suppose there is an irreducible Fuchsian differential

operator with the Riemann scheme (4.15) such that the operator is

locally non-degenerate or K ≤ 1, then (6.27) is valid.

(6.29)

Suppose m is monotone. Under the notation in §7.1, the condition (6.27) is
equivalent to

(Λ(λ)|α) + 1 /∈ {0,−1, . . . , 2− (α|αm)}
for any α ∈ ∆(m) satisfying (α|αm) > 1.

(6.30)

Example 5.6 gives a Fuchsian differential operator with the rigid spectral type
21, 21, 21, 21 which doesn’t belong to the corresponding universal operator.

The fundamental tuple and the simply reducible tuple are defined as follows.
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Definition 6.15. i) (fundamental tuple) An irreducibly realizable tuple m ∈ P is
called fundamental if ordm = 1 or dmax(m) ≤ 0.

For an irreducibly realizable tuple m ∈ P, there exists a non-negative integer
K such that ∂Kmaxm is fundamental and satisfies (6.24). Then we call ∂Kmaxm is a
fundamental tuple corresponding to m and define fm := ∂Kmaxm.

ii) (simply reducible tuple) A tuple m is simply reducible if there exists a
positive integer K satisfying (6.24) and ord ∂Kmaxm = ordm−K.

Proof of Theorem 6.14. i) We have proved thatm is realizable if the condi-
tion dmax(m) ≤ 0 is valid. Note that the condition dmax(m) = 2 ordm is equivalent
to the fact that sm is trivial. Hence Theorem 5.10 proves the claim.

iv) Now we use the notation in Definition 5.12. The existence of the universal
operator is clear if sm is trivial. If dmax(m) ≤ 0, Theorem 6.6 and Proposition 6.12
with Corollary 6.3 assure the existence of the universal operator Pm claimed in iii).
Hence iii) is valid for the tuple m(K) and we have a universal operator PK with
the Riemann scheme {λ(K)m(K)}.

The universal operator Pk with the Riemann scheme {λ(k)m(k)} are inductively
obtained by applying ∂`(k) to the universal operator Pk+1 with the Riemann scheme
{λ(k+1)m(k+1)} for k = K − 1,K − 2, . . . , 0. Since the claims in iii) such as (6.13)
are kept by the operation ∂`(k), we have iv).

iii) Note that m is irreducibly realizable if m is indivisible (cf. Remark 4.17
ii)). Hence suppose m is not indivisible. Put k = gcdm and m = km′. Then
idxm = k2 idxm′.

If idxm > 0, then idxm > 2 and the inequality (5.19) in Lemma 5.3 implies
that m is not irreducibly realizable. If idxm < 0, Proposition 6.13 assures that m
is irreducibly realizable.

Suppose idxm = 0. Then the universal operator Pm has k accessory param-
eters. Using the argument in the first part of the proof of Proposition 6.12, we
can construct a Fuchsian differential operator P̃m with the Riemann scheme

{
λm
}
.

Since P̃m is a product of k copies of the universal operator Pm and it has k ac-
cessory parameters, the operator Pm coincides with the reducible operator P̃m and
hence m is not irreducibly realizable.

v) Fix λj,ν ∈ C. Let P be a Fuchsian differential operator with the Riemann
scheme {λm}. Suppose P is of the normal form.

Theorem 6.6 and Proposition 6.12 assure that P belongs to Pm if K = 0.
Theorem 5.2 proves that if ∂kmaxP has the Riemann scheme {λ(k)m(k)} and

(6.27) is valid, then ∂k+1
maxP = ∂`(k)∂

k
maxP is well-defined and has the Riemann

scheme {λ(k+1)m(k+1)} for k = 0, . . . ,K − 1 and hence it follows from (5.27) that

P belongs to the universal operator Pm because ∂KmaxP belongs to the universal
operator Pm(K).

Ifm is simply reducible, d(k) = 1 and therefore (6.27) is valid becausem(k)j,ν ≤
m(k)j,`(k)ν < m(k)j,`(k)ν − d(k) + 2 for j = 0, . . . , p and ν = 1, . . . , nj and k =
0, . . . ,K − 1.

The equivalence of the conditions (6.27) and (6.30) follows from the argument
in §7.1, Proposition 7.9 and Theorem 10.13.

ii) Suppose there exists an irreducible operator P with the Riemann scheme
(4.15). Let M = (M0, . . . ,Mp) be the tuple of monodromy generators of the equa-
tion Pu = 0 and putM(0) = M. LetM(k+1) be the tuple of matrices applying the
operations in §9.1 to M(k) corresponding to the operations ∂`(k) for k = 0, 1, 2, . . ..

Comparing the operations on M(k) and ∂`(k), we can conclude that there ex-
ists a non-negative integer K satisfying the claim in i). In fact Theorem 9.3 proves
that M(k) are irreducible, which assures that the conditions (5.6) and (5.7) corre-
sponding to the operations ∂`(k) are always valid (cf. Corollary 10.12). Therefore



66 6. DELIGNE-SIMPSON PROBLEM

m is realizable and moreover we can conclude that (6.29) implies (6.27). If idxm
is divisible and idxm = 0, then Pm is reducible for any fixed parameters λj,ν and
gi. Hence m is irreducibly realizable. �

Remark 6.16. i) The uniqueness of the universal operator in Theorem 6.14 is
obvious. But it is not valid in the case of systems of Schlesinger canonical form
(cf. Example 9.2).

ii) The assumption that Pu = 0 is locally non-degenerate seems to be not
necessary in Theorem 6.14 ii) and (6.29). When K = 1, this is clear from the proof
of the theorem. For example, the rigid irreducible operator with the spectral type
31, 31, 31, 31, 31 belongs to the universal operator of type 211, 31, 31, 31, 31.

6.5. Simply reducible spectral type

In this section we characterize the tuples of the simply reducible spectral type.

Proposition 6.17. i) A realizable tuple m ∈ P(n) satisfying m0,ν = 1 for ν =
1, . . . , n is simply reducible if m is not fundamental.

ii) The simply reducible rigid tuple corresponds to the tuple in Simpson’s list
(cf. §13.2) or it is isomorphic to 21111, 222, 33.

iii) Suppose m ∈ Pp+1 is not fundamental. Then m satisfies the condition
Nν(m) ≥ 0 for ν = 2, . . . , ordm− 1 in Definition 6.1 if and only if m is realizable
and simply reducible.

iv) Let m ∈ Pp+1 be a realizable monotone tuple. Suppose m is not fundamen-
tal. Then under the notation in §7.1, m is simply reducible if and only if

(6.31) (α|αm) = 1 (∀α ∈ ∆(m)),

namely [∆(m)] = 1#∆(m) (cf. Remark 7.11 ii)).

Proof. i) The claim is obvious from the definition.
ii) Let m′ be a simply reducible rigid tuple. We have only to prove that

m = ∂maxm
′ is in the Simpson’s list or 21111, 222, 33 and ordm′ = ordm + 1

and dmax(m) = 1, then m′ is in Simpson’s list or 21111, 222, 33. The condition
ordm′ = ordm + 1 implies m ∈ P3. We may assume m is monotone and m′ =
∂`0,`1,`2m. The condition ordm′ = ordm+ 1 also implies

(m0,1 −m0,`0) + (m1,1 −m1,`0) + (m2,1 −m2,`0) = 2.

Since ∂maxm
′ = m, we have mj,`j ≥ mj,1 − 1 for j = 0, 1, 2. Hence there exists an

integer k with 0 ≤ k ≤ 2 such that mj,`j = mj,1 − 1 + δj,k for j = 0, 1, 2. Then the
following claims are easy, which assures the proposition.

If m = 11, 11, 11, m′ is isomorphic to 13, 13, 21.
If m = 13, 13, 21, m′ is isomorphic to 14, 14, 31 or 14, 211, 22.
If m = 1n, 1n, n− 11 with n ≥ 4, m′ = 1n+1, 1n+1, n1.
If m = 12n, nn− 11, nn with n ≥ 2, m′ = 12n+1, nn1, n+ 1n.
If m = 15, 221, 32, then m′ = 16, 33, 321 or 16, 222, 42 or 21111, 222, 33.
If m = 12n+1, n+ 1n, nn1 with n ≥ 3, m′ = 12n+2, n+ 1n+ 1, n+ 1n1.
If m = 16, 222, 42 or m = 21111, 222, 33, m′ doesn’t exists.
iii) Note that Theorem 6.6 assures that the condition Nν(m) ≥ 0 for ν =

1, . . . , ordm− 1 implies that m is realizable.

We may assume m ∈ P(n)
p+1 is standard. Put d = m0,1+ · · ·+mp,1−(p−1)n > 0

and m′ = ∂maxm. Then m′
j,ν = mj,ν − δν,1d for j = 0, . . . , p and ν ≥ 1. Under the

notation in Definition 6.1 the operation ∂max transforms the sets

mj := {m̃j,k ; k = 0, 1, 2, . . . and m̃j,k > 0}
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into

m′
j =

{
m̃j,k −min{d,mj,1 − k} ; k = 0, . . . ,max{mj,1 − d,mj,2 − 1}

}
,

respectively because m̃j,i =
∑

ν max{mj,ν − i, 0}. Therefore Nν(m
′) ≤ Nν(m) for

ν = 1, . . . , n− d− 1 = ordm′ − 1. Here we note that

n−1∑
ν=1

Nν(m) =

n−d−1∑
ν=1

Nν(m
′) = Pidxm.

Hence Nν(m) ≥ 0 for ν = 1, . . . , n − 1 if and only if Nν(m
′) = Nν(m) for ν =

1, . . . , (n− d)− 1 and moreover Nν(m) = 0 for ν = n− d, . . . , n− 1. Note that the
condition that Nν(m

′) = Nν(m) for ν = 1, . . . , (n− d)− 1 equals

(6.32) mj,1 − d ≥ mj,2 − 1 for j = 0, . . . , p.
+ + + − − −
+ + + +
+ + + +

+

This is easy to see by using a Young diagram. For example, when {8, 6, 6, 3, 1} =
{m0,1,m0,2,m0,3,m0,4,m0,5} is a partition of n = 24, the corresponding Young
diagram is as above and then m̃0,2 equals 15, namely, the number of boxes with the
sign + or −. Moreover when d = 3, the boxes with the sign − are deleted by ∂max

and the number m̃0,2 changes into 12. In this case m0 = {24, 19, 15, 11, 8, 5, 2, 1}
and m′

0 = {21, 16, 12, 8, 5, 2}.
If d ≥ 2, then 1 ∈ mj for j = 0, . . . , p and therefore Nn−2(m)−Nn−1(m) = 2,

which means Nn−1(m) 6= 0 or Nn−2(m) 6= 0. When d = 1, we have Nν(m) =
Nν(m

′) for ν = 1, . . . , n− 2 and Nn−1(m) = 0. Thus we have the claim.
iv) The claim follows from Proposition 7.9. �

Example 6.18. We show the simply reducible tuples with index 0 whose funda-
mental tuple is of type D̃4, Ẽ6, Ẽ7 or Ẽ8 (cf. Example 6.8).

D̃4: 21, 21, 21, 111 22, 22, 31, 211 22, 31, 31, 1111
Ẽ6: 211, 211, 1111 221, 221, 2111 221, 311, 11111 222, 222, 3111 222, 321, 2211

222, 411, 111111 322, 331, 2221 332, 431, 2222 333, 441, 3222
Ẽ7: 11111, 2111, 32 111111, 2211, 42 21111, 2211, 33 111111, 3111, 33

22111, 2221, 43 1111111, 2221, 52 22211, 2222, 53 11111111, 2222, 62
32111, 2222, 44 22211, 3221, 53

Ẽ8: 1111111, 322, 43 11111111, 332, 53 2111111, 332, 44 11111111, 422, 44
2211111, 333, 54 111111111, 333, 63 2221111, 433, 55 2222111, 443, 65
3222111, 444, 66 2222211, 444, 75 2222211, 543, 66 2222221, 553, 76
2222222, 653, 77

In general, we have the following proposition.

Proposition 6.19. There exist only a finite number of standard and simply re-
ducible tuples with any fixed non-positive index of rigidity.

Proof. First note thatm ∈ Pp+1 if dmax(m) = 1 and ordm > 3 and ∂maxm ∈
Pp+1. Since there exist only finite basic tuples with any fixed index of rigidity
(cf. Remark 7.15), we have only to prove the non-existence of the infinite sequence

m(0)
∂max←−−−m(1)

∂max←−−− · · · · · · ∂max←−−−m(k)
∂max←−−−m(k + 1)

∂max←−−− · · ·

such that dmax(m(k)) = 1 for k ≥ 1 and idxm(0) ≤ 0.
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Put

m̄(k)j = max
ν
{m(k)j,ν},

a(k)j = #{ν ; m(k)j,ν = m̄(k)j},

b(k)j =

{
#{ν ; m(k)j,ν = m̄(k)j − 1} (m̄(k)j > 1),

∞ (m̄(k)j = 1).

The assumption dmax(m(k)) = dmax(m(k+1)) = 1 implies that there exist indices
0 ≤ jk < j′k such that

(6.33) (a(k + 1)j , b(k + 1)j) =

{
(a(k)j + 1, b(k)j − 1) (j = jk or j′k),

(1, a(k)j − 1) (j 6= jk and j′k)

and

(6.34) m̄(k)0 + · · ·+ m̄(k)p = (p− 1) ordm(k) + 1 (p� 1)

for k = 1, 2, . . . . Since a(k+ 1)j + b(k+ 1)j ≤ a(k)j + b(k)j , there exists a positive
integer N such that a(k + 1)j + b(k + 1)j = a(k)j + b(k)j for k ≥ N , which means

(6.35) b(k)j

{
> 0 (j = jk or j′k),

= 0 (j 6= jk and j′k).

Putting (aj , bj) = (a(N)j , b(N)j), we may assume b0 ≥ b1 > b2 = b3 = · · · = 0 and
a2 ≥ a3 ≥ · · · . Moreover we may assume j′N+1 ≤ 3, which means aj = 1 for j ≥ 4.
Then the relations (6.33) and (6.35) for k = N,N + 1, N + 2 and N + 3 prove that(
(a0, b0), · · · , (a3, b3)

)
is one of the followings:

((a0,∞), (a1,∞), (1, 0), (1, 0)),(6.36)

((a0,∞), (1, 1), (2, 0), (1, 0)),(6.37)

((2, 2), (1, 1), (4, 0), (1, 0)), ((1, 3), (3, 1), (2, 0), (1, 0)),(6.38)

((1, 2), (2, 1), (3, 0), (1, 0)),(6.39)

((1, 1), (1, 1), (2, 0), (2, 0)).(6.40)

In fact if b1 > 1, a2 = a3 = 1 and we have (6.36). Thus we may assume b1 = 1. If
b0 =∞, a3 = 1 and we have (6.37). If b0 = b1 = 1, we have easily (6.40). Thus we
may moreover assume b1 = 1 < b0 < ∞ and a3 = 1. In this case the integers j′′k
satisfying b(k)j′′k = 0 and 0 ≤ j′′k ≤ 2 for k ≥ N are uniquely determined and we

have easily (6.38) or (6.39).
Put n = ordm(N). We may suppose m(N) is standard. Let p be an integer

such that mj,0 < n if and only if j ≤ p. Note that p ≥ 2. Then if m(N) satisfies
(6.36) (resp. (6.37)), (6.34) implies m(N) = 1n, 1n, n− 11 (resp. 1n,mm− 11,mm
or 1n,m+ 1m,mm1) and m(N) is rigid.

Suppose one of (6.38)–(6.40). Then it is easy to check that m(N) doesn’t
satisfy (6.34). For example, suppose (6.39). Then 3m0,1 − 2 ≤ n, 3m1,1 − 1 ≤ n
and 3m2,1 ≤ n and we have m0,1 +m1,1 +m2,1 ≤ [n+2

3 ] + [n+1
3 ] + [n3 ] = n, which

contradicts to (6.34). The relations [n+2
4 ] + [n2 ] + [n4 ] ≤ n and 2[n+1

2 ] + 2[n2 ] = 2n
assure the same conclusion in the other cases. �



CHAPTER 7

A Kac-Moody root system

In this chapter we explain a correspondence between spectral types and roots
of a Kac-Moody root system. The correspondence was first introduced by Crawley-
Boevey [CB]. In §7.2 we study fundamental tuples through this correspondence.

7.1. Correspondence with a Kac-Moody root system

We review a Kac-Moody root system to describe the combinatorial structure of
middle convolutions on the spectral types. Its relation to Deligne-Simpson problem
is first clarified by [CB].

Let

(7.1) I := {0, (j, ν) ; j = 0, 1, . . . , ν = 1, 2, . . .}.
be a set of indices and let h be an infinite dimensional real vector space with the
set of basis Π, where

(7.2) Π = {αi ; i ∈ I} = {α0, αj,ν ; j = 0, 1, 2, . . . , ν = 1, 2, . . .}.
Put

I ′ := I \ {0}, Π′ := Π \ {α0},(7.3)

Q :=
∑
α∈Π

Zα ⊃ Q+ :=
∑
α∈Π

Z≥0α.(7.4)

We define an indefinite symmetric bilinear form on h by

(α|α) = 2 (α ∈ Π),

(α0|αj,ν) = −δν,1,

(αi,µ|αj,ν) =

{
0 (i 6= j or |µ− ν| > 1),

−1 (i = j and |µ− ν| = 1).

α0�������� α1,1�������� α1,2�������� · · ·
α2,1��������III

III
α2,2�������� · · ·

α0,1��������
yyyyyy

α0,2�������� · · ·

α3,1��������88
88

88
88

α3,2�������� · · ·
00

00
00

00

))
))

))
)

(7.5)

The element of Π is called the simple root of a Kac-Moody root system and
the Weyl group W∞ of this Kac-Moody root system is generated by the simple
reflections si with i ∈ I. Here the reflection with respect to an element α ∈ h
satisfying (α|α) 6= 0 is the linear transformation

(7.6) sα : h 3 x 7→ x− 2
(x|α)
(α|α)

α ∈ h

and

(7.7) si = sαi
for i ∈ I.

In particular si(x) = x− (αi|x)αi for i ∈ I and the subgroup of W∞ generated by
si for i ∈ I \ {0} is denoted by W ′

∞.
The Kac-Moody root system is determined by the set of simple roots Π and its

Weyl group W∞ and it is denoted by (Π,W∞).
Denoting σ(α0) = α0 and σ(αj,ν) = ασ(j),ν for σ ∈ S∞, we put

(7.8) W̃∞ := S∞ nW∞,

69
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which is an automorphism group of the root system.

Remark 7.1 ([Kc]). The set ∆re of real roots equals the W∞-orbit of Π, which
also equals W∞α0. Denoting

(7.9) B := {β ∈ Q+ ; suppβ is connected and (β, α) ≤ 0 (∀α ∈ Π)},

the set of positive imaginary roots ∆im
+ equals W∞B. Here

(7.10) suppβ := {α ∈ Π ; nα 6= 0} if β =
∑
α∈Π

nαα.

The set ∆ of roots equals ∆re ∪ ∆im by denoting ∆im
− = −∆im

+ and ∆im =

∆im
+ ∪∆im

− . Put ∆+ = ∆ ∩ Q+, ∆− = −∆+, ∆
re
+ = ∆re ∩ Q+ and ∆re

− = −∆re
+ .

Then ∆ = ∆+ ∪ ∆−, ∆
im
+ ⊂ ∆+ and ∆re = ∆re

+ ∪ ∆re
− . The root in ∆ is called

positive if and only if α ∈ Q+.
A subset L ⊂ Π is called connected if the decomposition L1 ∪ L2 = L with

L1 6= ∅ and L2 6= ∅ always implies the existence of vj ∈ Lj satisfying (v1|v2) 6= 0.
Note that suppα 3 α0 for α ∈ ∆im.

The subset L is called classical if it corresponds to the classical Dynkin diagram,
which is equivalent to the condition that the group generated by the reflections with
respect to the elements in L is a finite group.

The connected subset L is called affine if it corresponds to affine Dynkin dia-
gram and in our case it corresponds to D̃4 or Ẽ8 or Ẽ7 or Ẽ6 with the following
Dynkin diagram, respectively.

(7.11)

1�������� 2�������� 1��������
1��������

1��������

11, 11, 11, 11

2�������� 4�������� 6�������� 5�������� 4�������� 3�������� 2�������� 1��������
3��������

33, 222, 111111

1�������� 2�������� 3�������� 4�������� 3�������� 2�������� 1��������
2��������

22, 1111, 1111

1�������� 2�������� 3�������� 2�������� 1��������
2��������
1��������

111, 111, 111

Here the circle correspond to simple roots and the numbers attached to simple roots
are the coefficients n and nj,ν in the expression (7.15) of a root α.

For a tuple of partitions m =
(
mj,ν

)
j≥0, ν≥1

∈ P(n), we define

nj,ν := mj,ν+1 +mj,ν+2 + · · · ,

αm := nα0 +
∞∑
j=0

∞∑
ν=1

nj,ναj,ν ∈ Q+,

κ(αm) := m.

(7.12)

As is given in [O6, Proposition 2.22] we have

Proposition 7.2. i) idx(m,m′) = (αm|αm′).
ii) Given i ∈ I, we have αm′ = si(αm) with

m′ =

∂m (i = 0),

(m0,1 . . . ,mj,1 . . .
ν
`

mj,ν+1

ν+1
`

mj,ν . . . , . . . )
(
i = (j, ν)

)
.
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Moreover for ` = (`0, `1, . . .) ∈ Z∞
>0 satisfying `ν = 1 for ν � 1 we have

α` := α1`
= α0 +

∞∑
j=0

`j−1∑
ν=1

αj,ν =

(∏
j≥0

sj,`j−1 · · · sj,2sj,1
)
(α0),(7.13)

α∂`(m) = sα`
(αm) = αm − 2

(αm|α`)

(α`|α`)
α` = αm − (αm|α`)α`.(7.14)

Note that

α = nα0 +
∑
j≥0

∑
ν≥1

nj,ναj,ν ∈ ∆+ with n > 0

⇒ n ≥ nj,1 ≥ nj,2 ≥ · · · (j = 0, 1, . . .).

(7.15)

In fact, for a sufficiently large K ∈ Z>0, we have nj,µ = 0 for µ ≥ K and

sαj,ν+αj,ν+1+···+αj,K
α = α+ (nj,ν−1 − nj,ν)(αj,ν + αj,ν+1 + · · ·+ αj,K) ∈ ∆+

for α ∈ ∆+ in (7.15), which means nj,ν−1 ≥ nj,ν for ν ≥ 1. Here we put nj,0 = n
and αj,0 = α0. Hence for α ∈ ∆+ with suppα 3 α0, there uniquely exists m ∈ P
satisfying α = αm.

It follows from (7.14) that under the identification P ⊂ Q+ with (7.12), our
operation ∂` corresponds to the reflection with respect to the root α`. Moreover
the rigid (resp. indivisible realizable) tuple of partitions corresponds to the positive
real root (resp. indivisible positive root) whose support contains α0, which were
first established by [CB] in the case of Fuchsian systems of Schlesinger canonical
form (cf. [O6]).

The corresponding objects with this identification are as follows, which will be
clear in this section. Some of them are also explained in [O6].

P Kac-Moody root system

m αm (cf. (7.12))

m : monotone α ∈ Q+ : (α|β) ≤ 0 (∀β ∈ Π′)

m : realizable α ∈ ∆+

m : rigid α ∈ ∆re
+ : suppα 3 α0

m : monotone and fundamental α ∈ Q+ :α = α0 or (α|β) ≤ 0 (∀β ∈ Π)

m : irreducibly realizable
α ∈ ∆+, suppα 3 α0

indivisible or (α|α) < 0

m : basic and monotone
α ∈ Q+ : (α|β) ≤ 0 (∀β ∈ Π)

indivisible

m : simply reducible and monotone
α ∈ ∆+ : (α|αm) = 1 (∀α ∈ ∆(m))

α0 ∈ ∆(m), (α|β) ≤ 0 (∀β ∈ Π′)

ordm n0 : α = n0α0 +
∑

i,ν ni,ναi,ν

idx(m,m′) (αm|αm′)

idxm (αm|αm)

d`(m) (cf. (5.25)) (α`|αm) (cf. (7.13))

Pidxm+ Pidxm′ = Pidx(m+m′) (αm|αm′) = −1
(ν, ν + 1) ∈ Gj ⊂ S′

∞ (cf. (4.30)) sj,ν ∈W ′
∞ (cf. (7.7))

H ' S∞ (cf. (4.30)) S∞ in (7.8)

∂1 s0
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∂` sα`
(cf. (7.13))

〈∂1, S∞〉 W̃∞ (cf. (7.8))

{λm} (Λ(λ), αm) (cf. (7.18))

|{λm}| (Λ(λ) + 1
2αm|αm)

Ad
(
(x− cj)τ

)
+τΛ0

0,j (cf. (7.18))

Here

(7.16) ∆+ := {kα ; α ∈ ∆+, k ∈ Z>0, suppα 3 α0},

∆(m) ⊂ ∆re
+ is given in (7.30) and Λ(λ) ∈ h̃p for λ = (λj,ν)j=0,...,p

ν=1,2,...
with λj,ν ∈ C is

defined as follows.

Definition 7.3. Fix a positive integer p which may be ∞. Put

(7.17) Ip := {0, (j, ν) ; j = 0, 1, . . . , p, ν = 1, 2, . . .} ⊂ I

for a positive integer p and I∞ = I.
Let hp be the R-vector space of finite linear combinations the elements of

Πp := {αi ; i ∈ Πp} and let h∨p be the C-vector space whose elements are linear
combinations of infinite or finite elements of Πp, which is identified with Πi∈IpCαi

and contains hp.
The element Λ ∈ h∨p naturally defines a linear form of hp by (Λ| · ) and the group

W̃∞ acts on h∨p . If p =∞, we assume that the element Λ = ξ0α0+
∑
ξj,ναj,ν ∈ h∨∞

always satisfies ξj,1 = 0 for sufficiently large j ∈ Z≥0. Hence we have naturally
h∨p ⊂ h∨p+1 and h∨∞ =

∪
j≥0 h

∨
j .

Define the elements of h∨p :

Λ0 :=
1

2
α0 +

1

2

p∑
j=0

∞∑
ν=1

(1− ν)αj,ν ,

Λj,ν :=

∞∑
i=ν+1

(ν − i)αj,i (j = 0, . . . , p, ν = 0, 1, 2, . . .),

Λ0 := 2Λ0 − 2Λ0,0 = α0 +

∞∑
ν=1

(1 + ν)α0,ν +

p∑
j=1

∞∑
ν=1

(1− ν)αj,ν ,

Λ0
j,k := Λj,0 − Λk,0 =

∞∑
ν=1

ν(αk,ν − αj,ν) (0 ≤ j < k ≤ p),

Λ(λ) := −Λ0 −
p∑

j=0

∞∑
ν=1

( ν∑
i=1

λj,i

)
αj,ν

= −Λ0 +

p∑
j=0

∞∑
ν=1

λj,ν(Λj,ν−1 − Λj,ν).

(7.18)

Under the above definition we have

(Λ0|α) = (Λ0
j,k|α) = 0 (∀α ∈ Πp),(7.19)

(Λj,ν |αj′,ν′) = δj,j′δν,ν′ (j, j′ = 0, 1, . . . , ν, ν′ = 1, 2, . . .),(7.20)

(Λ0|αi) = (Λj,0|αi) = δi,0 (∀i ∈ Πp),(7.21)

|{λm}| = (Λ(λ) + 1
2αm|αm),(7.22)
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s0(Λ(λ)) = −
( p∑
j=0

λj,1 − 1
)
α0 + Λ(λ)

= −µΛ0 − Λ0 −
∞∑
ν=1

( ν∑
i=1

(
λ0,i − (1 + δi,0)µ

))
α0,ν

−
p∑

j=1

∞∑
ν=1

( ν∑
i=1

(
λj,i + (1− δi,0)µ

))
αj,ν

(7.23)

with µ =
∑p

j=0 λj,1 − 1.

We identify the elements of h∨p if their difference are in CΛ0, namely, consider

them in h̃p := h∨p /CΛ0. Then the elements have the unique representatives in h∨p
whose coefficients of α0 equal − 1

2 .

Remark 7.4. i) If p <∞, we have

(7.24) {Λ ∈ h∨p ; (Λ|α) = 0 (∀α ∈ Πp)} = CΛ0 +

p∑
j=1

CΛ0
0,j .

ii) The invariance of the bilinear form ( | ) under the Weyl group W∞ proves
(5.15).

iii) The addition given in Theorem 5.2 i) corresponds to the map Λ(λ) 7→
Λ(λ) + τΛ0

0,j with τ ∈ C and 1 ≤ j ≤ p.
iv) Combining the action of sj,ν on h∨p with that of s0, we have

(7.25) Λ(λ′)− sα`
Λ(λ) ∈ CΛ0 and αm′ = sα`

αm when {λ′m′} = ∂`{λm}

because of (5.30) and (7.23).

Thus we have the following theorem.

Theorem 7.5. Under the above notation we have the commutative diagram{
Pm : Fuchsian differential operators with {λm}

}
→

{
(Λ(λ), αm) ; αm ∈ ∆+

}
↓ fractional operations � ↓W∞-action, +τΛ0

0,j{
Pm : Fuchsian differential operators with {λm}

}
→

{
(Λ(λ), αm) ; αm ∈ ∆+

}
.

Here Λ(λ) ∈ h̃, the Riemann schemes {λm} = {[λj,ν ](mj,ν)}j=0,...,p
ν=1,2,...

satisfy |{λm}| =

0 and the defining domain of w ∈W∞ is {α ∈ ∆+ ; wα ∈ ∆+}.

Proof. Let Ti denote the corresponding operation on {(Pm, {λm})} for si ∈
W∞ with i ∈ I. Then T0 corresponds to ∂1 and when i ∈ I ′, Ti is naturally
defined and it doesn’t change Pm. The fractional transformation of the Fuchsian
operators and their Riemann schemes corresponding to an element w ∈ W∞ is
defined through the expression of w by the product of simple reflections. It is clear
that the transformation of their Riemann schemes do not depend on the expression.

Let i ∈ I and j ∈ I. We want to prove that (TiTj)
k = id if (sisj)

k = id
for a non-negative integer k. Note that T 2

i = id and the addition commutes with
Ti. Since Ti = id if i ∈ I ′, we have only to prove that (Tj,1T0)

3 = id. Moreover
Proposition 5.8 assures that we may assume j = 0.

Let P be a Fuchsian differential operator with the Riemann scheme (4.15).
Applying suitable additions to P , we may assume λj,1 = 0 for j ≥ 1 to prove
(T0,1T0)

3P = P and then this easily follows from the definition of ∂1 (cf. (5.26))
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and the relation
∞ cj (1 ≤ j ≤ p)

[λ0,1](m0,1) [0](mj,1)

[λ0,2](m0,2) [λj,2](mj,2)

[λ0,ν ](m0,ν) [λj,ν ](mj,ν)

 (d = m0,1 + · · ·+mp,1 − ordm)

T0,1T0−−−−−→
∂1−λ0,1


∞ cj (1 ≤ j ≤ p)

[λ0,2 − λ0,1 + 1](m0,1) [0](mj,1−d)

[−λ0,1 + 2](m0,2−d) [λj,2 + λ0,1 − 1](mj,2)

[λ0,ν − λ0,1 + 1](m0,ν) [λj,ν + λ0,1 − 1](mj,ν)


T0,1T0−−−−−−−→

∂λ0,1−λ0,2


∞ cj (1 ≤ j ≤ p)

[−λ0,2 + 2](m0,1−d) [0](mj,1+m0,1−m0,2−d)

[λ0,1 − λ0,2 + 1](m0,1) [λj,2 + λ0,2 − 1](mj,2)

[λ0,ν − λ0,2 + 1](m0,ν) [λj,ν + λ0,2 − 1](mj,ν)


T0,1T0−−−−−→
∂λ0,2−1


∞ cj (1 ≤ j ≤ p)

[λ0,1](m0,1) [0](mj,1)

[λ0,2](m0,2) [λj,2](mj,2)

[λ0,ν ](m0,ν) [λj,ν ](mj,ν)


and (T0,1T0)

3P ∈ C[x] Ad(∂λ0,2−1) ◦ Ad(∂λ0,2−λ0,1) ◦ Ad(∂1− λ0,1)RP = C[x] RP .
�

Definition 7.6. For an element w of the Weyl group W∞ we put

(7.26) ∆(w) := ∆re
+ ∩ w−1∆re

− .

If w = si1si2 · · · sik with iν ∈ I is the minimal expression of w as the products of
simple reflections which means k is minimal by definition, we have

(7.27) ∆(w) =
{
αik , sik(αik−1

), siksik−1
(αik−2

), . . . , sik · · · si2(αi1)
}
.

The number of the elements of ∆(w) equals the number of the simple reflections
in the minimal expression of w, which is called the length of w and denoted by L(w).
The equality (7.27) follows from the following lemma.

Lemma 7.7. Fix w ∈ W∞ and i ∈ I. If αi ∈ ∆(w), there exists a minimal
expression w = si′1si′2 · · · si′k with si′k = si and L(wsi) = L(w) − 1 and ∆(wsi) =

si
(
∆(w) \ {αi}

)
. If αi /∈ ∆(w), L(wsi) = L(w) + 1 and ∆(wsi) = si∆(w) ∪ {αi}.

Moreover if v ∈W∞ satisfies ∆(v) = ∆(w), then v = w.

Proof. The proof is standard as in the case of classical root system, which
follows from the fact that the condition αi = sik · · · si`+1

(αi`) implies

(7.28) si = sik · · · si`+1
si`si`+1

· · · sik
and then w = wsisi = si1 · · · si`−1

si`+1
· · · siksi. �

Definition 7.8. For α ∈ Q, put

(7.29) h(α) := n0 +
∑
j≥0

∑
ν≥1

nj,ν if α = n0α0 +
∑
j≥0

∑
ν≥1

nj,ναj,ν ∈ Q.

Suppose m ∈ Pp+1 is irreducibly realizable. Note that sfm is the monotone
fundamental element determined by m, namely, αsfm is the unique element of
Wαm ∩

(
B ∪ {α0}

)
. We inductively define wm ∈ W∞ satisfying wmαm = αsfm.

We may assume wm′ has already defined if h(αm′) < h(αm). If m is not mono-
tone, there exists i ∈ I \ {0} such that (αm|αi) > 0 and then wm = wm′si with
αm′ = siαm. If m is monotone and m 6= fm, wm = w∂ms0.
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We moreover define

∆(m) := ∆(wm).(7.30)

Suppose m is monotone, irreducibly realizable and m 6= sfm. We define wm

so that there exists K ∈ Z>0 and v1, . . . , vK ∈W ′
∞ satisfying

wm = vKs0 · · · v2s0v1s0,
(vks0 · · · v1s0αm|α) ≤ 0 (∀α ∈ Π \ {0}, k = 1, . . . ,K),

(7.31)

which uniquely characterizes wm. Note that

(7.32) vks0 · · · v1s0αm = α(s∂)km (k = 1, . . . ,K).

The following proposition gives the correspondence between the reduction of
realizable tuples of partitions and the minimal expressions of the elements of the
Weyl group.

Proposition 7.9. Definition 7.8 naturally gives the product expression wm =
si1 · · · sik with iν ∈ I (1 ≤ ν ≤ k).

i) We have

L(wm) = k,(7.33)

(α|αm) > 0 (∀α ∈ ∆(m)),(7.34)

h(αm) = h(αsfm) +
∑

α∈∆(m)

(α|αm).(7.35)

Moreover α0 ∈ suppα for α ∈ ∆(m) if m is monotone.
ii) Suppose m is monotone and fm 6= m. Fix maximal integers νj such that

mj,1 − dmax(m) < mj,νj+1 for j = 0, 1, . . . Then

∆(m) = s0

(∏
j≥0
νj>0

sj,1 · · · sj,νj

)
∆(s∂m) ∪ {α0}

∪ {α0 + αj,1 + · · ·+ αj,ν ; 1 ≤ ν ≤ νj and j = 0, 1, . . .},

(7.36)

(α0 + αj,1 + · · ·+ αj,ν |αm) = dmax(m) +mj,ν+1 −mj,1 (ν ≥ 0).(7.37)

iii) Suppose m is not rigid. Then ∆(m) = {α ∈ ∆re
+ ; (α|αm) > 0}.

iv) Suppose m is rigid. Let α ∈ ∆re
+ satisfying (α|αm) > 0 and sα(αm) ∈ ∆+.

Then

(7.38)

{
α ∈ ∆(m) if (α|αm) > 1,

#
(
{α, αm − α} ∩∆(m)

)
= 1 if (α|αm) = 1.

Moreover if a root γ ∈ ∆(m) satisfies (γ|αm) = 1, then αm − γ ∈ ∆re
+ and α0 ∈

supp(αm − γ).
v) wm is the unique element with the minimal length satisfying wmαm = αsfm.

Proof. Since h(si′α)− h(α) = −(αi′ |α) = (si′αi′ |α), we have

h(si′` · · · si′1α)− h(α) =
∑̀
ν=1

(
h(si′ν · · · si′1α)− h(si′ν−1

· · · si′1α)
)

=
∑̀
ν=1

(αi′ν |si′ν · · · si′1α) =
∑̀
ν=1

(si′` · · · si′ν+1
αi′ν |si′` · · · si′1α)

for i′, i′ν ∈ I and α ∈ ∆.
i) We show by the induction on k. We may assume k ≥ 1. Put w′ = si1 · · · sik−1

and αm′ = sikαm and α(ν) = sik−1
· · · siν+1αiν for ν = 1, . . . , k − 1. The hypoth-

esis of the induction assures L(w′) = k − 1, ∆(m′) = {α(1), . . . , α(k − 1)} and
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(α(ν)|αm′) > 0 for ν = 1, . . . , k − 1. If L(wm) 6= k, there exists ` such that
αik = α(`) and wm = si1 · · · si`−1

si`+1
· · · sik−1

is a minimal expression. Then
h(αm) − h(αm′) = −(αik |αm′) = −(α(`)|αm′) < 0, which contradicts to the defi-
nition of wm. Hence we have i). Note that (7.34) implies suppα 3 α0 if α ∈ ∆(m)
and m is monotone.

ii) The equality (7.36) follows from

∆(∂m) ∩
∑

α∈Π\{0}

Zα = {αj,1 + · · ·+ αj,νj ; ν = 1, . . . , νj , νj > 0 and j = 0, 1, . . .}

because ∆(m) = s0∆(∂m) ∪ {α0} and
(∏

j≥0
νj>0

sj,νj · · · sj,1
)
α∂m = αs∂m.

The equality (7.37) follows from (α0|αm) = d1(m) = dmax(m) and (αj,ν |αm) =
mj,ν+1 −mj,ν .

iii) Note that γ ∈ ∆(m) satisfies (γ|αm) > 0.
Put wν = siν+1 · · · sik−1

sik for ν = 0, . . . , k. Then wm = w0 and ∆(m) =

{w−1
ν αiν ; ν = 1, . . . , k}. Moreover wν′w−1

ν αiν ∈ ∆re
− if and only if 0 ≤ ν′ < ν.

Suppose m is not rigid. Let α ∈ ∆re
+ with (α|αm) > 0. Since (wmα|αm) > 0,

wmα ∈ ∆re
− . Hence there exists ν such that wνα ∈ ∆+ and wν−1α ∈ ∆−, which

implies wνα = αiν and the claim.
iv) Suppose m is rigid. Let α ∈ ∆re

+ . Put ` = (α|αm). Suppose ` > 0
and β := sααm ∈ ∆+. Then αm = `α + β, α0 = `wmα + wmβ and (β|αm) =
(αm − `α|αm) = 2− `2. Hence if ` ≥ 2, Rβ ∩∆(m) = ∅ and the same argument as
in the proof of iii) assures α ∈ ∆(m).

Suppose ` = 1. There exists ν such that wνα or wνβ equals αiν . We may
assume w−1

ν α = αiν . Then α ∈ ∆(m).
Suppose there exists wν′β = αiν′ . We may assume ν′ < ν. Then wν′αm =

wν′−1α + wν′−1β ∈ ∆re
− , which contradicts to the definition of wν . Hence wν′β =

αiν′ for ν′ = 1, . . . , k and therefore β /∈ ∆(m).
Let γ = w−1

ν αiν ∈ ∆(m) and (γ|αm) = 1. Put β = αm − α = sααm. Then
wν−1αm = wνβ ∈ ∆re

+ . Since β /∈ ∆(m), we have β ∈ ∆re
+ .

Replacing m by sm, we may assume m is monotone to prove α0 ∈ suppβ.
Since (β|αm) = 1 and (αi|αm) ≤ 0 for i ∈ I \ {0}, we have α0 ∈ suppβ.

v) The uniqueness of wm follows from iii) when m is not rigid. It follows from
(7.34), Theorem 15.1 and Corollary 15.3 when m is rigid. �

Corollary 7.10. Let m, m′, m′′ ∈ P and k ∈ Z>0 such that

(7.39) m = km′ +m′′, idxm = idxm′′ and m′ is rigid.

Then m is irreducibly realizable if and only if so is m′′.
Suppose m is irreducibly realizable. If idxm ≤ 0 or k > 1, then m′ ∈ ∆(m).

If idxm = 2, then {αm′ , αm′′} ∩∆(m) = {αm′} or {αm′′}.

Proof. The assumption implies (αm|αm) = 2k2+2k(αm′ |αm′′)+ (αm′′ |αm′′)
and hence (αm′ |αm′′) = −k and sαm′αm′′ = αm. Thus we have the first claim
(cf. Theorem 7.5). The remaining claims follow from Proposition 7.9. �

Remark 7.11. i) In general, γ ∈ ∆(m) does not always imply sγαm ∈ ∆+.
Put m = 32, 32, 32, 32, m′ = 10, 10, 10, 10 and m′′ = 01, 01, 01, 01. Putting

v = s0,1s1,1s2,1s3,1, we have αm′ = α0, αm′′ = vα0, (αm′ |αm′′) = −2, s0αm′′ =
2αm′+αm′′ , vs0αm′′ = α0+2αm′′ and s0vs0vα0 = s0vs0αm′′ = 3αm′+2αm′′ = αm.

Then γ := s0vα0 = 2αm′ + αm′′ ∈ ∆(m), (γ|αm) = (s0vαm′ |s0vs0vαm′) =
(αm′ |s0vαm′) = (αm′ |2αm′ + αm′′) = 2 and sγ(αm) = (3αm′ + 2αm′′)− 2(2αm′ +
αm′′) = −αm′ ∈ ∆−.
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ii) Define

(7.40) [∆(m)] :=
{
(α|αm) ; α ∈ ∆(m)

}
.

Then [∆(m)] gives a partition of the non-negative integer h(αm)− h(sfm), which
we call the type of ∆(m). It follows from (7.35) that

(7.41) #∆(m) ≤ h(αm)− h(sfm)

for a realizable tuple m and the equality holds in the above if m is monotone and
simply reducible. Moreover we have

[∆(m)] = [∆(s∂m)] ∪ {d(m)} ∪
p∪

j=0

{mj,ν −mj,1 − d(m) ∈ Z>0 ; ν > 1},(7.42)

#∆(m) = #∆(s∂m) +

p∑
j=0

(
min

{
ν ; mj,ν > mj,1 − d(m)

}
− 1
)
+ 1,(7.43)

h(m) = h(sfm) +
∑

i∈[∆(m)]

i(7.44)

if m ∈ Pp+1 is monotone, irreducibly realizable and not fundamental. Here we use
the notation in Definitions 4.11, 5.7 and 6.15. For example,

type m h(αm) #∆(m)

Hn 1n, 1n, n− 11 n2 + 1 n2

EO2m 12m,mm,mm− 11 2m2 + 3m+ 1
(
2m
2

)
+ 4m

EO2m+1 12m+1,m+ 1m,mm1 2m2 + 5m+ 3
(
2m+1

2

)
+ 4m+ 2

X6 111111, 222, 42 29 28

21111, 222, 33 25 24

Pn n− 11, n− 11, . . . ∈ P(n)
n+1 2n+ 1 [∆(m)] : 1n+1·(n− 1)

P4,2m+1 m+ 1m,m+ 1m,m+ 1m,m+ 1m 6m+ 1 [∆(m)] : 14m · 2m

Suppose m ∈ Pp+1 is basic. We may assume (6.3). Suppose (αm|α0) = 0,
which is equivalent to

∑p
j=0mj,1 = (p− 1) ordm. Let kj be positive integers such

that

(7.45) (αm|αj,ν) = 0 for 1 ≤ ν < kj and (αm|αj,kj ) < 0,

which is equivalent to mj,1 = mj,2 = · · · = mj,kj > mj,kj+1 for j = 0, . . . , p. Then

(7.46)

p∑
j=0

1

kj
≥

p∑
j=0

mj,1

ordm
= p− 1.

If the equality holds in the above, we have kj ≥ 2 and mj,kj+1 = 0 and therefore

m is of one of the types D̃4 or Ẽ6 or Ẽ7 or Ẽ8. Hence if idxm < 0, the set
{kj ; 0 ≤ j ≤ p, kj > 1} equals one of the set ∅, {2}, {2, ν} with 2 ≤ ν ≤ 5, {3, ν}
with 3 ≤ ν ≤ 5, {2, 2, ν} with 2 ≤ ν ≤ 5 and {2, 3, ν} with 3 ≤ ν ≤ 5. In this case
the corresponding Dynkin diagram of {α0, αj,ν ; 1 ≤ ν < kj , j = 0, . . . , p} is one of
the types Aν with 1 ≤ ν ≤ 6, Dν with 4 ≤ ν ≤ 7 and Eν with 6 ≤ ν ≤ 8. Thus we
have the following remark.

Remark 7.12. Suppose a tuple m ∈ P(n)
p+1 is basic and monotone. The subgroup of

W∞ generated by reflections with respect to α` (cf. (7.13)) which satisfy (αm|α`) = 0
is infinite if and only if idxm = 0.

For a realizable monotone tuple m ∈ P, we define

(7.47) Π(m) := {αj,ν ∈ suppαm ; mj,ν = mj,ν+1} ∪

{
{α0} (d1(m) = 0),

∅ (d1(m) 6= 0).
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Note that the condition (αm|α`) = 0, which is equivalent to say that α` is a root of
the root space with the fundamental system Π(m), means that the corresponding
middle convolution ∂` keeps the spectral type invariant.

7.2. Fundamental tuples

We will prove some inequalities (7.48) and (7.49) for fundamental tuples which
are announced in [O6].

Proposition 7.13. Let m ∈ Pp+1 \ Pp be a fundamental tuple. Then

ordm ≤ 3| idxm|+ 6,(7.48)

ordm ≤ | idxm|+ 2 if p ≥ 3,(7.49)

p ≤ 1
2 | idxm|+ 3.(7.50)

Example 7.14. For a positive integer m we have special 4 elements

(7.51)
D

(m)
4 : m2,m2,m2,m(m− 1)1 E

(m)
6 : m3,m3,m2(m− 1)1

E
(m)
7 : (2m)2,m4,m3(m− 1)1 E

(m)
8 : (3m)2, (2m)3,m5(m− 1)1

with orders 2m, 3m, 4m and 6m, respectively, and index of rigidity 2− 2m.

Note that E
(m)
8 , D

(m)
4 and 11, 11, 11, · · · ∈ P(2)

p+1 attain the equalities (7.48),

(7.49) and (7.50), respectively.

Remark 7.15. It follows from the Proposition 7.13 that there exist only finite
basic tuples m ∈ P with a fixed index of rigidity under the normalization (6.3).
This result is given in [O6, Proposition 8.1] and a generalization is given in [HiO].

Hence Proposition 7.13 assures that there exist only finite fundamental uni-
versal Fuchsian differential operators with a fixed number of accessory parameters.
Here a fundamental universal Fuchsian differential operator means a universal oper-
ator given in Theorem 6.14 whose spectral type is fundamental (cf. Definition 6.15).

Now we prepare a lemma.

Lemma 7.16. Let a ≥ 0, b > 0 and c > 0 be integers such that a+ c− b > 0. Then

b+ kc− 6

(a+ c− b)b

{
< k + 1 (0 ≤ k ≤ 5),

≤ 7 (0 ≤ k ≤ 6).

Proof. Suppose b ≥ c. Then
b+ kc− 6

(a+ c− b)b
≤ b+ kb− 6

b
< k + 1.

Next suppose b < c. Then

(k + 1)(a+ c− b)b− (b+ kc− 6) ≥ (k + 1)(c− b)b− b− kc+ 6

≥ (k + 1)b− b− k(b+ 1) + 6 = 6− k.

Thus we have the lemma. �

Proof of Proposition 7.13. Since idx km = k2 idxm for a basic tuple m
and k ∈ Z>0, we may assume that m is basic and idxm ≤ −2 to prove the
proposition.

Fix a basic monotone tuple m. Put α = αm under the notation (7.12) and
n = ordm. Note that

(7.52) (α|α) = n(α|α0) +

p∑
j=0

nj∑
ν=1

nj,ν(α|αj,ν), (α|α0) ≤ 0, (α|αj,ν) ≤ 0.
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We first assume that (7.48) is not valid, namely,

(7.53) 3|(α|α)|+ 6 < n.

In view of (6.18), we have (α|α) < 0 and the assumption implies |(α|α0)| = 0
because |(α|α)| ≥ n|(α|α0)|.

Let Π0 be the connected component of {αi ∈ Π ; (α|αi) = 0 and αi ∈ suppα}
containing α0. Note that suppα generates a root system which is neither classical
nor affine but Π0 generates a root system of finite type.

Put J = {j ; ∃αj,ν ∈ suppαm such that (α|αj,ν) < 0} 6= ∅ and for each j ∈ J
define kj with the condition (7.45). Then we note that

(α|αj,ν) =

{
0 (1 ≤ ν < kj),

2nj,kj − nj,kj−1 − nj,kj+1 ≤ −1 (ν = kj).

Applying the above lemma to m by putting n = b + kjc and nj,ν = b + (kj − ν)c
(1 ≤ ν ≤ kj) and nj,kj+1 = a, we have

(7.54)
n− 6

(nj,kj−1 + nj,kj+1 − 2nj,kj )nj,kj

{
< kj + 1 (1 ≤ kj ≤ 5),

≤ 7 (1 ≤ kj ≤ 6).

Here (α|αj,kj ) = b − c − a ≤ −1 and we have |(α|α)| ≥ |(α|αj,ν)| > n−6
kj+1 if kj < 6

and therefore kj ≥ 3.
It follows from the condition kj ≥ 3 that m ∈ P3 because Π0 is of finite type

and moreover that Π0 is of exceptional type, namely, of type E6 or E7 or E8 because
suppα is not of finite type.

Suppose #J ≥ 2. We may assume {0, 1} ⊂ J and k0 ≤ k1. Since Π0 is
of exceptional type and suppα is not of finite type, we may assume k0 = 3 and
k1 ≤ 5. Owing to (7.52) and (7.54), we have

|(α|α)| ≥ n0,3(n0,2 + n0,4 − 2n0,3) + n1,k1(n1,k1−1 + n1,k1+1 − 2n1,k1)

> n−6
3+1 + n−6

5+1 >
n−6
3 ,

which contradicts to the assumption.
Thus we may assume J = {0}. For j = 1 and 2 let nj be the positive integer

such that αj,nj ∈ suppα and αj,nj+1 /∈ suppα. We may assume n1 ≥ n2.
Fist suppose k0 = 3. Then (n1, n2) = (2, 1), (3, 1) or (4, 1) and the Dynkin

diagram of suppα with the numbers mj,ν is one of the diagrams:

3m
·�������� 4m�������� 5m�������� 6m�������� 4m�������� 2m��������

3m��������
|(α|α)| ≥ 3m

0 < k < m

·
k�������� m

·�������� 2m�������� 3m�������� 4m�������� 3m�������� 2m�������� m��������
2m��������

|(α|α)| ≥ 2k(m− k)

m
·�������� 4m�������� 7m�������� 10m�������� 8m�������� 6m�������� 4m�������� 2m��������

5m��������
|(α|α)| ≥ 2m2

For example, when (n1, n2) = (3, 1), then k := m0,4 ≥ 1 because (α|α0,3) 6= 0 and
therefore 0 < k < m and |(α|α)| ≥ k(m−2k)+m(2m+k−2m) = 2k(m−k) ≥ 2m−2
and 3|(α|α)|+ 6− 4m ≥ 3(2m− 2) + 6− 4m > 0. Hence (7.53) does not hold.

Other cases don’t happen because of the inequalities 3 · 3m+ 6− 6m > 0 and
3 · 2m2 + 6− 10m > 0.
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Lastly suppose k0 > 3. Then (k0, n1, n2) = (4, 2, 1) or (5, 2, 1).

m < k < 2m

k
·�������� 2m

·�������� 3m�������� 4m�������� 5m�������� 6m�������� 4m�������� 2m��������
3m��������

|(α|α)| ≥ 2m

0 < k < m

k
·�������� m

·�������� 2m�������� 3m�������� 4m�������� 5m�������� 6m�������� 4m�������� 2m��������
3m��������

|(α|α)| ≥ 2(m− 1)

In the above first case we have (α|α)| ≥ 2m, which contradicts to (7.53). Note
that (|α|α)| ≥ k · (m− 2k) +m · k = 2k(m− k) ≥ 2(m− 1) in the above last case,
which also contradicts to (7.53) because 3 · 2(m− 1) + 6 = 6m.

Thus we have proved (7.48).
Assume m /∈ P3 to prove a different inequality (7.49). In this case, we may

assume (α|α0) = 0, |(α|α)| ≥ 2 and n > 4. Note that

(7.55) 2n = n0,1 + n1,1 + · · ·+ np,1 with p ≥ 3 and nj,1 ≥ 1 for j = 0, . . . , p.

If there exists j with 1 ≤ nj,1 ≤ n
2 − 1, (7.49) follows from (7.52) and |(α|αj,1)| =

nj,1(n+ nj,2 − 2nj,1) ≥ 2nj,1(
n
2 − nj,1) ≥ n− 2.

Hence we may assume nj,1 ≥ n−1
2 for j = 0, . . . , p. Suppose there exists j with

nj,1 = n−1
2 . Then n is odd and (7.55) means that there also exists j′ with j 6= j′

and nj′,1 = n−1
2 . In this case we have (7.49) since

|(α|αj,1)|+ |(α|αj′,1)| = nj,1(n+nj,2−2nj,1)+nj′,1(n+nj′,2−2nj,1) ≥ n−1
2 + n−1

2 .

Now we may assume nj,1 ≥ n
2 for j = 0, . . . , p. Then (7.55) implies that p = 3

and nj,1 = n
2 for j = 0, . . . , 3. Since (α|α) < 0, there exists j with nj,2 ≥ 1 and

|(α|αj,1)|+ |(α|αj,2)| = nj,1(n+ nj,2 − 2nj,1) + nj,2(nj,1 + nj,3 − 2nj,2)

= n
2nj,2 + nj,2(

n
2 + nj,3 − 2nj,2){

≥ n (nj,2 ≥ 1),

= n− 2 (nj,2 = 1 and nj,3 = 0).

Thus we have completed the proof of (7.49).
There are 4 basic tuples with the index of the rigidity 0 and 13 basic tuples

with the index of the rigidity −2, which are given in (6.18) and Proposition 6.10.
They satisfy (7.50).

Suppose that (7.50) is not valid. We may assume that p is minimal under
this assumption. Then idxm < −2, p ≥ 5 and n = ordm > 2. We may assume
n > n0,1 ≥ n1,1 ≥ · · · ≥ np,1 > 0. Since (α|α0) ≤ 0, we have

(7.56) n0,1 + n1,1 + · · ·+ np,1 ≥ 2n > n0,1 + · · ·+ np−1,1.

In fact, if n0,1+ · · ·+np−1,1 ≥ 2n, the tuple m′ = (m0, . . . ,mp−1) is also basic and
|(α|α)| − |(αm′ , αm′)| = n2 −

∑
ν≥1 n

2
p,ν ≥ 2, which contradicts to the minimality.

Thus we have 2nj,1 < n for j = 3, . . . , p. If n is even, we have | idxm| ≥∑p
j=3 |(α|αj,1)| =

∑p
j=3(n + nj,2 − 2nj,1) ≥ 2(p − 2), which contradicts to the

assumption. If n = 3, (7.56) assures p = 5 and n0,1 = · · · = n5,0 = 1 and therefore
idxm = −4, which also contradicts to the assumption. Thus n = 2m + 1 with
m ≥ 2. Choose k so that nk−1,1 ≥ m > nk,1. Then | idxm| ≥

∑p
j=k(α|αj,1)| =∑p

j=k(n+nj,2−2nj,1) ≥ 3(p−k+1). Owing to (7.56), we have 2(2m+1) > km+(p−
k) and k < 4m+2−p

m−1 ≤ 4m−3
m−1 ≤ 5, which means k ≤ 4, | idxm| ≥ 3(p− 3) ≥ 2p− 4

and a contradiction to the assumption. �



CHAPTER 8

Expression of local solutions

Fix m =
(
mj,ν

)
j=0,...,p
1≤ν≤nj

∈ Pp+1. Suppose m is monotone and irreducibly real-

izable. Let Pm be the universal operator with the Riemann scheme (4.15), which is
given in Theorem 6.14. Suppose c1 = 0 and m1,n1 = 1. We give expressions of the
local solution of Pmu = 0 at x = 0 corresponding to the characteristic exponent
λ1,n1 .

Theorem 8.1. Retain the notation above and in Definition 5.12. Suppose λj,ν are
generic. Let

(8.1) v(x) =

∞∑
ν=0

Cνx
λ(K)1,n1+ν

be the local solution of
(
∂KmaxPm

)
v = 0 at x = 0 with the condition C0 = 1. Put

(8.2) λ(k)j,max = λ(k)j,`(k)j .

Note that if m is rigid, then

(8.3) v(x) = xλ(K)1,n1

p∏
j=2

(
1− x

cj

)λ(K)j,max

.

The function

u(x) :=
K−1∏
k=0

Γ
(
λ(k)1,n1 − λ(k)1,max + 1

)
Γ
(
λ(k)1,n1

− λ(k)1,max + µ(k) + 1
)
Γ
(
−µ(k)

)
∫ s0

0

· · ·
∫ sK−1

0

K−1∏
k=0

(sk − sk+1)
−µ(k)−1

·
K−1∏
k=0

(( sk
sk+1

)λ(k)1,max
p∏

j=2

( 1− c−1
j sk

1− c−1
j sk+1

)λ(k)j,max
)

· v(sK)dsK · · · ds1
∣∣∣
s0=x

(8.4)

is the solution of Pmu = 0 so normalized that u(x) ≡ xλ1,n1 mod xλ1,n1+1O0.
Here we note that

K−1∏
k=0

(( sk
sk+1

)λ(k)1,max
p∏

j=2

( 1− c−1
j sk

1− c−1
j sk+1

)λ(k)j,max
)

=
s
λ(0)1,max

0

s
λ(K−1)1,max

K

p∏
j=1

(1− c−1
j s0)

λ(0)j,max

(1− c−1
j sK)λ(K−1)j,max

·
K−1∏
k=1

(
s
λ(k)1,max−λ(k−1)1,max

k

p∏
j=2

(1− c−1
j sk)

λ(k)j,max−λ(k−1)j,max

)
.

(8.5)
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When m is rigid,

u(x) = xλ1,n1

( p∏
j=2

(
1− x

cj

)λ(0)j,max
) ∑(

νj,k

)
2≤j≤p
1≤k≤K

∈Z(p−1)K
≥0

K−1∏
i=0

(
λ(i)1,n1 − λ(i)1,max + 1

)∑p
s=2

∑K
t=i+1 νs,t(

λ(i)1,n1 − λ(i)1,max + µ(i) + 1
)∑p

s=2

∑K
t=i+1 νs,t

·
K∏
i=1

p∏
s=2

(
λ(i− 1)s,max − λ(i)s,max

)
νs,i

νs,i!
·

p∏
s=2

( x
cs

)∑K
i=1 νs,i

.

(8.6)

When m is not rigid

u(x) = xλ1,n1

( p∏
j=2

(
1− x

cj

)λ(0)j,max
) ∞∑

ν0=0

∑(
νj,k

)
2≤j≤p
1≤k≤K

∈Z(p−1)K
≥0

K−1∏
i=0

(
λ(i)1,n1 − λ(i)1,max + 1

)
ν0+

∑p
s=2

∑K
t=i+1 νs,t(

λ(i)1,n1 − λ(i)1,max + µ(i) + 1
)
ν0+

∑p
s=2

∑K
t=i+1 νs,t

·
p∏

s=2

(
λ(K − 1)s,max

)
νs,K

νs,K !
·
K−1∏
i=1

p∏
s=2

(
λ(i− 1)s,max − λ(i)s,max

)
νs,i

νs,i!

· Cν0x
ν0

p∏
s=2

( x
cs

)∑K
i=1 νs,i

.

(8.7)

Fix j and k and suppose

(8.8)

{
`(k − 1)j = `(k)ν when m is rigid or k < K,

`(k − 1)j = 0 when m is not rigid and k = K.

Then the terms satisfying νj,k > 0 vanish because (0)νj,k
= δ0,νj,k

for νj,k =
0, 1, 2, . . ..

Proof. The theorem follows from (5.26), (5.27), (5.28), (3.2) and (3.6) by the
induction on K. Note that the integral representation of the normalized solution
of
(
∂maxP

)
v = 0 corresponding to the exponent λ(1)n1 equals

v(x) :=

K−1∏
k=1

Γ
(
λ(k)1,n1

− λ(k)1,max + 1
)

Γ
(
λ(k)1,n1 − λ(k)1,max + µ(k) + 1

)
Γ
(
−µ(k)

)
·
∫ s1

0

· · ·
∫ sK−1

0

K−1∏
k=0

(sk − sk+1)
−µ(k)−1

·
K−1∏
k=0

(( sk
sk+1

)λ(k)1,max
p∏

j=2

( 1− c−1
j sk

1− c−1
j sk+1

)λ(k)j,max
)

· v(sK)dsK · · · ds1
∣∣∣
s1=x

≡ xλ(1)1,n1 mod xλ(1)1,n1+1O0
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by the induction hypothesis and the normalized solution of Pu = 0 corresponding
to the exponent λ1,n1 equals

Γ
(
λ(0)1,n1 − λ(0)1,max + 1

)
Γ
(
λ(0)1,n1 − λ(0)1,max + µ(0) + 1

)
Γ
(
−µ(0)

)
·
∫ x

0

(x− s0)−µ(0)−1x
−λ(0)1,max

s
−λ(0)1,max

0

p∏
j=2

( 1− c−1
j x

1− c−1
j s0

)−λ(0)j,max

v(s0)ds0

and hence we have (8.4). Then the integral expression (8.4) with (8.5), (3.2) and
(3.6) inductively proves (8.6) and (8.7). �

Example 8.2 (Gauss hypergeometric equation). The reduction (10.54) shows

λ(0)j,ν = λj,ν , m(0)j,ν = 1 (0 ≤ j ≤ 2, 1 ≤ ν ≤ 2), µ(0) = −λ0,2 − λ1,2 − λ2,2,
m(1)j,1 = 0, m(1)j,2 = 1 (j = 0, 1, 2),

λ(1)0,1 = λ0,1 + 2λ0,2 + 2λ1,2 + 2λ2,2, λ(1)1,1 = λ1,1, λ(1)2,1 = λ2,1,

λ(1)0,2 = 2λ0,2 + λ1,2 + λ2,2, λ(1)1,2 = −λ0,2 − λ2,2, λ(1)2,2 = −λ0,2 − λ1,2
and therefore

λ(0)1,n1 − λ(0)1,max + µ(0) + 1 = λ1,2 − λ1,1 − (λ0,2 + λ1,2 + λ2,2) + 1

= λ0,1 + λ1,2 + λ2,1,

λ(0)2,max − λ(1)2,max = λ(0)2,1 − λ(1)2,2 = λ2,1 + λ0,2 + λ1,2.

Hence (8.4) says that the normalized local solution corresponding to the character-
istic exponent λ1,2 with c1 = 0 and c2 = 1 equals

u(x) =
Γ
(
λ1,2 − λ1,1 + 1

)
xλ1,1(1− x)λ2,1

Γ
(
λ0,1 + λ1,2 + λ2,1

)
Γ
(
λ0,2 + λ1,2 + λ2,2

)∫ x

0

(x− s)λ0,2+λ1,2+λ2,2−1s−λ0,2−λ1,1−λ2,2(1− s)−λ0,2−λ1,2−λ2,1ds

(8.9)

and moreover (8.6) says

u(x) = xλ1,2(1− x)λ2,1

∞∑
ν=0

(λ0,1 + λ1,2 + λ2,1)ν(λ0,2 + λ1,2 + λ2,1)ν
(λ1,2 − λ1,1 + 1)νν!

xν .(8.10)

Note that u(x) = F (a, b, c;x) when

(8.11)

x =∞ 0 1
λ0,1 λ1,1 λ2,1
λ0,2 λ1,2 λ2,2

 =

x =∞ 0 1
a 1− c 0
b 0 c− a− b

 .

The integral expression (8.9) is based on the minimal expression w = s0,1s1,1s1,2s0
satisfying wαm = α0. Here αm = 2α0 +

∑2
j=0 αj,1. When we replace w and its

minimal expression by w′ = s0,1s1,1s1,2s0s0,1 or w′′ = s0,1s1,1s1,2s0s2,1, we get the
different integral expressions

u(x) =
Γ
(
λ1,2 − λ1,1 + 1

)
xλ1,1(1− x)λ2,1

Γ
(
λ0,2 + λ1,2 + λ2,1

)
Γ
(
λ0,1 + λ1,2 + λ2,2

)∫ x

0

(x− s)λ0,1+λ1,2+λ2,2−1s−λ0,1−λ1,1−λ2,2(1− s)−λ0,1−λ1,2−λ2,1ds

=
Γ
(
λ1,2 − λ1,1 + 1

)
xλ1,1(1− x)λ2,2

Γ
(
λ0,1 + λ1,2 + λ2,2

)
Γ
(
λ0,2 + λ1,2 + λ2,1

)∫ x

0

(x− s)λ0,2+λ1,2+λ2,1−1s−λ0,2−λ1,1−λ2,1(1− s)−λ0,2−λ1,2−λ2,2ds.

(8.12)
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These give different integral expressions of F (a, b, c;x) under (8.11).
Since sα0+α0,1+α0,2αm = αm, we havex =∞ 0 1

a 1− c 0
b 0 c− a− b

 xc−1

−−−→

 x =∞ 0 1
a− c+ 1 0 0
b− c+ 1 c− 1 c− a− b


∂c−d

−−−→

 x =∞ 0 1
a− d+ 1 0 0
b− d+ 1 d− 1 d− a− b

 x1−d

−−−→

x =∞ 0 1
a 1− d 0
b 0 d− a− b


and hence (cf. (3.6))

(8.13) F (a, b, d;x) =
Γ(d)x1−d

Γ(c)Γ(d− c)

∫ x

0

(x− s)d−c−1sc−1F (a, b, c; s)ds.

Remark 8.3. The integral expression of the local solution u(x) as is given in
Theorem 8.1 is obtained from the expression of the element w of W∞ satisfying
wαm ∈ B ∪ {α0} as a product of simple reflections and therefore the integral
expression depends on such element w and the expression of w as such product. The
dependence on w seems non-trivial as in the preceding example but the dependence
on the expression of w as a product of simple reflections is understood as follows.

First note that the integral expression doesn’t depend on the coordinate trans-
formations x 7→ ax and x 7→ x+ b with a ∈ C× and b ∈ C. Since∫ x

c

(x− t)µ−1φ(t)dt = −
∫ 1

x

1
c

(x− 1
s )

µ−1φ( 1s )s
−2ds

= −(−1)µ−1xµ−1

∫ 1
x

1
c

( 1x − s)
µ−1( 1s )

µ+1φ( 1s )ds,

we have

(8.14) Iµc (φ) = −(−1)µ−1xµ−1
(
Ix1

c

(
xµ+1φ(x)

)∣∣
x 7→ 1

x

)∣∣∣
x→ 1

x

,

which corresponds to (5.11). Here the value (−1)µ−1 depends on the branch of the
value of (x− 1

s )
µ−1 and that of xµ−1x1−µ( 1x − s)

µ−1.
Hence the argument as in the proof of Theorem 7.5 shows that the dependence

on the expression of w by a product of simple reflections can be understood by the
identities (8.14) and Iµ1

c Iµ2
c = Iµ1+µ2

c (cf. (3.4)) etc.



CHAPTER 9

Monodromy

The transformation of monodromy generators for irreducible Fuchsian systems
of Schlesinger canonical form under the middle convolution or the addition is stud-
ied by [Kz] and [DR, DR2] etc. A non-zero homomorphism of an irreducible single
Fuchsian differential equation to an irreducible system of Schlesinger canonical form
induces the isomorphism of their monodromies of the solutions (cf. Remark 1.14).
In particular since any rigid local system is realized by a single Fuchsian differen-
tial equation, their monodromies naturally coincide with each other through the
correspondence of their monodromy generators. The correspondence between the
local monodromies and the global monodromies is described by [DR2], which we
will review.

9.1. Middle convolution of monodromies

For given matrices Aj ∈M(n,C) for j = 1, . . . , p the Fuchsian system

(9.1)
dv

dx
=

p∑
j=1

Aj

x− cj
v

of Schlesinger canonical form (SCF) is defined. Put A0 = −A1 − · · · − Ap and
A = (A0, A1, . . . , Ap) which is an element of

(9.2) M(n,C)p+1
0 := {(C0, . . . , Cp) ∈M(n,C)p+1 ; C0 + · · ·+ Cp = 0},

The Riemann scheme of (9.1) is defined by
(9.3)

x = c0 =∞ c1 · · · cp
[λ0,1]m0,1 [λ1,1]m1,1 · · · [λp,1]mp,1

...
...

...
...

[λ0,n0 ]m0,n0
[λ1,n1 ]m1,n1

· · · [λp,np ]mp,1

 , [λ]k :=

λ...
λ

 ∈M(1, k,C)

if

Aj ∼ L(mj,1, . . . ,mj,nj ;λj,1, . . . , λj,nj ) (j = 0, . . . , p)

under the notation (4.33). Here the Fuchs relation equals

(9.4)

p∑
j=0

nj∑
ν=1

mj,νλj,ν = 0.

We define that A is irreducible if a subspace V of Cn satisfies AjV ⊂ Aj for
j = 0, . . . , p, then V = {0} or V = Cn. In general, A = (A0, . . . , Ap), A′ =
(A′

0, . . . , A
′
p) ∈ M(n,C)p+1, we denote by A ∼ A′ if there exists U ∈ GL(n,C)

such that A′
j = UAjU

−1 for j = 0, . . . , p.

For (µ0, . . . , µp) ∈ Cp+1 with µ0+· · ·+µp = 0, the additionA′ = (A′
0, . . . , A

′
p) ∈

M(n,C)p+1
0 of A with respect to (µ0, . . . , µp) is defined by A′

j = Aj + µj for
j = 0, . . . , p.

85
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For a complex number µ the middle convolution Ā := mcµ(A) of A is defined
by Āj = Āj(µ) for j = 1, . . . , p and Ā0 = −Ā1 − · · · − Āp under the notation in
§1.5. Then we have the following theorem.

Theorem 9.1 ([DR, DR2]). Suppose that A satisfies the conditions∩
1≤j≤p
j 6=i

kerAj ∩ ker(A0 − τ) = {0} (i = 1, . . . , p, ∀τ ∈ C),(9.5)

∩
1≤j≤p
j 6=i

ker tAj ∩ ker(tA0 − τ) = {0} (i = 1, . . . , p, ∀τ ∈ C).(9.6)

i) The tuple mcµ(A) = (Ā0, . . . , Āp) also satisfies the same conditions as above
with replacing Aν by Āν for ν = 0, . . . , p, respectively. Moreover we have

mcµ(A) ∼ mcµ(A′) if A ∼ A′,(9.7)

mcµ′ ◦mcµ(A) ∼ mcµ+µ′(A),(9.8)

mc0(A) ∼ A(9.9)

and mcµ(A) is irreducible if and only if A is irreducible.
ii) (cf. [O6, Theorem 5.2]) Assume

(9.10) µ = λ0,1 6= 0 and λj,1 = 0 for j = 1, . . . , p

and

λj,ν = λj,1 implies mj,ν ≤ mj,1(9.11)

for j = 0, . . . , p and ν = 2, . . . , nj. Then the Riemann scheme of mcµ(A) equals

x =∞ c1 · · · cp
[−µ]m0,1−d [0]m1,1−d · · · [0]mp,1−d

[λ0,2 − µ]m0,2 [λ1,2 + µ]m1,2 · · · [λp,2 + µ]mp,2

...
...

...
...

[λ0,n0 − µ]m0,n0
[λ1,n1 + µ]m1,n1

· · · [λp,np + µ]mp,1


(9.12)

with

d := m0,1 + · · ·+mp,1 − (p− 1) ordm.(9.13)

Example 9.2. The addition of

mc−λ0,1−λ1,2−λ2,2({λ0,2 − λ0,1, λ0,1 + λ1,1 + λ2,2, λ0,1 + λ1,2 + λ2,1})
with respect to (−λ1,2 − λ2,2, λ1,2, λ2,2) give the Fuchsian system of Schlesinger
canonical form

du

dx
=
A1

x
u+

A2

x− 1
u,

A1 =

(
λ1,1 λ0,1 + λ1,2 + λ2,1

λ1,2

)
and A2 =

(
λ2,2

λ0,1 + λ1,1 + λ2,2 λ2,1

)
.

with the Riemann schemex =∞ 0 1
λ0,1 λ1,1 λ2,1
λ0,2 λ1,2 λ2,2

 (λ0,1 + λ0,2 + λ1,1 + λ1,2 + λ2,1 + λ2,2 = 0).

The system is invariant as W (x;λj,ν)-modules under the transformation λj,ν 7→
λj,3−ν for j = 0, 1, 2 and ν = 1, 2.

Suppose λj,ν are generic complex numbers under the condition λ0,1 + λ1,2 +
λ2,1 = λ0,2+λ1,1+λ2,2 = 0. Then A1 and A2 have a unique simultaneous eigenspace.
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In fact, A1

(
0
1

)
= λ1,2

(
0
1

)
and A2

(
0
1

)
= λ2,1

(
0
1

)
. Hence the system is not invariant

as W (x)-modules under the transformation above and A is not irreducible in this
case.

To describe the monodromies, we review the multiplicative version of these
operations.

Let M = (M0, . . . ,Mp) be an element of

(9.14) GL(n,C)p+1
1 := {(G0, . . . , Gp) ∈ GL(n,C)p+1 ; Gp · · ·G0 = In}.

For (ρ0, . . . , ρp) ∈ Cp+1 satisfying ρ0 · · · ρp = 1, themultiplication ofM with respect
to ρ is defined by (ρ0M0, . . . , ρpMp).

For a given ρ ∈ C×, we define M̃j =
(
Mj,ν,ν′

)
1≤ν≤n
1≤ν′≤p

∈ GL(pn,C) by

M̃j,ν,ν′ =


δν,ν′In (ν 6= j),

Mν′ − 1 (ν = j, 1 ≤ ν′ ≤ j − 1),

ρMj (ν = ν′ = j),

ρ(Mν′ − 1) (ν = j, j + 1 ≤ ν′ ≤ p).

Let M̄j denote the quotient M̃j |Cpn/V of

(9.15) M̃j =



In
. . .

M1 − 1 · · · ρMj · · · ρ(Mp − 1)
. . .

In

 ∈ GL(pn,C)

for j = 1, . . . , p and M0 = (Mp . . .M1)
−1. The tuple MCρ(M) = (M̄0, . . . , M̄p) is

called (the multiplicative version of) the middle convolution of M with respect to

ρ. Here V := ker(M̃ − 1) +
∩p

j=1 ker(M̃j − 1) with

M̃ :=

M1

. . .

Mp

 .

Then we have the following theorem.

Theorem 9.3 ([DR, DR2]). Let M = (M0, . . . ,Mp) ∈ GL(n,C)p+1
1 . Suppose∩

1≤ν≤p
ν≤i

ker(Mν − 1) ∩ ker(Mi − τ) = {0} (1 ≤ i ≤ p, ∀τ ∈ C×),(9.16)

∩
1≤ν≤p
ν≤i

ker(tMν − 1) ∩ ker(tMi − τ) = {0} (1 ≤ i ≤ p, ∀τ ∈ C×).(9.17)

i) The tuple MCρ(M) = (M̄0, . . . , M̄p) also satisfies the same conditions as
above with replacing Mν by M̄ν for ν = 0, . . . , p, respectively. Moreover we have

MCρ(M) ∼ MCρ(M
′) if M ∼M′,(9.18)

MCρ′ ◦MCρ(M) ∼ MCρρ′(M),(9.19)

MC1(M) ∼M(9.20)

and MCρ(M) is irreducible if and only if M is irreducible.
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ii) Assume

Mj ∼ L(mj,1, . . . ,mj,nj ; ρj,1, . . . , ρj,nj ) for j = 0, . . . , p,(9.21)

ρ = ρ0,1 6= 1 and ρj,1 = 1 for j = 1, . . . , p(9.22)

and

ρj,ν = ρj,1 implies mj,ν ≤ mj,1(9.23)

for j = 0, . . . , p and ν = 2, . . . , nj. In this case, we say that M has a spectral type
m := (m0, . . . ,mp) with mj = (mj,1, . . . ,mj,nj ).

Putting (M̄0, . . . , M̄p) = MCρ(M0, . . . ,Mp), we have
(9.24)

M̄j ∼

{
L(m0,1 − d,m0,2, . . . ,m0,n0 ; ρ

−1, ρ−1ρ0,2, . . . ρ
−1ρ0,n0) (j = 0),

L(mj,1 − d,mj,2, . . . ,mj,nj ; 1, ρρj,2, . . . ρρj,nj ) (j = 1, . . . , p).

Here d is given by (9.13).

Remark 9.4. i) We note that some mj,1 may be zero in Theorem 9.1 and Theo-
rem 9.3.

ii) It follows from Theorem 9.1 (resp. Theorem 9.3) and Scott’s lemma that any

irreducible tuple A ∈ M(n,C)p+1
0 (resp. M ∈ GL(n,C)p+1

1 ) can be connected by
successive applications of middle convolutions and additions (resp. multiplications)
to an irreducible tuple whose spectral type m̄ satisfies ord m̄ = 1 or dmax(m̄) ≤ 0.
Moreover the spectral type of an irreducible tuple M or A is irreducibly realizable
in the sense in Definition 4.16 (cf. [Ko], [CB], [O6]),

Definition 9.5. Let M = (M0, . . . ,Mp) ∈ GL(n,C)p+1
1 . Suppose (9.21). Fix

` = (`0, . . . , `p) ∈ Zp+1
≥1 and define ∂`M as follows.

ρj :=

{
ρj,`j (0 ≤ j ≤ p, 1 ≤ `j ≤ nj),
any complex number (0 ≤ j ≤ p, nj < `j),

ρ := ρ0ρ1 . . . ρp,

(M ′
0, . . . ,M

′
p) := MCρ(ρ1 · · · ρpM0, ρ

−1
1 M1, ρ

−1
2 M2, . . . , ρ

−1
p Mp),

∂`M := (ρ−1
1 · · · ρ−1

p M ′
0, ρ1M

′
1, ρ2M2,

′ . . . , ρpM
′
p).

Here we note that if ` = (1, . . . , 1) and ρj,1 = 1 for j = 2, . . . , p, ∂`M = MCρ(M).

Let u(1), . . . , u(n) be independent solutions of (9.1) at a generic point q. Let
γj be a closed path around cj as in the following figure. Denoting the result of
the analytic continuation of ũ := (u(1), . . . , u(n)) along γj by γj(ũ), we have a
monodromy generator Mj ∈ GL(n,C) such that γj(ũ) = ũMj . We call the tuple
M = (M0, . . . ,Mp) the monodromy of (9.1) with respect to ũ and γ0, . . . , γp. The
connecting path first going along γi and then going along γj is denoted by γi ◦ γj .

(9.25)

γi ◦ γj(ũ) = γj(ũMi)

= γj(ũ)Mi

= ũMjMi,

MpMp−1 · · ·M1M0 = In.WVUTPQRS×c0 WVUTPQRSc1× ONMLHIJK×
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The following theorem says that the monodromy of solutions of the system
obtained by a middle convolution of the system (9.1) is a multiplicative middle
convolution of that of the original system (9.1).

Theorem 9.6 ([DR2]). Let Mon(A) denote the monodromy of the equation (9.1).
Put M = Mon(A). Suppose M satisfies (9.16) and (9.17) and

rank(A0 − µ) = rank(M0 − e2π
√
−1µ),(9.26)

rank(Aj) = rank(Mj − 1)(9.27)

for j = 1, . . . , p, then

(9.28) Mon
(
mcµ(A)

)
∼ MCe2π

√
−1µ

(
Mon(A)

)
.

Let F be a space of (multi-valued) holomorphic functions on C \ {c1, . . . , cp}
valued in Cn such that F satisfies (2.15), (2.16) and (2.17). For example the
solutions of the equation (9.1) defines F . Fixing a base u =

(
u(1), . . . , u(n)

)
of

F(U) with U 3 q, we can define monodromy generators (M0, . . . ,Mp). Fix µ ∈ C
and put ρ = e2π

√
−1µ and

vj(x) =


∫ (x+,cj+,x−,cj−) u(t)(x−t)µ−1

t−c1
dt

...∫ (x+,cj+,x−,cj−) u(t)(x−t)µ−1

t−cp
dt

 and v(x) =
(
v1(x), . . . , vp(x)

)
.

Then v(x) is a holomorphic function valued inM(pn,C) and the pn column vectors

of v(x) define a convolution F̃ of F and the following facts are shown by [DR2].

The monodromy generators of F̃ with respect to the base v(x) equals the

convolution M̃ = (M̃0, . . . , M̃1) of M given by (9.15) and if F corresponds to the

space of solutions of (1.79), F̃ corresponds to that of the system of Schlesinger

canonical form defined by
(
Ã0(µ), . . . , Ãp(µ)

)
in (1.81), which we denote byMÃ.

The middle convolution MCρ(M) of M is the induced monodromy generators
on the quotient space of Cpn/V where V is the maximal invariant subspace such the

restriction of M̃ on V is a direct sum of finite copies of 1-dimensional spaces with

the actions (ρ−1, 1, . . . , 1,

j
`
ρ, 1, . . . , 1) ∈ GL(1,C)p+1

1 (j = 1, . . . , p) and (1, 1, . . . , 1).
The system defined by the middle convolutionmcµ(A) is the quotient of the system
MÃ by the maximal submodule such that the submodule is a direct sum of finite

copies of the equations (x− cj)dwdx = µw (j = 1, . . . , p) and dw
dx = 0.

Suppose M and MCρ(M) are irreducible and ρ 6= 1. Assume φ(x) is a function
belonging to F such that it is defined around x = cj and corresponds to the
eigenvector of the monodromy matrix Mj with the eigenvalue different from 1.

Then the holomorphic continuation of Φ(x) =
∫ (x+,cj+,x−,cj−) φ(t)(t−x)µ

t−cj
dt defines

the monodromy isomorphic to MCρ(M).

Remark 9.7. We can define the monodromy M = (M0, . . . ,Mp) of the universal
model Pmu = 0 (cf. Theorem 6.14) so that M is entire holomorphic with respect
to the spectral parameters λj,ν and the accessory parameters gi under the nor-

malization u(j)(ν−1)(q) = δj,ν for j, ν = 1, . . . , n and q ∈ C \ {c1, . . . , cp}. Here
u(1), . . . , u(n) are solutions of Pmu = 0.

Definition 9.8. Let P be a Fuchsian differential operator with the Riemann scheme
(4.15) and the spectral type m =

(
mj,ν

)
0≤j≤p
1≤ν≤nj

. We define that P is locally non-

degenerate if the tuple of the monodromy generators M := (M0, . . . ,Mp) satisfies

(9.29) Mj ∼ L(mj,1, . . . ,mj,nj ; e
2π

√
−1λj,1 , . . . , e2π

√
−1λj,nj ) (j = 0, . . . , p),
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which is equivalent to the condition that

(9.30) dimZ(Mj) = m2
j,1 + · · ·+m2

j,nj
(j = 0, . . . , p).

Suppose m is irreducibly realizable. Let Pm be the universal operator with the
Riemann scheme (4.15). We say that the parameters λj,ν and gi are locally non-
degenerate if the corresponding operator is locally non-degenerate.

Note that the parameters are locally non-degenerate if

λj,ν − λj,ν′ /∈ Z (j = 0, . . . , p, 1 ≤ ν < ν′ ≤ nj).

Define Pt as in Remark 4.4 iv). Then we can define monodromy generator Mt

of Pt at x = cj so that Mt holomorphically depend on t (cf. Remark 9.7). Then
Remark 4.13 v) proves that (9.30) implies (9.29) for every j.

The following proposition gives a sufficient condition such that an operator is
locally non-degenerate.

Proposition 9.9. Let P be a Fuchsian differential operator with the Riemann
scheme (4.15) and let Mj be the monodromy generator at x = cj. Fix an integer j
with 0 ≤ j ≤ p. Then the condition

λj,ν − λj,ν′ /∈ Z or (λj,ν − λj,ν′)(λj,ν +mj,ν − λj,ν′ −mj,ν′) ≤ 0

for 1 ≤ ν ≤ nj and 1 ≤ ν′ ≤ nj
(9.31)

implies dimZ(Mj) = m2
j,1 + · · ·+m2

j,nj
. In particular, P is locally non-degenerate

if (9.31) is valid for j = 0, . . . , p.
Here we remark that the following condition implies (9.31).

(9.32) λj,ν − λj,ν′ /∈ Z \ {0} for 1 ≤ ν ≤ nj and 1 ≤ ν′ ≤ nj .

Proof. For µ ∈ C we put

Nµ =
{
ν ; 1 ≤ ν ≤ nj , µ ∈ {λj,ν , λj,ν + 1, . . . , λj,ν +mj,ν − 1}

}
.

If Nµ > 0, we have a local solution uµ,ν(x) of the equation Pu = 0 such that

(9.33) uµ,ν(x) = (x− cj)µ logν(x− cj) +Ocj (µ+ 1, Lν) for ν = 0, . . . , Nµ − 1.

Here Lν are positive integers and if j = 0, then x and x− cj should be replaced by
y = 1

x and y, respectively.

Suppose (9.31). Put ρ = e2πµi, m′
ρ = {mj,ν ; λj,ν − µ ∈ Z} and m′

ρ =
{m′

ρ,1, . . . ,m
′
ρ,nρ
} with m′

ρ,1 ≥ m′
ρ,2 ≥ · · · ≥ m′

ρ,nρ
≥ 1. Then (9.31) implies

(9.34) n− rank(Mj − ρ)k ≤

{
m′

ρ,1 + · · ·+m′
ρ,k (1 ≤ k ≤ nρ),

m′
ρ,1 + · · ·+m′

ρ,nρ
(nρ < k).

The above argument proving (9.29) under the condition (9.30) shows that the left
hand side of (9.34) is not smaller than the right hand side of (9.34). Hence we
have the equality in (9.34). Thus we have (9.30) and we can assume that Lν = ν
in (9.33). �

Theorem 9.3, Theorem 9.6 and Proposition 3.1 show the following corollary.
One can also prove it by the same way as in the proof of [DR2, Theorem 4.7].

Corollary 9.10. Let P be a Fuchsian differential operator with the Riemann
scheme (4.15). Let Mon(P ) denote the monodromy of the equation Pu = 0. Put
Mon(P ) = (M0, . . . ,Mp). Suppose

(9.35) Mj ∼ L(mj,1, . . . ,mj,nj ; e
2π

√
−1λj,1 , . . . , e2π

√
−1λj,nj ) for j = 0, . . . , p.
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In this case, P is said to be locally non-degenerate. Under the notation in Defini-
tion 5.7, we fix ` ∈ Zp+1

≥1 and suppose (5.24). Assume moreover

µ` /∈ Z,(9.36)

mj,ν ≤ mj,`j or λj,`j − λj,ν /∈ Z (j = 0, . . . , p, ν = 1, . . . , nj).(9.37)

Then we have

(9.38) Mon(∂`P ) ∼ ∂` Mon(P ).

In particular, Mon(P ) is irreducible if and only if Mon(∂`P ) is irreducible.

9.2. Scott’s lemma and Katz’s rigidity

The results in this section are known but we will review them with their proof
for the completeness of this paper.

Lemma 9.11 (Scott [Sc]). Let M ∈ GL(n,C)p+1
1 and A ∈M(n,C)p+1

0 under the
notation (9.2) and (9.14). Then

p∑
j=0

codimker(Mj − 1) ≥ codim

p∩
j=0

ker(Mj − 1) + codim

p∩
j=0

ker(tMj − 1),(9.39)

p∑
j=0

codimkerAj ≥ codim

p∩
j=0

kerAj + codim

p∩
j=0

ker tAj .(9.40)

In particular, if M and A are irreducible, then

p∑
j=0

dimker(Mj − 1) ≤ (p− 1)n,(9.41)

p∑
j=0

dimkerAj ≤ (p− 1)n.(9.42)

Proof. Consider the following linear maps:

V = Im(M0 − 1)× · · · × Im(Mp − 1) ⊂ Cn(p+1),

β : Cn → V, v 7→ ((M0 − 1)v, . . . , (Mp − 1)v),

δ : V → Cn, (v0, . . . , vp) 7→Mp · · ·M1v0 +Mp · · ·M2v1 + · · ·+Mpvp−1 + vp.

Since Mp · · ·M1(M0− 1)+ · · ·+Mp(Mp−1− 1)+ (Mp− 1) =Mp · · ·M1M0− 1 = 0,
we have δ ◦ β = 0. Moreover we have

p∑
j=0

Mp · · ·Mj+1(Mj − 1)vj =

p∑
j=0

(
1 +

p∑
ν=j+1

(Mν − 1)Mν−1 · · ·Mj+1

)
(Mj − 1)vj

=

p∑
j=0

(Mj − 1)vj +

p∑
ν=1

ν−1∑
i=0

(Mν − 1)Mν−1 · · ·Mi+1(Mi − 1)vi

=

p∑
j=0

(Mj − 1)
(
vj +

j−1∑
i=0

Mj−1 · · ·Mi+1(Mi − 1)vi

)
and therefore Im δ =

∑p
j=0 Im(Mj − 1). Hence

dim Im δ = rank(M0 − 1, . . . ,Mp − 1) = rank


tM0 − 1

...
tMp − 1
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and

p∑
j=0

codimker(Mj − 1) = dimV = dimker δ + dim Im δ

≥ dim Imβ + dim Im δ

= codim

p∩
j=0

ker(Mj − 1) + codim

p∩
j=0

ker(tMj − 1).

Putting

V = ImA0 × · · · × ImAp ⊂ Cn(p+1),

β : Cn → V, v 7→ (A0v, . . . , Apv),

δ : V → Cn, (v0, . . . , vp) 7→ v0 + v1 + · · ·+ vp,

we have the claims for A ∈ M(n,C)p+1 in the same way as in the proof for M ∈
GL(n,C)p+1

1 . �

Corollary 9.12 (Katz [Kz] and [SV]). Let M ∈ GL(n,C)p+1
1 and put

V1 := {H ∈ GL(n,C)p+1
1 ; H ∼M},(9.43)

V2 := {H ∈ GL(n,C)p+1
1 ; Hj ∼Mj (j = 0, . . . , p)}.(9.44)

Suppose M is a generic point of the algebraic variety V2. Then

dimV1 = codimZ(M),(9.45)

dimV2 =

p∑
j=0

codimZ(Mj)− codimZ(M).(9.46)

Here Z(M) :=
∩p

j=0 Z(Mj) and Z(Mi) = {X ∈M(n,C) ; XMj =MjX}.
Suppose moreover that M is irreducible. Then codimZ(M) = n2 − 1 and

p∑
j=0

codimZ(Mj) ≥ 2n2 − 2.(9.47)

Moreover M is rigid, namely, V1 = V2 if and only if

p∑
j=0

codimZ(Mj) = 2n2 − 2.

Proof. The group GL(n,C) transitively acts on V1 as simultaneous conjuga-
tions and the Lie algebra of the isotropy group with respect to M is identified with
Z(M) and hence dimV1 = codimZ(M).

The groupGL(n,C)p+1 naturally acts onGL(n,C)p+1 by conjugations. Putting
L = {(gj) ∈ GL(n,C)p+1 ; gpMpg

−1
p · · · g0M0g

−1
0 = Mp · · ·M0}, V2 is identified

with L/Z(M0)× · · · × Z(Mp), which is a subset of the homogeneous space

{H ∈M(n,C)p+1 ; Hj ∼Mj (j = 0, . . . , p)} ' GL(n,C)p+1/Z(M0)× · · · ×Z(Mp).

Denoting gj = exp(tXj) with Xj ∈ M(n,C) and t ∈ R with |t| � 1 and defining

Aj ∈ End
(
M(n,C)

)
by AjX = MjXM

−1
j , we can prove that the dimension of L

equals the dimension of the kernel of the map

γ :M(n,C)p+1 3 (X0, . . . , Xp) 7→
p∑

j=0

Ap · · ·Aj+1(Aj − 1)Xj
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by looking at the tangent space of L at the identity element because

exp(tXp)Mp exp(−tXp) · · · exp(tX0)M0(−tX0)−Mp · · ·M0

= −t
( p∑
j=0

Ap · · ·Aj+1(Aj − 1)Xj

)
Mp · · ·M0 + o(t).

We have obtained in the proof of Lemma 9.11 that codimker γ = dim Im γ =
dim

∑p
j=0 Im(Aj−1) = codim

∩p
j=0 ker(

tAj−1). We will see that
∩p

j=0 ker(
tAj−1)

is identified with Z(M) and hence codimker γ = codimZ(M) and

dimV2 = dimker γ −
p∑

j=0

dimZ(Mj) =

p∑
j=0

codimZ(Mj)− codimZ(M).

In general, fix H ∈ V2 and define Aj ∈ End
(
M(n,C)

)
by X 7→ MjXH

−1
j for

j = 0, . . . , p. Note that ApAp−1 · · ·A0 is the identity map. If we identify M(n,C)
with its dual by the inner product traceXY for X, Y ∈M(n,C), tAj are identified

with the map Y 7→ H−1
j YMj , respectively.

Fix Pj ∈ GL(n,C) such that Hj = PjMjP
−1
j . Then

Aj(X) = X ⇔ MjXH
−1
j = X ⇔MjX = XPjMjP

−1
j ⇔MjXPj = XPjMj ,

tAj(X) = X ⇔ H−1
j XMj = X ⇔ XMj = PjMjP

−1
j X ⇔ P−1

j XMj =MjP
−1
j X

and codimker(Aj − 1) = codimZ(Mj).
In particular, we have

∩p
j=0 ker(

tAj − 1) ' Z(M) if Hj =Mj for j = 0, . . . , p.

Suppose M is irreducible. Then codimZ(M) = n2 − 1 and the inequality
(9.47) follows from V1 ⊂ V2. Moreover suppose

∑p
j=0 codimZ(Mi) = 2n2 − 2.

Then Scott’s lemma proves

2n2 − 2 =

p∑
j=0

codimker(Aj − 1)

≥ n2 − dim

p∩
j=0

{X ∈M(n,C) ; MjX = XHj}

+ n2 − dim

p∩
j=0

{X ∈M(n,C) ; HjX = XMj}.

Hence there exists a non-zero matrix X such that MjX = XHj (j = 0, . . . , p) or
HjX = XMj (j = 0, . . . , p). If MjX = XHj (resp. HjX = XMj) for j = 0, . . . , p,
ImX (resp. kerX) isMj-stable for j = 0, . . . , p and henceX ∈ GL(n,C) becauseM
is irreducible. Thus we have V1 = V2 and we get all the claims in the corollary. �





CHAPTER 10

Reducibility

We examine the condition for the decomposition Pm = Pm′Pm′′ of universal
operators with or without fixing the characteristic exponents (cf. Theorem 4.19 i)),
which implies the reducibility of the equation Pmu = 0. Note that the irreducibility
of a Fuchsian differential equation equals the irreducibility of the monodromy of
the equation and that it is kept under our reduction of the equation. In §10.2 we
study the value of spectral parameters which makes the equation reducible and
obtain Theorem 10.10. In particular we have a necessary and sufficient condition
on characteristic exponents so that the monodromy of the solutions of the equation
Pmu = 0 with a rigid spectral type m is irreducible, which is given in Theorem
10.13.

10.1. Direct decompositions

For a realizable (p + 1)-tuple m ∈ P(n)
p+1, Theorem 6.14 gives the universal

Fuchsian differential operator Pm(λj,ν , gi) with the Riemann scheme (4.15). Here
g1, . . . , gN are accessory parameters and N = Ridxm.

First suppose m is basic. Choose positive numbers n′, n′′, m′
j,1 and m′′

j,1 such
that

(10.1)
n = n′ + n′′, 0 < m′

j,1 ≤ n′, 0 < m′′
j,1 ≤ n′′,

m′
0,1 + · · ·+m′

p,1 ≤ (p− 1)n′, m′′
0,1 + · · ·+m′′

p,1 ≤ (p− 1)n′′.

We choose other positive integers m′
j,ν and m′′

j,ν so that m′ =
(
m′

j,ν

)
and m′′ =(

m′′
j,ν

)
are monotone tuples of partitions of n′ and n′′, respectively, and moreover

(10.2) m = m′ +m′′.

Theorem 6.6 shows that m′ and m′′ are realizable. If {λj,ν} satisfies the Fuchs
relation

(10.3)

p∑
j=0

nj∑
ν=1

m′
j,νλj,ν = n′ − idxm′

2

for the Riemann scheme
{
[λj,ν ](m′

j,ν)

}
, Theorem 4.19 shows that the operators

(10.4) Pm′′(λj,ν +m′
j,ν − δj,0(p− 1)n′, g′′i ) · Pm′(λj,ν , g

′
i)

has the Riemann scheme {[λj,ν ](mj,ν)}. Hence the equation Pm(λj,ν , gi)u = 0 is not
irreducible when the parameters take the values corresponding to (10.4).

In this section, we study the condition

(10.5) Ridxm = Ridxm′ +Ridxm′′

for realizable tuples m′ and m′′ with m = m′ + m′′. Under this condition the
Fuchs relation (10.3) assures that the universal operator is reducible for any values
of accessory parameters.

95
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Definition 10.1 (direct decomposition). If realizable tuples m, m′ and m′′ satisfy
(10.2) and (10.5), we define that m is the direct sum of m′ and m′′ and call
m = m′ +m′′ a direct decomposition of m and express it as follows.

(10.6) m = m′ ⊕m′′.

Theorem 10.2. Let (10.6) be a direct decomposition of a realizable tuple m.
i) Suppose m is irreducibly realizable and idxm′′ > 0. Put m′ = gcd(m′)−1m′.

If m′ is indivisible or idxm ≤ 0, then

αm = αm′ − 2
(αm′′ |αm′)

(αm′′ |αm′′)
αm′′(10.7)

or m = m′ ⊕m′′ is isomorphic to one of the decompositions

(10.8)

32, 32, 32, 221 = 22, 22, 22, 220⊕ 10, 10, 10, 10, 001

322, 322, 2221 = 222, 222, 2220⊕ 100, 100, 0001

54, 3222, 22221 = 44, 2222, 22220⊕ 10, 1000, 00001

76, 544, 2222221 = 66, 444, 2222220⊕ 10, 100, 0000001

under the action of W̃∞.
ii) Suppose idxm ≤ 0 and idxm′ ≤ 0 and idxm′′ ≤ 0. Then m = m′ ⊕m′′

or m = m′′ ⊕m′ is transformed into one of the decompositions

(10.9)

Σ = 11, 11, 11, 11 111, 111, 111 22, 14, 14 33, 222, 16

mΣ = kΣ⊕ `Σ
mm,mm,mm,m(m− 1)1 = kk, kk, kk, k(k − 1)1⊕ ``, ``, ``, ``0
mmm,mmm,mm(m− 1)1 = kkk, kkk, kkk, kk(k − 1)1⊕ ```, ```, ```0
(2m)2,m4,mmm(m− 1)1 = (2k)2, k4, k4, kkk(k − 1)1⊕ (2`)2, `4, `40

(3m)2, (2m)3,m5(m− 1)1 = (3k)2, (2k)3, k5(k − 1)1⊕ (3`)2, (2`)3, `60

under the action of W̃∞. Here m, k and ` are positive integers satisfying m = k+`.
These are expressed by

(10.10)
mD̃4 = kD̃4 ⊕ `D̃4, mẼj = kẼj ⊕ `Ẽj (j = 6, 7, 8),

D
(m)
4 = D

(k)
4 ⊕ `D̃4, E

(m)
j = E

(k)
j ⊕ `Ẽj (j = 6, 7, 8).

Proof. Put m′ = km′ and m′′ = `m′′ with indivisible m′ and m′′. First note
that

(10.11) (αm|αm) = (αm′ |αm′) + 2(αm′ |αm′′) + (αm′′ |αm′′).

ii) Using Lemma 10.3, we will prove the theorem. If idxm = 0, then (10.11)
and (10.12) show 0 = (αm′ |αm′′) = k`(αm′ |αm′′), Lemma 10.3 proves idxm′ = 0
and m′ = m′′ and we have the theorem.

Suppose idxm < 0.
If idxm′ < 0 and idxm′′ < 0, we have Pidxm = Pidxm′ + Pidxm′′, which

implies (αm′ |αm′′) = −1 and contradicts to Lemma 10.3.
Hence we may assume idxm′′ = 0.
Case: idxm′ < 0. It follows from (10.11) that 2− 2Ridxm = 2− 2Ridxm′ +

2`(m,m). Since Ridxm = Ridxm′ + `, we have (αm|αm′) = −1 and the theorem
follows from Lemma 10.3.

Case: idxm′ = 0. It follows from (10.11) that 2 − 2Ridxm = 2k`(αm′ |αm′′).
Since the condition Ridxm = k + ` shows (αm′ |αm′′) = 1

k` −
1
k −

1
` and we have

(αm′ |αm′′) = −1. Hence the theorem also follows from Lemma 10.3.
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i) First suppose idxm′ 6= 0. Note that m and m′ are rigid if idxm′ > 0.
We have idxm = idxm′ and idxm = (αm′ + `αm′′ |αm′ + `αm′′) = idxm′ +
2`(αm|αm′′) + 2`2, which implies (10.7).

Thus we may assume idxm < 0 and idxm′ = 0. If k = 1, idxm = idxm′ = 0
and we have (10.7) as above. Hence we may moreover assume k ≥ 2. Then (10.11)
and the assumption imply 2− 2k = 2k`(αm′ |αm′′) + 2`2, which means

−(αm′ |αm′′) =
k − 1 + `2

k`
.

Here k and ` are mutually prime and hence there exists a positive integer m with
k = m`+ 1 and

−(αm′ |αm′′) =
m+ `

m`+ 1
=

1

`+ 1
m

+
1

m+ 1
`

< 2.

Thus we have m = ` = 1, k = 2 and (αm′ |αm′′) = −1. By the transformation

of an element of W̃∞, we may assume m′ ∈ Pp+1 is a tuple in (10.16). Since
(αm′ |αm′′) = −1 and αm′′ is a positive real root, we have the theorem by a similar
argument as in the proof of Lemma 10.3. Namely, m′

p,n′
p
= 2 and m′

p,n′
p+1 = 0 and

we may assume m′′
j,n′

j+1 = 0 for j = 0, . . . , p− 1 and m′′
p,n′

p+1 +m′′
p,n′

p+2 + · · · = 1,

which proves the theorem in view of αm′′ ∈ ∆re
+ . �

Lemma 10.3. Suppose m and m′ are realizable and idxm ≤ 0 and idxm′ ≤ 0.
Then

(αm|αm′) ≤ 0.(10.12)

If m and m′ are basic and monotone,

(10.13) (αm|wαm′) ≤ (αm|αm′) (∀w ∈W∞).

If (αm|αm′) = 0 and m and m′ are indivisible, then idxm = 0 and m = m′.
If (αm|αm′) = −1, then the pair is isomorphic to one of the pairs

(10.14)

(D
(k)
4 , D̃4) :

(
(kk, kk, kk, k(k − 1)1), (11, 11, 11, 110)

)
(E

(k)
6 , Ẽ6) :

(
(kkk, kkk, k(k − 1)1), (111, 111, 1110)

)
(E

(k)
7 , Ẽ7) :

(
((2k)2, kkkk, kkk(k − 1)1), (22, 1111, 11110)

)
(E

(k)
8 , Ẽ8) :

(
((3k)2, (2k)3, kkkkk(k − 1)1), (33, 222, 1111110)

)
under the action of W̃∞.

Proof. We may assume that m and m′ are indivisible. Under the transfor-
mation of the Weyl group, we may assume that m is a basic monotone tuple in
Pp+1, namely, (αm|α0) ≤ 0 and (αm|αj,ν) ≤ 0.

If m′ is basic and monotone, wαm′ −αm′ is a sum of positive real roots, which
proves (10.13).

Put αm = nα0 +
∑
nj,ναj,ν and m′ = n′0α0 +

∑
n′j,ναj,ν . Then

(αm|αm′) = n′0(αm|α0) +
∑

n′j,ν(αm|αj,ν),

(αm|α) ≤ 0 (∀α ∈ suppαm).
(10.15)

Let kj be the maximal positive integer satisfying mj,kj = mj,1 and put Π0 =
{α0, αj,ν ; 1 ≤ ν < kj , j = 0, . . . , p}. Note that Π0 defines a classical root system
if idxm < 0 (cf. Remark 7.12).

Suppose (αm|αm′) = 0 and m ∈ Pp+1. Then m0,1 + · · ·+mp,1 = (p− 1) ordm
and suppαm′ ⊂ Π0 because (αm|α) = 0 for α ∈ suppαm′ . Hence it follows from
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idxm′ ≤ 0 that idxm = 0 and we may assume that m is one of the tuples (10.16).
Since suppαm′ ⊂ suppαm and idxm′ ≤ 0, we conclude that m′ = m.

Lastly suppose (αm|αm′) = −1.
Case: idxm = idxm′ = 0. If m′ is basic and monotone and m′ 6= m, then it is

easy to see that (αm|αm′) < −1 (cf. Remark 7.1). Hence (10.13) assures m′ = wm
with a certain w ∈ W∞ and therefore suppm ( suppm′. Moreover there exists
j0 and L ≥ kj0 such that suppm′ = suppm ∪ {αj0,kj0

, αj0,kj+1, . . . , αj0,L} and

mj0,kj0
= 1 and m′

j0,kj0+1 = 1. Then by a transformation of an element of the

Weyl group, we may assume L = kj0 and m′ = riN · · · ri1r(j0,kj0 )
m with suitable iν

satisfying αiν ∈ suppm for ν = 1, . . . , N . Applying ri1 · · · riN to the pair (m,m′),
we may assume m′ = r(j0,kj0 )

m. Hence the pair (m,m′) is isomorphic to one of

the pairs in the list (10.14) with k = 1.
Case: idxm < 0 and idxm′ ≤ 0. There exists j0 such that suppαm′ 3 αj0,kj .

Then the fact idx(m,m′) = −1 implies n′j0,k0
= 1 and n′j,kj

= 0 for j 6= j0.

Let L be the maximal positive integer with n′j0,L 6= 0. Since (αm|αj0,ν) = 0 for
k0+1 ≤ ν ≤ L, we may assume L = k0 by the transformation r(j0,k0+1) ◦· · ·◦r(j0,L)

if L > k0. Since the Dynkin diagram corresponding to Π0 ∪ {αj0,kj0
} is classical or

affine and suppm′ is contained in this set, idxm′ = 0 and m′ is basic and we may
assume that m′ is one of the tuples

(10.16) 11, 11, 11, 11 111, 111, 111 22, 1111, 1111 33, 222, 111111

and j0 = p. In particular m′
p,1 = · · · = m′

p,kp
= 1 and m′

p,kp+1 = 0. It follows

from (αm|αp,kp) = −1 that there exists an integer L′ ≥ kp +1 satisfying suppm =
suppm′∪{αp,ν ; kp ≤ ν < L′} and mp,kp = mp,kp−1−1. In particular, mj,ν = mj,1

for ν = 1, . . . , kj − δj,p and j = 0, . . . , p. Since
∑p

j=0mj,1 = (p − 1) ordm, there
exists a positive integer k such that

mj,ν =

{
km′

j,1 (j = 0, . . . , p, ν = 1, . . . , kj − δj,p),
km′

p,1 − 1 (j = p, ν = kp).

Hence mp,kp+1 = 1 and L′ = kp + 1 and the pair (m,m′) is one of the pairs in the
list (10.14) with k > 1. �

Remark 10.4. Let k be an integer with k ≥ 2 and let P be a differential operator

with the spectral type D
(k)
4 , E

(k)
6 , E

(k)
7 or E

(k)
8 . It follows from Theorem 4.19 and

Theorem 6.14 that P is reducible for any values of accessory parameters when the
characteristic exponents satisfy Fuchs relation with respect to the subtuple given
in (10.14). For example, the Fuchsian differential operator P with the Riemann
scheme [λ0,1](k) [λ1,1](k) [λ2,1](k) [λ3,1](k)

[λ0,2](k) [λ1,2](k) [λ2,2](k) [λ3,2](k−1)

λ3,2 + 2k − 2


is reducible.

Example 10.5. i) (generalized Jordan-Pochhammer) If m = km′ ⊕ `m′′ with a
rigid tuples m, m′ and m′′ and positive integers k and ` satisfying 1 ≤ k ≤ `, we
have

(10.17) (αm′ |αm′′) = −k
2 + `2 − 1

k`
∈ Z.

For positive integers k and ` satisfying 1 ≤ k ≤ ` and

(10.18) p :=
k2 + `2 − 1

k`
+ 1 ∈ Z,
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we have an example of direct decompositions

p+1 partitions︷ ︸︸ ︷
`k, `k, . . . , `k = 0k, 0k, . . . , 0k ⊕ `0, `0, . . . , `0

= ((p− 1)k − `)k, ((p− 1)k − `)k, . . . , ((p− 1)k − `)k
⊕ (2`− (p− 1)k)0, (2`− (p− 1)k)0, . . . , (2`− (p− 1)k)0.

(10.19)

Here p = 3 + (k−`)2−1
k` ≥ 2 and the condition p = 2 implies k = ` = 1 and the

condition p = 3 implies ` = k + 1. If k = 1, then (αm′ |αm′′) = −` and we have an
example corresponding to Jordan-Pochhammer equation:

(10.20)

`+2 partitions︷ ︸︸ ︷
`1, · · · , `1 = 01, · · · , 01⊕ `0, · · · , `0.

When ` = k + 1, we have (αm′ |αm′′) = −2k and an example

(k + 1)k, (k + 1)k, (k + 1)k, (k + 1)k

= 0k, 0k, 0k, 0k ⊕ (k + 1)0, (k + 1)0, (k + 1)0, (k + 1)0

= (k − 1)k, (k − 1)k, (k − 1)k, (k − 1)k ⊕ 20, 20, 20, 20.

(10.21)

We have another example

83, 83, 83, 83, 83 = 03, 03, 03, 03, 03⊕ 80, 80, 80, 80, 80

= 13, 13, 13, 13, 13⊕ 70, 70, 70, 70, 70
(10.22)

in the case (k, `) = (3, 8), which is a special case where ` = k2 − 1, p = k + 1 and
(αm′ |αm′′) = −k.

When p is odd, the equation (10.18) is equal to the Pell equation

(10.23) y2 − (m2 − 1)x2 = 1

by putting p− 1 = 2m, x = ` and y = m`− k and hence the reduction of the tuple
of partition (10.19) by ∂max and its inverse give all the integer solutions of this Pell
equation.

The tuple of partitions `k, `k, . . . , `k ∈ P(`+k)
p+1 with (10.18) is called a general-

ized Jordan-Pochhammer tuple and denoted by Pp+1,`+k. In particular, Pn+1,n is
simply denoted by Pn.

ii) We give an example of direct decompositions of a rigid tuple:

3322, 532, 532 = 0022, 202, 202⊕ 3300, 330, 330 : 1

= 1122, 312, 312⊕ 2200, 220, 220 : 1

= 0322, 232, 232⊕ 3000, 300, 300 : 2

= 3302, 332, 332⊕ 0020, 200, 200 : 2

= 1212, 321, 321⊕ 2110, 211, 211 : 4

= 2211, 321, 312⊕ 1111, 211, 220 : 2

= 2212, 421, 322⊕ 1110, 111, 210 : 4

= 2222, 431, 422⊕ 1100, 101, 110 : 2

= 2312, 422, 422⊕ 1010, 110, 110 : 4

= 2322, 522, 432⊕ 1000, 010, 100 : 4.

They are all the direct decompositions of the tuple 3322, 532, 532 modulo obvious
symmetries. Here we indicate the number of the decompositions of the same type.

Corollary 10.6. Let m ∈ P be realizable. Put m = gcd(m)m. Then m has no
direct decomposition (10.6) if and only if

ordm = 1(10.24)
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or

idxm = 0 and basic(10.25)

or

idxm < 0 and m is basic and m is not isomorphic to any one of tuples

in Example 7.14 with m > 1.
(10.26)

Moreover we have the following result.

Proposition 10.7. The direct decomposition m = m′ ⊕m′′ is called rigid decom-
position if m, m′ and m′′ are rigid. If m ∈ P is rigid and ordm > 1, there exists
a rigid decomposition.

Proof. We may assume that m is monotone and there exist a non-negative
integer p such that mj,2 6= 0 if and only if 0 ≤ j < p + 1. If ord ∂m = 1, then

we may assume m = (p − 1)1, (p − 1)1, . . . , (p − 1)1 ∈ P(p)
p+1 and there exists a

decomposition

(p− 1)1, (p− 1)1, . . . , (p− 1)1 = 01, 10, . . . , 10⊕ (p− 1)0, (p− 2)1, . . . , (p− 2)1.

Suppose ord ∂m > 1. Put d = idx(m,1) = m0,1 + · · ·+mp,1 − (p− 1) · ordm > 0.
The induction hypothesis assures the existence of a decomposition ∂m = m̄′⊕

m̄′′ such that m̄′ and m̄′′ are rigid. If ∂m̄′ and ∂m̄′′ are well-defined, we have the
decomposition m = ∂2m = ∂m̄′ ⊕ ∂m̄′′ and the proposition.

If ord m̄′ > 1, ∂m̄′ is well-defined. Suppose m̄′ =
(
δν,`j

)
j=0,...,p
ν=1,2,...

. Then

idx(∂m,1)− idx(∂m, m̄′) =

p∑
j=0

(
(mj,1 − d− (mj,`j − dδ`j ,1)

)
≥ −d#{j ; `j > 1, 0 ≤ j ≤ p}.

Since idx(∂m,1) = −d and idx(∂m, m̄′) = 1, we have d#{j ; `j > 1, 0 ≤ j ≤ p} ≥
d+ 1 and therefore #{j ; `j > 1, 0 ≤ j ≤ p} ≥ 2. Hence ∂m̄′ is well-defined. �

Remark 10.8. The author’s original construction of a differential operator with a
given rigid Riemann scheme doesn’t use the middle convolutions and additions but
uses Proposition 10.7.

Example 10.9. We give direct decompositions of a rigid tuple:

721, 3331, 22222 = 200, 2000, 20000⊕ 521, 1331, 02222 : 15

= 210, 1110, 11100⊕ 511, 2221, 11122 : 10

= 310, 1111, 11110⊕ 411, 2220, 11112 : 5

(10.27)

The following irreducibly realizable tuple has only two direct decompositions:

44, 311111, 311111 = 20, 200000, 200000⊕ 24, 111111, 111111

= 02, 200000, 200000⊕ 42, 111111, 111111
(10.28)

But it cannot be a direct sum of two irreducibly realizable tuples.

10.2. Reduction of reducibility

We give a necessary and sufficient condition so that a Fuchsian differential equa-
tion is irreducible, which follows from [Kz] and [DR, DR2]. Note that a Fuchsian
differential equation is irreducible if and only if its monodromy is irreducible.
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Theorem 10.10. Retain the notation in §10.1. Suppose m is monotone, realizable
and ∂maxm is well-defined and

d := m0,1 + · · ·+mp,1 − (p− 1) ordm ≥ 0.(10.29)

Put P = Pm (cf. (6.25)) and

µ := λ0,1 + λ1,1 + · · ·+ λp,1 − 1,(10.30)

Q := ∂maxP,(10.31)

P o := P |λj,ν=λo
j,ν , gi=go

i
, Qo := Q|λj,ν=λo

j,ν , gi=go
i

(10.32)

with some complex numbers λoj,ν and goi satisfying the Fuchs relation |{λom}| = 0.

i) The Riemann scheme {λ̃m̃} of Q is given by

(10.33)

{
m̃j,ν = mj,ν − dδν,1,
λ̃j,ν = λj,ν +

(
(−1)δj,0 − δν,1

)
µ.

ii) Assume that the equation P ou = 0 is irreducible. If d > 0, then µ /∈ Z. If the
parameters given by λoj,ν and goi are locally non-degenerate, the equation Qov = 0
is irreducible and the parameters are locally non-degenerate.

iii) Assume that the equation Qov = 0 is irreducible and the parameters given
by λoj,ν and goi are locally non-degenerate. Then the equation P ov = 0 is irreducible
if and only if

p∑
j=0

λoj,1+δj,jo (νo−1) /∈ Z for any (jo, νo) satisfying mjo,νo > mjo,1 − d.(10.34)

If the equation P ov = 0 is irreducible, the parameters are locally non-degenerate.
iv) Put m(k) := ∂kmaxm and P (k) = ∂kmaxP . Let K be a non-negative integer

such that ordm(0) > ordm(1) > · · · > ordm(K) and m(K) is fundamental. The
operator P (k) is essentially the universal operator of type m(k) but parametrized
by λj,ν and gi. Put P (k)o = P (k)|λj,ν=λo

j,ν
.

If the equation P ou = 0 is irreducible and the parameters are locally non-
degenerate, so are P (k)ou = 0 for k = 1, . . . ,K.

If the equation P ou = 0 is irreducible and locally non-degenerate, so is the
equation P (K)ou = 0.

Suppose the equation P (K)ou = 0 is irreducible and locally non-degenerate,
which is always valid when m is rigid. Then the equation P ou = 0 is irreducible if
and only if the equation P (k)ou = 0 satisfy the condition (10.34) for k = 0, . . . ,K−
1. If the equation P ou = 0 is irreducible, it is locally non-degenerate.

Proof. The claim i) follows from Theorem 5.2 and the claims ii) and iii) follow
from Lemma 5.3 and Corollary 9.10, which implies the claim iv). �

Remark 10.11. i) In the preceding theorem the equation P ou = 0 may not be
locally non-degenerate even if it is irreducible. For example the equation satisfied
by 3F2 is contained in the universal operator of type 111, 111, 111.

ii) It is also proved as follows that the irreducible differential equation with a
rigid spectral type is locally non-degenerate.

The monodromy generators Mj of the equation with the Riemann scheme at
x = cj satisfy

rank(M ′
j−e2π

√
−1λj,1) · · · (M ′

j−e2π
√
−1λj,k) ≤ mj,k+1+ · · ·+mj,nj

(k = 1, . . . , nj)

for j = 0, . . . , p. The equality in the above is clear when λj,ν − λj,ν′ /∈ Z for
1 ≤ ν < ν′ ≤ nj and hence the above is proved by the continuity for general λj,ν .
The rigidity index of M is calculated by the dimension of the centralizer of Mj
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and it should be 2 if M is irreducible and rigid, the equality in the above is valid
(cf. [Kz], [O6]), which means the equation is locally non-degenerate.

iii) The same results as in Theorem 10.10 are also valid in the case of the
Fuchsian system of Schlesinger canonical form (9.1) since the same proof works. A
similar result is given by a different proof (cf. [CB]).

iv) Let (M0, . . . ,Mp) be a tuple of matrices inGL(n,C) withMpMp−1 · · ·M0 =
In. Then (M0, . . . ,Mp) is called rigid if for any g0, . . . , gp ∈ GL(n,C) satisfying

gpMpg
−1
p · gp−1Mp−1g

−1
p−1 · · · g0M0g

−1
0 = In, there exists g ∈ GL(n,C) such that

giMig
−1
i = gMig

−1 for i = 0, . . . , p. The tuple (M0, . . . ,Mp) is called irreducible if
no subspace V of Cn satisfies {0} $ V $ Cn andMiV ⊂ V for i = 0, . . . , p. Choose

m ∈ P(n)
p+1 and {µj,ν} such that L(m;µj,1, . . . , µj,nj ) are in the conjugacy classes

containing Mj , respectively. Suppose (M0, . . . ,Mp) is irreducible and rigid. Then
Katz [Kz] shows that m is rigid and gives a construction of irreducible and rigid
(M0, . . . ,Mp) for any rigid m (cf. Remark 9.4 ii)). It is an open problem given
by Katz [Kz] whether the monodromy generators Mj are realized by solutions
of a single Fuchsian differential equations without an apparent singularity, whose
affirmative answer is given by the following corollary.

Corollary 10.12. Let m =
(
mj,ν

)
0≤j≤p
1≤ν≤nj

be a rigid monotone (p + 1)-tuple of

partitions with ordm > 1. Retain the notation in Definition 5.12.
i) Fix complex numbers λj,ν for 0 ≤ j ≤ p and 1 ≤ ν ≤ nj satisfying the Fuchs

relation (4.32). The universal operator Pm(λ)u = 0 with the Riemann scheme
(0.11) is irreducible if and only if the condition

(10.35)

p∑
j=0

λ(k)j,`(k)j+δj,jo (νo−`(k)j) /∈ Z

for any (jo, νo) satisfying m(k)jo,νo
> m(k)jo,`(k)jo − d(k)

is satisfied for k = 0, . . . ,K − 1.
ii) Define µ̃(k) and µ(k)j,ν for k = 0, . . . ,K by

µ(0)j,ν = µj,ν (j = 0, . . . , p, ν = 1, . . . , nj),(10.36)

µ̃(k) =

p∏
j=0

µ(k)j,`(k)j ,(10.37)

µ(k + 1)j,ν = µ(k)j,ν · µ̃(k)(−1)δj,0−δν,1 .(10.38)

Then there exists an irreducible tuple (M0, . . . ,Mp) of matrices satisfying

(10.39)
Mp · · ·M0 = In,

Mj ∼ L(mj,1, . . . ,mj,nj ;µj,1, . . . , µj,nj ) (j = 0, . . . , p)

under the notation (4.33) if and only if

(10.40)

p∏
j=0

nj∏
ν=1

µ
mj,ν

j,ν = 1

and the condition

(10.41)

p∏
j=0

µ(k)j,`(k)j+δj,jo (νo−`(k)j) 6= 1

for any (jo, νo) satisfying m(k)jo,νo > m(k)jo,`(k)jo − d(k)

is satisfied for k = 0, . . . ,K − 1.
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iii) Let (M0, . . . ,Mp) be an irreducible tuple of matrices satisfying (10.39).
Then there uniquely exists a Fuchsian differential equation Pu = 0 with p + 1
singular points c0, . . . , cp and its local independent solutions u1, . . . , uordm in a
neighborhood of a non-singular point q such that the monodromy generators around
the points cj with respect to the solutions equal Mj, respectively, for j = 0, . . . , p
(cf. (9.25)).

Proof. The clam i) is a direct consequence of Theorem 10.10 and the claim
ii) is proved by Theorem 9.3 and Lemma 9.11 as in the case of the proof of Theo-
rem 10.10 (cf. Remark 9.4 ii)).

iii) Since gcdm = 1, we can choose λj,ν ∈ C such that e2π
√
−1λj,ν = µj,ν and∑

j,ν mj,νλj,ν = ordm− 1. Then we have a universal operator Pm(λj,ν)u = 0 with

the Riemann scheme (0.11). The irreducibility of (Mp, . . . ,M0) and Theorem 9.6
assure the claim. �

Now we state the condition (10.35) using the terminology of the Kac-Moody
root system. Suppose m ∈ P is monotone and irreducibly realizable. Let {λm} be
the Riemann scheme of the universal operator Pm. According to Remark 5.9 iii) we
may relax the definition of `max(m) as is given by (5.43) and then we may assume

(10.42) vks0 · · · v1s0Λ(λ) ∈W ′
∞Λ
(
λ(k)

)
(k = 1, . . . ,K)

under the notation in Definition 5.12 and (7.31). Then we have the following
theorem.

Theorem 10.13. Let m =
(
mj,ν

)
0≤j≤p
1≤ν≤nj

be an irreducibly realizable monotone

tuple of partition in P. Under the notation in Corollary 10.12 and §7.1, there
uniquely exists a bijection

$ : ∆(m)
∼−→
{
(k, j0, ν0) ; 0 ≤ k < K, 0 ≤ j0 ≤ p, 1 ≤ ν0 ≤ nj0 ,

ν0 6= `(k)j0 and m(k)j0,ν0 > m(k)j0,`(k)j0 − d(k)
}

∪
{
(k, 0, `(k)0) ; 0 ≤ k < K

}(10.43)

such that

(10.44) (Λ(λ)|α) =
p∑

j=0

λ(k)j,`(k)j+δj,jo (νo−`(k)j) when $(α) = (k, j0, ν0).

Moreover we have

(α|αm) = m(k)j0,ν0 −m(k)j0,`(k)j0 + d(k)

(α ∈ ∆(m), (k, j0, ν0) = $(α))
(10.45)

and if the universal equation Pm(λ)u = 0 is irreducible, we have

(10.46) (Λ(λ)|α) /∈ Z for any α ∈ ∆(m).

In particular, if m is rigid and (10.46) is valid, the universal equation is irreducible.

Proof. Assume ordm > 1 and use the notation in Theorem 10.10. Since
m̃ may not be monotone, we consider the monotone tuple m′ = sm̃ in S′

∞m̃
(cf. Definition 4.11). First note that

d−mj,1 +mj,ν = (α0 + αj,1 + · · ·+ αj,ν−1|αm).

Let ν̄j be the positive integers defined by

mj,ν̄j+1 ≤ mj,1 − d < mj,ν̄j
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for j = 0, . . . , p. Then

αm′ = v−1αm̃ with v :=

p∏
j=0

(
sj,1 · · · sj,ν̄j−1

)
and w(m) = s0vsαm̃

and

∆(m) = Ξ ∪ s0v∆(m′),

Ξ := {α0} ∪
∪

0≤j≤p
νj 6=1

{α0 + αj,1 + · · ·+ αj,ν ; ν = 1, . . . , ν̄j − 1}.

Note that `(0) = (1, . . . , 1) and the condition mj0,ν0 > mj0,1 − d(0) is valid if
and only if ν0 ∈ {1, . . . , ν̄j0}. Since

p∑
j=0

λ(0)j,1+δj,j0 (ν0−1) = (Λ(λ)|α0 + αj0,1 + · · ·+ αj0,ν0−1) + 1,

we have

L(0) =
{
(Λ(λ)|α) + 1 ; α ∈ Ξ

}
by denoting

L(k) :=
{ p∑
j=0

λ(k)j,`(k)j+δj,jo (νo−`(k)j) ; m(k)jo,νo > m(k)jo,`(k)jo − d(k)
}
.

Applying v−1s0 to m and {λm}, they changes into m′ and {λ′m′}, respectively, such
that Λ(λ′) − v−1s0Λ(λ) ∈ CΛ0. Hence we obtain the theorem by the induction as
in the proof of Corollary 10.12. �

Remark 10.14. Let m be an irreducibly realizable monotone tuple in P. Fix
α ∈ ∆(m). We have α = αm′ with a rigid tuple m′ ∈ P and

(10.47) |{λm′}| = (Λ(λ)|α).

Definition 10.15. Define an index idxm
(
`(λ)

)
of the non-zero linear form `(λ) =∑p

j=0

∑nj

ν=1 kj,νλj,ν of with kj,ν ∈ Z≥0 as the positive integer di such that

(10.48)
{ p∑
j=0

nj∑
ν=1

kj,νεj,ν ; εj,ν ∈ Z and

p∑
j=0

nj∑
ν=1

mj,νεj,ν = 0
}
= Zdi.

Proposition 10.16. For a rigid tuple m in Corollary 10.12, define rigid tuples
m(1), . . . ,m(N) with a non-negative integer N so that ∆(m) = {m(1), . . . ,m(N)}
and put

(10.49) `i(λ) :=

p∑
j=0

nj∑
ν=1

m
(i)
j,νλj,ν (i = 1, . . . , N).

Here we note that Theorem 10.13 implies that Pm(λ) is irreducible if and only if
`i(λ) /∈ Z for i = 1, . . . , n.

Fix a function `(λ) of λj,ν such that `(λ) = `i(λ) − r with i ∈ {1, . . . , N}
and r ∈ Z. Moreover fix generic complex numbers λj,ν ∈ C under the condition
`(λ) = |{λm}| = 0 and a decomposition Pm(λ) = P ′′P ′ such that P ′, P ′′ ∈ W (x),
0 < n′ := ordP ′ < n and the differential equation P ′v = 0 is irreducible. Then
there exists an irreducibly realizable subtuple m′ of m compatible to `(λ) such that
the monodromy generators M ′

j of the equation P ′u = 0 satisfies

rank(Mj−e2π
√
−1λj,1) · · · (Mj−e2π

√
−1λj,k) ≤ m′

j,k+1+ · · ·+m′
j,nj

(k = 1, . . . , nj)
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for j = 0, . . . , p. Here we define that the decomposition

(10.50) m = m′ +m′′ (m′ ∈ P(n′)
p+1 , m′′ ∈ P(n′′)

p+1 , 0 < n′ < n)

is compatible to `(λ) and that m′ is a subtuple of m compatible to `(λ) if the
following conditions are valid

|{λm′}| ∈ Z≤0 and |{λm′′}| ∈ Z,(10.51)

m′ is realizable if there exists (j, ν) such that m′′
j,ν = mj,ν > 0,(10.52)

m′′ is realizable if there exists (j, ν) such that m′
j,ν = mj,ν > 0.(10.53)

Here we note |{λm′}|+ |{λm′′}| = 1 if m′ and m′′ are rigid.

Proof. The equation Pm(λ)u = 0 is reducible since `(λ) = 0. We may assume
λj,ν − λj,ν′ 6= 0 for 1 ≤ ν < ν′ ≤ nj and j = 0, . . . , p. The solutions of the equation
define the map F given by (2.15) and the reducibility implies the existence of
an irreducible submap F ′ such that F ′(U) ⊂ F(U) and 0 < n′ := dimF ′(U) <
n. Then F ′ defines a irreducible Fuchsian differential equation P ′v = 0 which
has regular singularities at x = c0 = ∞, c1, . . . , cp and may have other apparent
singularities c′1, . . . , c

′
q. Then the characteristic exponents of P ′ at the singular

points are as follows.
There exists a decomposition m = m′ + m′′ such that m′ ∈ P(n′) and m′′ ∈

P(n′′) with n′′ := n − n′. The sets of characteristic exponents of P ′ at x = cj are
{λ′j,ν,i ; i = 1, . . . ,m′

j,ν , ν = 1, . . . , n} which satisfy

λ′j,ν,i − λj,ν ∈ {0, 1, . . . ,mj,ν − 1} and λ′j,ν,1 < λ′j,ν,2 < · · · < λ′j,ν,m′
j,ν

for j = 0, . . . , p. The sets of characteristic exponents at x = c′j are {µj,1, . . . , µj,n′},
which satisfy µj,i ∈ Z and 0 ≤ µj,1 < · · · < µj,n′ for j = 1, . . . , q. Then Remark 4.17
ii) says that the Fuchs relation of the equation P ′v = 0 implies |{λm′}| ∈ Z≤0.

Note that there exists a Fuchsian differential operator P ′′ ∈ W (x) such that
P = P ′′P ′. If there exists jo and νo such that m′

jo,no
= 0, namely, m′′

jo,νo
=

mjo,νo > 0, the exponents of the monodromy generators of the solution P ′v = 0
are generic and hence m′ should be realizable. The same claim is also true for the
tuple m′′. Hence we have the proposition. �
Example 10.17. i) The reduction of the universal operator with the spectral type
11, 11, 11 which is given by Theorem 10.10 isx =∞ 0 1

λ0,1 λ1,1 λ2,1
λ0,2 λ1,2 λ2,2

 (
∑

λj,ν = 1)

−→
{

x =∞ 0 1
2λ0,2 + λ1,1 + λ2,1 −λ0,2 − λ2,2 −λ0,2 − λ1,2

}(10.54)

because µ = λ0,1 + λ1,1 + λ2,1 − 1 = −λ0,2 − λ1,2 − λ2,2. Hence the necessary and
sufficient condition for the irreducibility of the universal operator given by (10.34)
is 

λ0,1 + λ1,1 + λ2,1 /∈ Z,
λ0,2 + λ1,1 + λ2,1 /∈ Z,
λ0,1 + λ1,2 + λ2,1 /∈ Z,
λ0,1 + λ1,1 + λ2,2 /∈ Z,

which is equivalent to

(10.55) λ0,i + λ1,1 + λ2,j /∈ Z for i = 1, 2 and j = 1, 2.

The rigid tuple m = 11, 11, 11 corresponds to the real root αm = 2α0 + α0,1 +
α1,1 + α2,1 under the notation in §7.1. Then ∆(m) = {α0, α0 + αj,1 ; j = 0, 1, 2}
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and (Λ|α0) = λ0,1 + λ1,1 + λ2,1 and (Λ|α0 + α0,1) = λ0,2 + λ1,1 + λ2,1, etc. under
the notation in Theorem 10.13.

The Riemann scheme for the Gauss hypergeometric series 2F1(a, b, c; z) is given

by

x =∞ 0 1
a 0 0
b 1− c c− a− b

 and therefore the condition for the irreducibility

is

(10.56) a /∈ Z, b /∈ Z, c− b /∈ Z and c− a /∈ Z.

ii) The reduction of the Riemann scheme for the equation corresponding to

3F2(α1, α2, α3, β1, β2;x) is
x =∞ 0 1
α1 0 [0](2)
α2 1− β1 −β3
α3 1− β2

 (

3∑
i=1

αi =

3∑
i=1

βi)

−→

 x =∞ 0 1
α2 − α1 + 1 α1 − β1 0
α3 − α1 + 1 α1 − β2 α1 − β3 − 1


(10.57)

with µ = α1−1. Hence Theorem 10.10 says that the condition for the irreducibility
equals {

αi /∈ Z (i = 1, 2, 3),

α1 − βj /∈ Z (j = 1, 2)

together with

αi − βj /∈ Z (i = 2, 3, j = 1, 2).

Here the second condition follows from i). Hence the condition for the irreducibility
is

(10.58) αi /∈ Z and αi − βj /∈ Z (i = 1, 2, 3, j = 1, 2).

iii) The reduction of the even family is as follows:
x =∞ 0 1
α1 [0](2) [0](2)
α2 1− β1 [−β3](2)
α3 1− β2
α4

 −→


x =∞ 0 1
α2 − α1 + 1 0 0
α3 − α1 + 1 α1 − β1 [α1 − β3 − 1](2)
α4 − α1 + 1 α1 − β2


(x−1)−α1+β3+1

−−−−−−−−−−→


x =∞ 0 1
α2 − β3 0 −α1 + β3 + 1
α3 − β3 α1 − β1 [0](2)
α4 − β3 α1 − β2

 .

Hence the condition for the irreducibility is{
αi /∈ Z (i = 1, 2, 3, 4),

α1 − β3 /∈ Z

together with {
αi − β3 /∈ Z (i = 2, 3, 4).

α1 + αi − βj − β3 /∈ Z (i = 2, 3, 4, j = 1, 2)
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by the result in ii). Thus the condition is

αi /∈ Z, αi − β3 /∈ Z and α1 + αk − βj − β3 /∈ Z
(i = 1, 2, 3, 4, j = 1, 2, k = 2, 3, 4).

(10.59)

Hence the condition for the irreducibility for the equation with the Riemann scheme

(10.60)


λ0,1 [λ1,1](2) [λ2,1](2)
λ0,2 λ1,2 [λ2,2](2)
λ0,3 λ1,3
λ0,4


of type 1111, 211, 22 is

(10.61)

{
λ0,ν + λ1,1 + λ2,k /∈ Z (ν = 1, 2, 3, 4, k = 1, 2)

λ0,ν + λ0,ν′ + λ1,1 + λ1,2 + λ2,1 + λ2,2 /∈ Z (1 ≤ ν < ν′ ≤ 4).

This condition corresponds to the rigid decompositions

(10.62) 14, 212, 22 = 1, 10, 1⊕ 13, 112, 21 = 12, 11, 12 ⊕ 12, 11, 12,

which are also important in the connection formula.
iv) (generalized Jordan-Pochhammer) The reduction of the universal operator

of the rigid spectral type 32, 32, 32, 32 is as follows:{
[λ0,1](3) [λ1,1](3) [λ2,1](3) [λ3,1](3)
[λ0,2](2) [λ1,2](2) [λ2,2](2) [λ3,2](2)

}
(3

3∑
j=0

λj,1 + 2
3∑

j=0

λj,2 = 4)

−→
{

λ0,1 − 2µ λ1,1 λ2,1 λ3,1
[λ0,2 − µ](2) [λ1,2 + µ](2) [λ2,2 + µ](2) [λ3,2 + µ](2)

}
with µ = λ0,1 + λ1,1 + λ2,1 + λ3,1 − 1. Hence the condition for the irreducibility is

(10.63)

{∑3
j=0 λj,1+δj,k /∈ Z (k = 0, 1, 2, 3, 4),∑3
j=0(1 + δj,k)λj,1 +

∑3
j=0(1− δj,k)λj,2 /∈ Z (k = 0, 1, 2, 3, 4).

Note that under the notation defined by Definition 10.15 we have

(10.64) idxm
(
λ0,1 + λ1,1 + λ2,1 + λ3,1

)
= 2

and the index of any other linear form in (10.63) is 1.
In general, the universal operator with the Riemann scheme{

[λ0,1](k) [λ1,1](k) [λ2,1](k) [λ3,1](k)
[λ0,2](k−1) [λ1,2](k−1) [λ2,2](k−1) [λ3,2](k−1)

}
(k

3∑
j=0

λj,1 + (k − 1)
3∑

j=0

λj,2 = 2k)

(10.65)

is irreducible if and only if

(10.66)

{∑3
j=0(ν − δj,k)λj,1 +

∑3
j=0(ν − 1 + δj,k)λj,1 /∈ Z (k = 0, 1, 2, 3, 4),∑3

j=0(ν
′ + δj,k)λj,1 +

∑3
j=0(ν

′ − δj,k)λj,2 /∈ Z (k = 0, 1, 2, 3, 4)

for any integers ν and ν′ satisfying 1 ≤ 2ν ≤ k and 1 ≤ 2ν′ ≤ k − 1.
The rigid decomposition

(10.67) 65, 65, 65, 65 = 12, 21, 21, 21⊕ 53, 44, 44, 44

gives an example of the decomposition m = m′ ⊕m′′ with suppαm = suppαm′ =
suppαm′′ .
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v) The rigid Fuchsian differential equation with the Riemann scheme
x = 0 1 c3 c4 ∞
[0](9) [0](9) [0](9) [0](9) [e0](8)
[a](3) [b](3) [c](3) [d](3) [e1](3)

e2


is reducible when

a+ b+ c+ d+ 3e0 + e1 ∈ Z,
which is equivalent to 1

3 (e0 − e2 − 1) ∈ Z under the Fuchs relation. At the generic
point of this reducible condition, the spectral types of the decomposition in the
Grothendieck group of the monodromy is

93, 93, 93, 93, 831 = 31, 31, 31, 31, 211 + 31, 31, 31, 31, 310 + 31, 31, 31, 31, 310.

Note that the following reduction of the spectral types

93, 93, 93, 93, 831 → 13, 13, 13, 13, 031 → 10, 10, 10, 10, 001
31, 31, 31, 31, 211 → 11, 11, 11, 11, 011
31, 31, 31, 31, 310 → 01, 01, 01, 01, 010

and idx(31, 31, 31, 31, 211) = −2.



CHAPTER 11

Shift operators

In this chapter we study an integer shift of spectral parameters λj,ν of the
Fuchsian equation Pm(λ)u = 0. Here Pm(λ) is the universal operator (cf. Theo-
rem 6.14) corresponding to the spectral type m = (mj,ν

)
j=0,...,p
ν=1,...,nj

. For simplicity,

we assume that m is rigid in this chapter unless otherwise stated.

11.1. Construction of shift operators and contiguity relations

First we construct shift operators for general shifts.

Definition 11.1. Fix a tuple of partitions m =
(
mj,ν

)
j=0,...,p
ν=1,...,nj

∈ P(n)
p+1. Then a

set of integers
(
εj,ν
)

j=0,...,p
ν=1,...,nj

parametrized by j and ν is called a shift compatible

to m if

(11.1)

p∑
j=0

nj∑
ν=1

εj,νmj,ν = 0.

Theorem 11.2 (shift operator). Fix a shift (εj,ν) compatible to m ∈ P(n)
p+1. Then

there is a shift operator Rm(ε, λ) ∈ W [x] ⊗ C[λj,ν ] which gives a homomorphism
of the equation Pm(λ′)v = 0 to Pm(λ)u = 0 defined by v = Rm(ε, λ)u. Here the
Riemann scheme of Pm(λ) is {λm} =

{
[λj,ν ](mj,ν)

}
j=0,...,p
ν=1,...,nj

and that of Pm(λ′)

is {λ′m} defined by λ′j,ν = λj,ν + εj,ν . Moreover we may assume ordRm(ε, λ) <
ordm and Rm(ε, λ) never vanishes as a function of λ and then Rm(ε, λ) is uniquely
determined up to a constant multiple.

Putting

(11.2) τ =
(
τj,ν
)

0≤j≤p
1≤ν≤nj

with τj,ν :=
(
2 + (p− 1)n

)
δj,0 −mj,ν

and d = ordRm(ε, λ), we have

(11.3) Pm(λ+ ε)Rm(ε, λ) = (−1)dRm(ε, τ − λ− ε)∗Pm(λ)

under the notation in Theorem 4.19 ii).

Proof. We will prove the theorem by the induction on ordm. The theorem
is clear if ordm = 1.

We may assume that m is monotone. Then the reduction {λ̃m̃} of the Riemann
scheme is defined by (10.33). Hence putting

(11.4)

{
ε̃1 = ε0,1 + · · ·+ εp,1,

ε̃j,ν = εj,ν +
(
(−1)δj,0 − δν,1

)
ε̃1 (j = 0, . . . , p, ν = 1, . . . , nj),

109



110 11. SHIFT OPERATORS

there is a shift operator R(ε̃, λ̃) of the equation Pm̃(λ̃′)ṽ = 0 to Pm̃(λ̃)ũ = 0 defined

by ṽ = R(ε̃, λ̃)ũ. Note that

Pm̃(λ̃) = ∂maxPm(λ) = Ad
( p∏
j=1

(x− cj)λj,1
) p∏
j=1

(x− cj)mj,1−d∂−dAd(∂−µ)

p∏
j=1

(x− cj)−mj,1 Ad
( p∏
j=1

(x− cj)−λj,1
)
Pm(λ),

Pm̃(λ̃′) = ∂maxPm(λ′) = Ad
( p∏
j=1

(x− cj)λj,1
) p∏
j=1

(x− cj)mj,1−d∂−dAd(∂−µ′
)

p∏
j=1

(x− cj)−mj,1 Ad
( p∏
j=1

(x− cj)−λ′
j,1
)
Pm(λ′).

Suppose λj,ν are generic. Let u(x) be a local solution of Pm(λ)u = 0 at x = c1
corresponding to a characteristic exponent different from λ1,1. Then

ũ(x) :=

p∏
j=1

(x− cj)λj,1∂−µ

p∏
j=1

(x− cj)−λj,1u(x)

satisfies Pm̃(λ̃)ũ(x) = 0. Putting

ṽ(x) := R(ε̃, λ̃)ũ(x),

v(x) :=

p∏
j=1

(x− cj)λ
′
j,1∂µ

′
p∏

j=1

(x− cj)λ
′
j,1 ṽ(x),

R̃(ε̃, λ̃) := Ad(

p∏
j=1

(x− cj)λj,1)R(ε̃, λ̃)

we have Pm̃(λ̃′)ũ(x) = 0, Pm(λ′)v(x) = 0 and
p∏

j=1

(x− cj)εj,1∂−µ′
p∏

j=1

(x− cj)−λ′
j,1v(x) = R̃(ε̃, λ̃)∂−µ

p∏
j=1

(x− cj)−λj,1u(x).

In general, if

(11.5) S2

p∏
j=1

(x− cj)εj,1∂−µ′
p∏

j=1

(x− cj)−λ′
j,1v(x) = S1∂

−µ

p∏
j=1

(x− cj)−λj,1u(x)

with S1, S2 ∈W [x], we have

(11.6) R2v(x) = R1u(x)

by putting

R1 =

p∏
j=1

(x− cj)λj,ν+k1,j∂µ+`

p∏
j=1

(x− cj)k2,jS1

εj,1∏
j=1

∂−µ

p∏
j=1

(x− cj)−λj,ν ,

R2 =

p∏
j=1

(x− cj)λj,ν+k1,j∂µ+`

p∏
j=1

(x− cj)k2,jS2

εj,1∏
j=1

∂−µ′
p∏

j=1

(x− cj)−λ′
j,ν

(11.7)

with suitable integers k1,j , k2,j and ` so that R1, R2 ∈W [x;λ].

We choose a non-zero polynomial S2 ∈ C[x] so that S1 = S2R̃(ε̃, λ̃) ∈ W [x].
Since Pm(λ′) is irreducible in W (x;λ) and R2v(x) is not zero, there exists R3 ∈
W (x; ξ) such that R3R2 − 1 ∈ W (x;λ)Pm(λ′). Then v(x) = Ru(x) with the
operator R = R3R1 ∈W (x;λ).
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Since the equations Pm(λ)u = 0 and Pm(λ′)v = 0 are irreducible W (x;λ)-
modules, the correspondence v = Ru gives an isomorphism between these two
modules. Since any solutions of these equations are holomorphically continued
along the path contained in C \ {c1, . . . , cp}, the coefficients of the operator R are
holomorphic in C \ {c1, . . . , cp}. Multiplying R by a suitable element of C(λ), we
may assume R ∈W (x)⊗ C[λ] and R does not vanish at any λj,ν ∈ C.

Put f(x) =
∏p

j=1(x − cj)
n. Since Rm(ε, λ) is a shift operator, there exists

Sm(ε, λ) ∈W (x;λ) such that

(11.8) f−1Pm(λ+ ε)Rm(ε, λ) = Sm(ε, λ)f−1Pm(λ).

Then Theorem 4.19 ii) shows

Rm(ε, λ)∗
(
f−1Pm(λ+ ε)

)∗
=
(
f−1Pm(λ)

)∗
Sm(ε, λ)∗,

Rm(ε, λ)∗ · f−1Pm(λ+ ε)∨ = f−1Pm(λ)∨ · Sm(ε, λ)∗,

Rm(ε, λ)∗f−1Pm(ρ− λ− ε) = f−1Pm(ρ− λ)Sm(ε, λ)∗,

Rm(ε, ρ− µ− ε)∗f−1Pm(µ) = f−1Pm(µ+ ε)Sm(ε, ρ− µ− ε)∗.(11.9)

Here we use the notation (4.52) and put ρj,ν = 2(1 − n)δj,0 + n −mj,ν and µ =
ρ−λ−ε. Comparing (11.9) with (11.8), we see that Sm(ε, λ) is a constant multiple of

the operator Rm(ε, ρ−λ−ε)∗ and fRm(ε, ρ−λ−ε)∗f−1 =
(
f−1Rm(ε, ρ−λ−ε)f

)∗
=

Rm(ε, τ − λ− ε)∗ and we have (11.3). �

Note that the operator Rm(ε, λ) is uniquely defined up to a constant multiple.
The following theorem gives a contiguity relation among specific local solutions

with a rigid spectral type and a relation between the shift operator Rm(ε, λ) and
the universal operator Pm(λ).

Theorem 11.3. Retain the notation in Corollary 10.12 and Theorem 11.2 with a
rigid tuple m. Assume mj,nj = 1 for j = 0, 1 and 2. Put ε = (εj,ν), ε

′ = (ε′j,ν),

(11.10) εj,ν = δj,1δν,n1 − δj,2δν,n2 and ε′j,ν = δj,0δν,n0 − δj,2δν,n2

for j = 0, . . . , p and ν = 1, . . . , nj.
i) Define Qm(λ) ∈W (x;λ) so that Qm(λ)Pm(λ+ ε′)− 1 ∈W (x;λ)Pm(λ+ ε).

Then

(11.11) Rm(ε, λ)− C(λ)Qm(λ)Pm(λ+ ε′) ∈W (x;λ)Pm(λ)

with a rational function C(λ) of λj,ν .
ii) Let uλ(x) be the local solution of Pm(λ)u = 0 such that uλ(x) ≡ (x−c1)λ1,n1

mod (x− c1)λ1,n1+1Oc1 for generic λj,ν . Then we have the contiguity relation

uλ(x) = uλ+ε′(x) + (c1 − c2)
K−1∏
ν=0

λ(ν + 1)1,n1
− λ(ν)1,`(ν)1 + 1

λ(ν)1,n1 − λ(ν)1,`(ν)1 + 1
· uλ+ε(x).(11.12)

Proof. Under the notation in Corollary 10.12, `(k)j 6= nj for j = 0, 1, 2 and
k = 0, . . . ,K − 1 and therefore the operation ∂Kmax on Pm(λ) is equals to ∂Kmax on
Pm(λ + ε) if they are realized by the product of the operators of the form (5.26).
Hence by the induction on K, the proof of Theorem 11.2 (cf. (11.5), (11.6) and
(11.7)) shows

(11.13) Pm(λ+ ε′)u(x) = Pm(λ+ ε′)v(x)

for suitable functions u(x) and v(x) satisfying Pm(λ)u(x) = Pm(λ+ ε)v(x) = 0 and
moreover (11.12) is calculated by (3.6). Note that the identities

(c1 − c2)
p∏

j=1

(x− cj)λj+ε′j =

p∏
j=1

(x− cj)λj −
p∏

j=1

(x− cj)λj+εj ,
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(
∂ −

p∑
j=1

λj + ε′j
x− cj

) p∏
j=1

(x− cj)λj =
(
∂ −

p∑
j=1

λj + ε′j
x− cj

) p∏
j=1

(x− cj)λj+εj

correspond to (11.12) and (11.13), respectively, when K = 0.
Note that (11.13) may be proved by (11.12). The claim i) in this theorem

follows from the fact v(x) = Qm(λ)Pm(λ+ ε′)v(x) = Qm(λ)Pm(λ+ ε′)u(x). �

In general, we have the following theorem for the contiguity relation.

Theorem 11.4 (contiguity relations). Let m ∈ P(n) be a rigid tuple with m1,n1 = 1
and let u1(λ, x) be the normalized solution of the equation Pm(λ)u = 0 with respect
to the exponent λ1,n1 at x = c1. Let ε(i) be shifts compatible to m for i = 0, . . . , n.
Then there exists polynomial functions ri(x, λ) ∈ C[x, λ] such that (r0, . . . , rn) 6= 0
and

(11.14)

n∑
i=0

ri(x, λ)u1(λ+ ε(i), x) = 0.

Proof. There exist Ri ∈ C(λ)Rm(ε(i), λ) satisfying u1(λ+ε
(i), x) = Riu1(λ, x)

and ordRi < n. We have ri(x, λ) with
∑n

i=0 ri(x, λ)Ri = 0 and the claim. �

Example 11.5 (Gauss hypergeometric equation). Let Pλu = 0 and Pλ′v = 0 be
Fuchsian differential equations with the Riemann Schemex =∞ 0 1

λ0,1 λ1,1 λ2,1
λ0,2 λ1,2 λ2,2

 and


x =∞ 0 1

λ′0,1 = λ0,1 λ′1,1 = λ1,1 λ′2,1 = λ2,1
λ′0,2 = λ0,2 λ′1,2 = λ1,2 + 1 λ2,2 = λ2,2 − 1

 ,

respectively. Here the operators Pλ = Pλ0,1,λ0,2,λ1,1,λ1,2,λ2,1,λ2,1 and Pλ′ are given
in (1.51). The normalized local solution uλ(x) of Pλu = 0 corresponding to the
exponent λ1,2 at x = 0 is

(11.15) xλ1,2(1− x)λ2,1F (λ0,1 + λ1,2 + λ2,1, λ0,2 + λ1,2 + λ2,1, 1− λ1,1 + λ1,2;x).

By the reduction

x =∞ 0 1
λ0,1 λ1,1 λ2,1
λ0,2 λ1,2 λ2,2

 →
{
x =∞ 0 1
λ0,2 − µ λ1,2 + µ λ2,2 + µ

}
with

µ = λ0,1 + λ1,1 + λ2,1 − 1, the contiguity relation (11.12) means

xλ1,2(1− x)λ2,1F (λ0,1 + λ1,2 + λ2,1, λ0,2 + λ1,2 + λ2,1, 1− λ1,1 + λ1,2;x)

= xλ1,2(1− x)λ2,1F (λ0,1 + λ1,2 + λ2,1, λ0,2 + λ1,2 + λ2,1 + 1, 1− λ1,1 + λ1,2;x)

− λ0,1 + λ1,2 + λ2,1
1− λ1,1 + λ1,2

xλ1,2+1(1− x)λ2,1

· F (λ0,1 + λ1,2 + λ2,1 + 1, λ0,2 + λ1,2 + λ2,1 + 1, 2− λ1,1 + λ1,2;x),

which is equivalent to the contiguity relation

(11.16) F (α, β, γ, x) = F (α, β + 1, γ;x)− α

γ
xF (α+ 1, β + 1, γ + 1;x).
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Using the expression (1.51), we have

Pλ+ε′ − Pλ = x2(x− 1)∂ + λ0,1x
2 − (λ0,1 + λ2,1)x,

Pλ+ε′ − Pλ+ε = x(x− 1)2∂ + λ0,1x
2 − (λ0,1 + λ1,1)x− λ1,1,

(x− 1)Pλ+ε =
(
x(x− 1)∂ + (λ0,2 − 2)x+ λ1,2 + 1

)(
Pλ+ε′ − Pλ+ε

)
− (λ0,1 + λ1,1 + λ2,1)(λ0,2 + λ1,2 + λ2,1)x(x− 1),

x−1(x− 1)−1
(
x(x− 1)∂ + (λ0,2 − 2)x+ λ1,2 + 1

)
(Pλ+ε′ − Pλ)− (x− 1)−1Pλ

= −(λ0,1 + λ1,1 + λ2,1)
(
x∂ − λ1,2 −

λ2,1x

x− 1

)
and hence (11.11) says

(11.17) Rm(ε, λ) = x∂ − λ1,2 − λ2,1
x

x− 1
.

In the same way we have

(11.18) Rm(−ε, λ+ ε) = (x− 1)∂ − λ2,2 + 1− λ1,1
x− 1

x
.

Then

Rm(−ε, λ+ ε)Rm(ε, λ)− x−1(x− 1)−1Pλ

= −(λ0,1 + λ1,2 + λ2,1)(λ0,2 + λ1,2 + λ2,1)
(11.19)

and since −Rm(ε, τ − λ− ε)∗ = −
(
x∂ + (λ1,2 + 2) + (λ2,1 + 1) x

x−1

)∗
= x∂ − λ1,2 −

1− (λ2,1 + 1) x
x−1 with τ given by (11.2), the identity (11.3) means

PλRm(ε, λ) =
(
x∂ − (λ1,2 + 1)− (λ2,1 + 1)

x

x− 1

)
Pλ+ε.(11.20)

Remark 11.6. Suppose m is irreducibly realizable but it is not rigid. If the
reductions of {λm} and {λ′m} to Riemann schemes with a fundamental tuple of
partitions are transformed into each other by suitable additions, we can construct
a shift operator as in Theorem 11.2. If they are not so, we need a shift operator
for equations whose spectral type are fundamental and such an operator is called
a Schlesinger transformation.

Now we examine the condition that a universal operator defines a shift operator.

Theorem 11.7 (universal operator and shift operator). Let m =
(
mj,ν

)
0≤j≤p
1≤ν≤nj

and m′ =
(
m′

j,ν

)
0≤j≤p
1≤ν≤nj

∈ Pp+1 be irreducibly realizable and monotone. They may

not be rigid. Suppose ordm > ordm′. Fix j0 with 0 ≤ j0 ≤ p. Let n′j0 be a positive
integer such that m′

j0,n′
j0

> m′
j0,n′

j0
+1 = 0 and let Pm(λ) be the universal operator

corresponding to {λm}. Putting λ′j,ν = λj,ν when (j, ν) 6= (j0, n
′
j0
), we define

the universal operator P j0
m′(λ) := Pm′(λ′) with the Riemann scheme {λ′m′}. Here

λ′j0,n′
j0

is determined by the Fuchs condition. Then (αm|αm′) ≤ mj0,n′
j0
m′

j0,n′
j0

.

Suppose

(11.21) (αm|αm′)
(
=

p∑
j=0

nj∑
ν=1

mj,νm
′
j,ν − (p− 1) ordm · ordm′

)
= mj0,n′

j0
m′

j0,n′
j0

.

Then m′ is rigid and the universal operator P j0
m′(λ) is the shift operator Rm(ε, λ):{[

λj,ν
]
(mj,ν)

}
0≤j≤p
1≤ν≤nj

Rm(ε,λ)=P
j0
m′ (λ)−−−−−−−−−−−→

{[
λj,ν + εj,ν

]
(mj,ν)

}
0≤j≤p
1≤ν≤nj

with εj,ν =
(
1− δj,j0δν,n′

j0

)
m′

j,ν − δj,0 · (p− 1) ordm′.

(11.22)
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Proof. We may assume λ is generic. Let u(x) be the solution of the irreducible
differential equation Pm(λ)u = 0. Then

Pm′(λ′)(x− cj)λj,νOcj ⊂ (x− cj)
λj,ν+(1−δj,j0δν,n′

j0
)m′

j,νOcj ,

Pm′(λ′)x−λ0,νO∞ ⊂ x
−λ0,ν−(1−δ0,j0δν,n′

j0
)m′

0,ν+(p−1) ordm′

O∞
and Pm′(λ′)u(x) satisfies a Fuchsian differential equation. Hence the factRm(ε, λ) =
Pm′(λ′) is clear from the characteristic exponents of the equation at each singular
points. Note that the left hand side of (11.21) is never larger than the right hand
side and if they are not equal, Pm′(λ′)u(x) satisfies a Fuchsian differential equation
with apparent singularities for the solutions u(x) of Pm(λ)u = 0.

It follows from Lemma 10.3 that the condition (11.21) means that at least one
of the irreducibly realizable tuples m and m′ is rigid and therefore if m is rigid, so
is m′ because Rm(ε, λ) is unique up to constant multiple. �

If ordm′ = 1, the condition (11.21) means that m is of Okubo type, which
will be examined in the next section. It will be interesting to examine other cases.
When m = m′⊕m′′ is a rigid decomposition or αm′ ∈ ∆(m), we easily have many
examples satisfying (11.21).

Here we give such examples of the pairs (m ;m′) with ordm′ > 1:

(11.23)

(1n, 1n, n− 11 ; 1n−1, 1n−1, n− 21) (221, 32, 32, 41 ; 110, 11, 11, 20)

(12m,mm− 11,m2 ; 12, 110, 12) (12m+1,m21,m+ 1m ; 12, 120, 11)

(221, 221, 221 ; 110, 110, 110) (2111, 221, 221 ; 1100, 110, 110).

11.2. Relation to reducibility

In this section, we will examine whether the shift operator defines a W (x)-
isomorphism or doesn’t.

Theorem 11.8. Retain the notation in Theorem 11.2 and define a polynomial
function cm(ε;λ) of λj,ν by

(11.24) Rm(−ε, λ+ ε)Rm(ε, λ)− cm(ε;λ) ∈
(
W [x]⊗ C[λ]

)
Pm(λ).

We call cm(ε;λ) the intertwining polynomial for the differential equation Pm(λ)u =
0 with respect to the shift ε.

i) Fix λoj,ν ∈ C. If cm(ε;λo) 6= 0, the equation Pm(λo)u = 0 is isomorphic to
the equation Pm(λo + ε)v = 0. If cm(ε;λo) = 0, then the equations Pm(λo)u = 0
and Pm(λo + ε)v = 0 are not irreducible.

ii) Under the notation in Proposition 10.16, there exists a set Λ whose elements
(i, k) are in {1, . . . , N} × Z such that

(11.25) cm(ε;λ) = C
∏

(i,k)∈Λ

(
`i(λ)− k

)
with a constant C ∈ C×. Here Λ may contain some elements (i, k) with multiplici-
ties.

Proof. Since u 7→ Rm(−ε, λ + ε)Rm(ε, λ)u defined an endomorphism of the
irreducible equation Pm(λ)u = 0, the existence of cm(ε;λ) is clear.

If cm(ε;λo) = 0, the non-zero homomorphism of Pm(λo)u = 0 to Pm(λo+ε)v =
0 defined by u = Rm(ε;λo)v is not surjective nor injective. Hence the equations are
not irreducible. If cm(ε;λo) 6= 0, then the homomorphism is an isomorphism and
the equations are isomorphic to each other.

The claim ii) follows from Proposition 10.16. �
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Theorem 11.9. Retain the notation in Theorem 11.8 with a rigid tuple m. Fix a
linear function `(λ) of λ such that the condition `(λ) = 0 implies the reducibility of
the universal equation Pm(λ)u = 0.

i) If there is no irreducible realizable subtuple m′ of m which is compatible to
`(λ) and `(λ+ ε), `(λ) is a factor of cm(ε;λ).

If there is no dual decomposition of m with respect to the pair `(λ) and `(λ+ε),
`(λ) is not a factor of cm(ε;λ). Here we define that the decomposition (10.50) is
dual with respect to the pair `(λ) and `(λ+ ε) if the following conditions are valid.

m′ is an irreducibly realizable subtuple of m compatible to `(λ),(11.26)

m′′ is a subtuple of m compatible to `(λ+ ε).(11.27)

ii) Suppose there exists a decomposition m = m′⊕m′′ with rigid tuples m′ and
m′′ such that `(λ) = |{λm}|+ k with k ∈ Z and `(λ+ ε) = `(λ) + 1. Then `(λ) is
a factor of cm(ε;λ) if and only if k = 0.

Proof. Fix generic complex numbers λj,ν ∈ C satisfying `(λ) = |{λm}| = 0.
Then we may assume λj,ν − λj,ν′ /∈ Z for 1 ≤ ν < ν′ ≤ nj and j = 0, . . . , p.

i) The shift operator R := Rm(−ε, λ+ε) gives a non-zeroW (x)-homomorphism
of the equation Pm(λ + ε)v = 0 to Pm(λ)u = 0 by the correspondence v = Ru.
Since the equation Pm(λ)u = 0 is reducible, we examine the decompositions of m
described in Proposition 10.16. Note that the genericity of λj,ν ∈ C assures that
the subtuple m′ of m corresponding to a decomposition Pm(λ) = P ′′P ′ is uniquely
determined, namely, m′ corresponds to the spectral type of the monodromy of the
equation P ′u = 0.

If the shift operator R is bijective, there exists a subtuple m′ of m compatible
to `(λ) and `(λ+ ε) because R indices an isomorphism of monodromy.

Suppose `(λ) is a factor of cm(ε;λ). Then R is not bijective. We assume
that the image of R is the equation P ′′ū = 0 and the kernel of R is the equation
P ′
ε v̄ = 0. Then Pm(λ) = P ′′P ′ and Pm(λ + ε) = P ′

εP
′′
ε with suitable Fuchsian

differential operators P ′ and P ′′
ε . Note that the spectral type of the monodromy of

P ′u = 0 and P ′′
ε v = 0 corresponds to m′ and m′′ with m = m′ + m′′. Applying

Proposition 10.16 to the decompositions Pm(λ) = P ′′P ′ and Pm(λ+ ε) = P ′
εP

′′
ε , we

have a dual decomposition (10.50) of m with respect to the pair `(λ) and `(λ+ ε).
ii) Since Pm(λ)u = 0 is reducible, we have a decomposition Pm(λ) = P ′′P ′ with

0 < ordP ′ < ordPm(λ). We may assume P ′u = 0 and let m̃′ be the spectral type
of the monodromy of the equation P ′u = 0. Then m̃′ = `1m

′ + `2m
′′ with integers

`1 and `2 because |{λm̃′}| ∈ Z≤0. Since P ′u = 0 is irreducible, 2 ≥ idx m̃′ =
2(`21 − `1`2 + `22) and therefore (`1, `2) = (1, 0) or (0, 1). Hence the claim follows
from i) and the identity |{λm′}|+ |{λm′′}| = 1 �

Remark 11.10. i) The reducibility of Pm(λ) implies that of the dual of Pm(λ).
ii) When m is simply reducible (cf. Definition 6.15), each linear form of λj,ν

describing the reducibility uniquely corresponds to a rigid decomposition of m
and therefore Theorem 11.9 gives the necessary and sufficient condition for the
bijectivity of the shift operator Rm(ε, λ).

Example 11.11 (EO4). Let P (λ)u = 0 and P (λ′)v = 0 be the Fuchsian differential
equation with the Riemann schemes

λ0,1 [λ1,1](2) [λ2,1](2)
λ0,2 λ1,2 [λ2,2](2)
λ0,3 λ1,3
λ0,4

 and


λ0,1 [λ1,1](2) [λ2,1](2)
λ0,2 λ1,2 [λ2,2](2)
λ0,3 λ1,3 + 1

λ0,4 − 1

 ,
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respectively. Since the condition of the reducibility of the equation corresponds
to rigid decompositions (10.62), it easily follows from Theorem 11.9 that the shift
operator between P (λ)u = 0 and P (λ′)v = 0 is bijective if and only if{

λ0,4 + λ1,2 + λ2,µ − 1 6= 0 (1 ≤ µ ≤ 2),

λ0,ν + λ0,ν′ + λ1,1 + λ1,3 + λ2,1 + λ2,2 − 1 6= 0 (1 ≤ ν < ν′ ≤ 3).

In general, for a shift ε = (εj,ν) compatible to the spectral type 1111, 211, 22,
the shift operator between P (λ)u = 0 and P (λ+ ε)v = 0 is bijective if and only if
the values of each function in the list

λ0,ν + λ1,1 + λ2,µ (1 ≤ ν ≤ 4, 1 ≤ µ ≤ 2),(11.28)

λ0,ν + λ0,ν′ + λ1,1 + λ1,3 + λ2,1 + λ2,2 − 1 (1 ≤ ν < ν′ ≤ 4)(11.29)

are

(11.30)


not integers for λ and λ+ ε

or positive integers for λ and λ+ ε

or non-positive integers for λ and λ+ ε.

Recall (2.23) and note that the shift operator gives a homomorphism between mon-
odromies.

The following conjecture gives cm(ε;λ) under certain conditions.

Conjecture 11.12. Retain the assumption that m =
(
λj,ν

)
0≤j≤p
1≤ν≤nj

∈ P(n)
p+1 is rigid.

i) If `(λ) = `(λ+ ε) in Theorem 11.9, then `(λ) is not a factor of cm(ε;λ),
ii) Assume m1,n1 = m2,n2 = 1 and

(11.31) ε :=
(
εj,ν
)

0≤j≤p
1≤ν≤nj

, εj,ν = δj,1δν,n1 − δj,2δν,n2 ,

Then we have

(11.32) cm(ε;λ) = C
∏

m=m′⊕m′′

m′
1,n1

=m′′
2,n2

=1

|{λm′}|

with C ∈ C×.

Suppose that the spectral type m is of Okubo type, namely,

(11.33) m1,1 + · · ·+mp,1 = (p− 1) ordm.

Then some shift operators are easily obtained as follows. By a suitable addition we
may assume that the Riemann scheme is

(11.34)



x =∞ x = c1 · · · x = cp
[λ0,1](m0,1) [0](m1,1) · · · [0](mp,1)

[λ0,2](m0,2) [λ1,2](m1,2) · · · [λp,2](mp,2)

...
...

...
...

[λ0,n0 ](m0,n0 )
[λ1,n1 ](m1,n1 )

· · · [λp,np ](mp,np )


and the corresponding differential equation Pu = 0 is of the form

(11.35) P̄m(λ) =

p∏
j=1

(x− cj)n−mj,1
dn

dxn
+

n−1∑
k=0

p∏
j=1

(x− cj)max{k−mj,1,0}ak(x)
dk

dxk
.



11.2. RELATION TO REDUCIBILITY 117

Here ak(x) is a polynomial of x whose degree is not larger than k−
∑n

j=1 max{k−
mj,1, 0} for any k = 1, . . . , p. Moreover we have

(11.36) a0(x) =

n0∏
ν=1

m0,ν−1∏
i=0

(λ0,ν + i).

Define the differential operators R1 and Rm(λ) ∈W [x]⊗ C[λ] by

(11.37) R1 = d
dx and P̄m(λ) = −Rm(λ)R1 + a0(x).

Let Pm(λ′)v = 0 be the differential equation with the Riemann scheme

(11.38)



x =∞ x = c1 · · · x = cp
[λ0,1 + 1](m0,1) [0](m1,1) · · · [0](mp,1)

[λ0,2 + 1](m0,2) [λ1,2 − 1](m1,2) · · · [λp,2 − 1](mp,2)

...
...

...
...

[λ0,n0 + 1](m0,n0 )
[λ1,n1 − 1](m1,n1 )

· · · [λp,np − 1](mp,np )


.

Then the correspondences u = Rm(λ)v and v = R1u give W (x)-homomorphisms
between the differential equations.

Proposition 11.13. Let m = {mj,ν} 0≤j≤p
1≤ν≤nj

be a rigid tuple of partitions satisfying

(11.33). Putting

(11.39) εj,ν =

{
1 (j = 0, 1 ≤ ν ≤ n0),
δν,0 − 1 (1 ≤ j ≤ p, 1 ≤ ν ≤ nj),

we have

(11.40) cm(ε;λ) =

n0∏
ν=1

m0,ν−1∏
i=0

(λ0,ν + λ1,1 + · · ·+ λp,1 + i).

Proof. By suitable additions the proposition follows from the result assuming
λj,1 = 0 for j = 1, . . . , p, which has been shown. �

Example 11.14. The generalized hypergeometric equations with the Riemann
schemes 

λ0,1 λ1,1 [λ2,1](n−1)

...
...

λ0,ν λ1,νo

...
...

λ0,n λ1,n λ2,2


and



λ0,1 λ1,1 [λ2,1](n−1)

...
...

λ0,ν λ1,νo + 1
...

...
λ0,n λ1,n λ2,2 − 1


,(11.41)

respectively, whose spectral type is m = 1n, 1n, (n − 1)1 are isomorphic to each
other by the shift operator if and only if

(11.42) λ0,ν + λ1,νo + λ2,1 6= 0 (ν = 1, . . . , n).

This statement follows from Proposition 11.13 with suitable additions.
Theorem 11.9 shows that in general P (λ)u = 0 with the Riemann scheme {λm}

is W (x)-isomorphic to P (λ+ ε)v = 0 by the shift operator if and only if the values
of the function λ0,ν +λ1,µ +λ2,1 satisfy (11.30) for 1 ≤ ν ≤ n and 1 ≤ µ ≤ n. Here
ε is any shift compatible to m.



118 11. SHIFT OPERATORS

The shift operator between
λ0,1 λ1,1 [λ2,1](n−1)

λ0,2 λ1,2 λ2,2
...

...
λ0,n λ1,n

 and


λ0,1 λ1,1 + 1 [λ2,1](n−1)

λ0,2 λ1,2 − 1 λ2,2
...

...
λ0,n λ1,n

(11.43)

is bijective if and only if

λ0,ν + λ1,1 + λ2,1 6= 0 and λ0,ν + λ1,2 + λ2,1 6= 1 for ν = 1, . . . , n.

Hence if λ1,1 = 0 and λ1,2 = 1 and λ0,1 + λ2,1 = 0, the shift operator defines a
non-zero endomorphism which is not bijective and therefore the monodromy of the
space of the solutions are decomposed into a direct sum of the spaces of solutions
of two Fuchsian differential equations. The other parameters are generic in this
case, the decomposition is unique and the dimension of the smaller space equals
1. When n = 2 and (c0, c1, c2) = (∞, 1, 0) and λ2,1 and λ2,2 are generic, the space
equals Cxλ2,1 ⊕ Cxλ2,2

11.3. Polynomial solutions

We characterize some polynomial solutions of a differential equation of Okubo
type.

Proposition 11.15. Retain the notation in §11.1. Let P̄m(λ)u = 0 be the dif-
ferential equation with the Riemann scheme (11.34). Suppose that m is rigid and
satisfies (11.33). Moreover suppose λj,ν /∈ Z for j = 0, . . . , p and ν = 2, . . . , nj.
Then the equation P̄m(λ)u = 0 has a non-zero polynomial solution if and only if
−λ0,1 is a non-negative integer. When 1− λ0,1 −m0,1 is a non-negative integer k,
the space of polynomial solutions of the equation is spanned by the polynomials

(11.44) pλ,ν := Rm(λ)◦Rm(λ+ε)◦· · ·◦Rm(λ+(k−1)ε)xν (ν = 0, . . . ,m0,1−1)

under the notation (11.37) and deg pλ,ν = k + ν.

Proof. Since m =
(
m0,1δ1,ν

)
0≤j≤p
1≤ν≤nj

⊕
(
mj,ν − m0,1δ1,ν

)
0≤j≤p
1≤ν≤nj

is a rigid

decomposition of m, Example 5.5 and (4.56) assure a decomposition P̄m(λ)∨ =
∂m0,1P1 with a suitable operator P1 ∈ W (x) when 2 −m0,1 − λ0,1 = 1. Moreover
Proposition 11.13 assures that Rm(λ+ `ε) defines an isomorphism of the equation
Pm(λ+(`+1)ε)uk+1 = 0 to the equation Pm(λ+`ε)uk = 0 by uk = Rm(λ+`ε)uk+1

if −λ0,1 − ` /∈ {0, 1, . . . ,m0,1 − 1}. Hence the polynomials (11.44) are solutions of
Pm(λ)u = 0. The remaining part of the proposition is clear. �
Remark 11.16. i) Note that we do not assume that m0,1 ≥ m0,j for j = 1, . . . , n0

in Proposition 11.15.
ii) We have not used the assumption that m is rigid in Proposition 11.13 and

Proposition 11.15 and hence the propositions are valid without this assumption.
iii) As are give in §13.2.3, most rigid spectral types are of Okubo type, namely,

satisfy (11.33).
iv) A generalization of the above proposition is given by Remark 13.1 and

Theorem 11.7.
v) Suppose P is a Fuchsian differential operator with the Riemann scheme

(11.34) satisfying (11.33). Suppose P is of the form (11.35). Since P defines an
endomorphism of the linear space of polynomial functions of degree at most m for
any non-negative integer m, there exists a monic polynomial pm of degree m such
that pm is a generalized eigenfunction of P .



CHAPTER 12

Connection problem

12.1. Connection formula

For a realizable tuple m ∈ Pp+1, let Pmu = 0 be a universal Fuchsian differen-
tial equation with the Riemann scheme

(12.1)


x = 0 c1 = 1 · · · cj · · · cp =∞

[λ0,1](m0,1) [λ1,1](m1,1) · · · [λj,1](mj,1) · · · [λp,1](mp,1)

...
...

...
...

...
...

[λ0,n0 ](m0,n0 )
[λ1,n1 ](m1,n1 )

· · · [λj,nj ](mj,nj
) · · · [λp,np ](mp,np )

 .

The singular points of the equation are cj for j = 0, . . . , p. In this section we always
assume c0 = 0, c1 = 1 and cp = ∞ and cj /∈ [0, 1] for j = 2, . . . , p − 1. We also
assume that λj,ν are generic.

Definition 12.1 (connection coefficients). Suppose λj,ν are generic under the

Fuchs relation. Let u
λ0,ν0
0 and u

λ1,ν1
1 be normalized local solutions of Pm = 0 at

x = 0 and x = 1 corresponding to the exponents λ0,ν0 and λ1,ν1 , respectively, so that

u
λ0,ν0
0 ≡ xλ0,ν0 mod xλ0,ν0+1O0 and u

λ1,ν1
1 ≡ (1 − x)λ1,ν1 mod (1 − x)λ1,ν1+1O1.

Here 1 ≤ ν0 ≤ n0 and 1 ≤ ν1 ≤ n1. If m0,ν0 = 1, u
λ0,ν0
0 is uniquely determined and

then the analytic continuation of u
λ0,ν0
0 to x = 1 along (0, 1) ⊂ R defines a con-

nection coefficient with respect to u
λ1,ν1
1 , which is denoted by c(0 :λ0,ν0 1 :λ1,ν1)

or simply by c(λ0,ν0  λ1,ν1). The connection coefficient c(1 : λ1,ν1  0 : λ0.ν0) or

c(λ1,ν1 λ0.ν0) of u
λ1,ν1
1 with respect to u

λ0,ν0
0 are similarly defined if m1,ν1 = 1.

Moreover we define c(ci : λi,νi cj : λj,νj ) by using a suitable linear fractional
transformation T of C ∪ {∞} which transforms {ci, cj} to {0, 1} so that T (cν) /∈
(0, 1) for ν = 0, . . . , p. If p = 2, we define the map T so that T (ck) = ∞ for the
other singular point ck. For example if cj /∈ [0, 1] for j = 2, . . . , p − 1, we put
T (x) = x

x−1 to define c(0 : λ0,ν0 ∞ : λp,νp) or c(∞ : λp,νp 0 : λ0,ν0).

In the definition u
λ0,ν0
0 (x) = xλ0,ν0φ(x) with analytic function φ(x) at 0 which

satisfies φ(0) = 1 and if Reλ1,ν1 < Reλ1,ν for ν 6= ν1, we have

(12.2) c(λ0,ν0 λ1,ν1) = lim
x→1−0

(1− x)−λ1,ν1u
λ0,ν0
0 (x) (x ∈ [0, 1))

by the analytic continuation. The connection coefficient c(λ0.ν0 λ1,ν1) meromor-
phically depends on spectral parameters λj,ν . It also holomorphically depends on
accessory parameters gi and singular points 1

cj
(j = 2, . . . , p−1) in a neighborhood

of given values of parameters.
The main purpose in this section is to get the explicit expression of the connec-

tion coefficients in terms of gamma functions when m is rigid andm0,ν = m1,ν′ = 1.
Fist we prove the following key lemma which describes the effect of a middle

convolution on connection coefficients.

119
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Lemma 12.2. Using the integral transformation (1.37), we put

(Tµ
a,bu)(x) := x−a−µ(1− x)−b−µIµ0 x

a(1− x)bu(x),(12.3)

(Sµ
a,bu)(x) := x−a−µIµ0 x

a(1− x)bu(x)(12.4)

for a continuous function u(x) on [0, 1]. Suppose Re a ≥ 0 and Reµ > 0. Under
the condition Re b+ Reµ < 0 or Re b+ Reµ > 0, (Tµ

a,bu)(x) or Sµ
a,b(u)(x) defines

a continuous function on [0, 1], respectively, and we have

Tµ
a,b(u)(0) = Sµ

a,b(u)(0) =
Γ(a+ 1)

Γ(a+ µ+ 1)
u(0),(12.5)

Tµ
a,b(u)(1)

Tµ
a,b(u)(0)

=
u(1)

u(0)
Cµ

a,b, Cµ
a,b :=

Γ(a+ µ+ 1)Γ(−µ− b)
Γ(a+ 1)Γ(−b)

,(12.6)

Sµ
a,b(u)(1)

Sµ
a,b(u)(0)

=
1

u(0)

Γ(a+ µ+ 1)

Γ(µ)Γ(a+ 1)

∫ 1

0

ta(1− t)b+µ−1u(t)dt.(12.7)

Proof. Suppose Re a ≥ 0 and 0 < Reµ < −Re b. Then

Γ(µ)Tµ
a,b(u)(x)

= x−a−µ(1− x)−b−µ

∫ x

0

ta(1− t)b(x− t)µ−1u(t)dt (t = xs1, 0 < x < 1)

= (1− x)−b−µ

∫ 1

0

sa1(1− s1)µ−1(1− xs1)bu(xs1)ds1

=

∫ 1

0

sa1

(1− s1
1− x

)µ(1− xs1
1− x

)b
u(xs1)

ds

1− s1

=

∫ 1

0

(1− s2)a
( s2
1− x

)µ(
1 +

xs2
1− x

)b
u(x− xs2)

ds2
s2

(s1 = 1− s2)

=

∫ 1
1−x

0

(
1− s(1− x)

)a
sµ(1 + xs)bu

(
x− x(1− x)s

)ds
s

(s2 = (1− x)s).

Since∣∣sa1(1− s1)µ−1(1− xs1)bu(xs1)
∣∣ ≤ max{(1− s1)Reµ−1, 1}3−Re b max

0≤t≤1
|u(t)|

for 0 ≤ s1 < 1 and 0 ≤ x ≤ 2
3 , T

µ
a,b(u)(x) is continuous for x ∈ [0, 23 ). We have∣∣(1− s(1− x))asµ−1(1 + xs)bu
(
x− x(1− x)s)

)∣∣ ≤ sReµ−1(1 + s
2 )

Re b max
0≤t≤1

|u(t)|

for 1
2 ≤ x ≤ 1 and 0 < s ≤ 1

1−x and therefore Tµ
a,b(u)(x) is continuous for x ∈ ( 12 , 1].

Hence Tµ
a,b(x) defines a continuous function on [0, 1] and

Tµ
a,b(u)(0) =

1

Γ(µ)

∫ 1

0

(1− s2)asµ2u(0)
ds2
s2

=
Γ(a+ 1)

Γ(a+ µ+ 1)
u(0),

Tµ
a,b(u)(1) =

1

Γ(µ)

∫ ∞

0

sµ(1 + s)bu(1)
ds

s

(t = s
1+s = 1− 1

1+s ,
1

1+s = 1− t, 1 + s = 1
1−t , s =

1
1−t − 1 = t

1−t ,
ds
dt = − 1

(1−t)2 )

=
1

Γ(µ)

∫ 1

0

( t

1− t

)µ−1

(1− t)−b−2u(1)dt =
Γ(−µ− b)
Γ(−b)

u(1).

The claims for Sµ
a,b are clear from

Γ(µ)Sµ
a,b(u)(x) =

∫ 1

0

sa1(1− s1)µ−1(1− xs1)bu(xs1)ds1. �
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This lemma is useful for the middle convolution mcµ not only when it gives a
reduction but also when it doesn’t change the spectral type.

Example 12.3. Applying Lemma 12.2 to the solution

uλ0+µ
0 (x) =

∫ x

0

tλ0(1− t)λ1

(p−1∏
j=2

(
1− t

cj

)λj
)
(x− t)µ−1dt

of the Jordan-Pochhammer equation (cf. Example 1.8 iii)) with the Riemann scheme
x = 0 c1 = 1 · · · cj · · · cp =∞
[0](p−1) [0](p−1) · · · [0](p−1) · · · [1− µ](p−1)

λ0 + µ λ1 + µ · · · λj + µ · · · −
∑p−1

ν=0 λν − µ

 ,

we have

c(0 :λ0 + µ 1:λ1 + µ) =
Γ(λ0 + µ+ 1)Γ(−λ1 − µ)

Γ(λ0 + 1)Γ(−λ1)

p−1∏
j=2

(
1− 1

cj

)λj

,

c(0 :λ0 + µ 1 :0) =
Γ(λ0 + µ+ 1)

Γ(µ)Γ(λ0 + 1)

∫ 1

0

tλ0(1− t)λ1+µ−1

p−1∏
j=1

(
1− t

cj

)λj

dt.

Moreover the equation Pu = 0 with

P := RAd(∂−µ′
)RAd(xλ

′
)RAd(∂−µ)RAd(xλ0(1− x)λ1)∂

is satisfied by the generalized hypergeometric function 3F2 with the Riemann scheme
x = 0 1 ∞
0 [0](2) 1− µ′

λ′ + µ′ 1− λ′ − µ− µ′

λ0 + λ′ + µ+ µ′ λ1 + µ+ µ′ −λ0 − λ1 − λ′ − µ− µ′


corresponding to 111, 21, 111 and therefore

c(λ0 + λ′ + µ+ µ′ λ1 + µ+ µ′) = Cµ
λ0,λ1

· Cµ′

λ0+λ′+µ,λ1+µ

=
Γ(λ0 + µ+ 1)Γ(−λ1 − µ)

Γ(λ0 + 1)Γ(−λ1)
· Γ(λ0 + λ′ + µ+ µ′ + 1)Γ(−λ1 − µ− µ′)

Γ(λ0 + λ′ + µ+ 1)Γ(−λ1 − µ)

=
Γ(λ0 + µ+ 1)Γ(λ0 + λ′ + µ+ µ′ + 1)Γ(−λ1 − µ− µ′)

Γ(λ0 + 1)Γ(−λ1)Γ(λ0 + λ′ + µ+ 1)
.

We further examine the connection coefficient.
In general, putting c0 = 0 and c1 = 1 and λ1 =

∑p
k=0 λk,1 − 1, we have{

x = cj (j = 0, . . . , p− 1) ∞
[λj,ν − (δj,0 + δj,1)λj,nj ](mj,ν) [λp,ν + λ0,n0 + λ1,n1 ](m0,ν)

}
x
λ0,n0 (1−x)

λ1,n1

−−−−−−−−−−−→
{

x = cj ∞
[λj,ν ](mj,ν) [λp,ν ](mp,ν)

}

x−λ0,1
∏p−1

j=1 (1−c−1
j x)−λj,1

−−−−−−−−−−−−−−−−−−→
{

[0](mj,1) [λp,1 +
∑p−1

k=0 λk,1](mp,1)

[λj,ν − λj,1](mj,ν) [λp,ν +
∑p−1

k=0 λk,1](mp,ν)

}
∂1−

∑p
k=0

λk,1

−−−−−−−−−→
{

[0](mj,1−d) [λp,1 +
∑p−1

k=0 λk,1 − 2λ1](mp,1−d)

[λj,ν − λj,1 + λ1](mj,ν) [λp,ν +
∑p−1

k=0 λk,1 − λ1](mp,ν)

}
(d =

p∑
k=0

mk,1 − (p− 1)n)



122 12. CONNECTION PROBLEM

xλ0,1
∏p−1

j=1 (1−c−1
j x)λj,1

−−−−−−−−−−−−−−−−→


x = cj ∞

[λj,1](mj,1−d) [λp,1 − 2λ1](mp,1−d)

[λj,ν + λ1](mj,ν) [λp,ν − λ1](mp,ν)

 ,

Cλ1

λ0,n1−λ0,1,λ1,n1−λ1,1
=

Γ(λ0,n0 + λ1 − λ0,1 + 1)Γ(λ1,1 − λ1,n1 − λ1)
Γ(λ0,n0

− λ0,1 + 1)Γ(λ1,1 − λ1,n1
)

.

In general, the following theorem is a direct consequence of Definition 5.7 and
Lemma 12.2.

Theorem 12.4. Put c0 = 0, c1 = 1 and cj ∈ C \ {0} for j = 3, . . . , p− 1. By the
transformation

RAd
(
xλ0,1

p−1∏
j=1

(
1− x

cj

)λj,1
)
◦ RAd

(
∂1−

∑p
k=0 λk,1

)
◦ RAd

(
x−λ0,1

p−1∏
j=1

(
1− x

cj

)−λj,1
)

the Riemann scheme of a Fuchsian ordinary differential equation and its connection
coefficient change as follows:

{λm} =
{
[λj,ν ](mj,ν)

}
0≤j≤p
1≤ν≤nj

=


x = cj (j = 0, . . . , p− 1) ∞

[λj,1](mj,1) [λp,1](mp,1)

[λj,ν ](mj,ν) [λp,ν ](mp,ν)


7→ {λ′m′} =

{
[λ′j,ν ](m′

j,ν)

}
0≤j≤p
1≤ν≤nj

=


x = cj (j = 0, . . . , p− 1) ∞

[λj,1](mj,1−d) [λp,1 − 2
∑p

k=0 λk,1 + 2](mp,1−d)

[λj,ν +
∑p

k=0 λk,1 − 1](mj,ν) [λp,ν −
∑p

k=0 λk,1 + 1](mp,ν)


with

d = m0,1 + · · ·+mp,1 − (p− 1) ordm,

m′
j,ν = mj,ν − dδν,1 (j = 0, . . . , p, ν = 1, . . . , nj),

λ′j,1 = λj,1 (j = 0, . . . , p− 1), λ′p,1 = −2λ0,1 − · · · − 2λp−1,1 − λp,1 + 2,

λ′j,ν = λj,ν + λ0,1 + λ1,1 + · · ·+ λp,1 − 1 (j = 0, . . . , p− 1, ν = 2, . . . , nj),

λ′p,ν = λp,ν − λ0,1 − · · · − λp,1 + 1

and if m0,n0 = 1 and n0 > 1 and n1 > 1, then

(12.8)
c′(λ′0,n0

 λ′1,n1
)

Γ(λ′0,n0
− λ′0,1 + 1)Γ(λ′1,1 − λ′1,n1

)
=

c(λ0,n0
 λ1,n1

)

Γ(λ0,n0 − λ0,1 + 1)Γ(λ1,1 − λ1,n1)
.

Applying the successive reduction by ∂max to the above theorem, we obtain
the following theorem.

Theorem 12.5. Suppose that a tuple m ∈ P is irreducibly realizable and m0,n0
=

m1,n1 = 1 in the Riemann scheme (12.1). Then the connection coefficient satisfies

c(λ0,n0 λ1,n1)

c̄
(
λ(K)0,n0 λ(K)1,n1

)
=

K−1∏
k=0

Γ
(
λ(k)0,n0

− λ(k)0,`(k)0 + 1
)
· Γ
(
λ(k)1,`(k)1 − λ(k)1,n1

)
Γ
(
λ(k + 1)0,n0

− λ(k + 1)0,`(k)0 + 1
)
· Γ
(
λ(k + 1)1,`(k)1 − λ(k + 1)1,n1

)
under the notation in Definitions 5.12. Here c̄

(
λ(K)0,n0  λ(K)1,n1

)
is a corre-

sponding connection coefficient for the equation (∂KmaxPm)v = 0 with the funda-
mental spectral type fm. We note that(

λ(k + 1)0,n0 − λ(k + 1)0,`(k)0 + 1
)
+
(
λ(k + 1)1,`(k)1 − λ(k + 1)1,n1

)
=
(
λ(k)0,n0 − λ(k)0,`(k)0 + 1

)
+
(
λ(k)1,`(k)1 − λ(k)1,n1

)(12.9)
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for k = 0, . . . ,K − 1.

Whenm is rigid in the theorem above, we note that c̄(λ0,n0(K) λ1,n1(K)) = 1
and we have the following more explicit result.

Theorem 12.6. Let m ∈ P be a rigid tuple. Assume m0,n0 = m1,n1 = 1, n0 > 1
and n1 > 1 in the Riemann scheme (12.1). Then

c(λ0,n0 λ1,n1) =

n0−1∏
ν=1

Γ
(
λ0,n0 − λ0,ν + 1

)
·
n1−1∏
ν=1

Γ
(
λ1,ν − λ1,n1

)
∏

m′⊕m′′=m
m′

0,n0
=m′′

1,n1
=1

Γ
(
|{λm′}|

)
·
p−1∏
j=2

(
1− 1

cj

)−λ(K)j,`(K)j

,
(12.10)

∑
m′⊕m′′=m

m′
0,n0

=m′′
1,n1

=1

m′
j,ν = (n1 − 1)mj,ν − δj,0(1− n0δν,n0

) + δj,1(1− n1δν,n1
)(12.11)

(1 ≤ ν ≤ nj , 0 ≤ j ≤ p)

under the notation in Definitions 4.12 and 5.12.

Proof. We may assume m is monotone and ordm > 1.
We will prove this theorem by the induction on ordm. Suppose

(12.12) m = m′ ⊕m′′ with m′
0,n0

= m′′
1,n1

= 1.

If ∂1m
′ is not well-defined, then

(12.13) ordm′ = 1 and m′
j,1 = 1 for j = 1, 2, . . . , p

and 1+m1,1+ · · ·+mp,1− (p− 1) ordm = 1 because idx(m,m′) = 1 and therefore

(12.14) d1(m) = m0,1.

If ∂1m
′′ is not well-defined,

ordm′′ = 1 and m′′
j,1 = 1 for j = 0, 2, . . . , p,

d1(m) = m1,1.
(12.15)

Hence if d1(m) < m0,1 and d1(m) < m1,1, ∂1m
′ and ∂1m

′′ are always well-
defined and ∂1m = ∂1m

′ ⊕ ∂1m
′′ and the direct decompositions (12.12) of m

correspond to those of ∂1m and therefore Theorem 12.4 shows (12.10) by the in-
duction because we may assume d1(m) > 0. In fact, it follows from (5.15) that the
gamma factors in the denominator of the fraction in the right hand side of (12.10)
don’t change by the reduction and the change of the numerator just corresponds
to the formula in Theorem 12.4.

If d1(m) = m0,1, there exists the direct decomposition (12.12) with (12.13)
which doesn’t correspond to a direct decomposition of ∂1m but corresponds to the
term Γ(|{λm′}|) = Γ(λ0,n1+λ1,1+· · ·+λp,1) = Γ(λ′0,n1

−λ′0,1+1) in (12.8). Similarly
if d1(m) = m1,1, there exists the direct decomposition (12.12) with (12.15) and it
corresponds to the term Γ(|{λm′}|) = Γ(1− |{λm′′}|) = Γ(1− λ0,1 − λ1,n1 − λ2,1 −
· · · − λp,1) = Γ(λ′1,1 − λ′1,n1

) (cf. (12.21)). Thus Theorem 12.4 assures (12.10) by
the induction on ordm.
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Note that the above proof with (12.9) shows (12.18). Hence∑
m′⊕m′′=m

m′
0,n0

=m′′
1,n1

=1

|{λm}| =
n0−1∑
ν=1

(λ0,n0 − λ0,ν + 1) +

n1−1∑
ν=1

(λ1,ν − λ1,n1)

= (n0 − 1) + (n0 − 1)λ0,n0 −
n0−1∑
ν=1

λ0,ν +

n1−1∑
ν=1

λ1,ν

+ (n1 − 1)
( p∑
j=0

nj−δj,1∑
ν=1

mj,νλj,ν − n+ 1
)

= (n0 + n1 − 2)λ0,n0
+

n0−1∑
ν=1

(
(n1 − 1)m0,ν − 1

)
λ0,ν

+

n1−1∑
ν=1

(
(n1 − 1)m1,ν + 1

)
λ1,ν +

p∑
j=2

n2∑
ν=1

(n1 − 1)mj,νλj,ν

+ (n0 + n1 − 2)− (n1 − 1) ordm.

The left hand side of the above first equation and the right hand side of the above
last equation don’t contain the term λ1,n1 and therefore the coefficients of λj,ν in
the both sides are equal, which implies (12.11). �

Corollary 12.7. Retain the notation in Theorem 12.6. We have

#{m′ ; m′ ⊕m′′ = m with m′
0,n0

= m′′
1,n1

= 1} = n0 + n1 − 2,(12.16) ∑
m′⊕m′′=m

m′
0,n0

=m′′
1,n1

=1

ordm′ = (n1 − 1) ordm,(12.17)

∑
m′⊕m′′=m

m′
0,n0

=m′′
1,n1

=1

|{λ′m}| =
n0−1∑
ν=1

(λ0,n0 − λ0,ν + 1) +

n1−1∑
ν=1

(λ1,ν − λ1,n1).(12.18)

Let c(λ0,n0 + t λ1,n1 − t) be the connection coefficient for the Riemann scheme{
[λj,ν + t(δj,0δν,n0 − δj,1δν,n1)](mj,ν)

}
. Then

(12.19) lim
t→+∞

c(0 :λ0,n0 + t 1:λ1,n1 − t) =
p−1∏
j=2

(
1− cj

)λ(K)j,`(K)j .

Under the notation in Theorem 10.13, we have

∏
m′⊕m′′=m

m′
0,n0

=m′′
1,n1

=1

Γ
(
|{λm′}|

)
=

∏
αm′∈∆(m)

m′
0,n0

+m′
1,n1

=1

Γ
(
m′

1,n1
+ (−1)m

′
1,n1 (Λ(λ)|αm′)

)
.

(12.20)

Proof. We have (12.18) in the proof of Theorem 12.4 and then Stirling’s for-
mula and (12.18) prove (12.19). Putting (j, ν) = (0, n0) in (12.11) and considering
the sum

∑
ν for (12.11) with j = 1, we have (12.16) and (12.17), respectively.

Comparing the proof of Theorem 12.6 with that of Theorem 10.13, we have
(12.20). Proposition 7.9 also proves (12.20). �

Remark 12.8. i) When we calculate a connection coefficient for a given rigid
partition m by (12.10), it is necessary to get all the direct decompositions m =
m′ ⊕m′′ satisfying m′

0,n0
= m′′

1,n1
= 1. In this case the equality (12.16) is useful

because we know that the number of such decompositions equals n0+n1−2, namely,
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the number of gamma functions appearing in the numerator equals that appearing
in the denominator in (12.10).

ii) A direct decomposition m = m′ ⊕ m′′ for a rigid tuple m means that
{αm′ , αm′′} is a fundamental system of a root system of type A2 in Rαm′ +Rαm′′

such that αm = αm′ + αm′′ and{
(αm′ |αm′) = (αm′′ |αm′′) = 2,

(αm′ |αm′′) = −1. αm′//

αmFF

αm′′XX111111

iii) In view of Definition 4.12, the condition m = m′ ⊕m′′ in (12.10) means

(12.21)
∣∣{λm′}

∣∣+ ∣∣{λm′′}
∣∣ = 1.

Hence we have

c(λ0,n0 λ1,n1) · c(λ1,n1 λ0,n0)

=

∏
m′⊕m′′=m

m′
0,n0

=m′′
1,n1

=1

sin
(
|{λm′}|π

)
n0−1∏
ν=1

sin
(
λ0,ν − λ1,ν

)
π ·

n1−1∏
ν=1

sin
(
λ1,ν − λ1,n1

)
π

.
(12.22)

iv) By the aid of a computer, the author obtained the table of the concrete
connection coefficients (12.10) for the rigid tripletsm satisfying ordm ≤ 40 together
with checking (12.11), which contains 4,111,704 independent cases (cf. §13.11).

v) Is there an interpretation of λ(K)j,`(K)j in Theorem 12.6 as (12.20)?

12.2. An estimate for large exponents

The Gauss hypergeometric series

F (α, β, γ;x) :=

∞∑
k=0

α(α+ 1) · · · (α+ k − 1) · β(β + 1) · · · (β + k − 1)

γ(γ + 1) · · · (γ + k − 1) · k!
xk

uniformly and absolutely converges for

(12.23) x ∈ D := {x ∈ C ; |x| ≤ 1}
if Re γ > Re(α + β) and defines a continuous function on D. The continuous
function F (α, β, γ + n;x) on D uniformly converges to the constant function 1
when n→ +∞, which obviously implies

(12.24) lim
n→∞

F (α, β, γ + n; 1) = 1

and proves Gauss’s summation formula (0.3) by using the recurrence relation

(12.25)
F (α, β, γ; 1)

F (α, β, γ + 1; 1)
=

(γ − α)(γ − β)
γ(γ − α− β)

.

We will generalize such convergence in a general system of ordinary differential
equations of Schlesinger canonical form.

Under the condition

a > 0, b > 0 and c > a+ b,

the function F (a, b, c;x) =
∑∞

k=0
(a)k(b)k
(c)kk!

xk is strictly increasing continuous func-

tion of x ∈ [0, 1] satisfying

1 ≤ F (a, b, c;x) ≤ F (a, b, c; 1) = Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

and it increases if a or b or −c increases. In particular, if

0 ≤ a ≤ N, 0 ≤ b ≤ N and c > 2N
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with a positive integer N , we have

0 ≤ F (a, b, c;x)− 1

≤ Γ(c)Γ(c− 2N)

Γ(c−N)Γ(c−N)
− 1 =

(c−N)N
(c− 2N)N

− 1 =
N∏

ν=1

c− ν
c−N − ν

− 1

≤
(
c−N
c− 2N

)N

− 1 =

(
1 +

N

c− 2N

)N

− 1

≤ N
(
1 +

N

c− 2N

)N−1
N

c− 2N
.

Thus we have the following lemma.

Lemma 12.9. For a positive integer N we have

(12.26) |F (α, β, γ;x)− 1| ≤
(
1 +

N

Re γ − 2N

)N

− 1

if

(12.27) x ∈ D, |α| ≤ N, |β| ≤ N and Re γ > 2N.

Proof. The lemma is clear because∣∣∣ ∞∑
k=1

(α)k(β)k
(γ)kk!

xk
∣∣∣ ≤ ∞∑

k=1

(|α|)k(|β|)k
(Re γ)kk!

|x|k = F (|α|, |β|,Re γ − 2N ; |x|)− 1 �

For the Gauss hypergeometric equation

x(1− x)u′′ +
(
γ − (α+ β + 1)x

)
u′ − αβu = 0

we have

(xu′)′ = u′ + xu′′ =
xu′

x
+

((α+ β + 1)x− γ)u′ + αβu

1− x

=
αβ

1− x
u+

(
1

x
− γ

x(1− x)
+
α+ β + 1

1− x

)
xu′

=
αβ

1− x
u+

(
1− γ
x

+
α+ β − γ + 1

1− x

)
xu′.

Putting

(12.28) ũ =

(
u0
u1

)
:=

(
u
xu′

α

)
we have

ũ′ =

(
0 α
0 1− γ

)
x

ũ+

(
0 0
β α+ β − γ + 1

)
1− x

ũ.
(12.29)

In general, for

v′ =
A

x
v +

B

1− x
v

we have

xv′ = Av +
x

1− x
Bv

= Av + x
(
xv′ + (B −A)v

)
.
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Thus

(12.30)

{
xu′0 = αu1,

xu′1 = (1− γ)u1 + x
(
xu′1 + βu0 + (α+ β)u1

)
and the functions

(12.31)

u0 = F (α, β, γ;x),

u1 =
βx

γ
F (α+ 1, β + 1, γ + 1;x)

satisfies (12.30).

Theorem 12.10. Let n, n0 and n1 be positive integers satisfying n = n0 + n1

and let A =

(
0 A0

0 A1

)
, B =

(
0 0
B0 B1

)
∈ M(n,C) such that A1, B1 ∈ M(n1,C),

A0 ∈ M(n0, n1,C) and B0 ∈ M(n1, n0,C). Let D(0,m) = D(0,m1, . . . ,mn1) be
the diagonal matrix of size n whose k-th diagonal element is mk−n0 if k > n0 and
0 otherwise. Let um be the local holomorphic solution of the system

(12.32) u =
A−D(0,m)

x
u+

B −D(0,m)

1− x
u

at the origin. Then if Remν are sufficiently large for ν = 1, . . . , n1, the Taylor
series of um at the origin uniformly converge on D = {x ∈ C ; |x| ≤ 1} and for
a positive number C, the function um and their derivatives uniformly converge to
constants on D when min{Rem1, . . . ,Remn1} → +∞ with |Aij | + |Bij | ≤ C. In

particular, for x ∈ D and an integer N satisfying

(12.33)

n1∑
ν=1

|(A0)iν | ≤ N,
n1∑
ν=1

|(A1)iν | ≤ N,
n0∑
ν=1

|(B0)iν | ≤ N,
n1∑
ν=1

|(B1)iν | ≤ N

we have

(12.34) max
1≤ν≤n

∣∣umν (x)− umν (0)
∣∣ ≤ max

1≤ν≤n0

|umν (0)| · 2N (N + 1)2

min
1≤ν≤n1

Remν − 4N − 1

if Remν > 5N + 4 for ν = 1, . . . , n1.

Proof. Use the method of majorant series and compare to the case of Gauss
hypergeometric series (cf. (12.30) and (12.31)), namely, limc→+∞ F (a, b, c;x) = 1
on D with a solution of the Fuchsian system

u′ =
A

x
u+

B

1− x
u,

A =

(
0 A0

0 A1

)
, B =

(
0 0
B0 B1

)
, u =

(
v0
v1

)
,

xv′0 = A0v1,

xv′1 = x2v′1 + (1− x)A1v1 + xB0v0 + xB1v1

= A1v1 + x
(
xv′1 +B0v0 + (B1 −A1)v1

)
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or the system obtained by the substitution A1 7→ A1−D(m) and B1 7→ B1−D(m).
Fix positive real numbers α, β and γ satisfying

α ≥
n1∑
ν=1

|(A0)iν | (1 ≤ i ≤ n0), β ≥
n0∑
ν=1

|(B0)iν | (1 ≤ i ≤ n1),

α+ β ≥
n1∑
ν=1

|(B1 −A1)iν | (1 ≤ i ≤ n0),

γ = min{Rem1, . . . ,Remn1} − 2 max
1≤i≤n1

n1∑
ν=1

|(A1)iν | − 1 > α+ β.

Then the method of majorant series with Lemma 12.11, (12.30) and (12.31) imply

umi �

{
max1≤ν≤n0 |umν (0)| · F (α, β, γ;x) (1 ≤ i ≤ n0),
β
γ ·max1≤ν≤n0 |umν (0)| · F (α+ 1, β + 1, γ + 1;x) (n0 < i ≤ n),

which proves the theorem because of Lemma 12.9 with α = β = N as follows. Here∑∞
ν=0 aνx

ν �
∑∞

ν=0 bνx
ν for formal power series means |aν | ≤ bν for ν ∈ Z≥0.

Put m̄ = min{Rem1, . . . ,Remn1
}−2N−1 and L = max1≤ν≤n0

|umν (0)|. Then
γ ≥ m̄− 2N − 1 and if 0 ≤ i ≤ n0 and x ≤ D,

|umi (x)− umi (0)| ≤ L ·
(
F (α, β, γ; |x|)− 1

)
≤ L

((
1 +

N

m̄− 4N − 1

)N
− 1

)
≤ L

(
1 +

N

m̄− 4N − 1

)N−1 N2

m̄− 4N − 1
≤ L2N−1N2

m̄− 4N − 1
.

If n0 < i ≤ n and x ∈ D,

|umi (x)| ≤ β

γ
· LF (α+ 1, β + 1, γ + 1; |x|)

≤ LN

m̄− 2N − 1

((
1 +

N + 1

m̄− 4N − 3

)N+1

+ 1

)
≤ LN(2N+1 + 1)

m̄− 2N − 1
.
�

Lemma 12.11. Let A ∈M(n,C) and put

(12.35) |A| := max
1≤i≤n

n∑
ν=1

|Aiν |.

If positive real numbers m1, . . . ,mn satisfy

(12.36) mmin := min{m1, . . . ,mn} > 2|A|,

we have

(12.37) |
(
kIn +D(m)−A

)−1| ≤ (k +mmin − 2|A|)−1 (∀k ≥ 0).

Proof. Since∣∣(D(m)−A
)−1∣∣ = ∣∣D(m)−1(In −D(m)−1A)−1

∣∣
=
∣∣∣D(m)−1

∞∑
k=0

(
D(m)−1A

)k∣∣∣
≤ m−1

min ·
(
1 +

2|A|
mmin

)
≤ (mmin − 2|A|)−1,

we have the lemma by replacing mν by mν + k for ν = 1, . . . , n. �
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12.3. Zeros and poles of connection coefficients

In this section we examine the connection coefficients to calculate them in a
different way from the one given in §12.1.

First review the connection coefficient c(0 : λ0,2  1 : λ1,2) for the solution

of Fuchsian differential equation with the Riemann scheme

x = 0 1 ∞
λ0,1 λ1,1 λ2,1
λ0,2 λ1,2 λ2,2

.

Denoting the connection coefficient c(0 :λ0,2 1 :λ1,2) by c(
{

λ0,1 λ1,1 λ2,1

λ0,2  λ1,2 λ2,2

}
), we

have

(12.38) u
λ0,2

0 = c(
{

λ0,1 λ1,1 λ2,1

λ0,2  λ1,2 λ2,2

}
)u

λ1,2

1 + c(
{

λ0,1 λ1,2 λ2,1

λ0,2  λ1,1 λ2,2

}
)u

λ1,1

1 .

c(
{

λ0,1 λ1,1 λ2,1

λ0,2  λ1,2 λ2,2

}
) = c(

{
λ0,1−λ0,2 λ1,1−λ1,2 λ0,2+λ1,2+λ2,1

0  0 λ0,2+λ1,2+λ2,2

}
)

= F (λ0,2 + λ1,2 + λ2,1, λ0,2 + λ1,2 + λ2,2, λ0,2 − λ0,1 + 1; 1)
(12.39)

under the notation in Definition 12.1. As was explained in the first part of §12.2,
the connection coefficient is calculated from

lim
n→∞

c(
{

λ0,1−n λ1,1+n λ2,1

λ0,2  λ1,2 λ2,2

}
) = 1(12.40)

and

c(
{

λ0,1 λ1,1 λ2,1

λ0,2 λ1,2 λ2,2

}
)

c(
{

λ0,1−1 λ1,1+1 λ2,1

λ0,2  λ1,2 λ2,2

}
)
=

(λ0,2 + λ1,1 + λ2,2)(λ0,2 + λ1,1 + λ2,1)

(λ0,2 − λ0,1 + 1)(λ1,1 − λ1,2)
.(12.41)

The relation (12.40) is easily obtained from (12.39) and (12.24) or can be reduced
to Theorem 12.10.

We will examine (12.41). For example, the relation (12.41) follows from the
relation (12.25) which is obtained from

γ
(
γ − 1− (2γ − α− β − 1)x

)
F (α, β, γ;x) + (γ − α)(γ − β)xF (α, β, γ + 1;x)

= γ(γ − 1)(1− x)F (α, β, γ − 1;x)

by putting x = 1 (cf. [WW, §14.1]). We may use a shift operator as follows. Since

d

dx
F (α, β, γ;x) =

αβ

γ
F (α+ 1, β + 1, γ + 1;x)

= c(
{

1−γ γ−α−β α
0  0 β

}
) d
dxu

0
1 + c(

{
1−γ 0 α
0  γ−α−β β

}
) d
dxu

γ−α−β
1

and
d
dxu

γ−α−β
1 ≡ (α+ β − γ)(1− x)γ−α−β−1 mod (1− x)γ−α−βO1,

we have

αβ

γ
c(
{

−γ 0 α+1
0  γ−α−β−1 β+1

}
) = (α+ β − γ)c(

{
1−γ 0 α
0  γ−α−β β

}
),

which also proves (12.41) because

c(
{

λ0,1 λ1,1 λ2,1

λ0,2  λ1,2 λ2,2

}
)

c(
{

λ0,1−1 λ1,1+1 λ2,1

λ0,2  λ1,2 λ2,2

}
)
=

c(
{

λ0,1−λ0,2 0 λ0,2+λ1,1+λ2,1

0  λ1,2−λ1,1 λ0,2+λ1,1+λ2,2

}
)

c(
{

λ0,1−λ0,2−1 0 λ0,2+λ1,2+λ2,1+1
0  λ1,2−λ1,1−1 λ0,2+λ1,2+λ2,2+1

}
)
.

Furthermore each linear term appeared in the right hand side of (12.41) has own
meaning, which is as follows.

Examine the zeros and poles of the connection coefficient c(
{

λ0,1 λ1,1 λ2,1

λ0,2  λ1,2 λ2,2

}
).

We may assume that the parameters λj,ν are generic in the zeros or the poles.
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Consider the linear form λ0,2+λ1,1+λ2,2. The local solution u
λ0,2

0 correspond-
ing to the characteristic exponent λ0,2 at 0 satisfies a Fuchsian differential equation
of order 1 which has the characteristic exponents λ2,2 and λ1,1 at ∞ and 1, respec-
tively, if and only if the value of the linear form is 0 or a negative integer. In this

case c(
{

λ0,1 λ1,1 λ2,1

λ0,2  λ1,2 λ2,2

}
) vanishes. This explains the term λ0,2 + λ1,1 + λ2,2 in the

numerator of the right hand side of (12.41). The term λ0,2+λ1,2+λ2,2 is similarly
explained.

The normalized local solution u
λ0,2

0 has poles where λ0,1 − λ0,2 is a positive
integer. The residue at the pole is a local solution corresponding to the exponent

λ0,2. This means that c(
{

λ0,1 λ1,1 λ2,1

λ0,2  λ1,2 λ2,2

}
) has poles where λ0,1−λ0,2 is a positive

integer, which explains the term λ0,2−λ0,1+1 in the denominator of the right hand
side of (12.41).

There exists a local solution a(λ)u
λ1,1

1 + b(λ)u
λ1,2

1 such that it is holomorphic
for λj,ν and b(λ) has a pole if the value of λ1,1−λ1,2 is a non-negative integer, which

means c(
{

λ0,1 λ1,1 λ2,1

λ0,2  λ1,2 λ2,2

}
) has poles where λ1,2−λ1,1 is non-negative integer. This

explains the term λ1,1 − λ1,2 in the denominator of the right hand side of (12.41).
These arguments can be generalized, which will be explained in this section.

Fist we examine the possible poles of connection coefficients.

Proposition 12.12. Let Pu = 0 be a differential equation of order n with a regular
singularity at x = 0 such that P contains a holomorphic parameter λ = (λ1, . . . , λN )
defined in a neighborhood of λo = (λo1, . . . , λ

o
N ) in CN . Suppose that the set of

characteristic exponents of P at x = 0 equals {[λ1](m1), . . . , [λN ](mN )} with n =
m1 + · · ·+mN and

(12.42) λo2,1 := λo2 − λo1 ∈ Z≥0 and λoi − λoj /∈ Z if 1 ≤ i < j ≤ N and j 6= 2.

Let uj,ν be local solutions of Pu = 0 uniquely defined by

(12.43) uj,ν ≡ xλj+ν mod xλj+mjO0 (j = 1, . . . ,mj and ν = 0, . . . ,mj − 1).

Note that uj,ν =
∑

k≥0 ak,j,ν(λ)x
λj+ν+k with meromorphic functions ak,j,ν(λ) of λ

which are holomorphic in a neighborhood of λo if λ2 − λ1 6= λo2,1. Then there exist
solutions vj,ν with holomorphic parameter λ in a neighborhood of λo which satisfy
the following relations. Namely

(12.44) vj,ν = uj,ν (3 ≤ j ≤ N and ν = 0, . . . ,mj − 1)

and when λo1 +m1 ≥ λo2 +m2,

v1,ν = u1,ν (0 ≤ ν < m1),

v2,ν =
u2,ν − u1,ν+λo

2,1

λ1 − λ2 + λo2,1
−

∑
m2+λo

2,1≤i<m1

bν,iu1,i
λ1 − λ2 + λo2,1

(0 ≤ ν < m2)
(12.45)

with the diagram
λo1
◦

λo1 + 1
◦

· · · λo1 + λo2,1
◦

λo1 + λo2,1 +m2 − 1
◦

λo2
◦

· · · λ
o
2 +m2 − 1
◦

λo1 +m1 − 1
◦
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which illustrates some exponents and when λo1 +m1 < λo2 +m2,

v2,ν = u2,ν (0 ≤ ν < m2),

v1,ν = u1,ν −
∑

max{0,m1−λo
2,1}≤i<m2

bν,iu2,i
λ1 − λ2 + λo2,1

(0 ≤ ν < min{m1, λ
o
2,1}),

v1,ν =
u1,ν − u2,ν−λo

2,1

λ1 − λ2 + λo2,1
−

∑
max{0,m1−λo

2,1}≤i<m2

bν,iu2,i
λ1 − λ2 + λo2,1

(λo2,1 ≤ ν < m1)

(12.46)

with
λo1
◦

λo1 + 1
◦

· · · λo1 + λo2,1
◦

· · · λ
o
1 +m1 − 1
◦

λo2
◦

λo2 − λo2,1 +m1 − 1
◦

λo2 +m2 − 1
◦

and here bν,i ∈ C. Note that vj,ν (1 ≤ j ≤ N, 0 ≤ ν < mj) are linearly independent
for any fixed λ in a neighborhood of λo.

Proof. See §2.1 and the proof of Lemma 4.5 (and [O3, Theorem 6.5] in a
more general setting) for the construction of local solutions of Pu = 0.

Note that uj,ν for j ≥ 3 are holomorphic with respect to λ in a neighborhood
of λ = λo. Moreover note that the local monodromy generator M0 of the solutions

Pu = 0 at x = 0 satisfies
∏N

j=1(M0 − e2π
√
−1λj ) = 0 and therefore the functions

(λ1 − λ2 − λo2,1)uj,ν of λ are holomorphically extended to the point λ = λo for
j = 1 and 2, and the values of the functions at λ = λo are solutions of the equation
Pu = 0 with λ = λo.

Suppose λo1+m1 ≥ λo2+m2. Then uj,ν (j = 1, 2) are holomorphic with respect
to λ at λ = λo and there exist bj,ν ∈ C such that

u2,ν |λ=λo = u1,ν+λo
2,1
|λ=λo +

∑
m2+λo

2,1≤ν<m1

bν,i
(
u1,i|λ=λo

)
and we have the proposition. Here

u2,ν |λ=λo ≡ xλ
o
2 +

∑
m2+λo

2,1≤ν<m1

bν,ix
λo
1+ν mod xλ

o
1+m1O0.

Next suppose λo1 +m1 < λo2 +m2. Then there exist bj,ν ∈ C such that(
(λ1 − λ2 + λo2,1)u1,ν

)
|λ=λo =

∑
max{0,m1−λo

2,1}≤i<m2

bν,i
(
u2,i|λ=λo

)
(0 ≤ ν < min{m1, λ

o
2,1}),

u1,ν |λ=λo =
∑

max{0,m1−λo
2,1}≤i<m2

bν,i
(
u2,i|λ=λo

)
(λo2,1 ≤ ν < m1)

and we have the proposition. �

The proposition implies the following corollaries.

Corollary 12.13. Keep the notation and the assumption in Proposition 12.12.
i) Let Wj(λ, x) be the Wronskian of uj,1, . . . , uj,mj for j = 1, . . . , N . Then

(λ1 − λ2 + λo2,1)
`1W1(λ) and Wj(λ) with 2 ≤ j ≤ N are holomorphic with respect

to λ in a neighborhood of λo by putting

`1 = max
{
0,min{m1,m2, λ

o
2,1, λ

o
2,1 +m2 −m1}

}
.(12.47)
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ii) Let

wk =

N∑
j=1

mj∑
ν=1

aj,ν,k(λ)uj,ν,k

be a local solution defined in a neighborhood of 0 with a holomorphic λ in a neigh-
borhood of λo. Then

(λ1 − λ2 + λo2,1)
`2,j det

(
aj,ν,k(λ)

)
1≤ν≤mj

1≤k≤mj

with 
`2,1 = max

{
0,min{m1 − λo2,1,m2}

}
,

`2,2 = min{m1,m2},
`2,j = 0 (3 ≤ j ≤ N)

are holomorphic with respect to λ in a neighborhood of λo.

Proof. i) Proposition 12.12 shows that uj,ν (2 ≤ j ≤ N, 0 ≤ ν < mj) are
holomorphic with respect to λ at λo. The functions u1,ν for min{m1, λ

o
2,1} ≤ ν ≤ m1

are same. The functions u1,ν for 0 ≤ ν < min{m1, λ
o
2,1} may have poles of order 1

along λ2 − λ1 = λo2,1 and their residues are linear combinations of u2,i|λ2=λ1+λo
2,1

with max{0,m1 − λo2,1} ≤ i < m2. Since

min
{
#{ν ; 0 ≤ ν < min{m1, λ

o
2,1}}, #{i ; max{0,m1 − λo2,1} ≤ i < m2}

}
= max

{
0,min{m1, λ

o
2,1,m2,m2 −m1 + λo2,1}

}
,

we have the claim.
ii) A linear combination of vj,ν (1 ≤ j ≤ N, 0 ≤ ν ≤ mj) may have a pole of

order 1 along λ1 − λ2 + λo2,1 and its residue is a linear combination of(
u1,ν +

∑
m2+λo

2,1≤i<m1

bν+λo
2,1,i

u1,i
)
|λ2=λ1+λo

2,1
(λo2,1 ≤ ν < min{m1,m2 + λo2,1}),

(
u2,ν +

∑
max{0,m1−λo

2,1}≤i<m2

bν+λo
2,1,i

u2,i
)
|λ2=λ1+λo

2,1
(0 ≤ ν < m1 − λo2,1),

∑
max{0,m1−λo

2,1}≤i<m2

bν,iu2,i|λ2=λ1+λo
2,1

(0 ≤ ν < min{m1, λ
o
2,1}).

Since

#
{
ν ; λo2,1 ≤ ν < min{m1,m2 + λo2,1}

}
= max

{
0,min{m1 − λo2,1,m2}

}
,

#{ν ; 0 ≤ ν < m1 − λo2,1}
+min

{
#{i ; max{0,m1 − λo2,1} ≤ i < m2},#{ν ; 0 ≤ ν < min{m1, λ

o
2,1}}

}
= min{m1,m2},

we have the claim. �

Remark 12.14. If the local monodromy of the solutions of Pu = 0 at x = 0 is
locally non-degenerate, the value of (λ1 − λ2 + λo2,1)

`1W1(λ) at λ = λo does not
vanish.

Corollary 12.15. Let Pu = 0 be a differential equation of order n with a regular
singularity at x = 0 such that P contains a holomorphic parameter λ = (λ1, . . . , λN )
defined on CN . Suppose that the set of characteristic exponents of P at x = 0 equals{
[λ1](m1), . . . , [λN ](mN )

}
with n = m1+· · ·+mN . Let uj,ν be the solutions of Pu = 0

defined by (12.43).
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i) Let W1(x, λ) denote the Wronskian of u1,1, . . . , u1,m1 . Then

(12.48)
W1(x, λ)∏N

j=2

∏
0≤ν<min{m1,mj} Γ(λ1 − λj +m1 − ν)

is holomorphic for λ ∈ CN .
ii) Let

(12.49) vk(λ) =

N∑
j=1

mj∑
ν=1

aj,ν,k(λ)uj,ν (1 ≤ k ≤ m1)

be local solutions of Pu = 0 defined in a neighborhood of 0 which have a holomor-
phic parameter λ ∈ CN . Then

(12.50)

det
(
a1,ν,k(λ)

)
1≤ν≤m1
1≤k≤m1∏N

j=2

∏
1≤ν≤min{m1,mj} Γ(λj − λ1 −m1 + ν)

is a holomorphic function of λ ∈ CN .

Proof. Let λoj,1 ∈ Z. The order of poles of (12.48) and that of (12.50) along
λj − λ1 = λoj,1 are

#{ν ; 0 ≤ ν < min{m1,mj} and m1 − λoj,1 − ν ≤ 0}
= #{ν ; max{0,m1 − λoj,1} ≤ ν < min{m1,mj}}
= max

{
0,min{m1,mj , λ

o
j,1, λ

o
j,1 +mj −m1}

}
and

#{ν ; 1 ≤ ν ≤ min{m1,mj} and λoj,1 −m1 + ν ≤ 0}
= max

{
0,min{m1,mj ,m1 − λoj,1}

}
,

respectively. Hence Corollary 12.13 assures this corollary. �

Remark 12.16. The product of denominator of (12.48) and that of (12.50) equals
the periodic function

N∏
j=2

(−1)[
min{m1,mj}

2 ]+1
( π

sin(λ1 − λj)π

)min{m1,mj}
.

Definition 12.17 (generalized connection coefficient). Let Pmu = 0 be the Fuch-
sian differential equation with the Riemann scheme

(12.51)


x = c0 = 0 c1 = 1 c2 · · · cp =∞
[λ0,1](m0,1) [λ1,1](m1,1) [λ2,1](m2,1) · · · [λp,1](mp,1)

...
...

...
...

...
[λ0,n0 ](m0,n0 )

[λ1,n1 ](m1,n1 )
[λ2,n2 ](m2,n2 )

· · · [λp,np ](mp,np )

 .

We assume c2, . . . , cp−1 /∈ [0, 1]. Let u
λ0,ν+k
0,ν (1 ≤ ν ≤ n0, 0 ≤ k < m0,ν) and

u
λ1,ν+k
1,ν (1 ≤ ν ≤ n1, 0 ≤ k < m1,ν) be local solutions of Pmu = 0 such that

(12.52)

{
u
λ0,ν+k
0,ν ≡ xλ0,ν+k mod xλ0,ν+m0,νO0,

u
λ1,ν+k
1,ν ≡ (1− x)λ1,ν+k mod (1− x)λ1,ν+m1,νO1.
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They are uniquely defined on (0, 1) ⊂ R when λj,ν − λj,ν′ /∈ Z for j = 0, 1 and

1 ≤ ν < ν′ ≤ nj . Then the connection coefficients cν
′,k′

ν,k (λ) are defined by

(12.53) u
λ0,ν+k
0,ν =

∑
ν′, k′

cν
′,k′

ν,k (λ)u
λ1,ν′+k′

1,ν′ .

Note that cν
′,k′

ν,k (λ) is a meromorphic function of λ when m is rigid.

Fix a positive integer n′ and the integer sequences 1 ≤ ν01 < ν02 < · · · < ν0L ≤ n0
and 1 ≤ ν11 < ν12 < · · · < ν1L′ ≤ n1 such that

(12.54) n′ = m0,ν0
1
+ · · ·+m0,ν0

L
= m1,ν1

1
+ · · ·+m1,ν1

L′
.

Then a generalized connection coefficient is defined by

c
(
0 : [λ0,ν0

1
](m

0,ν0
1
), . . . , [λ0,ν0

L
](m

0,ν0
L
)  1 : [λ1,ν1

1
](m

1,ν1
1
), . . . , [λ1,ν1

L′
](m

1,ν1
L′

)

)
:= det

(
cν

′,k′

ν,k (λ)
)

ν∈{ν0
1 ,...,ν

0
L}, 0≤k<m0,ν

ν′∈{ν1
1 ,...,ν

1
L′}, 0≤k′<m1,ν′

.

(12.55)

The connection coefficient defined in §12.1 corresponds to the case when n′ = 1.

Remark 12.18. i) When m0,1 = m1,1, Corollary 12.15 assures that

c
(
0 : [λ0,1](m0,1)  1 : [λ1,1](m1,1)

)∏
2≤j≤n0

0≤k<min{m0,1,m0,j}

Γ(λ0,1 − λ0,j +m0,1 − k) ·
∏

2≤j≤n1

0<k≤min{m1,1,m1,j}

Γ(λ1,j − λ1,1 −m1,1 + k)

is holomorphic for λj,ν ∈ C.
ii) Let v1, . . . , vn′ be generic solutions of Pmu = 0. Then the generalized con-

nection coefficient in Definition 12.17 corresponds to a usual connection coefficient
of the Fuchsian differential equation satisfied by the Wronskian of the n′ func-
tions v1, . . . , vn′ . The differential equation is of order

(
n
n′

)
. In particular, when

n′ = n − 1, the differential equation is isomorphic to the dual of the equation
Pm = 0 (cf. Theorem 4.19) and therefore the result in §12.1 can be applied to the
connection coefficient. The precise result will be explained in another paper.

Remark 12.19. The following procedure has not been completed in general. But
we give a procedure to calculate the generalized connection coefficient (12.55), which
we put c(λ) here for simplicity when m is rigid.

(1) Let ε̄ =
(
ε̄j,ν
)
be the shift of the Riemann scheme {λm} such that

(12.56)


ε̄0,ν = −1 (ν ∈ {1, 2, . . . , n0} \ {ν01 , . . . , ν0L}),
ε̄1,ν = 1 (ν ∈ {1, 2, . . . , n1} \ {ν11 , . . . , ν1L′}),
ε̄j,ν = 0 (otherwise).

Then for generic λ we show that the connection coefficient (12.55) con-
verges to a non-zero meromorphic function c̄(λ) of λ by the shift {λm} 7→
{(λ+ kε̄)m} when Z>0 3 k →∞.

(2) Choose suitable linear functions bi(λ) of λ by applying Proposition 12.12

or Corollary 12.15 to c(λ) so that e(λ) :=
∏N

i=1 Γ
(
bi(λ)

)−1 · c(λ)c̄(λ)−1 is
holomorphic for any λ.
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In particular, when L = L′ = 1 and ν01 = ν11 = 1, we may put

{bi} =
n0∪
j=2

{
λ0,1 − λ0,j +m0,1 − ν ; 0 ≤ ν < min{m0,1,m0,j}

}
∪

n1∪
j=2

{
λ1,j − λ1,1 −m1,1 + ν ; 1 ≤ ν ≤ min{m1,1,m1,j}

}
.

(3) Find the zeros of e(λ) some of which are explained by the reducibility or
the shift operator of the equation Pmu = 0 and choose linear functions

ci(λ) of λ so that f(λ) :=
∏N ′

i=1 Γ
(
ci(λ)

)
· e(λ) is still holomorphic for any

λ.
(4) If N = N ′ and

∑
i di(λ) =

∑
i ci(λ), Lemma 12.20 assures f(λ) = c̄(λ)

and

(12.57) c(λ) =

∏N
i=1 Γ

(
bi(λ)

)∏N
i=1 Γ

(
ci(λ)

) · c̄(λ)
because f(λ)

f(λ+ε) is a rational function of λ, which follows from the existence

of a shift operator assured by Theorem 11.2.

Lemma 12.20. Let f(t) be a meromorphic function of t ∈ C such that r(t) =
f(t)

f(t+1) is a rational function and

(12.58) lim
Z>03k→∞

f(t+ k) = 1.

Then there exists N ∈ Z≥0 and bi, ci ∈ C for i = 1, . . . , n such that

b1 + · · ·+ bN = c1 + · · ·+ cN ,(12.59)

f(t) =

∏N
i=1 Γ(t+ bi)∏N
i=1 Γ(t+ ci)

.(12.60)

Moreover, if f(t) is an entire function, then f(t) is the constant function 1.

Proof. Since limk→∞ r(t+ k) = 1, we may assume

r(t) =

∏N
i=1(t+ ci)∏N
i=1(t+ bi)

and then

f(t) =

∏N
i=1

∏n−1
ν=0(t+ ci + ν)∏N

i=1

∏n−1
ν=0(t+ bi + ν)

f(t+ n).

Since

lim
n→∞

n!nx−1∏n−1
ν=0(x+ ν)

= Γ(x),

the assumption implies (12.59) and (12.60).
We may assume bi 6= cj for 1 ≤ i ≤ N and 1 ≤ j ≤ N . Then the function

(12.60) with (12.59) has a pole if N > 0. �
We have the following proposition for zeros of c(λ).

Proposition 12.21. Retain the notation in Remark 12.19 and fix λ so that

(12.61) λj,ν − λj,ν′ /∈ Z (j = 0, 1 and 0 ≤ ν < ν′ ≤ nj).
i) The relation c(λ) = 0 is valid if and only if there exists a non-zero function

v =
∑

ν∈{ν0
1 ,...,ν

0
L}

0≤k<m0,ν

Cν,ku
λ0,ν+k
0 =

∑
ν∈{1,...,n1}\{ν1

1 ,...,ν
1
L′}

0≤k<m1,ν

C ′
ν,ku

λ1,ν+k
1
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on (0, 1) with Cν,k, C
′
ν,k ∈ C.

ii) Fix a shift ε = (εj,ν) compatible to m and let Rm(ε, λ) be the shift operator
in Theorem 11.2. Suppose Rm(ε, λ) is bijective, namely, cm(ε;λ) 6= 0 (cf. Theo-
rem 11.8). Then c(λ+ ε) = 0 if and only if c(λ) = 0

Proof. Assumption (12.61) implies that {uλ0,ν+k
0 } and {uλ1,ν+k

1 } define sets
of basis of local solutions of the equation Pmu = 0. Hence the claim i) is clear from
the definition of c(λ).

Suppose c(λ) = 0 and Rm(ε, λ) is bijective. Then applying the claim i) to
Rm(ε, λ)v, we have c(λ + ε) = 0. If Rm(ε, λ) is bijective, so is Rm(−ε, λ + ε) and
c(λ+ ε) = 0 implies c(λ) = 0. �

Corollary 12.22. Let m = m′ ⊕m′′ be a rigid decomposition of m such that

(12.62)
∑

ν∈{ν0
1 ,...,ν

0
L}

m′
0,ν >

∑
ν∈{ν1

1 ,...,ν
1
L′}

m′
1,ν .

Then Γ(|{λm′}|) · c(λ) is holomorphic under the condition (12.61).

Proof. When |{λm′}|=0, we have the decomposition Pm = Pm′′Pm′ and
hence c(λ) = 0. There exists a shift ε compatible to m such that

p∑
j=0

nj∑
ν=1

m′
j,νεj,ν = 1.

Let λ be generic under |{λm}| = 0 and |{λm′}| ∈ Z \ {0}. Then Theorem 11.9) ii)
assures cm(ε;λ) 6= 0 and Proposition 12.21 proves the corollary. �

Remark 12.23. Suppose that Remark 12.19 (1) is established. Then Proposi-
tion 12.12 and Proposition 12.21 with Theorem 11.8 assure that the denominator

and the numerator of the rational function which equals c(λ)
c(λ+ε̄) are products of cer-

tain linear functions of λ and therefore (12.57) is valid with suitable linear functions

bi(λ) and ci(λ) of λ satisfying
∑N

i=1 bi(λ) =
∑N

i=1 ci(λ).

Example 12.24 (generalized hypergeometric function). The generalized hyperge-
ometric series (0.7) satisfies the equation Pn(α;β)u = 0 given by (13.21) and [Kh,
§4.1.2 Example 9] shows that the equation is isomorphic to the system of Okubo
normal form

(
x−


1
0

. . .
. . .

0

)dũ
dx

=


−βn 1
α2,1 0 1
α3,1 1 1
...

. . .
. . .

αn−1,1 n−3 1
αn,1 −cn−1 −cn−2 ··· −c2 −c1+(n−2)

 ũ(12.63)

with

u =

u1...
un

 , u = u1 and
n∑

ν=1

αν =
n∑

ν=1

βν .

Let us calculate the connection coefficient

c(0 :0 1:−βn) = lim
x→1−0

(1−x)βn
nFn−1(α1, . . . , αn;β1, . . . , βn−1;x) (Reβn > 0).

Applying Theorem 12.10 to the system of Schlesinger canonical form satisfied by
Ad
(
(1 − x)βn

)
, the connection coefficient satisfies Remark 12.19 i) with c̄(λ) = 1,

namely,

(12.64) lim
k→+∞

c(0 :0 1:−βn)|αj 7→αj+k, βj 7→βj+k (1≤j≤n) = 1.
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Then Remark 12.19 ii) shows that
∏n

j=1 Γ(βj)
−1 ·c(0 :0 1:−βn) is a holomorphic

function of (α, β) ∈ Cn+(n−1).
Corresponding to the Riemann scheme (0.8), the existence of rigid decomposi-

tions
n︷ ︸︸ ︷

1 · · · 1;n− 11;

n︷ ︸︸ ︷
1 · · · 1 =

n−1︷ ︸︸ ︷
0 · · · 0 1; 10; 0 · · ·

i
`
1 · · · 0⊕

n−1︷ ︸︸ ︷
1 · · · 1 0;n− 11; 1 · · ·

i
`
0 · · · 1

for i = 1, . . . , n proves that
∏n

i=1 Γ(αi) ·
∏n

j=1 Γ(βj)
−1 · c(0 : 0  1 :−βn) is also

entire holomorphic. Then the procedure given in Remark 12.19 assures

(12.65) c(0 :0 1:−βn) =
∏n

i=1 Γ(βi)∏n
i=1 Γ(αi)

.

We can also prove (12.65) as in the following way. Since

d

dx
F (α;β;x) =

α1 · · ·αn

β1 · · ·βn−1
F (α1 + 1, . . . , αn + 1;β1 + 1, . . . , βn−1 + 1;x)

and
d

dx

(
1− x

)−βn
(
1 + (1− x)O1

)
= βn

(
1− x

)−βn−1(
1 + (1− x)O1

)
,

we have
c(0 :0 1:−βn)

c(0 :0 1:−βn)|αj 7→αj+1, βj 7→βj+1
=
α1 . . . αn

β1 . . . βn
,

which proves (12.65) because of (12.64).

A further study of generalized connection coefficients will be developed in an-
other paper. In this paper we will only give some examples in §13.5 and §13.7.5.





CHAPTER 13

Examples

When we classify tuples of partitions in this chapter, we identify the tuples
which are isomorphic to each other. For example, 21, 111, 111 is isomorphic to any
one of 12, 111, 111 and 111, 21, 111 and 21, 3, 111, 111.

Most of our results in this paper are constructible and can be implemented in
computer programs. Several reductions and constructions and decompositions of
tuples of partitions and connections coefficients associated with Riemann schemes
etc. can be computed by a program okubo written by the author (cf. §13.11).

In §13.1 and §13.2 we list fundamental and rigid tuples respectively, most of
which are obtained by the program okubo.

In §13.3 and §13.4 we apply our fractional calculus to Jordan-Pochhammer
equations and a hypergeometric family (generalized hypergeometric equations), re-
spectively. Most of the results in these chapters are known but it will be useful to
understand our unifying interpretation and apply it to general Fuchsian equations.

In §13.5 we study an even family and an odd family corresponding to Simpson’s
list [Si]. The differential equations of an even family appear in suitable restrictions
of Heckman-Opdam hypergeometric systems and in particular the explicit calcula-
tion of a connection coefficient for an even family was the original motivation for
the study of Fuchsian differential equations developed in this paper (cf. [OS]). We
also calculate a generalized connection coefficient for an even family of order 4.

In §13.7, §13.8 and §13.9 we study the rigid Fuchsian differential equations
of order not larger than 4 and those of order 5 or 6 and the equations belonging
to 12 maximal series and some minimal series classified by [Ro] which include
the equations in Yokoyama’s list [Yo]. We list sufficient data from which we get
some connection coefficients and the necessary and sufficient conditions for the
irreducibility of the equations as is explained in §13.9.2.

In §13.6 we give some interesting identities of trigonometric functions as a
consequence of the explicit value of connection coefficients.

We examine Appell hypergeometric equations in §13.10, which will be further
discussed in another paper.

In §13.11 we explain computer programs okubo and a library of Risa/Asir

which calculate the results described in this paper.

13.1. Basic tuples

The number of basic tuples and fundamental tuples (cf. Definition 6.15) with
a given Pidx (cf. (4.27)) are as follows.

Pidx 0 1 2 3 4 5 6 7 8 9 10 11

# fund. tuples 1 4 13 36 67 103 162 243 305 456 578 720
# basic tuples 0 4 13 36 67 90 162 243 305 420 565 720
# basic triplets 0 3 9 24 44 56 97 144 163 223 291 342
# basic 4-tuples 0 1 3 9 17 24 45 68 95 128 169 239
maximal order 1 6 12 18 24 30 36 42 48 54 60 66

139
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Note that if m is a basic tuple with idxm < 0, then

(13.1) Pidx km = 1 + k2(Pidxm− 1) (k = 1, 2, . . .).

Hence the non-trivial fundamental tuplem with Pidxm ≤ 4 or equivalently idxm ≥
−6 is always basic.

The tuple 2m with a basic tuple m satisfying Pidxm = 2 is a fundamental
tuple and Pidx 2m = 5. The tuple 422, 44, 44, 44 is this example.

13.1.1. Pidxm = 1, idxm = 0. There exist 4 basic tuples: (cf. [Ko], Corol-
lary 6.3)

D̃4: 11,11,11,11 Ẽ6: 111,111,111 Ẽ7: 22,1111,1111 Ẽ8: 33,222,111111

They are not of Okubo type. The tuples of partitions of Okubo type with
minimal order which are reduced to the above basic tuples are as follows.

D̃4: 21,21,21,111 Ẽ6: 211,211,1111 Ẽ7: 32,2111,11111 Ẽ8: 43,322,1111111
The list of simply reducible tuples of partitions whose indices of rigidity equal

0 is given in Example 6.18.
We list the number of realizable tuples of partitions whose indices of rigidity

equal 0 according to their orders and the corresponding fundamental tuple.

ord 11,11,11,11 111,111,111 22,1111,1111 33,222,111111 total

2 1 1
3 1 1 2
4 4 1 1 6
5 6 3 1 10
6 21 8 5 1 35
7 28 15 6 1 50
8 74 31 21 4 130
9 107 65 26 5 203
10 223 113 69 12 417
11 315 204 90 14 623
12 616 361 205 37 1219
13 808 588 256 36 1688
14 1432 948 517 80 2977
15 1951 1508 659 100 4218
16 3148 2324 1214 179 6865
17 4064 3482 1531 194 9271
18 6425 5205 2641 389 14660
19 8067 7503 3246 395 19211
20 12233 10794 5400 715 29142

13.1.2. Pidxm = 2, idxm = −2. There are 13 basic tuples (cf. Proposi-
tion 6.10, [O6, Proposition 8.4]):

+2:11,11,11,11,11 3:111,111,21,21 *4:211,22,22,22

4:1111,22,22,31 4:1111,1111,211 5:11111,11111,32

5:11111,221,221 6:111111,2211,33 *6:2211,222,222

*8:22211,2222,44 8:11111111,332,44 10:22222,3331,55

*12:2222211,444,66

Here the number preceding to a tuple is the order of the tuple and the sign “*”

means that the tuple is the one given in Example 7.51 (D
(m)
4 , E

(m)
6 , E

(m)
7 and E

(m)
8 )

and the sign ”+” means d(m) < 0.
The tuples 22211, 422, 422 and 4211, 422, 2222 are of Okubo type with the

minimal order which are reduced to 2211, 222, 222.
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13.1.3. Pidxm = 3, idxm = −4. There are 36 basic tuples

+2:11,11,11,11,11,11 3:111,21,21,21,21 4:22,22,22,31,31

+3:111,111,111,21 +4:1111,22,22,22 4:1111,1111,31,31

4:211,211,22,22 4:1111,211,22,31 *6:321,33,33,33

6:222,222,33,51 +4:1111,1111,1111 5:11111,11111,311

5:11111,2111,221 6:111111,222,321 6:111111,21111,33

6:21111,222,222 6:111111,111111,42 6:222,33,33,42

6:111111,33,33,51 6:2211,2211,222 7:1111111,2221,43

7:1111111,331,331 7:2221,2221,331 8:11111111,3311,44

8:221111,2222,44 8:22211,22211,44 *9:3321,333,333

9:111111111,333,54 9:22221,333,441 10:1111111111,442,55

10:22222,3322,55 10:222211,3331,55 12:22221111,444,66

*12:33321,3333,66 14:2222222,554,77 *18:3333321,666,99

13.1.4. Pidxm = 4, idxm = −6. There are 67 basic tuples

+2:11,11,11,11,11,11,11 3:21,21,21,21,21,21 +3:111,111,21,21,21

+4:22,22,22,22,31 4:211,22,22,31,31 4:1111,22,31,31,31

+3:111,111,111,111 +4:1111,1111,22,31 4:1111,211,22,22

4:211,211,211,22 4:1111,211,211,31 5:11111,11111,41,41

5:11111,221,32,41 5:221,221,221,41 5:11111,32,32,32

5:221,221,32,32 6:3111,33,33,33 6:2211,2211,2211

+6:222,33,33,33 6:222,33,33,411 6:2211,222,33,51

*8:431,44,44,44 8:11111111,44,44,71 5:11111,11111,221

5:11111,2111,2111 +6:111111,111111,33 +6:111111,222,222

6:111111,111111,411 6:111111,222,3111 6:21111,2211,222

6:111111,2211,321 6:2211,33,33,42 7:1111111,1111111,52

7:1111111,322,331 7:2221,2221,322 7:1111111,22111,43

7:22111,2221,331 8:11111111,3221,44 8:11111111,2222,53

8:2222,2222,431 8:2111111,2222,44 8:221111,22211,44

9:33111,333,333 9:3222,333,333 9:22221,22221,54

9:222111,333,441 9:111111111,441,441 10:22222,33211,55

10:1111111111,433,55 10:1111111111,4411,55 10:2221111,3331,55

10:222211,3322,55 12:222111111,444,66 12:333111,3333,66

12:33222,3333,66 12:222222,4431,66 *12:4431,444,444

12:111111111111,552,66 12:3333,444,552 14:33332,4442,77

14:22222211,554,77 15:33333,555,771 *16:44431,4444,88

16:333331,5551,88 18:33333111,666,99 18:3333222,666,99

*24:4444431,888,cc

Here a, b, c, . . . represent 10,11,12,. . . , respectively.

13.1.5. Dynkin diagrams of basic tuples whose indices of rigidity
equals −2. We express the basic root αm for Pidxm = 2 using the Dynkin dia-
gram (See (7.11) for Pidxm = 1). The circles in the diagram represent the simple
roots in suppαm and two circles are connected by a line if the inner product of
the corresponding simple roots is not zero. The number attached to a circle is the
corresponding coefficient n or nj,ν in the expression (7.12).

For example, if m = 22, 22, 22, 211, then αm = 4α0 + 2α0,1 + 2α1,1 + 2α2,1 +
2α3,1 + α3,2, which corresponds to the second diagram in the following.

The circle with a dot at the center means a simple root whose inner product
with αm does not vanish. Moreover the type of the root system Π(m) (cf. (7.47))
corresponding to the simple roots without a dot is given. The symmetry of the equa-
tion describing the isomonodromic deformation of Fuchsian systems of Schlesinger
canonical form with a given spectral type, which are induced from Katz’s operation
and Schlesinger transformations, is described by the Weyl group corresponding to
the affinization of the Dynkin diagram with simple roots in Π0 (cf. §13.1.6).



142 13. EXAMPLES

1��������2·��������
1��������

��
��
�1��������

HHH
HH

1��������
)))))

1�������� vvvvv

11, 11, 11, 11, 11 5A1

2�������� 4�������� 2
·�������� 1��������

2��������

2��������

22, 22, 22, 211 D4 +A1

1�������� 2�������� 3�������� 2�������� 1��������
1·��������

1·��������

21, 21, 111, 111 A5

1
·�������� 4�������� 3�������� 2�������� 1��������

2��������

2��������

31, 22, 22, 1111 D6

2�������� 4�������� 6�������� 4�������� 2
·�������� 1��������

4��������
2��������

222, 222, 2211 E6 +A1

1�������� 2�������� 3�������� 4�������� 3�������� 2�������� 1��������
2·��������
1��������

211, 1111, 1111 A7 +A1

1
·�������� 3�������� 5�������� 4�������� 3�������� 2�������� 1��������

3��������
1·��������

221, 221, 11111 D7

2�������� 4�������� 6�������� 8�������� 6�������� 4�������� 2
·�������� 1��������

4��������

44, 2222, 22211 E7 +A1

1
·�������� 4�������� 7�������� 10�������� 8�������� 6�������� 4�������� 2��������

5��������

55, 3331, 22222 E8

1�������� 2�������� 3�������� 4�������� 5�������� 4�������� 3�������� 2�������� 1��������
2·��������

32, 11111, 111111 A9

1�������� 2
·�������� 4�������� 6�������� 5�������� 4�������� 3�������� 2�������� 1��������

3��������

33, 2211, 111111 D8 +A1

4�������� 8�������� 12�������� 10�������� 8�������� 6�������� 4�������� 2
·�������� 1��������

6��������

66, 444, 2222211 E8 +A1



13.2. RIGID TUPLES 143
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13.1.6. Isomonodromic deformations. R. Fuchs [Fu] obtained the sixth
Painlevé equation from the isomonodromic deformation of the second order Fuch-
sian equations with 4 essential regular singular points. The other classical Painlevé
equations can be obtained from the degeneration of the sixth Painlevé equation and
this procedure corresponds to the confluence of the Fuchsian equation. Form this
view point the Garnier system corresponds to the equation describing the isomon-
odromic deformation of the Fuchsian system with the spectral type 11, 11, · · · , 11.

Haraoka-Filipuk [HF] proved that the equations describing isomonodromic de-
formations of Fuchsian systems of Schlesinger canonical form are invariant under the
Katz’s additions and middle convolutions. Hence it is important to study isomon-
odromic deformations of Fuchsian systems of Schlesinger canonical form with the
fundamental spectral types. Moreover we ignore the Fuchsian systems with only
three singular points because of the non-existence of their isomonodromic deforma-
tions. Among them the higher-dimensional Painlevé type equations corresponding
to the following spectral types have been deeply studied (cf. [FIS]).

order index Painlevé type equation partitions

2 6− 2p Garnier 11, 11, · · · , 11 ∈ P(2)
p+1

m+ 1 2− 2m Fuji–Suzuki–Tsuda 1m+1, 1m+1,m1,m1
2m 2− 2m Sasano 12m,m2,m2, 2m− 11

2m 2− 2m matrix Painlevé (D
(m)
4 ) m2,m2,m2,mm− 11

When the index of rigidity equals−2, there are 4 fundamental spectral types that we
should consider. They are in the above list and Sakai [Sa] calculates the Hamilton-
ian functions of the corresponding Painlevé type equations. Then the Painlevé type
equations corresponding to the spectral types 111, 111, 21, 21 and 1111, 22, 22, 211
coincide with the Fuji-Suzuki system and the Sasano system, respectively, and the
new system called matrix Painlevé system is obtained. These systems in the above
list are now extensively studied together with their degenerations (cf. [KNS], [FIS],
[Ts] etc.). Note that Katz’s operations keeping their spectral types invariant induce
so-called Bäcklund transformations of the Painlevé type equations.

13.2. Rigid tuples

13.2.1. Simpson’s list. Simpson [Si] classified the rigid tuples containing the
partition 11 · · · 1 into 4 types (Simpson’s list), which follows from Proposition 6.17.
They are Hn, EO2m, EO2m+1 and X6 in the following table.

See Remark 7.11 ii) for [∆(m)] with these rigid tuples m.
The simply reducible rigid tuple (cf. §6.5) which is not in Simpson’s list is

isomorphic to 21111, 222, 33.

order type name partitions

n Hn hypergeometric family 1n, 1n, n− 11
2m EO2m even family 12m,mm− 11,mm

2m+ 1 EO2m+1 odd family 12m+1,mm1,m+ 1m
6 X6 = γ6,2 extra case 111111, 222, 42
6 γ6,6 (see §13.9.14) 21111, 222, 33

n Pn Jordan Pochhammer n− 11, n− 11, . . . ∈ P(n)
n+1

H1 = EO1, H2 = EO2 = P2, H3 = EO3.
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13.2.2. Isomorphic classes of rigid tuples. Let R(n)
p+1 be the set of rigid

tuples in P(n)
p+1. Put Rp+1 =

∪∞
n=1R

(n)
p+1, R(n) =

∪∞
p=2R

(n)
p+1 and R =

∪∞
n=1R(n).

The sets of isomorphic classes of the elements of R(n)
p+1 (resp. Rp+1, R(n) and R)

are denoted R̄(n)
p+1 (resp. R̄p+1, R̄(n) and R̄). Then the number of the elements of

R̄(n) are as follows.

n #R̄(n)
3 #R̄(n) n #R̄(n)

3 #R̄(n) n #R̄(n)
3 #R̄(n)

2 1 1 15 1481 2841 28 114600 190465
3 1 2 16 2388 4644 29 143075 230110
4 3 6 17 3276 6128 30 190766 310804
5 5 11 18 5186 9790 31 235543 371773
6 13 28 19 6954 12595 32 309156 493620
7 20 44 20 10517 19269 33 378063 588359
8 45 96 21 14040 24748 34 487081 763126
9 74 157 22 20210 36078 35 591733 903597

10 142 306 23 26432 45391 36 756752 1170966
11 212 441 24 37815 65814 37 907150 1365027
12 421 857 25 48103 80690 38 1143180 1734857
13 588 1177 26 66409 112636 39 1365511 2031018
14 1004 2032 27 84644 139350 40 1704287 2554015

13.2.3. Rigid tuples of order at most 8. We show all the rigid tuples
whose orders are not larger than 8.

2:11,11,11 (H2: Gauss)

3:111,111,21 (H3 : 3F2) 3:21,21,21,21 (P3)

4:1111,1111,31 (H4 : 4F3) 4:1111,211,22 (EO4: even)
4:211,211,211 (B4, II2, α4) 4:211,22,31,31 (I4, II

∗
2)

4:22,22,22,31 (P4,4) 4:31,31,31,31,31 (P4)

5:11111,11111,41 (H5 : 5F4) 5:11111,221,32 (EO5: odd)
5:2111,2111,32 (C5) 5:2111,221,311 (B5, III2)
5:221,221,221 (α5) 5:221,221,41,41 (J5)
5:221,32,32,41 5:311,311,32,41 (I5, III

∗
2)

5:32,32,32,32 (P4,5) 5:32,32,41,41,41 (M5)
5:41,41,41,41,41,41 (P5)

6:111111,111111,51 (H6 : 6F5) 6:111111,222,42 (D6 = X6: extra)
6:111111,321,33 (EO6: even) 6:21111,2211,42 (E6)
6:21111,222,33 (γ6,6) 6:21111,222,411 (F6, IV)
6:21111,3111,33 (C6) 6:2211,2211,33 (β6)
6:2211,2211,411 (G6) 6:2211,321,321

6:222,222,321 (α6) 6:222,3111,321

6:3111,3111,321 (B6, II3) 6:2211,222,51,51 (J6)
6:2211,33,42,51 6:222,33,33,51

6:222,33,411,51 6:3111,33,411,51 (I6, II
∗
3)

6:321,321,42,51 6:321,42,42,42

6:33,33,33,42 (P4,6) 6:33,33,411,42

6:33,411,411,42 6:411,411,411,42 (N6, IV
∗)
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6:33,42,42,51,51 (M6) 6:321,33,51,51,51 (K6)
6:411,42,42,51,51 6:51,51,51,51,51,51,51 (P6)

7:1111111,1111111,61 (H7) 7:1111111,331,43 (EO7)
7:211111,2221,52 (D7) 7:211111,322,43 (γ7)
7:22111,22111,52 (E7) 7:22111,2221,511 (F7)
7:22111,3211,43 7:22111,331,421

7:2221,2221,43 (β7) 7:2221,31111,43

7:2221,322,421 7:2221,331,331

7:2221,331,4111 7:31111,31111,43 (C7)
7:31111,322,421 7:31111,331,4111 (B7, III3)
7:3211,3211,421 7:3211,322,331

7:3211,322,4111 7:322,322,322 (α7)
7:2221,2221,61,61 (J7) 7:2221,43,43,61

7:3211,331,52,61 7:322,322,52,61

7:322,331,511,61 7:322,421,43,61

7:322,43,52,52 7:331,331,43,61

7:331,43,511,52 7:4111,4111,43,61 (I7, III
∗
3)

7:4111,43,511,52 7:421,421,421,61

7:421,421,52,52 7:421,43,43,52

7:43,43,43,43 (P4,7) 7:421,43,511,511

7:331,331,61,61,61 (L7) 7:421,43,52,61,61

7:43,43,43,61,61 7:43,52,52,52,61

7:511,511,52,52,61 (N7) 7:43,43,61,61,61,61 (K7)
7:52,52,52,61,61,61 (M7) 7:61,61,61,61,61,61,61,61 (P7)

8:11111111,11111111,71 (H8) 8:11111111,431,44 (EO8)
8:2111111,2222,62 (D8) 8:2111111,332,53

8:2111111,422,44 8:221111,22211,62 (E8)
8:221111,2222,611 (F8) 8:221111,3311,53

8:221111,332,44 (γ8) 8:221111,4211,44

8:22211,22211,611 (G8) 8:22211,3221,53

8:22211,3311,44 8:22211,332,521

8:22211,41111,44 8:22211,431,431

8:22211,44,53,71 8:2222,2222,53 (β8,2)
8:2222,32111,53 8:2222,3221,44 (β8,4)
8:2222,3311,521 8:2222,332,5111

8:2222,422,431 8:311111,3221,53

8:311111,332,521 8:311111,41111,44 (C8)
8:32111,32111,53 8:32111,3221,44

8:32111,3311,521 8:32111,332,5111

8:32111,422,431 8:3221,3221,521

8:3221,3311,5111 8:3221,332,431

8:332,332,332 (α8) 8:332,332,4211

8:332,41111,422 8:332,4211,4211

8:3221,4211,431 8:3311,3311,431

8:3311,332,422 8:3221,422,422

8:3311,4211,422 8:41111,41111,431 (B8, II4)
8:41111,4211,422 8:4211,4211,4211

8:22211,2222,71,71 (J8) 8:2222,44,44,71

8:3221,332,62,71 8:3221,44,521,71

8:3221,44,62,62 8:3311,3311,62,71
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8:3311,332,611,71 8:3311,431,53,71

8:3311,44,611,62 8:332,422,53,71

8:332,431,44,71 8:332,44,611,611

8:332,53,53,62 8:41111,44,5111,71 (I8, II
∗
4 )

8:41111,44,611,62 8:4211,422,53,71

8:4211,44,611,611 8:4211,53,53,62

8:422,422,44,71 8:422,431,521,71

8:422,431,62,62 8:422,44,53,62

8:431,44,44,62 8:431,44,53,611

8:422,53,53,611 8:431,431,611,62

8:431,521,53,62 8:44,44,44,53 (P4,8)
8:44,5111,521,62 8:44,521,521,611

8:44,521,53,53 8:5111,5111,53,62

8:5111,521,53,611 8:521,521,521,62

8:332,332,71,71,71 8:332,44,62,71,71

8:4211,44,62,71,71 8:422,44,611,71,71

8:431,53,53,71,71 8:44,44,62,62,71

8:44,53,611,62,71 8:521,521,53,71,71

8:521,53,62,62,71 8:53,53,611,611,71

8:53,62,62,62,62 8:611,611,611,62,62 (N8)
8:53,53,62,71,71,71 8:431,44,71,71,71,71 (K8)
8:611,62,62,62,71,71 (M8) 8:71,71,71,71,71,71,71,71,71 (P8)

Here the underlined tuples are not of Okubo type (cf. (11.33)).
The tuplesHn, EOn andX6 are tuples in Simpson’s list. The series An = EOn,

Bn, Cn, Dn, En, Fn, G2m, In, Jn, Kn, L2m+1, Mn and Nn are given in [Ro] and
called submaximal series. The Jordan-Pochhammer tuples are denoted by Pn and
the series Hn and Pn are called maximal series by [Ro]. The series αn, βn, γn and
δn are given in [Ro] and called minimal series. See §13.9 for these series introduced
by [Ro]. Then δn = P4,n and they are generalized Jordan-Pochhammer tuples
(cf. Example 10.5 and §13.9.13). Moreover IIn, II

∗
n, IIIn, III

∗
n, IV and IV∗ are in

Yokoyama’s list in [Yo] (cf. §13.9.15).

Hierarchy of rigid triplets

12, 12, 12 //

&&MMMMMMMMMMMMMMMMMMMMMMMMMM 21, 13, 13 //

&&NNNNNNNNNN

��<
<<

<<
<<

<<
<<

<<
<<

<<
31, 14, 14 //

��?
??

??
??

??
??

??
??

??
? 41, 15, 15 // 51, 16, 16

1, 1, 1

OO

22, 212, 14 //

''OOOOOOOOOOO

��?
??

??
??

??
??

??
??

??
? 32, 221, 15 //

''PPPPPPPPPPP

  @
@@

@@
@@

@@
@@

@@
@@

@@
@@

32, 321, 16

212, 212, 212

''OOOOOOOOOOO

��?
??

??
??

??
??

??
??

??
?

++WWWWWWWWWWWWWWWWWWWWWW 32, 213, 213

''PPPPPPPPPPP 42, 23, 16

312, 221, 213

''OOOOOOOOOOOO 321, 313, 23

221, 221, 221 // 321, 321, 2212
...

Here the arrows represent certain operations ∂` of tuples given by Definition 5.7.
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13.3. Jordan-Pochhammer family

We have studied the the Riemann scheme of Jordan-Pochhammer family Pn in
Example 1.8 iii).

m = (p− 11, p− 11, . . . , p− 11) ∈ P(p)
p+1

x = 0 1 = 1
c1

· · · 1
cp−1

∞
[0](p−1) [0](p−1) · · · [0](p−1) [1− µ](p−1)

λ0 + µ λ1 + µ · · · λp−1 + µ −λ0 − · · · − λp−1 − µ


∆(m) = {α0, α0 + αj,1 ; j = 0, . . . , p}

[∆(m)] = 1p+1 · (p− 1)

Pp = H1 ⊕ Pp−1 : p+ 1 = (p− 1)H1 ⊕H1 : 1

Here the number of the decompositions of a given type is shown after the decom-
positions. For example, Pp = H1⊕Pp−1 : p+1 = (p− 1)H1⊕H1 : 1 represents the
decompositions

m = 10, . . . ,

ν
`
01, . . . , 10⊕ p− 21, . . . ,

ν
`

p− 10, . . . , p− 21 (ν = 0, . . . , p)

= (p− 1)(10, . . . , 10)⊕ 01, . . . , 01.

The differential equation PPp(λ, µ)u = 0 with this Riemann scheme is given by

PPp(λ, µ) := RAd
(
∂−µ

)
◦ RAd

(
xλ0

p−1∏
j=1

(1− cjx)λj

)
∂

and then

PPp(λ, µ) =

p∑
k=0

pk(x)∂
p−k,

pk(x) :=

(
−µ+ p− 1

k

)
p
(k)
0 (x) +

(
−µ+ p− 1

k − 1

)
q(k−1)(x)

(13.2)

with

(13.3) p0(x) = x

p−1∏
j=1

(1− cjx), q(x) = p0(x)
(
−λ0
x

+

p−1∑
j=1

cjλj
1− cjx

)
.

It follows from Theorem 10.10 that the equation is irreducible if and only if

(13.4) λj /∈ Z (j = 0, . . . , p− 1), µ /∈ Z and λ0 + · · ·+ λp−1 + µ /∈ Z.

It follows from Proposition 11.13 that the shift operator defined by the map u 7→ ∂u
is bijective if and only if

(13.5) µ /∈ {1, 2, . . . , p− 1} and λ0 + · · ·+ λp−1 + µ 6= 0.

The normalized solution at 0 corresponding to the exponent λ0 + µ is

uλ0+µ
0 (x) =

Γ(λ0 + µ+ 1)

Γ(λ0 + 1)Γ(µ)

∫ x

0

(
tλ0

p−1∏
j=1

(1− cjt)λj

)
(x− t)µ−1dt

=
Γ(λ0 + µ+ 1)

Γ(λ0 + 1)Γ(µ)

∫ x

0

∞∑
m1=0

· · ·
∞∑

mp−1=0

(−λ1)m1 · · · (−λp−1)mp−1

m1! · · ·mp−1!

cm2
2 · · · c

mp−1

p−1 tλ0+m1+···+mp−1(x− t)µ−1dt
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=

∞∑
m1=0

· · ·
∞∑

mp−1=0

(λ0 + 1)m1+···+mp−1(−λ1)m1 · · · (−λp−1)mp−1

(λ0 + µ+ 1)m1+···+mp−1m1! · · ·mp−1!

cm2
2 · · · c

mp−1

p−1 xλ0+µ+m1+···+mp−1

= xλ0+µ
(
1− (λ0 + 1)(λ1c1 + · · ·+ λp−1cp−1)

λ0 + µ+ 1
x+ · · ·

)
.

This series expansion of the solution is easily obtained from the formula in §3.1
(cf. Theorem 8.1) and Theorem 11.3 gives the contiguity relation

(13.6) uλ0+µ
0 (x) = uλ0+µ

0 (x)
∣∣
λ1 7→λ1−1

−
( λ0
λ0 + µ

uλ0+µ
0 (x)

)∣∣∣λ0 7→λ0+1
λ1 7→λ1−1

.

Lemma 12.2 with a = λ0, b = λ1 and u(x) =
∏p−1

j=2(1 − cjx)λj gives the following
connection coefficients

c(0 : λ0 + µ 1 : λ1 + µ) =
Γ(λ0 + µ+ 1)Γ(−λ1 − µ)

Γ(λ0 + 1)Γ(−λ1)

p−1∏
j=2

(1− cj)λj ,

c(0 : λ0 + µ 1 : 0) =
Γ(λ0 + µ+ 1)

Γ(µ)Γ(λ0 + 1)

∫ 1

0

tλ0(1− t)λ1+µ−1

p−1∏
j=2

(1− cjt)λjdt

=
Γ(λ0 + µ+ 1)Γ(λ1 + µ)

Γ(µ)Γ(λ0 + λ1 + µ+ 1)
F (λ0 + 1,−λ2, λ0 + λ1 + µ+ 1; c2) (p = 3).

Here we have

(13.7) uλ0+µ
0 (x) =

∞∑
k=0

Ck(x− 1)k +

∞∑
k=0

C ′
k(x− 1)λ1+µ+k

for 0 < x < 1 with C0 = c(0 : λ0 + µ 1 : 0) and C ′
0 = c(0 : λ0 + µ 1 : λ1 + µ).

Since
dku

λ0+µ
0

dxk is a solution of the equation PPp(λ, µ− k)u = 0, we have

(13.8) Ck =
Γ(λ0 + µ+ 1)

Γ(µ− k)Γ(λ0 + 1)k!

∫ 1

0

tλ0(1− t)λ1+µ−k−1

p−1∏
j=2

(1− cjt)λjdt.

When p = 3,

Ck =
Γ(λ0 + µ+ 1)Γ(λ1 + µ− k)

Γ(µ− k)Γ(λ0 + λ1 + µ+ 1− k)k!
F (λ0 + 1,−λ2, λ0 + λ1 + µ+ 1− k; c2).

Put

uλ,µ(x) =
1

Γ(µ)

∫ x

0

(
tλ0

p−1∏
j=1

(1− cjt)λj

)
(x− t)µ−1dt = ∂−µvλ,

vλ(x) := xλ0

p−1∏
j=1

(1− cjx)λj .

We have

uλ,µ+1 = ∂−µ−1vλ = ∂−1∂−µvλ = ∂−1uλ,µ,

uλ0+1,λ1,...,µ = ∂−µvλ0+1,λ1,... = ∂−µxvλ = −µ∂−µ−1vλ + x∂−µvλ

= −µ∂−1uλ,µ + xuλ,µ,

u...,λj+1,... = ∂−µ(1− cjx)vλ = ∂−µvλ + cjµ∂
−µ−1vλ − cjx∂−µvλ

= (1− cjx)uλ,µ + cjµ∂
−1uλ,µ.

(13.9)
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From these relations with PPpuλ,µ = 0 we have all the contiguity relations. For
example

∂uλ0,...,λp−1,µ+1 = uλ,µ,(13.10)

∂uλ0+1,...,λp−1,µ = (x∂ + 1− µ)uλ,µ,
∂u...,λj+1,...,µ =

(
(1− cjx)∂ − cj(1− µ)

)
uλ,µ

and

PPp(λ, µ+ 1) =

p−1∑
j=0

pj(x)∂
p−j + pn

pn = (−1)p−1c1 . . . cp−1

(
(−µ− 1)p + (−µ)p−1

p−1∑
j=0

λj

)
= c1 · · · cp−1(µ+ 2− p)p−1(λ0 + · · ·+ λp−1 − µ− 1)

and hence (p−1∑
j=0

pj(x)∂
p−j−1

)
uλ,µ = −pnuλ,µ+1 = −pn∂−1uλ,µ.

Substituting this equation to (13.9), we have Qj ∈ W (x;λ, µ) such that Qjuλ,µ
equals u(λν+δν,j)ν=0,...,p−1,µ for j = 0, . . . , p − 1, respectively. The operators Rj ∈
W (x;λ, µ) satisfying RjQjuλ,µ = uλ,µ are calculated by the Euclidean algorithm,
namely, we find Sj ∈ W (x;λ, µ) so that RjQj + SjPPp = 1. Thus we also have
Tj ∈ W (x;λ, µ) such that Tjuλ,µ equals u(λν−δν,j)ν=0,...,p−1,µ for j = 0, . . . , p − 1,
respectively.

As is shown in §2.4 the Versal Jordan-Pochhammer operator P̃Pp is given by
(13.2) with

(13.11) p0(x) =

p∏
j=1

(1− cjx), q(x) =

p∑
k=1

λkx
k−1

p∏
j=k+1

(1− cjx).

If c1, . . . , cp are different to each other, the Riemann scheme of P̃Pp is
x = 1

cj
(j = 1, . . . , p) ∞
[0](p−1) [1− µ](p−1)

p∑
k=j

λk
cj
∏

1≤ν≤k
ν 6=j

(cj − cν)
+ µ

p∑
k=1

(−1)kλk
c1 . . . ck

− µ

 .

The solution of P̃Ppu = 0 is given by

uC(x) =

∫
C

(
exp

∫ t

0

p∑
j=1

−λjsj−1∏
1≤ν≤j(1− cνs)

ds
)
(x− t)µ−1dt.

Here the path C starting from a singular point and ending at a singular point is
chosen so that the integration has a meaning. In particular when c1 = · · · = cp = 0,
we have

uC(x) =

∫
C

exp
(
−

p∑
j=1

λjt
j

j

)
(x− t)µ−1dt

and if λp 6= 0, the path C starts from ∞ to one of the p independent directions

λ−1
p e

2πν
√

−1
p +t (t� 1, ν = 0, 1, . . . , p− 1) and ends at x.
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Suppose n = 2. The corresponding Riemann scheme for the generic characteris-
tic exponents and its construction from the Riemann scheme of the trivial equation
u′ = 0 is as follows:x = 0 1 ∞

b0 c0 a0
b1 c1 a1

 (Fuchs relation: a0 + a1 + b0 + b1 + c0 + c1 = 1)

xb0 (1−x)c0∂−a1−b1−c1

←−−−−−−−−−−−−−−−
{

x = 0 1 ∞
−a1 − b0 − c1 −a1 − b1 − c0 −a0 + a1 + 1

}
x−a1−b0−c1 (1−x)−a1−b1−c0

←−−−−−−−−−−−−−−−−−−
{
x = 0 1 ∞
0 0 0

}
.

Then our fractional calculus gives the corresponding equation

x2(1− x)2u′′ − x(1− x)
(
(a0 + a1 + 1)x+ b0 + b1 − 1

)
u′

+
(
a0a1x

2 − (a0a1 + b0b1 − c0c1)x+ b0b1
)
u = 0,

(13.12)

the connection formula

c(0 :b1  1:c1) =
Γ(c0 − c1)Γ(b1 − b0 + 1)

Γ(a0 + b1 + c0)Γ(a1 + b1 + c0)
(13.13)

and expressions of its solution by the integral representation∫ x

0

xb0(1− x)c0(x− s)a1+b1+c1−1s−a1−c1−b0(1− s)−a1−b1−c0ds

=
Γ(a0 + b1 + c0)Γ(a1 + b1 + c1)

Γ(b1 − b0 + 1)
xb1φb1(x)

(13.14)

and the series expansion∑
n≥0

(a0 + b1 + c0)n(a1 + b1 + c0)n
(b1 − b0 + 1)nn!

(1− x)c0xb1+n

= (1− x)c0xb1F (a0 + b1 + c0, a1 + b1 + c0, b1 − b0 − 1;x).

(13.15)

Here φb1(x) is a holomorphic function in a neighborhood of 0 satisfying φb1(0) =
1 for generic spectral parameters. We note that the transposition of c0 and c1
in (13.15) gives a nontrivial equality, which corresponds to Kummer’s relation of
Gauss hypergeometric function and the similar statement is true for (13.14). In
general, different procedures of reduction of a equation give different expressions of
its solution.

13.4. Hypergeometric family

We examine the hypergeometric family Hn which corresponds to the equations
satisfied by the generalized hypergeometric series (0.7). Its spectral type is in
Simpson’s list (cf. §13.2).

m = (1n, n− 11, 1n) : nFn−1(α, β; z)

1n, n− 11, 1n = 1, 10, 1⊕ 1n−1, n− 21, 1n−1

∆(m) = {α0 + α0,1 + · · ·+ α0,ν + α2,1 + · · ·+ α2,ν′ ;

0 ≤ ν < n, 0 ≤ ν′ < n}

[∆(m)] = 1n
2

Hn = H1 ⊕Hn−1 : n2

Hn
1−→

R2E0
Hn−1



13.4. HYPERGEOMETRIC FAMILY 151

Since m is of Okubo type, we have a system of Okubo normal form with the
spectral type m. Then the above R2E0 represents the reduction of systems of
equations of Okubo normal form due to Yokoyama [Yo2]. The number 1 on the
arrow represents a reduction by a middle convolution and the number shows the
difference of the orders.

x = 0 1 ∞
λ0,1 [λ1,1](n−1) λ2,1
...

...
λ0,n−1 λ2,n−1

λ0,n λ1,2 λ2,n


,



x = 0 1 ∞
1− β1 [0](n−1) α1

...
...

1− βn−1 αn−1

0 −βn αn


(13.16)

n∑
ν=1

(λ0,ν + λ2,ν) + (n− 1)λ1,1 + λ1,2 = n− 1,

α1 + · · ·+ αn = β1 + · · ·+ βn.

It follows from Theorem 11.7 that the universal operators

P 0
H1

(λ), P 2
H1

(λ), P 0
Hn−1

(λ), P 1
Hn−1

(λ), P 2
Hn−1

(λ).

are shift operators for the universal model PHn(λ)u = 0.
The Riemann scheme of the operator

P = RAd(∂−µn−1) ◦ RAd(xγn−1) ◦ · · · ◦ RAd(∂−µ1) ◦ RAd(xγ1(1− x)γ
′
)∂

equals

(13.17)



x = 0 1 ∞
0 [0](n−1) 1− µn−1

(γn−1 + µn−1) 1− (γn−1 + µn−1)− µn−2
n−1∑

j=n−2

(γj + µj) 1−
n−1∑

j=n−2

(γj + µj)− µn−3

...
...

n−1∑
j=2

(γj + µj) 1−
n−1∑
j=2

(γj + µj)− µ1

n−1∑
j=1

(γj + µj) γ′ +

n−1∑
j=1

µj −γ′ −
n−1∑
j=1

(γj + µj)



,

which is obtained by the induction on n with Theorem 5.2 and corresponds to the
second Riemann scheme in (13.16) by putting

(13.18)
γj = αj+1 − βj (j = 1, . . . , n− 2), γ′ = −α1 + β1 − 1,

µj = −αj+1 + βj+1 (j = 1, . . . , n− 1), µn−1 = 1− αn.

The integral representation of the local solutions at x = 0 (resp. 1 and ∞) corre-

sponding to the exponents
∑n−1

j=1 (γj+µj) (resp. γ
′+
∑n−1

j=1 µj and −γ′−
∑n−1

j=1 (γj+

µj) are given by

(13.19) Iµn−1
c xγn−1Iµn−2

c · · · Iµ1
c xγ1(1− x)γ

′

by putting c = 0 (resp. 1 and ∞).
For simplicity we express this construction using additions and middle convo-

lutions by

(13.20) u = ∂−µn−1xγn−1 · · · ∂−µ2xγ2∂−µ2xγ1(1− x)γ
′
.
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For example, when n = 3, we have the solution∫ x

c

tα3−β2(x− t)1−α3dt

∫ t

c

sα2−β1(1− s)−α1+β1−1(t− s)−α2−β2ds.

The operator corresponding to the second Riemann scheme is

(13.21) Pn(α;β) :=
n−1∏
j=1

(ϑ− βj) · ∂ −
n∏

j=1

(ϑ− αj).

This is clear when n = 1. In general, we have

RAd(∂−µ) ◦ RAd(xγ)Pn(α, β)

= RAd(∂−µ) ◦Ad(xγ)
(n−1∏
j=1

x(ϑ+ βj) · ∂ −
n∏

j=1

x(ϑ+ αj)
)

= RAd(∂−µ)
(n−1∏
j=1

(ϑ+ βj − 1− γ)(ϑ− γ)−
n∏

j=1

x(ϑ+ αj − γ)
)

= Ad(∂−µ)
(n−1∏
j=1

(ϑ+ βj − γ) · (ϑ− γ + 1)∂ −
n∏

j=1

(ϑ+ 1)(ϑ+ αj − γ)
)

=
n−1∏
j=1

(ϑ+ βj − γ − µ) · (ϑ− γ − µ+ 1)∂ −
n∏

j=1

(ϑ+ 1− µ) · (ϑ+ αj − γ − µ)

and therefore we have (13.21) by the correspondence of the Riemann schemes with
γ = γn and µ = µn.

Suppose λ1,1 = 0. We will show that

∞∑
k=0

∏n
j=1(λ2,j − λ0,n)k∏n−1

j=1 (λ0,n − λ0,j + 1)kk!
xλ0,n+k

= xλ0,n
nFn−1

(
(λ2,j − λ0,n)j=1,...,n, (λ0,n − λ0,j + 1)j=1,...,n−1;x

)(13.22)

is the local solution at the origin corresponding to the exponent λ0,n. Here

(13.23) nFn−1(α1, . . . , αn, β1, . . . , βn−1;x) =
∞∑
k=0

(α1)k · · · (αn−1)k(αn)k
(β1)k · · · (βn−1)kk!

xk.

We may assume λ0,1 = 0 for the proof of (13.22). When n = 1, the correspond-
ing solution equals (1− x)−λ2,1 and we have (13.22). Note that

Iµ0 x
γ

∞∑
k=0

∏n
j=1(λ2,j − λ0,n)k∏n−1

j=1 (λ0,n − λ0,j + 1)kk!
xλ0,n+k

=
∞∑
k=0

∏n
j=1(λ2,j − λ0,n)k∏n−1

j=1 (λ0,n − λ0,j + 1)kk!

Γ(λ0,n + γ + k + 1)

Γ(λ0,n + γ + µ+ k + 1)
xλ0,n+γ+µ+k

=
Γ(λ0,n + γ + 1)

Γ(λ0,n + γ + µ+ 1)

∞∑
k=0

∏n
j=1(λ2,j − λ0,n)k · (λ0,n + γ + 1)k · xλ0,n+γ+µ+k∏n−1

j=1 (λ0,n − λ0,j + 1)k · (λ0,n + γ + µ+ 1)kk!
.

Comparing (13.17) with the first Riemann scheme under λ0,1 = λ1,1 = 0 and γ = γn
and µ = µn, we have the solution (13.22) by the induction on n. The contiguity
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relation in Theorem 11.3 corresponds to the identity

nFn−1(α1, . . . , αn−1, αn + 1;β1, . . . , βn−1;x)

= nFn−1(α1, . . . , αn;β1, . . . , βn−1;x)

+
α1 · · ·αn−1

β1 · · ·βn−1
x · nFn−1(α1 + 1, . . . , αn + 1;β1 + 1, . . . , βn−1 + 1;x).

(13.24)

The series expansion of the local solution at x = 1 corresponding to the expo-
nent γ′ + µ1 + · · ·+ µn−1 is a little more complicated.

For the Riemann scheme
x =∞ 0 1
−µ2 + 1 [0](2) 0

1− γ2 − µ1 − µ2 γ2 + µ2

−γ′ − γ1 − γ2 − µ1 − µ2 γ′ + µ1 + µ2 γ1 + γ2 + µ1 + µ2

 ,

we have the local solution at x = 0

Iµ2

0 (1− x)γ2Iµ1

0 xγ
′
(1− x)γ1 = Iµ2

0 (1− x)γ2

∞∑
n=0

(−γ1)n
n!

xn

= Iµ2

0

∞∑
n=0

Γ(γ′ + 1 + n)(−γ1)n
Γ(γ′ + µ1 + 1 + n)n!

xγ
′+µ1+n(1− x)γ2

= Iµ2

0

∞∑
m,n=0

Γ(γ′ + 1 + n)(−γ1)n(−γ2)m
Γ(γ′ + µ1 + 1 + n)m!n!

xγ
′+µ1+m+n

=
∞∑

m,n=0

Γ(γ′ + µ1 + 1 +m+ n)Γ(γ′ + 1 + n)(−γ1)n(−γ2)mxγ
′+µ1+µ2+m+n

Γ(γ′ + µ1 + µ2 + 1 +m+ n)Γ(γ′ + µ1 + 1 + n)m!n!

=
Γ(γ′ + 1)xγ

′+µ1+µ2

Γ(γ′ + µ1 + µ2 + 1)

∞∑
m,n=0

(γ′ + µ1 + 1)m+n(γ
′ + 1)n(−γ1)n(−γ2)mxm+n

(γ′ + µ1 + µ2 + 1)m+n(γ′ + µ1 + 1)nm!n!
.

Applying the last equality in (3.8) to the above second equality, we have

Iµ2

0 (1− x)γ2Iµ1

0 xγ
′
(1− x)γ1

=
∞∑

n=0

Γ(γ′ + 1 + n)(−γ1)n
Γ(γ′ + µ1 + 1 + n)n!

xγ
′+µ1+µ2+n(1− x)−γ2

·
∞∑

m=0

Γ(γ′ + µ1 + 1 + n)

Γ(γ′ + µ1 + µ2 + 1 + n)

(µ2)m(−γ2)m
(γ′ + µ1 + n+ µ2 + 1)mm!

( x

x− 1

)m
=

Γ(γ′ + 1)xγ
′+µ1+µ2(1− x)−γ2

Γ(γ′ + µ1 + µ2 + 1)

∞∑
m,n=0

(γ′ + 1)n(−γ1)n(−γ2)m(µ2)m
(γ′ + µ1 + µ2 + 1)m+nm!n!

xn
( x

x− 1

)m
=

Γ(γ′ + 1)

Γ(γ′ + µ1 + µ2 + 1)

· xγ
′+µ1+µ2(1− x)−γ2F3

(
−γ2,−γ1, µ2, γ

′ + 1; γ′ + µ1 + µ2 + 1;x,
x

x− 1

)
,

where F3 is Appell’s hypergeometric function (13.53).

Let u−βn

1 (α1, . . . , αn;β1, . . . , βn−1;x) be the local solution of Pn(α, β)u = 0 at

x = 1 such that u−βn

1 (α;β;x) ≡ (x− 1)−βn mod (x− 1)1−βnO1 for generic α and
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β. Since the reduction
λ0,1 [0](n−1) λ2,1
...

...
λ0,n λ1,2 λ2,n

 ∂max−−−→


λ′0,1 [0](n−2) λ′2,1
...

...
λ′0,n−1 λ′1,2 λ′2,n−1


satisfies λ′1,2 = λ1,2 + λ0,1 + λ0,2 − 1 and λ′0,j + λ′2,j = λ0,j+1 + λ2,j+1 for j =
1, . . . , n− 1, Theorem 11.3 proves

u−βn

1 (α;β;x) = u−βn

1 (α1, . . . , αn + 1;β1, . . . , βn−1 + 1;x)

+
βn−1 − αn

1− βn
u1−βn

1 (α;β1, . . . , βn−1 + 1;x).
(13.25)

The condition for the irreducibility of the equation equals

(13.26) λ0,ν + λ1,1 + λ2,ν′ /∈ Z (1 ≤ ν ≤ n, 1 ≤ ν′ ≤ n),

which is easily proved by the induction on n (cf. Example 10.17 ii)). The shift
operator under a compatible shift (εj,ν) is bijective if and only if

(13.27) λ0,ν + λ1,1 + λ2,ν′ and λ0,ν + ε0,ν + λ1,1 + ε1,1 + λ2,ν′ + ε2,ν′

are simultaneously not integers or positive integers or non-positive integers for each
ν ∈ {1, . . . , n} and ν′ ∈ {1, . . . , n}.

Connection coefficients in this example are calculated by [Le] and [OTY] etc.
In this paper we get them by Theorem 12.6.

There are the following direct decompositions (ν = 1, . . . , n).

1 . . . 11;n− 11; 1 . . . 1 = 0 . . . 01; 1 0; 0 . . . 0

ν
`
10 . . . 0

⊕ 1 . . . 10;n− 21; 1 . . . 101 . . . 1.

These n decompositions m = m′ ⊕m′′ satisfy the condition m′
0,n0

= m′′
1,n1

= 1 in
(12.10), where n0 = n and n1 = 2. Since n0 + n1 − 2 = n, Remark 12.8 i) shows
that these decompositions give all the decompositions appearing in (12.10). Thus
we have

c(λ0,n  λ1,2) =

n−1∏
ν=1

Γ(λ0,n − λ0,ν + 1) · Γ(λ1,1 − λ1,2)

n∏
ν=1

Γ(λ0,n + λ1,1 + λ2,ν)

=

n∏
ν=1

Γ(βν)

Γ(αν)

= lim
x→1−0

(1− x)βn
nFn−1(α, β;x) (Reβn > 0).

Other connection coefficients are obtained by the similar way.

c(λ0,n  λ2,n) : When n = 3, we have

111, 21, 111=001, 10, 100 001, 10, 010 101, 11, 110 011, 11, 110
⊕110, 11, 011=110, 11, 101=010, 10, 001=100, 10, 001

In general, by the rigid decompositions

1 · · · 11 , n− 11 , 1 · · · 11= 0 · · · 01 , 1 0 , 0 . . . 0

i
`
10 · · · 00

⊕ 1 · · · 10 , n− 21 , 1 · · · 101 · · · 11

= 1 · · · 1
i
`
01 · · · 11 , n− 21 , 1 · · · 10

⊕ 0 . . . 010 · · · 00 , 1 0 , 0 · · · 01
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for i = 1, . . . , n− 1 we have

c(λ0,n  λ2,n) =
n−1∏
k=1

Γ(λ2,k − λ2,n)
Γ
(∣∣{λ0,n λ1,1 λ2,k

}∣∣)
·
n−1∏
k=1

Γ(λ0,n − λ0,k + 1)

Γ
(∣∣∣∣∣
{
(λ0,ν)1≤ν≤n

ν 6=k
[λ1,1](n−2) (λ2,ν)1≤ν≤n−1

λ1,2

}∣∣∣∣∣)
=

n−1∏
k=1

Γ(βk)Γ(αk − αn)

Γ(αk)Γ(βk − αn)
.

Moreover we have

c(λ1,2 λ0,n) =
Γ
(
λ1,2 − λ1,1 + 1

)
·
∏n−1

ν=1 Γ
(
λ0,ν − λ0,n

)
n∏

j=1

Γ
(∣∣∣∣{(λ0,ν)1≤ν≤n−1 [λ1,1](n−2) (λ2,ν)1≤ν≤n, ν 6=j

λ1,2

}∣∣∣∣)
=

n∏
ν=1

Γ(1− βν)
Γ(1− αν)

.

Here we use the notation in Definition 4.12 and denote

(µν)1≤ν≤n =

 µ1
µ2

...
µn

 ∈ Cn and (µν)1≤ν≤n
ν 6=i

=


µ1

...
µi−1
µi+1

...
µn

 ∈ Cn−1

for complex numbers µ1, . . . , µn.
We have

nFn−1(α, β;x) =
∞∑
k=0

Ck(1− x)k +
∞∑
k=0

C ′
k(1− x)k−βn ,

C0 = nFn−1(α, β; 1) (Reβn < 0),

C ′
0 =

n∏
ν=1

Γ(βν)

Γ(αν)

(13.28)

for 0 < x < 1 if α and β are generic. Since

dk

dxk
nFn−1(α, β;x)

=
(α1)k · · · (αn)k
(β1)k · · · (βn−1)k

nFn−1(α1 + k, . . . , αn + k, β1 + k, . . . , βn−1 + k;x),

we have

(13.29) Ck =
(α1)k · · · (αn)k

(β1)k · · · (βn−1)kk!
nFn−1(α1+k, . . . , αn+k, β1+k, . . . , βn−1+k; 1).

We examine the monodromy generators for the solutions of the generalized
hypergeometric equation. For simplicity we assume βi /∈ Z and βi−βj /∈ Z for i 6= j.

Then u = (u
λ0,1

0 , . . . , u
λ0,n

0 ) is a base of local solution at 0 and the corresponding
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monodromy generator around 0 with respect to this base equals

M0 =

e
2π

√
−1λ0,1

. . .

e2π
√
−1λ0,n


and that around ∞ equals

M∞ =

( n∑
k=1

e2π
√
−1λ2,ν c(λ0,i  λ2,k)c(λ2,k  λk,j)

)
1≤i≤n
1≤j≤n

=

( n∑
k=1

e2π
√
−1λ2,ν

∏
ν∈{1,...,n}\{k}

sin 2π(λ0,i + λ1,1 + λ2,ν)

sin 2π(λ0,k − λ0,ν)

·
∏

ν∈{1,...,n}\{j}

sin 2π(λ0,i + λ1,1 + λ2,ν)

sin 2π(λ2,j − λ2,ν)

)
1≤i≤n
1≤j≤n

.

Lastly we remark that the versal generalized hypergeometric operator is

P̃ = RAd(∂−µn−1) ◦ RAd
(
(1− c1x)

γn−1
c1

)
◦ · · · ◦ RAd(∂−µ1)

◦ RAd
(
(1− c1x)

γ1
c1

+ γ′
c1(c1−c2) (1− c2x)

γ′
c2(c2−c1)

)
∂

= RAd(∂−µn−1) ◦ RAdei
( γn−1

1− c1x
)
◦ · · · ◦ RAd(∂−µ1)

◦ RAdei
(

γ1
1− c1x

+
γ′x

(1− c1x)(1− c2x)

)
∂

and when n = 3, we have the integral representation of the solutions∫ x

c

∫ t

c

exp
(
−
∫ s

c

γ1(1− c2u) + γ′u

(1− c1u)(1− c2u)
du
)
(t− s)µ1−1

(
1− c1t

) γ2
c1 (x− t)µ2−1ds dt.

Here c equals 1
c1

or 1
c2

or ∞.

13.5. Even/Odd family

The system of differential equations of Schlesinger canonical form belonging to
an even or odd family EOn is concretely given by [Gl]. We will examine concrete
connection coefficients of solutions of the single differential equation belonging to
an even or odd family. The corresponding tuples of partitions and their reductions
and decompositions are as follows.

m+ 1m,m21, 12m+1 = 10, 10, 1⊕m2,mm− 11, 12m

= 12, 120, 12 ⊕mm− 1, (m− 2)21, 12m−1

m2,mm− 11, 12m = 1, 100, 1⊕mm− 1, (m− 1)21, 12m−1

= 12, 110, 12 ⊕ (m− 1)2,m− 1m− 21, 12m−2

EOn = H1 ⊕ EOn−1 : 2n = H2 ⊕ EOn−2 :

(
n

2

)
[∆(m)] = 1(

n
2)+2n

EOn
1−→

R1E0R0E0
EOn−1

EO2 = H2, EO3 = H3

The following operators are shift operators of the universal model PEOn(λ)u = 0:

P 2
H1

(λ), P 1
EOn−1

(λ), P 2
EOn−1

(λ), P 2
H2

(λ), P 1
EOn−2

(λ), P 2
EOn−2

(λ).
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EO2m (m = (12m,mm− 11,mm) : even family)
x =∞ 0 1
λ0,1 [λ1,1](m) [λ2,1](m)

... [λ1,2](m−1) [λ2,2](m)

λ0,2m λ1,3

 ,

2m∑
ν=1

λ0,ν +m(λ1,1 + λ2,1 + λ2,2) + (m− 1)λ1,2 + λ1,3 = 2m− 1.

The rigid decompositions

1 · · · 11 , mm− 11 , mm

= 0 · · · 01 , 100 ,
i
`
10⊕ 1 · · · 10 , m− 1m− 11 ,

i
`
01

= 0 · · ·
j
`
11 , 110 , 11⊕ 1 · · ·

j
`
00 , m− 1m− 21 , m− 1m− 1,

which are expressed by EO2m = H1 ⊕ EO2m−1 = H2 ⊕ EO2m−2, give

c(λ0,2m  λ1,3) =
2∏

i=1

Γ
(
λ1,i − λ1,3

)
Γ
(∣∣{λ0,2m λ1,1 λ2,i

}∣∣) ·2m−1∏
j=1

Γ
(
λ0,2m − λ0,j + 1)

Γ
(∣∣∣∣{ λ0,j λ1,1 λ2,1

λ0,2m λ1,2 λ2,2

}∣∣∣∣) ,
c(λ1,3  λ0,2m) =

2∏
i=1

Γ
(
λ1,3 − λ1,i + 1

)
Γ
(∣∣∣∣∣∣
 [λ1,1](m−1) [λ2,ν ](m)

(λ0,ν)1≤ν≤2m−1 [λ1,2](m−1) [λ2,3−i](m−1)

λ1,3


∣∣∣∣∣∣)

·
2m−1∏
j=1

Γ
(
λ0,j − λ0,2m)

Γ
(∣∣∣∣∣∣


[λ1,1](m−1) [λ2,1](m−1)

(λ0,ν)1≤ν≤2m−1
ν 6=j

[λ1,2](m−2) [λ2,2](m−1)

λ1,3


∣∣∣∣∣∣)
.

These formulas were obtained by the author in 2007 (cf. [O6]), which is a main
motivation for the study in this paper. The condition for the irreducibility is{

λ0,ν + λ1,1 + λ2,k /∈ Z (1 ≤ ν ≤ 2m, k = 1, 2),

λ0,ν + λ0,ν′ + λ1,1 + λ1,2 + λ2,1 + λ2,2 − 1 /∈ Z (1 ≤ ν < ν′ ≤ 2m, k = 1, 2).

The shift operator for a compatible shift (εj,µ) is bijective if and only if the values
of each linear function in the above satisfy (11.30).

For the Fuchsian equation P̃ u = 0 of type EO4 with the Riemann scheme
x =∞ 0 1
[a1](2) b1 [0](2) ;x
[a2](2) b2 c1

b3 c2
0

(13.30)

and the Fuchs relation

2a1 + 2a2 + b1 + b2 + b3 + c1 + c2 = 3(13.31)

we have the connection formula

c(0 :0 1:c2) =
Γ(c1 − c2)Γ(−c2)

∏3
ν=1 Γ(1− bν)

Γ(a1)Γ(a2)
∏3

ν=1 Γ(a1 + a2 + bν + c1 − 1)
.(13.32)
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Let Q̃ be the Gauss hypergeometric operator with the Riemann schemex =∞ 0 1
a1 1− a1 − a2 − c1 0
a2 0 c1

 .

We may normalize the operators by

P̃ = x3(1− x)∂4 + · · · and Q̃ = x(1− x)∂2 + · · · .

Then

P̃ = S̃Q̃−
3∏

ν=1

(a1 + a2 + bν + c1 − 1) · ∂

Q̃ =
(
x(1− x)∂ + (a1 + a2 + c1 − (a1 + a2 + 1)x)

)
∂ − a1a2

with a suitable S̃, T̃ ∈W [x] and e ∈ C and as is mentioned in Theorem 11.7, Q̃ is
a shift operator satisfying

(13.33)


x =∞ 0 1
[a1](2) b1 [0](2) ;x
[a2](2) b2 c1

b3 c2
0


Q̃−→


x =∞ 0 1

[a1 + 1](2) b1 − 1 [0](2) ;x
[a2 + 1](2) b2 − 1 c1

b3 − 1 c2 − 1
0

 .

Let u00 = 1+· · · and uc21 = (1−x)c2+· · · be the normalized local solutions of P̃ u = 0
corresponding to the characteristic exponents 0 at 0 and c2 at 1, respectively. Then
the direct calculation shows

Q̃u00 =
a1a2

∏3
ν=1(a1 + a2 + bν + c1 − 1)∏3

ν=1(1− bν)
+ · · · ,

Q̃uc21 = c2(c2 − c1)(1− x)c2−1 + · · · .

Denoting by c(a1, a2, b1, b2, b3, c1, c2) the connection coefficient c(0 : 0  1 : c2) for
the equation with the Riemann scheme (13.30), we have

c(a1, a2, b1, b2, b3, c1, c2)

c(a1 + 1, a2 + 1, b1 − 1, b2 − 1, b3 − 1, c1, c2 − 1)
=

a1a2

3∏
ν=1

(a1 + a2 + bν + c1 − 1)

(c1 − c2)(−c2)
3∏

ν=1

(1− bν)
,

which proves (13.32) since limk→∞ c(a1+k, a2+k, b1−k, b2−k, b3−k, c1, c2−k) = 1.
Note that the shift operator (13.33) is not bijective if and only if the equation

Q̃u =
3∏

ν=1

(a1 + a2 + bν + c1 − 1) · ∂u = 0

has a non-zero solution, which is equivalent to

a1a2

3∏
ν=1

(a1 + a2 + bν + c1 − 1) = 0.

In fact, there is a shift operator

R̃ = x3(1− x)2∂3 − x2(1− x)
(
2a1 + 2a2 + 7)x+ b1 + b2 + b3 − 6

)
∂2 + · · · ∈W [x]
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so that

R̃Q̃ =
(
x(1− x)∂ − (a1 + a2 + 1)x+ (a1 + a2 + c1)

)
P̃

+ a1a2

3∏
ν=1

(a1 + a2 + bν + c1 − 1).

By the transformation x 7→ x
x−1 we have

x =∞ 0 1
[0](2) 0 [a1](2)
c1 b1 [a2](2)
c2 b2

b3


(1−x)a1∂1−a1 (1−x)−a1

−−−−−−−−−−−−−−−→


x =∞ 0 1
2− 2a1 a1

1 + c1 − a1 a1 + b1 − 1 [a1 + a2 − 1](2)
1 + c2 − a1 a1 + b2 − 1

a1 + b3 − 1


x1−a1−b1 (1−x)1−a1−a2

−−−−−−−−−−−−−−−→


x =∞ 0 1
a2 + b1 1− a2

a1 + a2 + b1 + c1 − 1 0 [0](2)
a1 + a2 + b1 + c2 − 1 b2 − b1

b3 − b1


and therefore Theorem 12.4 gives the following connection formula for (13.30):

c(0 :b1  ∞ :a2) =
Γ(b1 + 1)Γ(a1 − a2)
Γ(a1 + b1)Γ(1− a2)

· 3F2(a2 + b1, a1 + a2 + b1 + c1 − 1,

a1 + a2 + b1 + c2 − 1; b1 − b2 − 1, b1 − b3 − 1; 1).

In the same way, we have

c(1 :c1  ∞ :a2) =
Γ(c1 + 1)Γ(a1 − a2)
Γ(a1 + c1)Γ(1− a2)

· 3F2(b1 − c1, b2 − c1, b3 − c1;

a1 + c1, c1 − c2 + 1; 1).

Remark 13.1. When the parameters are generic under the condition

(13.34) 1− a1 − a2 − b1 − c1 ∈ Z≥0,

P̃ u = 0 has a solution such that its monodromy group is isomorphic to the solution
of the hypergeometric equation Q̃u = 0 and it has 1 − a1 − a2 − b1 − c1 apparent
singular points. This solution is constructed by a successive applications of the
shift operators R̃ to Gauss hypergeometric function. This can be considered as a
generalization of Proposition 11.15.

We will calculate generalized connection coefficients defined in Definition 12.17.
In fact, we get

c(1 : [0](2)  ∞ : [a2](2)) =

∏2
ν=1 Γ(2− cν) ·

∏2
i=1 Γ(a1 − a2 + i)

Γ(a1)
∏3

ν=1 Γ(a1 + bν)
,(13.35)

c(∞ : [a2](2)  1: [0](2)) =

∏2
ν=1 Γ(cν − 1) ·

∏1
i=0 Γ(a2 − a1 − i)

Γ(1− a1)
∏3

ν=1 Γ(1− a1 − bν)
(13.36)

according to the procedure given in Remark 12.19, which we will explain.
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The differential equation with the Riemann scheme


x =∞ 0 1
α1 [0](2) [0](2)
α2 [β](2) γ1
α3 γ2
α4


is Pu = 0 with

P =

4∏
j=1

(
ϑ+ αj

)
+ ∂

(
ϑ− β

)(
(∂ − 2ϑ+ γ1 + γ2 − 1)(ϑ− β)

+
∑

1≤i<j≤3

αiαj − (β − 2γ1 − 2γ2 − 4)(β − 1)− γ1γ2 + 1
)
.

(13.37)

The equation Pu = 0 is isomorphic to the system

(13.38)

dũ

dx
=
A

x
ũ+

B

x− 1
ũ,

A =


0 0 1 0
0 0 0 1
0 0 c 0
0 0 0 c

 , B =


0 0 0 0
0 0 0 0
s 1 a 0
r t 0 b

 , ũ =


u1
u2
u3
u4


by the correspondence

u1 = u,

u2 = (x− 1)xu′′ +
(
(1− a− c)x+ a− 1

)
u′ − su,

u3 = xu′,

u4 = x2(x− 1)u′′′ +
(
(3− a− c)x2 + (a− 2)x

)
u′′ + (1− a− c− s)xu′,

where we may assume Re γ1 ≥ Re γ2 and

β = c, γ1 = a+ 1, γ2 = b+ 2,

4∏
ν=1

(ξ − αν) = ξ4 + (a+ b+ 2c)ξ3 +
(
(a+ c)(b+ c)− s− t

)
ξ2

−
(
(b+ c)s+ (a+ c)t

)
ξ + st− r.

Here s, t and r are uniquely determined from α1, α2, α3, α4, β, γ1, γ2 because b+c 6=
a+ c. We remark that Ad(x−c)ũ satisfies a system of Okubo normal form.

Note that the shift of parameters (α1, . . . , α4, β, γ1, γ2) 7→ (α1, . . . , α4, β−1, γ1+
1, γ2 + 1) corresponds to the shift (a, b, c, s, t, r) 7→ (a+ 1, b+ 1, c− 1, s, t, r).

Let ujα1,...,α4,β,γ1,γ2
(x) be local holomorphic solutions of Pu = 0 in a neighbor-

hood of x = 0 determined by

ujα1,...,α4,β,γ1,γ2
(0) = δj,0,(

d
dxu

j
α1,...,α4,β,γ1,γ2

)
(0) = δj,1

for j = 0 and 1. Then Theorem 12.10 proves

lim
k→∞

dν

dxν u
0
α,β−k,γ1+k,γ1+k(x) = δ0,ν (ν = 0, 1, 2, . . .)

uniformly on D = {x ∈ C ; |x| ≤ 1}.
Put u = vα,β,γ1,γ2 = (γ1 − 2)−1u1α,β,γ . Then Theorem 12.10 proves

lim
k→∞

dν

dxν vα,β−k,γ1+k,γ2+k(x) = 0 (ν = 0, 1, 2, . . .),

lim
k→∞

(
(x− 1)x d2

dx2 +
(
(2− β − γ1)x+ γ1 + k − 2

)
d
dx − s

)
vα,β−k,γ1+k,γ2+k(x) = 1
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uniformly on D. Hence

lim
k→∞

d
dxu

1
α,β−k,γ+1,γ1+k(x) = 1

uniformly on D. Thus we obtain

lim
k→∞

c(∞ : [a2](2)  1: [0](2))|a1 7→a1−k, c1 7→c1+k, c2 7→c2+k = 1

for the connection coefficient in (13.36). Then the procedure given in Remark 12.19
and Corollary 12.22 with the rigid decompositions

22, 1111, 211 = 12, 0111, 111⊕ 10, 1000, 100 = 12, 1011, 111⊕ 10, 0100, 100

= 12, 1101, 111⊕ 10, 0010, 100 = 12, 1101, 111⊕ 10, 0010, 100

prove (13.36). Corresponding to Remark 12.19 (4), we note

2∑
ν=1

(cν − 1) +

1∑
i=0

(a2 − a1 − i) = (1− a1) +
3∑

ν=1

(1− a1 − bν)

because of the Fuchs relation (13.31). We can similarly obtain (13.35).

The holomorphic solution of P̃ u = 0 at the origin is given by

u0(x) =
∑

m≥0, n≥0

(a1 + a2 + b3 + c2 − 1)n
∏2

ν=1

(
(aν)m+n(a1 + a2 + bν + c1 − 1)m

)
(1− b1)m+n(1− b2)m+n(1− b3)mm!n!

xm+n

and it has the integral representation

u0(x) =

∏3
ν=1 Γ(1− bν)∏2

ν=1

(
Γ(aν)Γ(1− aν − bν)Γ(bν + cν + a1 + a2 − 1)

)∫ x

0

∫ s0

0

∫ s1

0

xb1(x− s0)−b1−a1sb2+a1−1
0 (s0 − s1)−b2−a2

· sb3+a2−1
1 (1− s1)−b3−c1−a2−a1+1(s1 − s2)c1+b1+a2+a1−2

· sb2+c2+a2+a1−2
2 (1− s2)−c2−b1−a2−a1+1ds2ds1ds0.

The equation is irreducible if and only if any value of the following linear functions
is not an integer.

a1 a2

a1 + b1 a1 + b2 a1 + b3 a2 + b1 a2 + b2 a2 + b3

a1 + a2 + b1 + c1 − 1 a1 + a2 + b1 + c2 − 1 a1 + a2 + b2 + c1 − 1

a1 + a2 + b2 + c2 − 1 a1 + a2 + b3 + c1 − 1 a1 + a2 + b2 + c2 − 1.

In the same way we have the connection coefficients for odd family.
EO2m+1 (m = (12m+1,mm1,m+ 1m) : odd family)

x =∞ 0 1
λ0,1 [λ1,1](m) [λ2,1](m+1)

... [λ1,2](m) [λ2,2](m)

λ0,2m+1 λ1,3
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ν=1 λ0,ν +m(λ1,1 + λ1,2 + λ2,2) + (m+ 1)λ2,1 + λ1,3 = 2m.

c(λ0,2m+1  λ1,3) =
2∏

k=1

Γ
(
λ1,k − λ1,3

)
Γ
(∣∣{λ0,2m+1 λ1,k λ2,1

}∣∣)
·
2m∏
k=1

Γ
(
λ0,2m+1 − λ0,k + 1)

Γ
(∣∣∣∣{ λ0,k λ1,1 λ2,1

λ0,2m+1 λ1,2 λ2,2

}∣∣∣∣) ,
c(λ1,3  λ0,2m+1) =

2∏
k=1

Γ
(
λ1,3 − λ1,k + 1

)
Γ
(∣∣∣∣∣∣
 [λ1,k](m) [λ2,1](m)

(λ0,ν)1≤ν≤2m [λ1,3−k](m−1) [λ2,2](m)

λ1,3


∣∣∣∣∣∣)

·
2m∏
k=1

Γ
(
λ0,k − λ0,2m+1)

Γ
(∣∣∣∣∣∣∣


[λ1,1](m−1) [λ2,1](m)

(λ0,ν)1≤ν≤2m
ν 6=k

[λ1,2](m−1) [λ2,2](m−1)

λ1,3


∣∣∣∣∣∣∣
) .

The condition for the irreducibility is{
λ0,ν + λ1,k + λ2,1 /∈ Z (1 ≤ ν ≤ 2m+ 1, k = 1, 2),

λ0,ν + λ0,ν′ + λ1,1 + λ1,2 + λ2,1 + λ2,2 − 1 /∈ Z (1 ≤ ν < ν′ ≤ 2m+ 1, k = 1, 2).

The same statement using the above linear functions as in the case of even family is
valid for the bijectivity of the shift operator with respect to compatible shift (εj,ν).

We note that the operation RAd(∂−µ) ◦ RAd
(
x−λ1,2(1 − x)−λ2,2

)
transforms

the operator and solutions with the above Riemann scheme of type EOn into those
of type EOn+1:

λ0,1 [λ1,1]([n2 ]) [λ2,1]([n+1
2 ])

... [λ1,2]([n−1
2 ]) [λ2,2]([n2 ])

λ0,n λ1,3


x−λ1,2 (1−x)−λ2,2

−−−−−−−−−−−−→


λ0,1 + λ1,2 + λ2,2 [λ1,1 − λ1,2]([n2 ]) [λ2,1 − λ2,2]([n+1

2 ])

... [0]([n−1
2 ]) [0]([n2 ])

λ0,n + λ1,2 + λ2,2 λ1,3 − λ1,2


∂−µ

−−−→


λ0,1 + λ1,2 + λ2,2 − µ [λ1,1 − λ1,2 + µ]([n2 ]) [λ2,1 − λ2,2 + µ]([n+1

2 ])

... [µ]([n+1
2 ]) [µ]([n+2

2 ])

λ0,n + λ1,2 + λ2,2 − µ λ1,3 − λ1,2 + µ
1− µ

 .

13.6. Trigonometric identities

The connection coefficients corresponding to the Riemann scheme of the hy-
pergeometric family in §13.4 satisfy

n∑
ν=1

c(1 : λ1,2 0 : λ0,ν) · c(0 : λ1,ν 1 : λ1,2) = 1,

n∑
ν=1

c(∞ : λ2,i 0 : λ0,ν) · c(0 : λ0,ν ∞ : λ2,j) = δij .
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These equations with Remark 12.8 iii) give the identities

n∑
k=1

∏
ν∈{1,...,n} sin(xk − yν)∏

ν∈{1,...,n}\{k} sin(xk − xν)
= sin

( n∑
ν=1

xν −
n∑

ν=1

yν

)
,

n∑
k=1

∏
ν∈{1,...,n}\{k}

sin(yi − xν)
sin(xk − xν)

∏
ν∈{1,...,n}\{j}

sin(xk − yν)
sin(yj − yν)

= δij (1 ≤ i, j ≤ n).

We have the following identity from the connection coefficients of even/odd families.

n∑
k=1

sin(xk + s) · sin(xk + t) ·
∏

ν∈{1,...,n}\{k}

sin(xk + xν + 2u)

sin(xk − xν)

=


sin
(
nu+

n∑
ν=1

xν

)
· sin

(
s+ t+ (n− 2)u+

n∑
ν=1

xν

)
if n = 2m,

sin
(
s+ (n− 1)u+

n∑
ν=1

xν

)
· sin

(
t+ (n− 1)u+

n∑
ν=1

xν

)
if n = 2m+ 1.

The direct proof of these identities using residue calculus is given by [Oc]. It is
interesting that similar identities of rational functions are given in [Gl, Appendix]
which studies the systems of Schlesinger canonical form corresponding to Simpson’s
list (cf. §13.2).

13.7. Rigid examples of order at most 4

13.7.1. order 1. 1, 1, 1

u(x) = xλ1(1− x)λ2
{
−λ1 − λ2 λ1 λ2

}
13.7.2. order 2. 11, 11, 11 : H2 (Gauss) [∆(m)] = 14

uH2 = ∂−µ1u(x)

{
−µ1 + 1 0 0

−λ1 − λ2 − µ1 λ1 + µ1 λ2 + µ1

}
13.7.3. order 3. There are two types.
111, 21, 111 : H3 (3F2) [∆(m)] = 19

uH3 = ∂−µ2xλ3uH2 1− µ2 0 [0](2)
−λ3 − µ1 − µ2 + 1 λ3 + µ2

−λ1 − λ2 − λ3 − µ1 − µ2 λ1 + λ3 + µ1 + µ2 λ2 + µ1 + µ2


21, 21, 21, 21 : P3 (Jordan-Pochhammer) [∆(m)] = 14 · 2

uP3 = ∂−µxλ0(1− x)λ1(c2 − x)λ2{
[1− µ](2) [0](2) [0](2) [0](2)

−λ0 − λ1 − λ2 − µ λ0 + µ λ1 + µ λ2 + µ

}
13.7.4. order 4. There are 6 types.
211, 211, 211: α2 [∆(m)] = 110 · 2

∂−µ2xλ3(1− x)λ4uH2 [−µ2 + 1](2) [0](2) [0](2)
−µ1 − λ3 − λ4 − µ2 + 1 λ3 + µ2 λ4 + µ2

−λ1 − λ2 − λ3 − λ4 − µ1 − µ2 λ1 + λ3 + µ1 + µ2 λ2 + λ4 + µ1 + µ2
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1111, 31, 1111 : H4 (4F3) [∆(m)] = 116

∂−µ3xλ4uH3
−µ3 + 1 0 [0](3)

−λ4 − µ2 − µ3 + 1 λ4

−λ3 − λ4 − µ1 − µ2 − µ3 + 1 λ3 + λ4 + µ2 + µ3

−λ1 − · · · − λ4 − µ1 − µ2 − µ3 λ1 + · · ·+ λ4 + µ1 + µ2 + µ3 λ2 + µ1 + µ2 + µ3


211, 22, 1111 : EO4 [∆(m)] = 114

∂−µ3(1− x)−λ′
uH3 , λ′ = λ2 + µ1 + µ2

λ2 + µ1 − µ2 − µ3 + 1 [0](2) [−λ2 − µ1 − µ2 + µ3](2)
λ2 − λ3 − µ3 + 1 λ3 + µ2 + µ3

−λ1 − λ3 − µ3 λ1 + λ3 + µ1 + µ2 + µ3 [0](2)
−µ3 + 1


We have the integral representation of the local solution corresponding to the ex-
ponent at 0:∫ x

0

∫ t

0

∫ s

0

(1− t)−λ2−µ1−µ2(x− t)µ3−1sλ3(t− s)µ2−1uλ1(1−u)λ2(s−u)µ−1du ds dt.

211, 22, 31, 31: I4 [∆(m)] = 16 · 22

∂−µ2(c2 − x)λ3uH2
[−µ2 + 1](2) [0](3) [0](3) [0](2)

−λ3 − µ1 − µ2 + 1 [λ3 + µ2](2)
−λ1 − λ2 − λ3 − µ1 − µ2 λ1 + µ1 + µ2 λ2 + µ1 + µ2


31, 31, 31, 31, 31: P4 [∆(m)] = 15 · 3

uP4 = ∂−µxλ0(1− x)λ1(c2 − x)λ2(c3 − x)λ3{
[−µ+ 1](3) [0](3) [0](3) [0](3) [0](3)

−λ0 − λ2 − λ3 − µ λ0 + µ λ1 + µ λ2 + µ λ3 + µ

}
22, 22, 22, 31: P4,4 [∆(m)] = 18 · 2

∂−µ′
x−λ′

0(1− x)−λ′
1(c2 − x)−λ′

2uP3 , λ′j = λj + µ, µ′ = λ0 + λ1 + λ2 + 2µ{
[1− µ′](3) [λ1 + λ2 + µ](2) [λ0 + λ2 + µ](2) [λ0 + λ1 + µ](2)

−λ0 − λ1 − λ2 [0](2) [0](2) [0](2)

}
13.7.5. Tuple of partitions : 211, 211, 211. [∆(m)] = 110 · 2

211, 211, 211 = H1 ⊕H3 : 6 = H2 ⊕H2 : 4 = 2H1 ⊕H2 : 1

From the operations
x =∞ 0 1
1− µ1 0 0

−α1 − β1 − µ1 α1 + µ1 β1 + µ1


xα2 (1−x)β2

−−−−−−−−→


x =∞ 0 1

1− α2 − β2 − µ1 α2 β2
−α1 − α2 − β1 − β2 − µ1 α1 + α2 + µ1 β1 + β2 + µ1


∂−µ2

−−−→


x =∞ 0 1

[−µ2 + 1](2) [0](2) [0](2)
1− β2 − µ1 − µ2 α2 + µ2 β2 + µ2

−α1 − β1 − β2 − µ1 − µ2 α1 + µ1 + µ2 β1 + β2 + µ1 + µ2
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−→


x =∞ 0 1
[λ2,1](2) [λ0,1](2) [λ1,1](2)
λ2,2 λ0,2 λ1,2
λ2,3 λ0,3 λ1,3

 with

2∑
j=0

(2λj,1 + λj,2 + λj,3) = 3,

we have the integral representation of the solutions as in the case of other examples
we have explained and so here we will not discuss them. The universal operator of
type 11, 11, 11 is

Q = x2(1− x)2∂2 − (ax+ b)x(1− x)∂ + (cx2 + dx+ e).

Here we have

b = λ′0,1 + λ′0,2 − 1, e = λ′0,1λ
′
0,2,

−a− b = λ′1,1 + λ′1,2 − 1, c+ d+ e = λ′1,1λ
′
1,2,

c = λ′2,1λ
′
2,2,

λ′0,1 = α2, λ′0,2 = α1 + α2 + µ1,

λ′1,1 = β2, λ′1,2 = β1 + β2 + µ2,

λ′2,1 = 1− β2 − µ1 − µ2, λ′2,2 = −α1 − β1 − β2 − µ1 − µ2

corresponding to the second Riemann scheme in the above. The operator corre-
sponding to the tuple 211, 211, 211 is

P = RAd(∂−µ2)Q

= RAd(∂−µ2)
(
(ϑ− λ′0,1)(ϑ− λ′0,2)

+ x
(
−2ϑ2 + (2λ′0,1 + 2λ′0,2 + λ′1,1 + λ′1,2 − 1)ϑ+ λ′1,1λ

′
1,2 − λ′0,1λ′0,2 − λ′2,1λ′2,2

)
+ x2(ϑ+ λ′2,1)(ϑ+ λ′2,2)

)
= ∂2(ϑ− λ′0,1 − µ2)(ϑ− λ′0,2 − µ2)

+ ∂(ϑ− µ2 + 1)
(
−2(ϑ− µ2)

2 + (2λ′0,1 + 2λ′0,2 + λ′1,1 + λ′1,2 − 1)(ϑ− µ2)

+ λ′1,1λ
′
1,2 − λ′0,1λ′0,2 − λ′2,1λ′2,2

)
+ (ϑ− µ2 + 1)(ϑ− µ2 + 2)(ϑ+ λ′2,1 − µ2)(ϑ+ λ′2,2 − µ2).

The condition for the irreducibility:
λ0,1 + λ1,1 + λ2,1 /∈ Z,
λ0,ν + λ1,1 + λ2,1 /∈ Z, λ0,1 + λ1,ν + λ2,1 /∈ Z, λ0,1 + λ1,1 + λ2,ν /∈ Z (ν = 2, 3),

λ0,1 + λ0,2 + λ1,1 + λ1,ν + λ2,1 + λ2,ν′ /∈ Z (ν, ν′ ∈ {2, 3}).

There exist three types of direct decompositions of the tuple and there are 4 direct
decompositions which give the connection coefficient c(λ0,3 λ1,3) by the formula
(12.10) in Theorem 12.6:

211, 211, 211 = 001, 100, 100⊕ 210, 111, 111

= 111, 210, 111⊕ 100, 001, 100

= 101, 110, 110⊕ 110, 101, 101

= 101, 110, 101⊕ 110, 101, 110
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Thus we have

c(λ0,3 λ1,3) =

∏2
ν=1 Γ(λ0,3 − λ0,ν + 1)

Γ(λ0,3 + λ1,1 + λ2,1) · Γ(1− λ0,1 − λ1,3 − λ2,1)

·
∏2

ν=1 Γ(λ1,ν − Γ1,3)∏3
ν=2 Γ(λ0,1 + λ0,3 + λ1,1 + λ1,2 + λ2,1 + λ2,ν − 1)

.

We can calculate generalized connection coefficient defined in Definition 12.17:

c([λ0,1](2) [λ1,1](2)) =

∏3
ν=2

(
Γ(λ0,1 − λ0,ν + 2) · Γ(λ1,ν − λ1,1 − 1)

)∏3
ν=2

(
Γ(λ0,1 + λ1,ν + λ2,1) · Γ(1− λ0,ν − λ1,1 − λ2,1)

) .
This can be proved by the procedure given in Remark 12.19 as in the case of the
formula (13.36). Note that the gamma functions in the numerator of this formula
correspond to Remark 12.19 (2) and those in the denominator correspond to the
rigid decompositions

211, 211, 211 = 100, 010, 100⊕ 111, 201, 111 = 100, 001, 100⊕ 111, 210, 111

= 210, 111, 111⊕ 001, 100, 100 = 201, 111, 111⊕ 010, 100, 100.

The equation Pu = 0 with the Riemann scheme


x =∞ 0 1
[λ0,1](2) [0](2) [0](2)
λ0,2 λ1,2 λ2,2
λ0,3 λ1,3 λ2,3

 is iso-

morphic to the system

ũ′ =
A

x
ũ+

B

x− 1
ũ, ũ =


u1
u2
u3
u4

 , u1 = u,

A =


0 0 c1 0
0 0 0 c1
0 0 a1 b1 − b2 − c2
0 0 0 a2

 ,

B =


0 0 0 0
0 0 0 0

−a1 − b2 + c1 −b1 + b2 + c2 b2 0
−a1 + a2 + c2 −a2 − b1 + c1 a1 − a2 − c2 b1

 ,



a1 = λ1,2,

a2 = λ1,3,

b1 = λ2,2 − 2,

b2 = λ2,3 − 1,

c1 = −λ0,1,
c2 = λ0,1 + λ0,2 + λ1,2 + λ2,2 − 1

when λ0,1(λ0,1 +λ2,2)(λ0,1 +λ0,2 +λ1,2 +λ2,3− 2) 6= 0. Let u(x) be a holomorphic
solution of Pu = 0 in a neighborhood of x = 0. By a direct calculation we have

u1(0) =
(a1 − 1)(a2 − 1)

(b1 − c1 + 1)(b1 − b2 − c2)c1
u′(0)+

(a2 + b2 + c2 − 1)a1 − (c1 + c2)a2 + (a2 − a1 + c2)b1 − (c2 + 1)b2 − c22 + c1
(b1 − c1 + 1)(b1 − b2 − c2)

u(0).
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Since the shift described in Remark 12.19 (1) corresponds to the shift

(a1, a2, b1, b2, c1, c2) 7→ (a1 − k, a2 − k, b1 + k, b2 + k, c1, c2),

it follows from Theorem 12.10 that

lim
k→∞

c([λ0,1](2) [λ1,1](2))
∣∣∣λ0,2 7→λ0,2−k, λ0,3 7→λ0,3−k
λ1,2 7→λ1,2+k, λ1,3 7→λ1,3+k

= 1

as in the proof of (13.36) because u1(0) ∼ k
(b1−b2−c2)c1

u′(0) + Cu(0) with C ∈ C
when k →∞. Thus we can calculate this generalized connection coefficient by the
procedure described in Remark 12.19.

Using (3.8), we have the series expansion of the local solution at x = 0 corre-
sponding to the exponent α1 + µ1 + µ2 for the Riemann scheme parametrized by
αi, βi and µi with i = 1, 2.

Iµ2

0 xα2(1− x)β2Iµ1

0 xα1(1− x)β1

= Iµ2

0

Γ(α1 + 1)

Γ(α1 + µ+ 1)

∞∑
n=0

(α1 + 1)n(−β1)n
(α1 + µ+ 1)nn!

xα2(1− x)β2xα1+µ+n

=
Γ(α1 + 1)Γ(α1 + α2 + µ1 + 1)xα1+α2+µ1+µ2

Γ(α1 + µ1 + 1)Γ(α1 + α2 + µ1 + µ2 + 1)

·
∞∑

m,n=0

(α1 + 1)n(α1 + α2 + µ1 + 1)m+n(−β1)n(−β2)m
(α1 + µ1 + 1)n(α1 + α2 + µ1 + µ2 + 1)m+nn!m!

xm+n

=
Γ(α1 + 1)Γ(α1 + α2 + µ1 + 1)xα1+α2+µ1+µ2(1− x)−β2

Γ(α1 + µ1 + 1)Γ(α1 + α2 + µ1 + µ2 + 1)

·
∞∑

m,n=0

(α1 + 1)n(α1 + α2 + µ1 + 1)n(µ2)m(−β1)n(−β2)m
(α1 + µ1 + 1)n(α1 + α2 + µ1 + µ2 + 1)m+nm!n!

xn
( x

x− 1

)m
.

Note that when β2 = 0, the local solution is reduced to a local solution of the
equation at x = 0 satisfied by the hypergeometric series 3F2(α

′
1, α

′
2, α

′
3;β

′
1, β

′
2;x)

and when α2 = 0, it is reduced to a local solution of the equation corresponding to
the exponent at x = 1 with free multiplicity.

Let u0(α1, α2, β1, β2, µ1, µ2;x) be the local solution normalized by

u0(α, β, µ;x)− xα1+α2+µ1+µ2 ∈ xα1+α2+µ1+µ2+1O0

for generic α, β, µ. Then we have the contiguity relation

u0(α, β1 − 1, β2, µ;x) = u0(α, β, µ;x) +
(α1 + 1)(α1 + α2 + µ1 + 1)

(α1 + µ1 + 1)(α1 + α2 + µ1 + µ2 + 1)

· u0(α1 + 1, α2, β1 − 1, β2, µ;x).

13.7.6. Tuple of partitions : 211, 22, 31, 31. [∆(m)] = 16 · 2

211, 22, 31, 31 = H1 ⊕ P3 : 4 = H2 ⊕H2 : 2 = 2H1 ⊕H2 : 2

= 010, 10, 10, 10⊕ 201, 12, 21, 21 = 010, 01, 10, 10⊕ 201, 21, 21, 21

= 001, 10, 10, 10⊕ 210, 12, 21, 21 = 001, 01, 10, 10⊕ 210, 21, 21, 21

= 110, 11, 11, 20⊕ 101, 11, 20, 11 = 110, 11, 20, 11⊕ 101, 11, 11, 20

= 200, 20, 20, 20⊕ 011, 02, 11, 11

∂max−−−→ 011, 02, 11, 11
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x = 0 1

c1
1
c2

∞
[λ0,1](3) [λ1,1](3) [λ2,1](2) [λ3,1](2)
λ0,2 λ1,2 λ2,2 [λ3,2](2)

λ2,3


x−λ0,1 (1−c1x)

−λ1,1 (1−c2x)
−λ2,1

−−−−−−−−−−−−−−−−−−−−−−→
x = 0 1

c1
1
c2

∞
[0](3) [0](3) [0](2) [λ3,1 + λ0,1 + λ1,1 + λ2,1](2)

λ0,2 − λ0,1 λ1,2 − λ1,1 λ2,2 − λ2,1 [λ3,2 + λ0,1 + λ1,1 + λ2,1](2)
λ2,3 − λ2,1


∂−λ′

1−−−→
x = 0 1

c1
1
c2

∞
0 0

λ0,2 + λ′1 − λ0,1 λ1,2 + λ′1 − λ1,1 λ2,2 + λ′1 − λ2,1 [λ3,2 − λ3,1 + 1](2)
λ2,3 + λ′1 − λ2,1


The condition for the irreducibility:{

λ0,1 + λ1,1 + λ2,ν + λ3,ν′ /∈ Z (ν ∈ {1, 2, 3}, ν′ ∈ {1, 2}),
λ0,1 + λ0,2 + 2λ1,1 + λ2,1 + λ2,ν + λ3,1 + λ3,2 /∈ Z (ν ∈ {2, 3}),

c(λ0,2 λ1,2) =
Γ(λ0,2 − λ0,1 + 1)Γ(λ1,2 − λ1,1)(1− c2

c1
)λ2,1∏3

ν=2 Γ(λ0,1 + λ0,2 + 2λ1,1 + λ2,1 + λ2,ν + λ3,1 + λ3,2 − 1)
,

c(λ0,2 λ2,3) =
2∏

ν=1

Γ(λ2,3 − λ2,ν)
Γ(1− λ0,1 − λ1,1 − λ2,3 − λ3,ν)

·
Γ(λ0,2 − λ0,1 + 1)(1− c1

c2
)λ1,1

Γ(λ0,1 + λ0,2 + 2λ1,1 + λ2,1 + λ2,2 + λ3,1 + λ3,2 − 1)
.

13.7.7. Tuple of partitions : 22, 22, 22, 31. [∆(m)] = 18 · 2
22, 22, 22, 31 = H1 ⊕ P3 : 8 = 2(11, 11, 11, 20)⊕ 00, 00, 00, (−1)1

= 10, 10, 10, 10⊕ 12, 12, 12, 21 = 10, 10, 01, 10⊕ 12, 12, 21, 21

= 10, 01, 10, 10⊕ 12, 21, 12, 21 = 10, 01, 01, 10⊕ 12, 21, 21, 21

= 01, 10, 10, 10⊕ 21, 12, 12, 21 = 01, 10, 01, 10⊕ 21, 12, 21, 21

= 01, 01, 10, 10⊕ 21, 21, 12, 21 = 01, 01, 01, 10⊕ 21, 21, 21, 21

2→ 12, 12, 12, 21

The condition for the irreducibility:{
λ0,i + λ1,j + λ2,k + λ3,1 /∈ Z (i, j, k ∈ {1, 2}),
λ0,1 + λ0,2 + λ1,1 + λ1,2 + λ2,1 + λ2,2 + λ3,1 + λ3,2 /∈ Z.

13.8. Other rigid examples with a small order

First we give an example which is not of Okubo type.

13.8.1. 221, 221, 221. The Riemann Scheme and the direct decompositions are
x = 0 1 ∞
[λ0,1](2) [λ1,1](2) [λ2,1](2)
[λ0,2](2) [λ1,2](2) [λ2,2](2)
λ0,3 λ1,3 λ2,3

 ,
2∑

j=0

(2λj,1 + 2λj,2 + λj,3) = 4,
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[∆(m)] = 114 · 2
221, 221, 221 = H1 ⊕ 211, 211, 211 : 8 6 = |2, 2, 2|

= H2 ⊕H3 : 6 11 = |21, 22, 22|
= 2H2 ⊕H1 : 1

= 101, 110, 110⊕ 120, 111, 111 = 011, 110, 110⊕ 210, 111, 111

= 111, 120, 111⊕ 110, 101, 110 = 111, 210, 111⊕ 110, 011, 110

→ 121, 121, 121

and a connection coefficient is give by

c(λ0,3 λ1,3) =

2∏
ν=1

(
Γ(λ0,3 − λ0,ν + 1)

Γ(λ0,ν + λ0,3 + λ1,1 + λ1,2 + λ2,1 + λ2,2 − 1)

· Γ(λ1,ν − λ1,3)
Γ(2− λ0,1 − λ0,2 − λ1,ν − λ1,3 − λ2,1 − λ2,2)

)
.

Using this example we explain an idea to get all the rigid decompositions m =
m′ ⊕m′′. Here we note that idx(m,m′) = 1. Put m = 221, 221, 221. We may
assume ordm′ ≤ ordm′′.

Suppose ordm′ = 1. Then m′ is isomorphic to 1, 1, 1 and there exists tuples
of indices (`0, `1, `2) such that m′

j,ν = δj,`j . Then idx(m,m′) = m0,`0 + m1,`1 +
m1,`2 − (3 − 2) ordm · ordm′ and we have m0,`0 + m1,`1 + m1,`2 = 6. Hence
(m0,`0 ,m1,`1 ,m1,`2) = (2, 2, 2), which is expressed by 6 = |2, 2, 2| in the above.
Since `j = 1 or 2 for 0 ≤ j ≤ 2, it is clear that there exist 8 rigid decompositions
with ordm′ = 1.

Suppose ordm′ = 2. Then m′ is isomorphic to 11, 11, 11 and there exists
tuples of indices (`0,1, `0,2, `1,1, `1,2, `2,1, `2,2) which satisfies

∑2
j=0

∑2
ν=1mj,`ν =

(3−2) ordm·ordm′+1 = 11. Hence we may assume (`0,1, `0,2, `1,1, `1,2, `2,1, `2,2) =
(2, 1, 2, 2, 2, 2) modulo obvious symmetries, which is expressed by 11 = |21, 22, 22|.
There exist 6 rigid decompositions with ordm′ = 2.

In general, this method to get all the rigid decompositions of m is useful when
ordm is not big. For example if ordm ≤ 7, m′ is isomorphic to 1, 1, 1 or 11, 11, 11
or 21, 111, 111.

The condition for the irreducibility is given by Theorem 10.10 and it is{
λ0,i + λ1,j + λ2,k /∈ Z (i, j, k ∈ {1, 2}),∑2

j=0

∑2
ν=1 λj,ν + (λi,3 − λi,k) /∈ Z (i ∈ {0, 1, 2}, k ∈ {1, 2}).

13.8.2. Other examples. Theorem 12.6 shows that the connection coeffi-
cients between local solutions of rigid differential equations which correspond to
the eigenvalues of local monodromies with free multiplicities are given by direct
decompositions of the tuples of partitions m describing their spectral types.

We list the rigid decompositions m = m′ ⊕m′′ of rigid indivisible m in P(5) ∪
P(6)
3 satisfying m0,n0 = m1,n1 = m′

0,n0
= m′′

1,n1
= 1. The positions of m0,n0

and m1,n1 in m to which Theorem 12.6 applies are indicated by an overline and an
underline, respectively. The number of decompositions in each case equals n0+n1−2
and therefore the validity of the following list is easily verified.

We show the tuple ∂maxm after →. The type [∆(m)] of ∆(m) is calculated
by (7.42), which is also indicated in the following with this calculation. For exam-
ple, when m = 311, 221, 2111, we have d(m) = 2, m′ = ∂m = 111, 021, 0111,
[∆(s(111, 021, 0111))] = 19, {m′

j,ν − m′
j,1 ∈ Z>0} ∪ {2} = {1, 1, 1, 1, 2, 2} and

hence [∆(m)] = 19 × 14 · 22 = 113 · 22, which is a partition of h(m) − 1 = 17.
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Here we note that h(m) is the sum of the numbers attached the Dynkin diagram

1◦ 2◦ 5◦ 3◦ 2◦ 1◦

3◦

1◦

corresponding to αm ∈ ∆+.
All the decompositions of the tuple m corresponding to the elements in ∆(m)

are given, by which we easily get the necessary and sufficient condition for the
irreducibility (cf. Theorem 10.13 and §13.9.2).

ordm = 5

311, 221, 2111 = 100, 010, 0001⊕ 211, 211, 2110 6 = |3, 2, 1|

= 100, 001, 1000⊕ 211, 220, 1111 6 = |3, 1, 2|

= 101, 110, 1001⊕ 210, 111, 1110 11 = |31, 22, 21|

= 2(100, 100, 1000)⊕ 111, 021, 0111

2→ 111, 021, 0111

[∆(m)] = 19 × 14 · 22 = 113 · 22

m = H1 ⊕ 211, 211, 211 : 6 = H1 ⊕ EO4 : 1 = H2 ⊕H3 : 6 = 2H1 ⊕H3 : 2

311, 221, 2111 = 211, 211, 2110⊕ 100, 010, 0001 = 211, 121, 2110⊕ 100, 100, 0001

= 100, 001, 1000⊕ 211, 220, 1111

= 210, 111, 1110⊕ 101, 110, 1001 = 201, 111, 1110⊕ 110, 110, 1001

311, 221, 2111 = 211, 211, 2110⊕ 100, 010, 0001 = 211, 121, 2110⊕ 100, 100, 0001

= 201, 111, 1110⊕ 110, 110, 1001

= 101, 110, 1010⊕ 210, 111, 1101 = 101, 110, 1100⊕ 210, 111, 1011

32, 2111, 2111 = 22, 1111, 2110⊕ 10, 1000, 0001 = 10, 0001, 1000⊕ 22, 2110, 1111

= 11, 1001, 1010⊕ 21, 1110, 1101 = 11, 1001, 1100⊕ 21, 1110, 1011

= 21, 1101, 1110⊕ 11, 1010, 1001 = 21, 1011, 1110⊕ 11, 1100, 1001

2→ 12, 0111, 0111

[∆(m)] = 19 × 17 · 2 = 116 · 2

m = H1 ⊕H4 : 1 = H1 ⊕ EO4 : 6 = H2 ⊕H3 : 9 = 2H1 ⊕H3 : 1

221, 221, 41, 41 = 001, 100, 10, 10⊕ 220, 121, 31, 31 = 001, 010, 10, 10⊕ 220, 211, 31, 31

= 211, 220, 31, 31⊕ 010, 001, 10, 10 = 121, 220, 31, 31⊕ 100, 001, 10, 10

2→ 021, 021, 21, 21

[∆(m)] = 14 · 2× 14 · 23 = 16 · 24

m = H1 ⊕ 22, 211, 31, 31 : 4 = H2 ⊕H3 : 2 = 2H1 ⊕ P3 : 4

221, 221, 41, 41 = 001, 100, 10, 10⊕ 220, 121, 31, 31 = 001, 010, 10, 10⊕ 220, 211, 31, 31

= 111, 111, 30, 21⊕ 110, 110, 11, 20

221, 32, 32, 41 = 101, 11, 11, 20⊕ 120, 21, 21, 21 = 011, 11, 11, 20⊕ 210, 21, 21, 21

= 001, 10, 10, 10⊕ 220, 22, 22, 31

2→ 021, 12, 12, 21

[∆(m)] = 14 · 2× 13 · 22 = 17 · 23
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m = H1 ⊕ 22, 22, 22, 31 : 1 = H1 ⊕ 211, 22, 31, 31 : 4 = H2 ⊕ P3 : 2

= 2H1 ⊕ P3 : 2

311, 311, 32, 41 = 001, 100, 10, 10⊕ 310, 211, 22, 31 = 211, 301, 22, 31⊕ 100, 001, 10, 10

= 101, 110, 11, 20⊕ 210, 201, 21, 21 = 201, 210, 21, 21⊕ 110, 101, 11, 20

3→ 011, 011, 02, 11

[∆(m)] = 14 × 14 · 2 · 3 = 18 · 2 · 3

m = H1 ⊕ 211, 31, 22, 31 : 4 = H2 ⊕ P3 : 4

= 2H1 ⊕H3 : 1 = 3H1 ⊕H2 : 1

311, 311, 32, 41 = 001, 100, 10, 10⊕ 301, 211, 22, 31

= 101, 110, 11, 20⊕ 210, 201, 21, 21 = 101, 101, 11, 20⊕ 210, 210, 21, 21

32, 32, 41, 41, 41 = 11, 11, 11, 20, 20⊕ 21, 21, 30, 21, 21

= 21, 21, 21, 30, 21⊕ 11, 11, 20, 11, 20

3→ 02, 02, 11, 11, 11

[∆(m)] = 14 × 22 · 3 = 14 · 22 · 3

m = H1 ⊕ P4 : 1 = H2 ⊕ P3 : 3 = 2H1 ⊕ P3 : 2 = 3H1 ⊕H2 : 1

ordm = 6 and m ∈ P3
321, 3111, 222 = 311, 2111, 221⊕ 010, 1000, 001 7 = |2, 3, 2|

= 211, 2110, 211⊕ 110, 1001, 011 13 = |32, 31, 22|

= 210, 1110, 111⊕ 111, 2001, 111

2→ 121, 1111, 022 → 111, 0111, 012

[∆(m)] = 114 × 1 · 23 = 115 · 23

m = H1 ⊕ 311, 2111, 221 : 3 = H2 ⊕ 211, 211, 211 : 6 = H3 ⊕H3 : 6

= 2H1 ⊕ EO4 : 3

321, 3111, 222 = 211, 2110, 211⊕ 110, 1001, 011 = 211, 2110, 121⊕ 110, 1001, 101

= 211, 2110, 112⊕ 110, 1001, 110

= 111, 2100, 111⊕ 210, 1011, 111 = 111, 2010, 111⊕ 210, 1101, 111

321, 3111, 3111 = 221, 2111, 3110⊕ 100, 1000, 0001 = 100, 0001, 1000⊕ 221, 3110, 2111

= 211, 2101, 2110⊕ 110, 1010, 1001 = 211, 2011, 2110⊕ 110, 1101, 1001

= 110, 1001, 1100⊕ 211, 2110, 2011 = 110, 1001, 1010⊕ 211, 2110, 2101

3→ 021, 0111, 0111

[∆(m)] = 19 × 17 · 2 · 3 = 116 · 2 · 3

m = H1 ⊕ 221, 2111, 311 : 6 = H1 ⊕ 32, 2111, 2111 : 1

= H2 ⊕ 211, 211, 211 : 9 = 2H1 ⊕H4 : 1 = 3H1 ⊕H3 : 1

321, 3111, 3111 = 221, 3110, 2111⊕ 100, 0001, 1000 = 001, 1000, 1000⊕ 320, 2111, 2111

= 211, 2110, 2110⊕ 110, 1001, 1001 = 211, 2110, 2011⊕ 110, 1001, 1100

= 211, 2110, 2011⊕ 110, 1001, 1100
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321, 321, 2211 = 211, 220, 1111⊕ 110, 101, 1100 = 101, 110, 1100⊕ 220, 211, 1111

= 111, 210, 1110⊕ 210, 111, 1101 = 111, 210, 1101⊕ 210, 111, 1110

2→ 121, 121, 0211 → 101, 101, 0011

[∆(m)] = 110 · 2× 14 · 22 = 114 · 23

m = H1 ⊕ 311, 221, 2111 : 4 = H1 ⊕ 221, 221, 221 : 2

= H2 ⊕ EO4 : 2 = H2 ⊕ 211, 211, 211 : 4 = H3 ⊕H3 : 2

= 2H1 ⊕ 211, 211, 211 : 2 = 2(110, 110, 1100)⊕ 101, 101, 0011 : 1

321, 321, 2211 = 221, 221, 2210⊕ 100, 100, 0001 = 110, 101, 1100⊕ 211, 220, 1111

= 211, 211, 2110⊕ 110, 110, 0101 = 211, 211, 1210⊕ 110, 110, 1001

= 210, 111, 1110⊕ 111, 210, 1101

411, 2211, 2211 = 311, 2210, 2111⊕ 100, 0001, 0100 = 311, 2210, 1211⊕ 100, 0001, 1000

= 101, 1100, 1100⊕ 310, 1111, 1111 = 201, 1110, 1110⊕ 210, 1101, 1101

= 201, 1110, 1101⊕ 210, 1101, 1110

2→ 211, 0211, 0211 → 011, 001, 0011

[∆(m)] = 110 · 2× 14 · 23 = 114 · 24

m = H1 ⊕ 311, 221, 2211 : 8 = H2 ⊕H4 : 2 = H3 ⊕H3 : 4

= 2H1 ⊕ 211, 211, 211 : 4

411, 2211, 2211 = 311, 2111, 2210⊕ 100, 0100, 0001 = 311, 1211, 2210⊕ 100, 1000, 0001

= 100, 0001, 0100⊕ 311, 2210, 2111 = 100, 0001, 1000⊕ 311, 2210, 1211

= 201, 1101, 1110⊕ 210, 1110, 1101 = 210, 1101, 1110⊕ 201, 1110, 1101

411, 222, 21111 = 311, 221, 21110⊕ 100, 001, 00001 = 311, 212, 21110⊕ 100, 010, 00001

= 311, 122, 21110⊕ 100, 100, 00001 = 201, 111, 11100⊕ 210, 111, 10011

= 201, 111, 11010⊕ 210, 111, 10101 = 201, 111, 10110⊕ 210, 111, 11001

2→ 211, 022, 01111 → 111, 012, 00111

[∆(m)] = 114 × 14 · 23 = 118 · 23

m = H1 ⊕ 311, 221, 2111 : 12 = H3 ⊕H3 : 6 = 2H1 ⊕ EO4 : 3

42, 2211, 21111 = 32, 2111, 21110⊕ 10, 0100, 00001 = 32, 1211, 21110⊕ 10, 1000, 00001

= 10, 0001, 10000⊕ 32, 2210, 11111 = 31, 1111, 11110⊕ 11, 1100, 10001

= 21, 1101, 11100⊕ 21, 1110, 10011 = 21, 1101, 11010⊕ 21, 1110, 10101

= 21, 1101, 10110⊕ 21, 1110, 11001

2→ 22, 0211, 01111 → 12, 0111, 00111

[∆(m)] = 114 × 16 · 22 = 120 · 22

m = H1 ⊕ 32, 2111, 2111 : 8 = H1 ⊕ EO4 : 2 = H2 ⊕H4 : 4

= H3 ⊕H3 : 6 = 2H1 ⊕ EO4 : 2

33, 3111, 21111 = 32, 2111, 21110⊕ 01, 1000, 00001 = 23, 2111, 21110⊕ 10, 1000, 00001

= 22, 2101, 11110⊕ 11, 1010, 10001 = 22, 2011, 11110⊕ 11, 1100, 10001

= 11, 1001, 11000⊕ 22, 2110, 10111 = 11, 1001, 10100⊕ 22, 2110, 11011
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= 11, 1001, 10010⊕ 22, 2110, 11101

2→ 13, 1111, 01111

[∆(m)] = 116 × 14 · 22 = 120 · 22

m = H1 ⊕ 32, 2111, 2111 : 8 = H2 ⊕ EO4 : 12 = 2H1 ⊕H4 : 2

321, 3111, 3111 = 221, 3110, 2111⊕ 100, 0001, 1000 = 001, 1000, 1000⊕ 320, 2111, 2111

= 211, 2110, 2110⊕ 110, 1001, 1001 = 211, 2110, 2101⊕ 110, 1001, 1010

= 211, 2110, 2011⊕ 110, 1001, 1100

3→ 021, 0111, 0111

[∆(m)] = 19 × 17 · 2 · 3 = 116 · 2 · 3

m = H1 ⊕ 221, 2111, 311 : 6 = H1 ⊕ 32, 2111, 2111 : 1

= H2 ⊕ 211, 211, 211 : 9 = 2H1 ⊕H4 : 1 = 3H1 ⊕H3 : 1

321, 3111, 3111 = 100, 0001, 1000⊕ 221, 3110, 2111 = 221, 2111, 3110⊕ 100, 1000, 0001

= 211, 2101, 2110⊕ 110, 1010, 1001 = 211, 2011, 2110⊕ 110, 1100, 1001

= 110, 1001, 1100⊕ 211, 2110, 2011 = 110, 1001, 1010⊕ 211, 2110, 2101

33, 2211, 2211 = 22, 1111, 2110⊕ 11, 1100, 1001 = 22, 1111, 1210⊕ 11, 1100, 0101

= 21, 1101, 1110⊕ 12, 1110, 1011 = 12, 1101, 1110⊕ 21, 1110, 1011

= 11, 1001, 1100⊕ 22, 1210, 1111 = 11, 0101, 1100⊕ 22, 2110, 1111

1→ 23, 1211, 1211 → 21, 1011, 1011

[∆(m)] = 116 · 2× 14 = 120 · 2

m = H1 ⊕ 32, 2111, 2111 : 8 = H2 ⊕ EO4 : 8 = H3 ⊕H3 : 4

= 2(11, 1100, 1100)⊕ 11, 0011, 0011 : 1

We show all the rigid decompositions of the following simply reducible parti-
tions of order 6, which also correspond to the reducibility of the universal models.

42, 222, 111111 = 32, 122, 011111⊕ 10, 100, 100000

= 21, 111, 111000⊕ 21, 111, 000111

1→ 32, 122, 011111→ 22, 112, 001111→ 12, 111, 000111

[∆(m)] = 128

m = H1 ⊕ EO5 : 18 = H3 ⊕H3 : 10

33, 222, 21111 = 23, 122, 11111⊕ 10, 100, 10000

= 22, 112, 10111⊕ 11, 110, 11000

= 21, 111, 11100⊕ 12, 111, 10011

1→ 23, 122, 11111→ 22, 112, 01111→ 12, 111, 00111

[∆(m)] = 124

m = H1 ⊕ EO5 : 6 = H2 ⊕ EO4 : 12 = H3 ⊕H3 : 6
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13.9. Submaximal series and minimal series

The rigid tuples m = {mj,ν} satisfying
(13.39) #{mj,ν ; 0 < mj,ν < ordm} ≥ ordm+ 5

are classified by Roberts [Ro]. They are the tuples of type Hn and Pn which satisfy

(13.40) #{mj,ν ; 0 < mj,ν < ordm} = 2ordm+ 2

and those of 13 series An = EOn, Bn, Cn, Dn, En, Fn, G2m, In, Jn, Kn, L2m+1,
Mn, Nn called submaximal series which satisfy

(13.41) #{mj,ν ; 0 < mj,ν < ordm} = ordm+ 5.

The series Hn and Pn are called maximal series.
We examine these rigid series and give enough information to analyze the series,

which will be sufficient to construct differential equations including their conflu-
ences, integral representation and series expansion of solutions and get connection
coefficients and the condition of their reducibility.

In fact from the following list we easily get all the direct decompositions and
Katz’s operations decreasing the order. The number over an arrow indicates the
difference of the orders. We also indicate Yokoyama’s reduction for systems of
Okubo normal form using extension and restriction, which are denoted Ei and Ri

(i = 0, 1, 2), respectively (cf. [Yo2]). Note that the inverse operations of Ei are Ri,
respectively. In the following we put

uPm = ∂−µxλ0(1− x)λ1(c2 − x)λ2 · · · (cm−1 − x)λm−1 ,

uH2 = uP2 ,

uHm+1 = ∂−µ(m)

xλ
(m)
0 uHm .

(13.42)

We give all the decompositions

(13.43) m =
(
idx(m′,m) ·m′)⊕m′′

for αm′ ∈ ∆(m). Here some m′′
j,ν may be negative if idx(m′,m) > 1 (cf. Re-

mark 7.11 i)) and we will not distinguish between m′ ⊕m′′ and m′′ ⊕m′ when
idx(m′,m) = 1. Moreover note that the inequality assumed for the formula [∆(m)]
below assures that the given tuple of partition is monotone.

13.9.1. Bn. (B2m+1 = IIIm, B2m = IIm, B3 = H3, B2 = H2)

uB2m+1 = ∂−µ′
(1− x)λ

′
uHm+1

m21,m+ 11m,m1m+1 = 10, 10, 01⊕mm− 11,m1m,m1m

= 01, 10, 10⊕m2,m1m,m− 11m+1

= 120, 11, 11⊕ (m− 1)21,m1m−1,m− 11m

[∆(B2m+1)] = 1(m+1)2 × 1m+2 ·m2 = 1m
2+3m+3 ·m2

B2m+1 = H1 ⊕B2m : 2(m+ 1)

= H1 ⊕ C2m : 1

= H2 ⊕B2m−1 : m(m+ 1)

= mH1 ⊕Hm+1 : 2

uB2m = ∂−µ′
xλ

′
(1− x)λ

′′
uHm

mm− 11,m1m,m1m = 100, 01, 10⊕ (m− 1)21,m1m−1,m− 11m

= 001, 10, 10⊕mm− 10,m− 11m,m− 11m

= 110, 11, 11⊕m− 1m− 21,m− 11m−1,m− 11m−1
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[∆(B2m)] = 1m
2

× 12m+1 · (m− 1) = 1(m+1)2 · (m− 1) ·m
B2m = H1 ⊕B2m−1 : 2m

= H1 ⊕ C2m−2 : 1

= H2 ⊕B2m−2 : m2

= (m− 1)H1 ⊕Hm+1 : 1

= mH1 ⊕Hm : 1

B2m+1
m−→

R2E0
Hm+1, Bn

1−→ Bn−1, Bn
1−→ Cn−1

B2m
m−→

R1E0
Hm, B2m

m−1−→ Hm+1

13.9.2. An example. Using the example of type B2m+1, we explain how we
get explicit results from the data written in §13.9.1.

The Riemann scheme of type B2m+1 is

∞ 0 1
[λ0,1](m) [λ1,1](m+1) [λ2,1](m)

[λ0,2](m) λ1,2 λ2,2

λ0,3
...

...
λ1,m+1 λ2,m+2


,

p∑
j=0

nj∑
ν=1

mj,νλj,ν = 2m (Fuchs relation).

Theorem 10.13 says that the corresponding equation is irreducible if and only
if any value of the following linear functions is not an integer.

L
(1)
i,ν := λ0,i + λ1,1 + λ2,ν (i = 1, 2, ν = 2, . . . ,m+ 2),

L(2) := λ0,3 + λ1,1 + λ2,1,

L(3)
µ,ν := λ0,1 + λ0,2 + λ1,1 + λ1,µ + λ2,1 + λ2,ν − 1

(µ = 2, . . . ,m+ 1, ν = 2, . . . ,m+ 2),

L
(4)
i := λ0,i + λ1,1 + λ2,1 (i = 1, 2).

Here L
(1)
i,ν (resp. L(2) etc.) correspond to the terms 10, 01, 01 andH1⊕B2m : 2(m+1)

(resp. 01, 10, 10 and H1 ⊕ C2m : 1 etc.) in §13.9.1.
It follows from Theorem 6.14 and Theorem 10.13 that the Fuchsian differen-

tial equation with the above Riemann scheme belongs to the universal equation
PB2m+1(λ)u = 0 if

L
(4)
i /∈ {−1,−2, . . . , 1−m} (i = 1, 2).

Theorem 12.6 says that the connection coefficient c(λ1,m+1  λ2,m+2) equals∏m
µ=1 Γ(λ1,m+1 − λ1,µ + 1) ·

∏m+1
µ=1 Γ(λ2,ν − λ1,m+2)∏2

i=1 Γ(1− L
(1)
i,m+2) ·

∏m+1
ν=2 Γ(L

(3)
m+1,ν) ·

∏m
µ=2 Γ(1− L

(3)
µ,m+2)

and

c(λ1,m+1  λ0,3) =

∏m
µ=1 Γ(λ1,m+1 − λ1,µ + 1) ·

∏2
i=1 Γ(λ0,i − λ0,3)

Γ(1− L(2)) ·
∏m+1

ν=2 Γ(L
(3)
m+1,ν)

,

c(λ2,m+2  λ0,3) =

∏m+1
ν=1 Γ(λ2,m+2 − λ1,ν + 1) ·

∏2
i=1 Γ(λ0,i − λ0,3)∏2

i=1 Γ(L
(1)
m+2) ·

∏m+1
ν=2 Γ(L

(3)
m+1,ν)

.
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It follows from Theorem 11.7 that the universal operators

P 0
H1

(λ) P 2
H1

(λ) P 0
B2m

(λ) P 1
B2m

(λ) P 2
B2m

(λ) P 1
C2m

(λ) P 2
C2m

(λ)

P 1
H2

(λ) P 2
H2

(λ) P 0
B2m−1

(λ) P 1
B2m−1

(λ) P 2
B2m−1

(λ)

define shift operators RB2m+1(ε, λ) under the notation in the theorem.
We also explain how we get the data in §13.9.1. Since ∂max : B2m+1 = m :=

mm1,m + 11m,m1m+1 → Hm+1 = m′ := 0m1, 11m, 01m+1, the equality (7.42)
shows

[∆(B2m+1)] = [∆(Hm+1)] ∪ {d1,1,1(m)} ∪ {m′
j,ν −m′

j,1 > 0}

= 1(m+1)2 ×m1 × 1m+2 ·m1 = 1(m+1)2 × 1m+2 ·m2 = 1m
2+3m+3 ·m2.

Here we note that {m′
j,ν −m′

j,1 > 0} = {m, 1, 1m+1} = 1m+2 ·m1 and [∆(Hm+1)]
is given in §13.4.

We check (7.44) for m as follows:
h(m) = 2(1 + · · ·+m) + (2m+ 1) + 2(m+ 1) + 1

= m2 + 5m+ 4,∑
i∈[∆(m)] i = (m2 + 3m+ 3) + 2m = m2 + 5m+ 3.

1◦ 2◦ m◦
2m+ 1

◦ m+ 1◦ 2◦ 1◦

m+ 1◦

1◦

The decompositions mH1 ⊕ Hm+1 and H1 ⊕ B2m etc. in §13.9.1 are easily
obtained and we should show that they are all the decompositions (13.43), whose
number is given by [∆(B2m+1)]. There are 2 decompositions of type mH1⊕Hm+1,
namely, B2m+1 = mm1,m+11m,m1m+1 = m(100, 10, 10)⊕ · · · = m(010, 10, 10)⊕
· · · , which correspond to L

(4)
i for i = 1 and 2. Then the other decompositions are

of type m′ ⊕m′′ with rigid tuples m′ and m′′ whose number equals m2 + 3m+ 3.
The numbers of decompositions H1⊕B2m etc. given in §13.9.1 are easily calculated

which correspond to L
(1)
i,ν etc. and we can check that they give the required number

of the decompositions.

13.9.3. Cn. (C4 = EO4, C3 = H3, C2 = H2)

uC2m+1 = ∂−µ′
xλ

′
uHm+1

m+ 1m,m1m+1,m1m+1 = 10, 01, 10⊕m2,m1m,m− 11m+1

= 11, 11, 11⊕m(m− 1),m− 11mm− 11m

[∆(C2m+1)] = 1(m+1)2 × 12m+2 ·m · (m− 1)

= 1(m+1)(m+3) ·m · (m− 1)

C2m+1 = H1 ⊕ C2m : 2m+ 2

= H2 ⊕ C2m−2 : (m+ 1)2

= mH1 ⊕Hm+1 : 1

= (m− 1)H1 ⊕Hm+2 : 1

uC2m = ∂−µ′
xλ

′
(1− x)−λ1−µ−µ(2)−···−µ(m)

uHm+1

m2,m1m,m− 11m+1 = 1, 10, 01⊕mm− 1,m− 11m−1,m− 11m−1

= 12, 11, 11⊕ (m− 1)2,m− 11m−1,m− 21m

[∆(C2m)] = 1(m+1)2 × 1m+1 · (m− 1)2 = 1m
2+3m+2 · (m− 1)2

C2m = H1 ⊕ C2m−1 : 2m+ 2

= H2 ⊕ C2m−2 : m(m+ 1)

= (m− 1)H1 ⊕Hm+1 : 2
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C2m+1
m−→

R2E0R0E0
Hm+1, C2m+1

m−1−→ Hm+2

C2m
m−1−→

R1E0R0E0
Hm+1, Cn

1−→ Cn−1

13.9.4. Dn. (D6 = X6 : Extra case, D5 = EO5)

uD5 = ∂−µ5(1− x)−λ3−µ3−µ4uE4

uD6 = ∂−µ6(1− x)−λ1−µ−µ5uD5

uDn = ∂−µn(1− x)−λ′
nuDn−2 (n ≥ 7)

(2m− 1)2, 2m1, 2m−215 = 10, 01, 10⊕ (2m− 2)2, 2m, 2m−316

= 10, 10, 01⊕ (2m− 2)2, 2m−112, 2m−314

= (m− 1)1, 1m0, 1m−212 ⊕m1, 1m1, 1m−213

m ≥ 2 ⇒ [∆(D2m+1)] = 16m+2 · 2(m−1)(m−3) × 16 · 22m−3 = 16m+8 · 2m(m−2)

D2m+1 = H1 ⊕D2m : m− 2

= H1 ⊕ E2m : 5m

= Hm ⊕Hm+1 : 10

= 2H1 ⊕D2m−1 : m(m− 2)

(2m− 2)2, 2m, 2m−316 = 10, 1, 01⊕ (2m− 3)2, 2m−11, 2m−315

= (m− 1)1, 1m, 1m−313 ⊕ (m− 1)1, 1m, 1m−313

m ≥ 3 ⇒ [∆(D2m)] = 16m+6 · 2(m−1)(m−4) × 16 · 22m−4 = 16m+10 · 2m(m−3)

D2m = H1 ⊕D2m−1 : 6m

= Hm ⊕Hm : 10

= 2H1 ⊕D2m−2 : m(m− 3)

Dn
2−→

R2E0
Dn−2, Dn

1−→ Dn−1, D2m+1
1−→ E2m

13.9.5. En. (E5 = C5, E4 = EO4, E3 = H3)

uE3 = x−λ0−µ−µ3∂−µ3(1− x)λ
′
3uH2

uE4 = ∂−µ4uE3

uEn = ∂−µn(1− x)λ
′
nuEn−2 (n ≥ 5)

(2m− 1)2, 2m−113, 2m−113 = 10, 01, 10⊕ (2m− 2)2, 2m−112, 2m−214

= (m− 1)1, 1m−11, 1m−11⊕m1, 1m−113, 1m−112

= (m− 2)1, 1m−10, 1m−10⊕ (m+ 1)1, 1m−112, 1m−113

m ≥ 2 ⇒ [∆(E2m+1)] = 16m−2 · 2(m−2)2 × 16 · 22m−3 = 16m+4 · 2(m−1)2

E2m+1 = H1 ⊕ E2m : 6(m− 1)

= Hm−1 ⊕Hm+2 : 1

= Hm ⊕Hm+1 : 9

= 2H1 ⊕ E2m−1 : (m− 1)2

(2m− 2)2, 2m−112, 2m−214 = 10, 10, 01⊕ (2m− 3)2, 2m−213, 2m−213

= 10, 01, 10⊕ (2m− 3)2, 2m−11, 2m−315
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= (m− 2)1, 1m−10, 1m−21⊕m1, 1m−112, 1m−213

= (m− 1)1, 1m−11, 1m−212 ⊕ (m− 1)1, 1m−11, 1m−212

m ≥ 2 ⇒ [∆(E2m)] = 16m−4 · 2(m−2)(m−3) × 16 · 22m−4

= 16m+2 · 2(m−1)(m−2)

E2m = H1 ⊕ E2m−1 : 4(m− 1)

= H1 ⊕D2m−1 : 2(m− 2)

= Hm−1 ⊕Hm+1 : 4

= Hm ⊕Hm : 6

= 2H1 ⊕ E2m−2 : (m− 1)(m− 2)

En
2−→

R2E0
En−2, En

1−→ En−1, E2m
1−→ D2m−1

13.9.6. Fn. (F5 = B5, F4 = EO4, F3 = H3)

uF3 = uH3

uF4 = ∂−µ4(1− x)−λ1−λ
(3)
0 −µ(3)

uF3

uFn = ∂−µn(1− x)λ
′
nuFn−2 (n ≥ 5)

(2m− 1)12, 2m1, 2m−113 = 10, 10, 01⊕ (2m− 2)12, 2m−112, 2m−112

= 10, 01, 10⊕ (2m− 2)12, 2m, 2m−214

= (m− 1)1, 1m0, 1m−11⊕m1, 1m1, 1m−112

m ≥ 1 ⇒ [∆(F2m+1)] = 14m+1 · 2(m−1)(m−2) × 14 · 22m−2 = 14m+5 · 2m(m−1)

F2m+1 = H1 ⊕G2m : 3m

= H1 ⊕ F2m : m− 1

= Hm ⊕Hm+1 : 6

= 2H1 ⊕ F2m−1 : m(m− 1)

(2m− 2)12, 2m, 2m−214 = 10, 1, 01⊕ (2m− 3)12, 2m−11, 2m−213

= (m− 1)1, 1m, 1m−212 ⊕ (m− 1)1, 1m, 1m−212

m ≥ 2 ⇒ [∆(F2m)] = 14m+2 · 2(m−1)(m−3) × 14 · 22m−3 = 14m+6 · 2m(m−2)

F2m = H1 ⊕ F2m−1 : 4m

= Hm ⊕Hm : 6

= 2H1 ⊕ F2m−2 : m(m− 2)

Fn
2−→

R2E0
Fn−2, Fn

1−→ Fn−1, F2m+1
1−→ G2m

13.9.7. G2m. (G4 = B4)

uG2 = uH2

uG2m = ∂−µ2m(1− x)λ
′
2muG2m−2

(2m− 2)12, 2m−112, 2m−112 = 10, 01, 01⊕ (2m− 3)12, 2m−11, 2m−213

= (m− 2)1, 1m−10, 1m−10⊕m1, 1m−112, 1m−112
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m ≥ 2 ⇒ [∆(G2m)] = 14m−2 · 2(m−2)2 × 14 · 22m−3 = 14m+2 · 2(m−1)2

G2m = H1 ⊕ F2m−1 : 4m

= Hm−1 ⊕Hm+1 : 2

= 2H1 ⊕G2m−2 : (m− 1)2

G2m = H1 ⊕ F2m−1 = Hm−1 ⊕Hm+1

G2m
2−→

R2E0
G2(m−1), G2m

1−→ F2m−1

13.9.8. In. (I2m+1 = III∗m, I2m = II∗m, I3 = P3)

uI2m+1
= ∂−µ′

xλ
′
(c− x)λ

′′
uHm

(2m)1,m+ 1m,m+ 11m,m+ 11m

= 10, 10, 10, 01⊕ (2m− 1)1,mm,m1m,m+ 11m−1

= 20, 11, 11, 11⊕ (2m− 2)1,mm− 1,m1m−1,m1m−1

[∆(I2m+1)] = 1m
2

× 12m ·m · (m+ 1) = 1m
2+2m ·m · (m+ 1)

I2m+1 = H1 ⊕ I2m : 2m

= H2 ⊕ I2m−1 : m2

= mH1 ⊕Hm+1 : 1

= (m+ 1)H1 ⊕Hm : 1

uI2m = ∂−µ′
(1− cx)λ

′′
uHm

(2m− 1)1,mm,m1m,m+ 11m−1

= 10, 01, 01, 10⊕ (2m− 2)1,mm− 1,m1m−1,m1m−1

= 20, 11, 11, 11⊕ (2m− 3)1,m− 1m− 1,m− 11m−1,m1m−2

[∆(I2m)] = 1m
2

× 1m ·m2 = 1m(m+1) ·m2

I2m = H1 ⊕ I2m−1 : 2m

= H2 ⊕ I2m−2 : m(m− 1)

= mH1 ⊕Hm : 2

I2m+1
m+1−→ Hm, I2m+1

m−→ Hm+1, I2m
m−→ Hm, In

1−→ In−1

I2m+1 −→
R1E0

I2m −→
R2E0

I2m−2

13.9.9. Jn. (J4 = I4, J3 = P3)

uJ2 = (c− x)λ
′
uH2

uJ3 = uP3

uJn = ∂−µ′
nxλ

′
nuJn−2 (n ≥ 4)

(2m)1, (2m)1, 2m1, 2m1

= 10, 10, 01, 10⊕ (2m− 1)1, (2m− 1)1, 2m, 2m−111

= (m− 1)1,m0, 1m0, 1m0⊕ (m+ 1),m1, 1m1, 1m1

[∆(J2m+1)] = 12m · 2(m−1)2 × 12 · 22m−1 = 12m+2 · 2m
2

J2m+1 = H1 ⊕ J2m : 2m

= Hm ⊕Hm+1 : 2

= 2H1 ⊕ J2m−2 : m2
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(2m− 1)1, (2m− 1)1, 2m, 2m−112

= 10, 10, 1, 01⊕ (2m− 2)1, (2m− 2)1, 2m−11, 2m−11

= (m− 1)1,m0, 1m, 1m−11⊕m0, (m− 1)1, 1m, 1m−11

[∆(J2m)] = 12m · 2(m−1)(m−2) × 12 · 22m−2 = 12m+2 · 2m(m−1)

J2m = H1 ⊕ J2m−1 : 2m

= Hm ⊕Hm : 2

= 2H1 ⊕ J2m−2 : m(m− 1)

Jn
2−→

R2E0
Jn−2 (n ≥ 6), Jn

1−→ Jn−1

13.9.10. Kn. (K5 =M5, K4 = I4, K3 = P3)

uK2m+1 = ∂µ+λ′+λ′′
(c′ − x)λ

′
(c′′ − x)λ

′′
uPm

m+ 1m,m+ 1m, (2m)1, (2m)1, (2m)1, . . . ∈ P(2m+1)
m+3

= 11, 11, 11, 20, 20, . . .⊕mm− 1,mm− 1, (2m− 1)0, (2m− 2)1, (2m− 2)1, . . .

[∆(K2m+1)] = 1m+1 · (m− 1)×m2 · (m+ 1) = 1m+1 · (m− 1) ·m2 · (m+ 1)

K2m+1 = H2 ⊕K2m−1 : m+ 1

= (m− 1)H1 ⊕ Pm+2 : 1

= mH1 ⊕ Pm+1 : 2

= (m+ 1)H1 ⊕ Pm : 1

uK2m = ∂−µ′
(c′ − x)λ

′
uPm

mm,mm− 11, (2m− 1)1, (2m− 1)1, . . . ∈ P(2m)
m+2

= 01, 001, 10, 10, 10, . . .⊕mm− 1,mm− 10, (2m− 2)1, (2m− 2)1, . . .

= 11, 110, 11, 20, 20, . . .⊕m− 1m− 1,m− 1m− 21, (2m− 2)0, (2m− 3)1, . . .

[∆(K2m)] = 1m+1 · (m− 1)× 1 · (m− 1) ·m2 = 1m+2 · (m− 1)2 ·m2

K2m = H1 ⊕K2m−1 : 2

= H2 ⊕K2m−2 : m

= (m− 1)H1 ⊕ Pm+1 : 2

= mH1 ⊕ Pm : 2

K2m+1
m+1−→ Pm, K2m+1

m−→
R1

Pm+1, K2m+1
m−1−→ Pm+2

K2m
m−→
R1

Pm, K2m
m−1−→ Pm+1, K2m

1−→ K2m−1

13.9.11. L2m+1. (L5 = J5, L3 = H3)

uL2m+1 = ∂−µ′
xλ

′
uPm+1

mm1,mm1, (2m)1, (2m)1, . . . ∈ P(2m+1)
m+2

= 001, 010, 10, 10, . . .⊕mm0,mm− 11, (2m− 1)1, (2m− 1)1, . . .

= 110, 110, 11, 20, . . .⊕m− 1m− 10,m− 1m− 11, (2m− 1)0, (2m− 2)1, . . .

[∆(L2m+1)] = 1m+2 ·m× 12 ·m3 = 1m+4 ·m4

L2m+1 = H1 ⊕K2m : 4

= H2 ⊕ L2m−1 : m

= mH1 ⊕ Pm+1 : 4
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L2m+1 = H1 ⊕K2m, L2m+1 = H2 ⊕ L2m−1

L2m+1
m−→

R2E0
Pm+1, L2m+1

1−→ K2m

13.9.12. Mn. (M5 = K5, M4 = I4, M3 = P3)

uM2m+1 = ∂µ+λ′
3+···+λ′

m+2(c3 − x)λ
′
3 · · · (cm+2 − x)λ

′
m+2uH2

(2m)1, (2m)1, (2m)1, (2m− 1)2, (2m− 1)2, . . . ∈ P(2m+1)
m+3

= m− 11,m0,m0,m− 11,m− 11, . . .⊕m+ 10,m1,m1,m1,m1, . . .

= m− 10,m− 10,m− 10,m− 21,m− 21, . . .

⊕m+ 11,m+ 11,m+ 11,m+ 11,m+ 11, . . .

[∆(M2m+1)] = 14 × 2m · (2m− 1) = 14 · 2m · (2m− 1)

M2m+1 = Pm−1 ⊕ Pm+2 : 1

= Pm ⊕ Pm+1 : 3

= 2H1 ⊕M2m−1 : m

= (2m− 1)H1 ⊕H2 : 1

uM2m = ∂−µ′
(c3 − x)λ

′
3 · · · (cm+1 − x)λ

′
m+1uH2

(2m− 2)12, (2m− 1)1, (2m− 1)1, (2m− 2)2, . . . ∈ P(2m)
m+2

= 01, 10, 10, 10, . . .⊕ (2m− 2)1, (2m− 2)1, (2m− 2)1, (2m− 3)2, . . .

= m− 21,m− 10,m− 10,m− 21, . . .⊕m1,m1,m1,m1, . . .

= m− 11,m− 11,m0,m− 11, . . .⊕m− 11,m0,m− 11,m− 11, . . .

[∆(M2m)] = 14 × 12 · 2m−1 · (2m− 2) = 16 · 2m−1 · (2m− 2)

M2m = H1 ⊕M2m−1 : 2

= Pm−1 ⊕ Pm+1 : 2

= Pm ⊕ Pm : 2

= 2H1 ⊕M2m−2 : m− 1

= (2m− 2)H1 ⊕H2 : 1

Mn
n−2−→ H2, Mn

2−→Mn−2, M2m
1−→

R1E0
M2m−1 −→

R1
M2m−3

13.9.13. Nn. (N6 = IV∗, N5 = I5, N4 = G4, N3 = H3)

uN2m+1 = ∂−µ′
xλ

′
(c3 − x)λ

′
3 · · · (cm+1 − x)λ

′
m+1uH2

(2m− 1)12, (2m− 1)12, (2m)1, (2m− 1)2, (2m− 1)2, . . . ∈ P(2m+1)
m+2

= 10, 01, 10, 10, 10 . . .

⊕ (2m− 2)12, (2m− 1)1, (2m− 1)1, (2m− 2)2, (2m− 2)2, . . .

= m− 11,m− 11,m0,m− 11,m− 11, . . .⊕m1,m1,m1,m1,m1, . . .

[∆(N2m+1)] = 14 × 14 · 2m−1 · (2m− 1) = 18 · 2m−1 · (2m− 1)

N2m+1 = H1 ⊕M2m : 4

= Pm ⊕ Pm+1 : 4

= 2H1 ⊕N2m−1 : m− 1

= (2m− 1)H1 ⊕H2 : 1
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uN2m = ∂−µ′
xλ

′
0(1− x)λ

′
1(c3 − x)λ

′
3 · · · (cm − x)λ

′
muH2 (m ≥ 2)

(2m− 2)12, (2m− 2)12, (2m− 2)12, (2m− 2)2, (2m− 2)2, . . . ∈ P(2m)
m+1

= 01, 10, 10, 10, 10 . . .

⊕ (2m− 2)1, (2m− 3)12, (2m− 3)12, (2m− 3)2, (2m− 3)2, . . .

= m− 11,m− 11,m− 11,m− 11,m− 11, . . .

⊕m− 11,m− 11,m− 11,m− 11,m− 11, . . .

[∆(N2m)] = 14 × 16 · 2m−2 · (2m− 2) = 110 · 2m−2 · (2m− 2)

N2m = H1 ⊕N2m−1 : 6

= Pm ⊕ Pm : 4

= 2H1 ⊕N2m−2 : m− 2

= (2m− 2)H1 ⊕H2 : 1

Nn
n−2−→ H2, Nn

2−→ Nn−2, N2m+1
1−→

R1E0
M2m, N2m

1−→
R1E0

N2m−1

13.9.14. minimal series. The tuple 11, 11, 11 corresponds to Gauss hyper-
geometric series, which has three parameters. Since the action of additions is easily
analyzed, we consider the number of parameters of the equation corresponding to

a rigid tuple m =
(
mj,ν

)
0≤j≤p
1≤ν≤nj

∈ P(n)
p+1 modulo additions and the Fuchs condition

equals

(13.44) n0 + n1 + · · ·+ np − (p+ 1).

Here we assume that 0 < mj,ν < n for 1 ≤ ν ≤ nj and j = 0, . . . , p.
We call the number given by (13.44) the effective length of m. The tuple

11, 11, 11 is the unique rigid tuple of partitions whose effective length equals 3.
Since the reduction ∂max never increase the effective length and the tuple m ∈ P3

satisfying ∂max = 11, 11, 11 is 21, 111, 111 or 211, 211, 211, it is easy to see that the
non-trivial rigid tuple m ∈ P3 whose effective length is smaller than 6 is H2 or H3.

The rigid tuple of partitions with the effective length 4 is also uniquely deter-
mined by its order, which is

P4,2m+1 : m+ 1m,m+ 1m,m+ 1m,m+ 1m

P4,2m : m+ 1m− 1,mm,mm,mm
(13.45)

with m ∈ Z>0. Here P4,2m+1 is a generalized Jordan-Pochhammer tuple in Exam-
ple 10.5 i).

In fact, if m ∈ P is rigid with the effective length 4, the argument above shows
m ∈ P4 and nj = 2 for j = 0, . . . , 3. Then 2 =

∑3
j=0m

2
j,1 +

∑3
j=0(n−mj,1)

2− 2n2

and
∑3

j=0(n− 2mj,1)
2 = 4 and therefore m = P4,2m+1 or P4,2m.

We give decompositions of P4,n:

m+ 1,m;m+ 1,m;m+ 1,m;m+ 1,m

= k, k + 1; k + 1, k; k + 1, k; k + 1, k

⊕m− k + 1,m− k − 1;m− k,m− k;m− k,m− k;m− k,m− k
= 2(k + 1, k; k + 1, k; k + 1, k; . . .)

⊕m− 2k − 1,m− 2k;m− 2k − 1,m− 2k;m− 2k − 1,m− 2k; . . .

[∆(P4,2m+1)] = 14m−4 · 2m−1 × 14 · 2 = 14m · 2m

P4,2m+1 = P4,2k+1 ⊕ P4,2(m−k) : 4 (k = 0, . . . ,m− 1)

= 2P4,2k+1 ⊕ P4,2m−4k−1 : 1 (k = 0, . . . ,m− 1)
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Here Pk,−n = −Pk,n and in the above decompositions there appear “tuples of
partitions” with negative entries corresponding formally to elements in ∆re with
(7.12) (cf. Remark 7.11 i)).

It follows from the above decompositions that the Fuchsian equation with the
Riemann scheme ∞ 0 1 c3

[λ0,1](m+1) [λ1,1](m+1) [λ2,1](m+1) [λ3,1](m+1)

[λ0,2](m) [λ1,2](m) [λ2,1](m) [λ3,2](m)


4∑

j=0

(
(m+ 1)λj,1 +mλj,2

)
= 2m (Fuchs relation).

is irreducible if and only if

4∑
j=0

2∑
ν=1

(
k + δν,1 + (1− 2δν,1)δj,i

)
λj,ν /∈ Z (i = 0, 1, . . . , 5, k = 0, 1, . . . ,m).

When m = P4,2m, we have the following.

m+ 1,m− 1;m,m;m,m;m,m

= k + 1, k; k + 1, k; k + 1, k; k + 1, k

⊕m− k,m− k − 1;m− k − 1,m− k;m− k − 1,m− k;m− k − 1,m− k
= 2(k + 1, k − 1; k, k; k, k; k, k)

⊕m− 2k − 1,m− 2k + 1;m− 2k,m− 2k;m− 2k,m− 2k;m− 2k;m− 2k

[∆(P4,2m)] = 14m−4 · 2m−1 × 14 = 14m · 2m−1

P4,2m = P4,2k+1(= k + 1, k; k + 1, k; . . .)⊕ P4,2m−2k+1 : 4 (k = 0, . . . ,m− 1)

= 2P4,2k ⊕ P4,2m−4k : 1 (k = 1, . . . ,m− 1)

P4,n
1−→ P4,n−1, P4,2m+1

2−→ P4,2m−1

Roberts [Ro] classifies the rigid tuples m ∈ Pp+1 so that

(13.46)
1

n0
+ · · ·+ 1

np
≥ p− 1.

They are tuples m in 4 series α, β, γ, δ, which are close to the tuples rẼ6, rẼ7,
rẼ8 and rD̃4, namely, (n0, . . . , np) = (3, 3, 3), (2, 2, 4), (2, 3, 6) and (2, 2, 2, 2), re-
spectively (cf. (7.46)), and the series are called minimal series. Then δn = P4,n and
the tuples in the other three series belong to P3. For example, the tuples m of type
α are

(13.47)
α3m = m+ 1mm− 1,m3,m3, α3 = H3,

α3m±1 = m2m± 1,m2m± 1,m2m± 1, α4 = B4,

which are characterized by the fact that their effective lengths equal 6 when n ≥ 4.
As in other series, we have the following:

αn
1−→ αn−1, α3m+1

2−→ α3m−1

[∆(α3m)] = [∆(α3m−1)]× 15, [∆(α3m−1)] = [∆(α3m−2)]× 14,

[∆(α3m−2)] = [∆(α3m−4)]× 16 · 2

[∆(α3m−1)] = [∆(α2)]× 110(m−1) · 2m−1 = 110m−6 · 2m−1

[∆(α3m)] = 110m−1 · 2m−1

[∆(α3m−2)] = 110m−10 · 2m−1
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α3m = m+ 1mm− 1,m3,m3

= kkk − 1, k2k − 1, k2k − 1

⊕ (m− k + 1)(m− k)(m− k), (m− k)2(m− k + 1), (m− k)2(m− k + 1)

= k + 1k − 1k, k3, k3

⊕ (m− k + 1)(m− k)(m− k − 1), (m− k)3, (m− k)3

= 2(k + 1kk − 1, k3, k3)

⊕ (m− 2k − 1)(m− 2k)(m− 2k + 1), (m− 2k)3, (m− 2k)3

α3m = α3k−1 ⊕ α3(m−k)+1 : 9 (k = 1, . . . ,m)

= α3k ⊕ α3(m−k) : 1 (k = 1, . . . ,m− 1)

= 2α3k ⊕ α3(m−2k) : 1 (k = 1, . . . ,m− 1)

α3m−1 = mmm− 1,mmm− 1,mmm− 1

= kk − 1k − 1, kk − 1k − 1, kk − 1k − 1

⊕ (m− k)(m− k + 1)(m− k), (m− k)(m− k + 1)(m− k), · · ·
= k + 1kk − 1, k3, k3

⊕ (m− k − 1)(m− k)(m− k), (m− k)(m− k)(m− k − 1), · · ·
= 2(kkk − 1, kkk − 1, kkk − 1)

⊕ (m− 2k)(m− 2k)(m− 2k + 1), (m− 2k)(m− 2k)(m− 2k + 1), · · ·
α3m−1 = α3k−2(= k, k − 1, k − 1; · · · )⊕ α3(m−k)+1 : 4 (k = 1, . . . ,m)

= α3k ⊕ α3(m−k)−1 : 6 (k = 1, . . . ,m− 1)

= 2α3k−1 ⊕ α3(m−2k)+1 : 1 (k = 1, . . . ,m− 1)

α3m−2 = mm− 1m− 1,mm− 1m− 1,mm− 1m− 1

= kkk − 1, kkk − 1, kkk − 1

⊕ (m− k)(m− k − 1)(m− k), (m− k)(m− k − 1)(m− k), · · ·
= k + 1kk − 1, k3, k3

⊕ (m− k − 1)(m− k − 1)(m− k), (m− k)(m− k − 1)(m− k − 1), · · ·
= 2(kk − 1k − 1, kk − 1k − 1, kk − 1k − 1)

⊕ (m− 2k)(m− 2k + 1)(m− 2k + 1), (m− 2k)(m− 2k + 1)(m− 2k + 1), · · ·
α3m−2 = α3k−1(= k, k − 1, k − 1; · · · )⊕ α3(m−k)−1 : 4 (k = 1, . . . ,m− 1)

= α3k ⊕ α3(m−k)−2 : 6 (k = 1, . . . ,m− 1)

= 2α3k−2 ⊕ α3(m−2k)+2 : 1 (k = 1, . . . ,m− 1)

The analysis of the other minimal series

β4m,2 = (2m+ 1)(2m− 1),m4,m4 β4,2 = H4

β4m,4 = (2m)2,m4, (m+ 1)m2(m− 1) β4,4 = EO4

β4m±1 = (2m)(2m± 1), (m± 1)m3, (m± 1)m3 β5 = C5, β3 = H3

β4m+2 = (2m+ 1)2, (m+ 1)2m2, (m+ 1)2m2

γ6m,2 = (3m+ 1)(3m− 1), (2m)3,m6 γ6,2 = D6 = X6

γ6m,3 = (3m)2, (2m+ 1)(2m)(2m− 1),m6 γ6,3 = EO6

γ6m,6 = (3m)2, (2m)3, (m+ 1)m4(m− 1)

γ6m±1 = (3m)(3m± 1), (2m)2(2m± 1),m5(m± 1) γ5 = EO5
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γ6m±2 = (3m± 1)(3m± 1), (2m)(2m± 1)2,m4(m± 1)2 γ4 = EO4

γ6m+3 = (3m+ 2)(3m+ 1), (2m+ 1)3, (m+ 1)3m3 γ3 = H3

and general Pp+1,n will be left to the reader as an exercise.

13.9.15. Relation between series. We have studied the following sets of
families of spectral types of Fuchsian differential equations which are closed under
the irreducible subquotients in the Grothendieck group.

{Hn} (hypergeometric family)

{Pn} (Jordan-Pochhammer family)

{An = EOn} (even/odd family)

{Bn, Cn, Hn} (3 singular points)

{Cn, Hn} (3 singular points)

{Dn, En, Hn} (3 singular points)

{Fn, G2m, Hn} (3 singular points)

{In, Hn} (4 singular points)

{Jn, Hn} (4 singular points)

{Kn, Pn} ([n+5
2 ] singular points)

{L2m+1, Kn, Pn} (m+ 2 singular points)

{Mn, Pn} ([n+5
2 ] singular points) ⊃ {M2m+1, Pn}

{Nn, Mn, Pn} ([n+3
2 ] singular points) ⊃ {N2m+1, Mn. Pn}

{P4,n = δn} (4 effective parameters)

{αn} (6 effective parameters and 3 singular points)

Yokoyama classified m =
(
mj,ν

)
0≤j≤p
1≤ν≤nj

∈ Pp+1 such that

m is irreducibly realizable,(13.48)

m0,1 + · · ·+mp−1,1 = (p− 1) ordm (i.e. m is of Okubo type),(13.49)

mj,ν = 1 (0 ≤ j ≤ p− 1, 2 ≤ ν ≤ nj).(13.50)

The tuple m satisfying the above conditions is in the following list given by [Yo,
Theorem 2] (cf. [Ro]).

Yokoyama type order p+1 tuple of partitions

In Hn n 3 1n, n− 11, 1n

I∗n Pn n n+ 1 n− 11, n− 11, . . . , n− 11
IIn B2n 2n 3 n1n, n1n, nn− 11
II∗n I2n 2n 4 n1n, n+ 11n−1, 2n− 11, nn
IIIn B2n+1 2n+ 1 3 n1n+1, n+ 11n, nn1
III∗n I2n+1 2n+ 1 4 n+ 11n, n+ 11n, (2n)1, n+ 1n
IV F6 6 3 21111, 411, 222
IV∗ N6 6 4 411, 411, 411, 42

13.10. Appell’s hypergeometric functions

First we recall the Appell hypergeometric functions.

F1(α;β, β
′; γ;x, y) =

∞∑
m,n=0

(α)m+n(β)m(β′)n
(γ)m+nm!n!

xmyn,(13.51)
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F2(α;β, β
′; γ, γ′;x, y) =

∞∑
m,n=0

(α)m+n(β)m(β′)n
(γ)m(γ′)nm!n!

xmyn,(13.52)

F3(α, α
′;β, β′; γ;x, y) =

∞∑
m,n=0

(α)m(α′)n(β)m(β′)n
(γ)m+nm!n!

xmyn,(13.53)

F4(α;β; γ, γ
′;x, y) =

∞∑
m,n=0

(α)m+n(β)m+n

(γ)m(γ′)nm!n!
xmyn.(13.54)

They satisfy the following equations(
(ϑx + ϑy + α)(ϑx + β)− ∂x(ϑx + ϑy + γ − 1)

)
F1 = 0,(13.55) (

(ϑx + ϑy + α)(ϑx + β)− ∂x(ϑx + γ − 1)
)
F2 = 0,(13.56) (

(ϑx + α)(ϑx + β)− ∂x(ϑx + ϑy + γ − 1)
)
F3 = 0,(13.57) (

(ϑx + ϑy + α)(ϑx + ϑy + β)− ∂x(ϑx + γ − 1)
)
F4 = 0.(13.58)

Similar equations hold under the symmetry x↔ y with (α, β, γ)↔ (α′, β′, γ′).

13.10.1. Appell’s F1. First we examine F1. Put

u(x, y) :=

∫ x

0

tα(1− t)β(y − t)γ−1(x− t)λ−1dt (t = xs)

=

∫ 1

0

xα+λ+1sα(1− xs)β(y − xs)γ−1(1− s)λ−1ds

= xα+λyγ−1

∫ 1

0

sα(1− s)λ−1(1− xs)β
(
1− y

x
s
)γ−1

ds,

hx := xα(x− 1)β(x− y)γ−1.

Since the left ideal of W [x, y] is not necessarily generated by a single element, we
want to have good generators of RAd(∂−λ

x ) ◦RAd(hx)
(
W [x, y]∂x +W [x, y]∂y

)
and

we have

P := Ad(hx)∂x = ∂x −
α

x
− β

x− 1
− γ − 1

x− y
,

Q := Ad(hx)∂y = ∂y +
γ − 1

x− y
,

R := xP + yQ = x∂x + y∂y − (α+ γ − 1)− βx

x− 1
,

S := ∂x(x− 1)R = (ϑx + 1)(ϑx + ϑy − α− β − γ + 1)− ∂x(ϑx + ϑy − α− γ + 1)

T := ∂−λ
x ◦ S ◦ ∂λx

= (ϑx − λ+ 1)(ϑx + ϑy − α− β − γ − λ+ 1)− ∂x(ϑx + ϑy − α− γ − λ+ 1)

with

a = −α− β − γ − λ+ 1, b = 1− λ, c = 2− α− γ − λ.

This calculation shows the equation Tu(x, y) = 0 and we have a similar equation by
changing (x, y, γ, λ) 7→ (y, x, λ, γ). Note that TF1(a; b, b

′; c;x, y) = 0 with b′ = 1−γ.
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Putting

v(x, z) = Iµ0,x(x
α(1− x)β(1− zx)γ−1)

=

∫ x

0

tα(1− t)β(1− zt)γ−1(x− t)µ−1dt

= xα+µ

∫ 1

0

sα(1− xs)β(1− xzs)γ−1(1− s)µ−1ds,

we have

u(x, y) = yγ−1v(x, 1y ),

tα(1− t)β(1− zt)γ−1 =

∞∑
m,n=0

(−β)m(1− γ)n
m!n!

tα+m+nzn,

v(x, z) =
∞∑

m,n=0

Γ(α+m+ n+ 1)(−β)m(1− γ)n
Γ(α+ µ+m+ n+ 1)m!n!

xα+γ+m+nzn

= xα+µ Γ(α+ 1)

Γ(α+ µ+ 1)

∞∑
m,n=0

(α+ 1)m+n(−β)m(1− γ)n
(α+ µ+ 1)m+nm!n!

xm+nzn

= xα+µ Γ(α+ 1)

Γ(α+ µ+ 1)
F1(α+ 1;−β, 1− γ;α+ µ+ 1;x, xz).

Using a versal addition to get the Kummer equation, we introduce the functions

vc(x, y) :=

∫ x

0

tα(1− ct)
β
c (y − t)γ−1(x− t)λ−1,

hc,x := xα(1− cx)
β
c (x− y)γ−1.

Then we have

R := Ad(hc,x)(ϑx + ϑy) = ϑx + ϑy − (α+ γ − 1) +
βx

1− cx
,

S := ∂x(1− cx)R
= (ϑx + 1)

(
β − c(ϑx + ϑy − α− γ + 1)

)
+ ∂x(ϑx + ϑy − α− γ + 1),

T := Ad(∂−λ)R

= (ϑx − λ+ 1)
(
β − c(ϑx + ϑy − λ− α− γ + 1)

)
+ ∂x(ϑx + ϑy − λ− α− γ + 1)

and hence uc(x, y) satisfies the differential equation(
x(1− cx)∂2x + y(1− cx)∂x∂y

+
(
2− α− γ − λ+ (β + λ− 2 + c(α+ γ + λ− 1))x

)
∂x + (λ− 1)∂y

− (λ− 1)(β + c(α+ γ + λ− 1))
)
u = 0.

13.10.2. Appell’s F4. To examine F4 we consider the function

v(x, y) :=

∫
∆

sλ1tλ2(st− s− t)λ3(1− sx− ty)µds dt

and the transformation

(13.59) Jµ
x (u)(x) :=

∫
∆

u(t1, . . . , tn)(1− t1x1 − · · · − tnxn)µdt1 · · · dtn
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for function u(x1, . . . , un). For example the region ∆ is given by

v(x, y) =

∫
s≤0, t≤0

sλ1tλ2(st− s− t)λ3(1− sx− ty)µds dt.

Putting s 7→ s−1, t 7→ t−1 and |x|+ |y| < c < 1
2 , Aomoto [Ao] shows∫ c+∞i

c−∞i

∫ c+∞i

c−∞i

s−γt−γ′
(1− s− t)γ+γ′−α−2

(
1− x

s
− y

t

)−β

ds dt

= − 4π2Γ(α)

Γ(γ)Γ(γ′)Γ(α− γ − γ′ + 2)
F4(α;β; γ, γ

′;x, y),

(13.60)

which follows from the integral formula

1

(2πi)n

∫ 1
n+1+∞i

1
n+1−∞i

· · ·
∫ 1

n+1+∞i

1
n+1−∞i

n∏
j=1

t
−αj

j

(
1−

n∑
j=1

tj

)−αn+1

dt1 · · · dtn

=
Γ
(∑n+1

j=1 αj − n
)∏n+1

j=1 Γ
(
αj

) .

(13.61)

Since

Jµ
x (u) = Jµ−1

x (u)−
∑

xνJ
µ−1
x (xνu)

and

d

dti

(
u(t)(1−

∑
tνxν)

µ
)

=
du

dti
(t)(1−

∑
tνxν)

µ − µu(t)xi(1−
∑

tνxν)
µ−1,

we have

Jµ
x (∂iu)(x) = µxiJ

µ−1
x (u)(x)

= −xi
∫
t−1
i u(t)

d

dxi

(
1−

∑
xνtν

)µ
dt

= −xi
d

dxi
Jµ
x

( u
xi

)
(x),

Jµ
x

(
∂i(xiu)

)
= −xi∂iJµ

x (u),

Jµ
x (∂iu) = µxiJ

µ−1
x (u)

= µxiJ
µ
x (u) + µxi

∑
xνJ

µ−1
x (xνu)

= µxiJ
µ
x (u) + xi

∑
Jµ
x

(
∂ν(xνu)

)
= µxiJ

µ
x (u)− xi

∑
xν∂νJ

µ
x (u)

and therefore

Jµ
x (xi∂iu) = (−1− xi∂i)Jµ

x (u),(13.62)

Jµ
x (∂iu) = xi

(
µ−

∑
xν∂ν

)
Jµ
x (u).(13.63)

Thus we have

Proposition 13.2. For a differential operator

(13.64) P =
∑

α=(α1,...,αn)∈Zn
≥0

β=(β1,...,βn)∈Zn
≥0

cα,β∂
α1
1 · · · ∂αn

n ϑβ1

1 · · ·ϑβn
n ,
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we have

Jµ
x

(
Pu(x)

)
= Jµ

x (P )J
µ
x

(
u(x)

)
,

Jµ
x (P ) :=

∑
α, β

cα,β

n∏
k=1

(
xk(µ−

n∑
ν=1

ϑν)
)αk

n∏
k=1

(
−ϑk − 1

)βk .
(13.65)

Using this proposition, we obtain the system of differential equations satisfied
by Jµ

x (u) from that satisfied by u(x). Denoting the Laplace transform of the variable
x = (x1, . . . , xn) by Lx (cf. Definition 1.1), we have

(13.66) Jµ
xL

−1
x (ϑi) = ϑi, Jµ

xL
−1
x (xi) = xi

(
µ−

n∑
ν=1

ϑν
)
.

We have

Ad
(
xλ1yλ2(xy − x− y)λ3

)
∂x = ∂x −

λ1
x
− λ3(y − 1)

xy − x− y
,

Ad
(
xλ1yλ2(xy − x− y)λ3

)
∂y = ∂y −

λ2
y
− λ3(x− 1)

xy − x− y
,

Ad
(
xλ1yλ2(xy − x− y)λ3

)(
x(x− 1)∂x

)
= x(x− 1)∂x − λ1(x− 1)− λ3(x− 1)(xy − x)

xy − x− y
,

Ad
(
xλ1yλ2(xy − x− y)λ3

)(
x(x− 1)∂x − y∂y

)
= x(x− 1)∂x − y∂y − λ1(x− 1)− λ2 − λ3(x− 1)

= xϑx − ϑx − ϑy − (λ1 + λ3)x+ λ1 − λ2 + λ3,

∂x Ad
(
xλ1yλ2(xy − x− y)λ3

)(
x(x− 1)∂x − y∂y

)
= ∂xx(ϑx − λ1 − λ3)− ∂x(ϑx + ϑy − λ1 + λ2 − λ3)

(13.67)

and

Jµ
x,y

(
∂xx(ϑx − λ1 − λ3)− ∂x(ϑx + ϑy − λ1 + λ2 − λ3)

)
= ϑx(1 + ϑx + λ1 + λ3)− x(−µ+ ϑx + ϑy)(2 + ϑx + ϑy + λ1 − λ2 + λ3).

Putting

T := (ϑx + ϑy − µ)(ϑx + ϑy + λ1 − λ2 + λ3 + 2)− ∂x(ϑx + λ1 + λ3 + 1)

with

α = −µ, β = λ1 − λ2 + λ3 + 2, γ = λ1 + λ3 + 2,

we have Tv(x, y) = 0 and moreover it satisfies a similar equation by replacing
(x, y, λ1, λ3, γ) by (y, x, λ3, λ1, γ

′). Hence v(x, y) is a solution of the system of
differential equations satisfied by F4(α;β; γ, γ

′;x, y).
In the same way we have

Ad
(
xβ−1yβ

′−1(1− x− y)γ−β−β′−1
)
ϑx = ϑx − β + 1 +

(γ − β − β′ − 1)x

1− x− y
,

Ad
(
xβ−1yβ

′−1(1− x− y)γ−β−β′−1
)
(ϑx − x(ϑx + ϑy))

= ϑx − x(ϑx + ϑy)− β + 1 + (γ − 3)x

= (ϑx − β + 1)− x(ϑx + ϑy − γ + 3),

(13.68)

Jµ
x,y

(
∂x(ϑx − β + 1)− ∂xx(ϑx + ϑy − γ + 3)

)
= x(−ϑx − ϑy + µ)(−ϑx − β) + ϑx(−2− ϑx − ϑy − γ + 3)

= x
(
(ϑx + ϑy − µ)(ϑx + β)− ∂x(ϑx + ϑy + γ − 1)

)
.
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which is a differential operator killing F1(α;β, β
′; γ;x, y) by putting µ = −α and in

fact we have∫∫
s≥0, t≥0
1−s−t≥0

sβ−1tβ
′−1(1− s− t)γ−β−β′−1(1− sx− ty)−αds dt

=

∫∫
s≥0, t≥0
1−s−t≥0

∞∑
m,n=0

sβ+m−1tβ
′+n−1(1− s− t)γ−β−β′−1 (α)m+nx

myn

m!n!
ds dt

=
∞∑

m,n=0

Γ(β +m)Γ(β′ + n)Γ(γ − β − β′)

Γ(γ +m+ n)
· (α)m+n

m!n!
xmyn

=
Γ(β)Γ(β′)Γ(γ − β − β′)

Γ(γ)
F1(α;β, β

′; γ;x, y).

Here we use the formula

(13.69)

∫∫
s≥0, t≥0
1−s−t≥0

sλ1−1tλ2−1(1− s− t)λ3−1ds dt =
Γ(λ1)Γ(λ2)Γ(λ3)

Γ(λ1 + λ2 + λ3)
.

13.10.3. Appell’s F3. Since

T3 := J−α′

y x−1J−α
x

(
∂x(ϑx − β + 1)− ∂xx(ϑx + ϑy − γ + 3)

)
= J−α′

y

(
(−ϑx − α)(−ϑx − β) + ∂x(−ϑx + ϑy − γ + 2)

)
= (ϑx + α)(ϑx + β)− ∂x(ϑx + ϑy + γ − 1)

with (13.68), the operator T3 kills the function∫∫
s≥0, t≥0
1−s−t≥0

sβ−1tβ
′−1(1− s− t)γ−β−β′−1(1− xs)−α(1− yt)−α′

ds dt

=

∫∫
s≥0, t≥0
1−s−t≥0

∞∑
m,n=0

sβ+m−1tβ
′+n−1(1− s− t)γ−β−β′−1 (α)m(α′)nx

myn

m!n!
ds dt

=
∞∑

m,n=0

Γ(β +m)Γ(β′ + n)Γ(γ − β − β′)(α)m(α′)n
Γ(γ +m+ n)m!n!

xmyn

=
Γ(β)Γ(β′)Γ(γ − β − β′)

Γ(γ)
F3(α, α

′;β, β′; γ;x, y).

Moreover since

T ′
3 := Ad(∂−µ

x )Ad(∂−µ′

y )
(
(ϑx + 1)(ϑx − λ1 − λ3)− ∂x(ϑx + ϑy − λ1 + λ2 − λ3)

)
= (ϑx + 1− µ)(ϑx − λ1 − λ3 − µ)− ∂x(ϑx + ϑy − λ1 + λ2 − λ3 − µ− µ′)

with (13.67) and

α = −λ1 − λ3 − µ, β = 1− µ, γ = −λ1 + λ2 − λ3 − µ− µ′ + 1,

the function

(13.70) u3(x, y) :=

∫ y

∞

∫ x

∞
sλ1tλ2(st− s− t)λ3(x− s)µ−1(y − t)µ

′−1ds dt

satisfies T ′
3u3(x, y) = 0. Hence u3(x, y) is a solution of the system of the equations

that F3(α, α
′;β, β′; γ;x, y) satisfies.
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13.10.4. Appell’s F2. Since

∂x Ad
(
xλ1−1(1− xλ2−1)

)
x(1− x)∂x

= ∂xx(1− x)∂x − (λ1 − 1)∂x + ∂x(λ1 + λ2 − 2)x

= ∂xx(−ϑx + λ1 + λ2 − 2) + ∂x(ϑ− λ1 + 1)

and

T2 := Jµ
x,y

(
∂xx(−ϑx + λ1 + λ2 − 2) + ∂x(ϑx − λ1 + 1)

)
= −ϑx(ϑx + 1 + λ1 + λ2 − 2) + x(µ− ϑx − ϑy)(−1− ϑx − λ1 + 1)

= x
(
(ϑx + λ1)(ϑx + ϑy − µ)− ∂x(ϑx + λ1 + λ2 − 1)

)
with

α = −µ, β = λ1, γ = λ1 + λ2,

the function

u2(x, y) :=

∫ 1

0

∫ 1

0

sλ1−1(1− s)λ2−1tλ
′
1−1(1− t)λ

′
2−1(1− xs− yt)µds dt

=

∫ 1

0

∫ 1

0

∞∑
m,n=0

sλ1+m−1(1− s)λ2−1tλ
′
1+n−1(1− t)λ

′
2−1 (−µ)m+n

m!n!
xmynds dt

=
∞∑

m,n=0

Γ(λ1 +m)Γ(λ2)

Γ(λ1 + λ2 +m)

Γ(λ′1 + n)Γ(λ′2)

Γ(λ′1 + λ′2 +m)

(−µ)m+n

m!n!
xmyn

=
Γ(λ1)Γ(λ2)Γ(λ

′
1)Γ(λ

′
2)

Γ(λ1 + λ2)Γ(λ′1 + λ′2)

∞∑
m,n=0

(λ1)m(λ′1)n(−µ)m+n

(λ1 + λ2)m(λ′1 + λ′2)nm!n!
xmyn

is a solution of the equation T2u = 0 that F2(α;β, β
′; γ, γ′;x, y) satisfies.

Note that the operator T̃3 transformed from T ′
3 by the coordinate transforma-

tion (x, y) 7→ ( 1x ,
1
y ) equals

T̃3 = (−ϑx + α)(−ϑx + β)− x(−ϑx)(−ϑx − ϑy + γ − 1)

= (ϑx − α)(ϑx − β)− xϑx(ϑx + ϑy − γ + 1)

and the operator

Ad(x−αy−α′
)T̃3 = ϑx(ϑx + α− β)− x(ϑx + α)(ϑx + ϑy + α+ α′ − γ + 1)

together with the operator obtained by the transpositions x ↔ y, α ↔ α′ and
β ↔ β′ defines the system of the equations satisfied by the functions

(13.71)

{
F2(α+ α′ − γ + 1;α, α′;α− β + 1, α′ − β′ + 1;x, y),

x−α′
y−α′

F3(α, α
′;β, β′; γ; 1

x ,
1
y ),

which also follows from the integral representation (13.70) with the transformation
(x, y, s, t) 7→ ( 1x ,

1
y ,

1
s ,

1
t ).

13.11. Okubo and Risa/Asir

Most of our results in this paper are constructible and they can be explicitly
calculated and implemented in computer programs.

The computer program okubo [O8] written by the author handles combina-
torial calculations in this paper related to tuples of partitions. It generates basic
tuples (cf. §13.1) and rigid tuples (cf. §13.2), calculates the reductions originated by
Katz and Yokoyama, the position of accessory parameters in the universal operator
(cf. Theorem 6.14 iv)) and direct decompositions etc.
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The author presented Theorem 12.6 in the case when p = 3 as a conjecture
in the fall of 2007, which was proved in May in 2008 by a completely different
way from the proof given in §12.1, which is a generalization of the original proof
of Gauss’s summation formula of the hypergeometric series explained in §12.3.
The original proof of Theorem 12.6 in the case when p = 3 was reduced to the
combinatorial equality (12.16). The author verified (12.16) by okubo and got the
concrete connection coefficients for the rigid tuples m satisfying ordm ≤ 40. Under
these conditions (ordm ≤ 40, p = 3, m0,n0 = m1,n1 = 1) there are 4,111,704
independent connection coefficients modulo obvious symmetries and it took about
one day to got all of them by a personal computer with okubo.

Several operations on differential operators such as additions and middle con-
volutions defined in Chapter 1 can be calculated by a computer algebra and the
author wrote a program for their results under Risa/Asir, which gives a reduc-
tion procedure of the operators (cf. Definition 5.12), integral representations and
series expansions of the solutions (cf. Theorem 8.1), connection formulas (cf. The-
orem 12.5), differential operators (cf. Theorem 6.14 iv)), the condition of their
reducibility (cf. Corollary 10.12 i)), contiguity relations (cf. Theorem 11.3 ii)) etc.
for any given spectral type or Riemann scheme (0.11) and displays the results using
TEX. This program for Risa/Asir written by the author contains many useful func-
tions calculating rational functions, Weyl algebra and matrices. These programs
can be obtained from

http://www.math.kobe-u.ac.jp/Asir/asir.html

ftp://akagi.ms.u-tokyo.ac.jp/pub/math/muldif

ftp://akagi.ms.u-tokyo.ac.jp/pub/math/okubo.



CHAPTER 14

Further problems

14.1. Multiplicities of spectral parameters

Suppose a Fuchsian differential equation and its middle convolution are given.
Then we can analyze the corresponding transformation of a global structure of
its local solution associated with an eigenvalue of the monodromy generator at a
singular point if the eigenvalue is free of multiplicity.

When the multiplicity of the eigenvalue is larger than one, we have not a satis-
factory result for the transformation (cf. Theorem 12.5). The value of a generalized
connection coefficient defined by Definition 12.17 may be interesting. Is the proce-
dure in Remark 12.19 always valid? In particular, is there a general result assuring
Remark 12.19 (1) (cf. Remark 12.23)? Are the multiplicities of zeros of the gener-
alized connection coefficients of a rigid Fuchsian differential equation free?

14.2. Schlesinger canonical form

Can we define a natural universal Fuchsian system of Schlesinger canonical
form (1.79) with a given realizable spectral type? Here we recall Example 9.2.

Let Pm be the universal operator in Theorem 6.14. Is there a natural system of
Schlesinger canonical form which is isomorphic to the equation Pmu = 0 together
with the explicit correspondence between them?

14.3. Apparent singularities

Katz [Kz] proved that any irreducible rigid local system is constructed from
the trivial system by successive applications of middle convolutions and additions
and it is proved in this paper that the system is realized by a single differential
equation without an apparent singularity.

In general, an irreducible local system cannot be realized by a single differential
equation without an apparent singularity but it is realized by that with apparent
singularities. Hence it is expected that there exist some natural operations of
single differential equations with apparent singularities which correspond to middle
convolutions of local systems or systems of Schlesinger canonical form.

The Fuchsian ordinary differential equation satisfied by an important special
function often hasn’t an apparent singularity even if the spectral type of the equa-
tion is not rigid. Can we understand the condition that a W (x)-module has a
generator so that it satisfies a differential equation without an apparent singular-
ity? Moreover it may be interesting to study the existing of contiguous relations
among differential equations with fundamental spectral types which have no appar-
ent singularity.

14.4. Irregular singularities

Our fractional operations defined in Chapter 1 give transformations of ordinary
differential operators with polynomial coefficients, which have irregular singularities
in general. The reduction of ordinary differential equations under these operations
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is a problem to be studied. Note that versal additions and middle convolutions
construct such differential operators from the trivial equation.

A similar result as in this paper is obtained for certain classes of ordinary
differential equations with irregular singularities, namely, unramified irregular sin-
gularities (cf. [Hi], [HiO], [O10]).

A “versal” path of integral in an integral representation of the solution and
a “versal” connection coefficient and Stokes multiplier should be studied. Here
“versal” means a natural expression corresponding to the versal addition.

We define a complete model with a given spectral type as follows. For sim-
plicity we consider differential operators without singularities at the origin. For a
realizable irreducible tuple of partitions m =

(
mj,ν

)
0≤j≤p
1≤ν≤nj

of a positive integer n

Theorem 6.14 constructs the universal differential operator

(14.1) Pm =

p∏
j=1

(1− cjx)n ·
dn

dxn
+

n−1∑
k=0

ak(x, c, λ, g)
dk

dxk

with the Riemann scheme
x =∞ 1

c1
· · · 1

cp

[λ0,1](m0,1) [λ1,1](m1,1) · · · [λp,1](mp,1)

...
...

...
...

[λ0,n0 ](m0,n0 )
[λ1,n1 ](m1,n1 )

· · · [λp,np ](mp,np )


and the Fuchs relation

p∑
j=0

nj∑
ν=1

mj,νλj,ν = n− idxm

2
.

Here c = (c0, . . . , cp), λ = (λj,ν) and g = (g1, . . . , gN ) are parameters. We have
cicj(ci − cj) 6= 0 for 0 ≤ i < j ≤ p. The parameters gj are called accessory

parameters and we have idxm = 2− 2N . We call the Zariski closure Pm of Pm in
W [x] the complete model of differential operators with the spectral type m, whose
dimension equals p+

∑p
j=0 nj +N − 1. It is an interesting problem to analyze the

complete model Pm.
When m = 11, 11, 11, the complete model equals

(1− c1x)2(1− c2x)2 d2

dx2 − (1− c1x)(1− c2x)(a1,1x+ a1,0)
d
dx + a0,2x

2 + a0,1x+ a0,0,

whose dimension equals 7. Any differential equation defined by the operator belong-
ing to this complete model is transformed into a Gauss hypergeometric equation,
a Kummer equation, an Hermite equation or an Airy equation by a suitable gauge
transformation and a coordinate transformation. A good understanding together
with a certain completion of our operators is required even in this fundamental
example (cf. [Yos]). It is needless to say that the good understanding is important
in the case when m is fundamental.

14.5. Special parameters

Let Pm be the universal operator of the form (14.1) for an irreducible tuple
of partition m. When a decomposition m = m′ + m′′ with realizable tuples of
partitions m′ and m′′ is given, Theorem 4.19 gives the values of the parameters of
Pm corresponding to the product Pm′Pm′′ . A W (x, ξ)-automorphism of Pmu = 0
gives a transformation of the parameters (λ, g), which is a contiguous relation and
called Schlesinger transformation in the case of systems of Schlesinger canonical
form. How can we describe the values of the parameters obtained in this way and
characterize their position in all the values of the parameters when the universal
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operator is reducible? In general, they are not all even in a rigid differential equa-
tion. A direct decomposition 32, 32, 32, 32 = 12, 12, 12, 12 ⊕ 2(10, 10, 10, 10) of a
rigid tuples 32, 32, 32, 32 gives this example (cf. (10.64)).

Analyse the reducible differential equation with an irreducibly realizable spec-
tral type. This is interesting even when m is a rigid tuple. For example, describe
the monodromy of its solutions.

Describe the characteristic exponents of the generalized Riemann scheme with
an irreducibly realizable spectral type such that there exists a differential operator
with the Riemann scheme which is outside the universal operator (cf. Example 5.6
and Remark 6.16). In particular, when the spectral type is not fundamental nor
simply reducible, does there exist such a differential operator?

The classification of rigid and simply reducible spectral types coincides with
that of indecomposable objects described in [MWZ, Theorem 2.4]. Is there some
meaning in this coincidence?

Has the condition (6.28) a similar meaning in the case of Schlesinger canonical
form? What is the condition on the local system or a (single) Fuchsian differential
equation which has a realization of a system of Schlesinger canonical form?

Give the condition so that the monodromy group is finite (cf. [BH]).
Give the condition so that the centralizer of the monodromy is the set of scalar

multiplications.
Suppose m is fundamental. Study the condition so that the connection coeffi-

cients is a quotient of the products of gamma functions as in Theorem 12.6 or the
solution has an integral representation only by using elementary functions.

14.6. Shift operators

Calculate the intertwining polynomial cm(ε;λ) of λ defined in Theorem 11.8.
Is it square free? See Conjecture 11.12.

Is the shift operator Rm(ε, λ) Fuchsian?
Is there a natural operator in Rm(ε, λ) +W (x;λ)Pm(λ)?
Study the shift operators given in Theorem 11.7.
Study the condition on the characteristic exponents and accessory parameters

assuring the existence of a shift operator for a Fuchsian differential operator with
a fundamental spectral type.

Study the shift operator or Schlesinger transformation of a system of Schlesinger
canonical form with a fundamental spectral type. When is it not defined or when
is it not bijective?

14.7. Isomonodromic deformations

The isomonodromic deformations of Fuchsian systems of Schlesinger canonical
form give Painlevé type equations and their degenerations correspond to confluence
of the systems (cf. §13.1.6). Can we get a nice theory for these equations? Is it
true that two Painlevé type equations corresponding to Fuchsian systems with
fundamental spectral types are not isomorphic to each other if their spectral types
are different?

14.8. Several variables

We have analyzed Appell hypergeometric equations in §13.10. What should be
the geometric structure of singularities of more general system of equations when
it has a good theory?

Describe or define operations of differential operators that are fundamental to
analyze good systems of differential equations.
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A series expansion of a local solution of a rigid ordinal differential equation
indicates that it may be natural to think that the solution is a restriction of a
solution of a system of differential equations with several variables (cf. Theorem 8.1
and §§13.3–13.4). Study the system.

14.9. Other problems

1. Given a rigid tuple m and a root α ∈ ∆re
+ with (α|αm) > 0. Is there a good

necessary and sufficient condition so that α ∈ ∆(m)? See Proposition 7.9 iv)
and Remark 7.11 i).

For example, for a rigid decomposition m = m′ ⊕m′′, can we determine
whether αm′ ∈ ∆(m) or αm′′ ∈ ∆(m)?

2. Is there a direct expression of λ(K)j,`(K)j in (12.10) for a given Riemann scheme
{λm}?

3. Are there analyzable series L of rigid tuples of partitions different from the
series given in §13.9? Namely, L ⊂ P, the elements of L are rigid, the number
of isomorphic classes of L ∩ P(n) are bounded for n ∈ Z>0 and the following
condition is valid.

Let m = km′ + m′′ with k ∈ Z>0 and rigid tuples of partitions m, m′

and m′′. If m ∈ L, then m′ ∈ L and m′′ ∈ L. Moreover for any m′′ ∈ L,
this decomposition m = km′ + m′′ exists with m ∈ L, m′ ∈ L and k ∈ Z>0.
Furthermore L is indecomposable. Namely, if L = L′ ∪ L′′ so that L′ and L′′

satisfy these conditions, then L′ = L or L′′ = L.
4. Characterize the ring of automorphisms and that of endomorphisms of the lo-

calized Weyl algebra W (x). Can we find a good class of endomorphisms? These
questions are more important in the case of several variables.

5. In general, different procedures of the reduction of the universal operator Pmu =
0 give different integral representations and series expansions of its solution
(cf. Example 8.2, Remark 8.3 and the last part of §13.3). Analyze the difference.

6. Analyse the differential equation whose solutions are spanned by the Wronskians
of k independent solutions of the equation Pmu = 0 with a universal operator
Pm such that 1 < k < ordm (cf. Remark 12.18 ii)).

7. Generalize our results for differential equations on some compact complex man-
ifolds.

8. Generalize our results for difference equations (cf. [Ya]).



Appendix

In Appendix we give a theorem which is proved by K. Nuida. The author
greatly thanks to K. Nuida for allowing the author to put the theorem with its
proof in this chapter.

Let (W,S) be a Coxeter system. Namely, W is a group with the set S of
generators and under the notation S = {si ; i ∈ I}, the fundamental relations
among the generators are

(15.1) s2k = (sisj)
mi,j = e and mi,j = mj,i for ∀i, j, k ∈ I satisfying i 6= j.

Here mi,j ∈ {2, 3, 4, . . .} ∪ {∞} and the condition mi,j =∞ means (sisj)
m 6= e for

any m ∈ Z>0. Let E be a real vector space with the basis set Π = {αi ; i ∈ I} and
define a symmetric bilinear form ( | ) on E by

(15.2) (αi|αi) = 2 and (αi|αj) = −2 cos
π

mi,j
.

Then the Coxeter group W is naturally identified with the reflection group gen-
erated by the reflections sαi with respect to αi (i ∈ I). The set ∆Π of the
roots of (W,S) equals WΠ, which is a disjoint union of the set of positive roots
∆+

Π := ∆Π ∩
∑

α∈Π Z≥0α and the set of negative roots ∆−
Π := −∆+

Π. For w ∈ W
the length L(w) is the minimal number k with the expression w = si1si2 · · · sik
(i1, . . . , ik ∈ I). Defining ∆Π(w) := ∆+

Π ∩ w−1∆−
Π , we have L(w) = #∆Π(w).

Fix β and β′ ∈ ∆Π and put

(15.3) W β
β′ := {w ∈W ; β′ = wβ} and W β :=W β

β .

Theorem 15.1 (K. Nuida). Retain the notation above. Suppose W β
β′ 6= ∅ and

there exist no sequence si1 , si2 , . . . sik of elements of S such that
k ≥ 3,

siν 6= si′ν (1 ≤ ν < ν′ ≤ k),
miν ,iν+1 and mi1,ik are odd integers (1 ≤ ν < k).

(15.4)

Then an element w ∈W β
β′ is uniquely determined by the condition

(15.5) L(w) ≤ L(v) (∀v ∈W β
β′).

Proof. Put ∆β
Π := {γ ∈ ∆+

Π ; (β|γ) = 0}. First note that the following lemma.

Lemma 15.2. If w ∈W β
β′ satisfies (15.5), then w∆β

Π ⊂ ∆+
Π.

In fact, if w ∈ W β
β′ satisfies (15.5) and there exists γ ∈ ∆β

Π satisfying wγ ∈
∆−

Π , then there exists j for a minimal expression w = si1 · · · siLΠ(w)
such that

sij+1 · · · sjLΠ(w)
γ = αij , which implies W β

β′ 3 v := wsγ = si1 · · · sij−1sij+1 · · · siLΠ(w)

and contradicts to (15.5).
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It follows from [Br] that the assumption (15.4) implies that W β is generated

by {sγ ; γ ∈ ∆β
Π}. Putting

Πβ = ∆β
Π \ {r1γ1 + r2γ2 ∈ ∆β

Π ; γ2 /∈ Rγ1, γj ∈ ∆β
Π and rj > 0 for j = 1, 2}

and Sβ = {sγ ; γ ∈ Πβ}, the pair (W β , Sβ) is a Coxeter system and moreover the
minimal length of the expression of w ∈ W β by the product of the elements of Sβ

equals #
(
∆β

Π ∩ w−1∆−
Π

)
(cf. [Nu, Theorem 2.3]).

Suppose there exist two elements w1 and w2 ∈ W β
β′ satisfying L(wj) ≤ L(v)

for any v ∈ W β
β′ and j = 1, 2. Since e 6= w−1

1 w2 ∈ W β , there exists γ ∈ ∆β
Π

such that w−1
1 w2γ ∈ ∆−

Π . Since −w−1
1 w2γ ∈ ∆β

Π, Lemma 15.2 assures −w2γ =

w1(−w−1
1 w2γ) ∈ ∆+

Π, which contradicts to Lemma 15.2. �
The above proof shows the following corollary.

Corollary 15.3. Retain the assumption in Theorem 15.1. For an element w ∈
W β

β′ , the condition (15.5) is equivalent to w∆β
Π ⊂ ∆+

Π.

Let w ∈W β
β′ satisfying (15.5). Then

(15.6) W β
β′ = w

〈
sγ ; (γ|β) = 0, γ ∈ ∆+

Π

〉
.
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linear fractional, 51

Coxeter system, 197
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Deligne-Simpson problem, x, 55

differential equation/operator

complete model, 194

cyclic vector, 11

degree, 2

dual, 41

Euclidean algorithm, 9

greatest common divisor, 9

irreducible, 12, 20

least common multiple, 9

mutually prime, 9

order, 2

reduced representative, 2

direct decomposition, 96

example, 100

dual partition, 33

Dynkin diagram, 70, 142

Euler transformation, 5

even family, x, 157

EO4, 115, 157

series expansion, 161

shift operator, 158

connection coefficient, 157

generalized, 159

reducibility, 157, 161

fractional derivation, 5

Fuchs relation, 20, 34, 36, 72

Fuchsian differential equation/operator, 19

dual, 41

locally non-degenerate, 89

normal form, 39

normalized, 32

universal operator, 63, 176

fundamental, 78

gauge transformation, 2

Heun’s equation, 21, 50, 60

hypergeometric equation/function

Appell, 185

F1, 186

F2, 191

F3, 190

F4, 187

confluence, 187

Gauss, ix, 6, 83, 112

confluence, 24

Euler transformation, 84

exceptional parameter, 21

integral expression, 84

reducibility, 105

versal, 24

generalized, xiii, 150

connection coefficient, 136, 154

contiguity relation, 153, 154

integral expression, 151

local solution, 152

series expansion, 152

shift operator, 117

versal, 156

imaginary root, 70

indicial equation, 17

intertwining polynomial, 114, 195

irregular singularity, 17, 193

Jordan-Pochhammer, 8, 99, 121, 147

connection coefficient, 121, 148

contiguity relation, 148, 149

exceptional parameter, 50

generalized, 98, 107, 182

integral expression, 8, 147, 149

series expansion, 147

versal, 23, 149

Kac-Moody root system, 69

Katz’s operation, 5

Katz’s rigidity, 92

Kummer’s equation, 24

Laplace transformation, 2, 3

linear fractional transformation, 51

locally non-degenerate, 89

middle convolution, 5

minimal expression, 74, 197

monodromy, 20, 88

generator, 88

irreducible, 85

isomonodromic deformation, 141, 143

odd family, 161

connection coefficient, 161

reducibility, 162

Okubo normal form, 13

Okubo type, 42, 49, 116, 140, 185

polynomial solution, 118

Painlevé equation, 143, 195

parabolic cylinder function, 24

Pell equation, 99

Pochhammer contour, 5

polynomial solution, 118

positive root, 70

real root, 70

reduced representative, 2

reflection, 69

regular singularity, 17

local solution, 17

normalized, 17

Riemann scheme, 7, 8, 26

generalized, 34

reduction, 53

Riemann-Liouville integral, 5

Risa/Asir, 191

Schlesinger canonical form, 13, 86, 127

Schlesinger transformation, 113

Scott’s lemma, 91

series expansion, 27, 81

shift operator, 109, 113, 158, 176

simple reflection, 69

simple root, 69

Simpson’s list, 143

spectral type, see also tuple of partitions,
34
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tuple of partitions, 35
basic, 51, 139

Dynkin diagram, 142
index of rigidity = −2, 61

index of rigidity = 0, 56, 60
index of rigidity ≥ −6, 140

direct decomposition, 96

divisible, 35, 62
fundamental, 65
index, 70
index of rigidity, 40

= 0, 140
indivisible, 35
irreducibly realizable, 39
isomorphic, 36

monotone, 35
order, 36
realizable, 39
reduction, 52

rigid, 40, 143
(sub)maximal series, 174
1111,211,22, 115, 160

21,21,21,21, 49
211,211,211, 163, 164
211,22,31,31, 167
21111,222,33, 66, 143

22,22,22,31, 168
221,221,221, 168
831,93,93,93, 108
minimal series, 181–183

order ≤ 4, 163
order ≤ 8, 144
Simpson’s list, 143
Yokoyama’s list, 185

rigid decomposition, 100
simply reducible, 65–67, 173
standard, 35
trivial, 35

universal model, 63

versal
addition, 22
operator, 23

Weber’s equation, 24
Weyl algebra, 1
Weyl group, 69

length, 74
minimal expression, 74

Wronskian, 21, 131, 132, 159, 166, 196

Yokoyama’s list, 185
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