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Riemann-Liouville transform and linear differential
equations on the Riemann sphere
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Abstract. We study the Riemann-Liouville transformation of solutions to

linear differential equations on the Riemann sphere. The transformation corre-
sponds to the middle convolution of the equations. Under the transformation,
we examine the asymptotic behavior of the solutions at the singular points of

the equations. When the singular points are regular, we studied it in [O1] and
solved a connection problem for the general rigid Fuchsian equations. In this

paper we mainly study the case when some singular points are irregular.

1. Introduction

Classical special functions such as Gauss hypergeometric functions, Bessel func-
tions and Whittaker functions are solutions to linear differential equations on the
Riemann sphere and the analysis of the equations gives fundamental properties
of the special functions. Our purpose is to analyze solutions to linear differential
equations on the Riemann sphere as in the case of the classical special functions.

N. Katz [Kz] defined and studied the middle convolution and the addition of
local systems. They are invertible transformations keeping the index of rigidity of
the system. The index gives the number of accessory parameters which cannot be
determined by the local structure of the system. The corresponding transformations
of the solution are given by Riemann-Liouville integral and multiplication by a
function. The equation is called rigid if there is no accessory parameter.

Any rigid Fuchsian equation is reduced to and constructed from the trivial
equation u′ = 0 by successive applications of additions and middle convolutions,
which is proved by [Kz] for Fuchsian systems of the first order and by [O1] for scalar
higher order linear ordinary differential equations together with the definition of
the middle convolution of the equations. In this case the addition corresponds to
the multiplication by the function (x − c)λ and a study of the Riemann-Liouville
integral in [O1] gives a global information of the solution such as a connection
problem describing the relation between analytic continuations of local solutions.

We will generalize some results in [O1] when an equation has unramified ir-
regular singularities. In particular, we study the Riemann-Liouville integral of the
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solutions and clarify the change of the asymptotic behavior of the solutions under
the integral transform at the singular points. Note that the rigid single equation
without ramified irregular singularities is reduced to or constructed from the trivial
equation by successive applications of additions and middle convolutions (cf. [O6]).

These additions correspond to the multiplications by any functions ϕ such that ϕ′

ϕ

are rational functions.
Here we give some standard notation used in this paper. We mainly consider

functions of one variable x and then C[x], C(x), C[[x]] and W [x] are the space of
polynomials, the space of rational functions, the space of formal power series and
the ring of linear differential operators with polynomial coefficients, respectively.
Then W [x] is generated by x and d

dx with the relation d
dxx = x d

dx + 1. Moreover
we put W (x) := C(x)⊗W [x].

Let Cm(a, b) denote the space of functions f on the interval (a, b) ⊂ R such
that f (j) exist and define continuous functions on (a, b) for j = 0, . . . ,m. The space
Cm(a, b] is similarly defined. We also use the notation

∂ = d
dx , ϑ = x∂,

Re z = a, Im z = b (z = a+ bi, a, b ∈ R),
Z>0 = {k ∈ Z | k > 0},
(λ)m = λ(λ+ 1) · · · (λ+m− 1) (λ ∈ C, m ∈ Z>0) and (λ)0 = 1,

mFk(α1, . . . , αm;β1, . . . , βk;x) =

∞∑
n=0

(α1)n · · · (αm)n
(β1)n . . . (βk)n(1)n

xn ∈ C[[x]],

F (α,β; γ;x) = 2F1(α, β; γ;x).

Under this notation the addition Ad(ϕ) of the equation Pu = 0 corresponds to the

map u 7→ ϕu and then x 7→ x and ∂ 7→ ∂− ϕ′

ϕ inW (x). And the middle convolution

mcµ with µ ∈ C corresponds to the map u 7→ ∂−µu and then ϑ 7→ ϑ−µ and ∂ 7→ ∂
in W [x]. We can define Ad(∂−µ) in the ring C[∂−1]⊗W [x], which is isomorphic to
the ring W (x) by the correspondence (x, ∂) 7→ (−∂, x).

In §2 Riemann-Liouville transform of a function u(x) is defined by a regular-
ization of the Riemann-Liouville integral

(Iµa u)(x) =
1

Γ(µ)

∫ x

a

u(t)(x− t)µ−1dt

and we examine its fundamental properties. In §3 we prove Theorem 3.1 and
Theorem 3.7 which describe the asymptotic of Riemann-Liouville transform Iµa u
of a function u(x) in terms of the asymptotic of u(x). Namely, when a and b are
singularities of u(x), we examine the asymptotic of (Iµa u)(x) when x→ a or x→ b.
We show that the equation Pu = 0 implies

(
mcµ(P )

)
(Iµa u) = 0 in §4. In §5 we

review the linear differential equations on the Riemann sphere. Important concepts
are characteristic exponents, a generalized Riemann scheme, index of rigidity and
middle convolution of the equation. In §6 we give some examples to understand
the results in this paper.

Using versal additions introduced in [O1, §2.3], we define and construct in
[O6] a versal unfolding of any rigid differential equation on P 1

C whose irregular
singularities are unramified. Hence the equation is naturally realized as a confluent
limit of rigid Fuchsian equations and we can study the original equation by the
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Fuchsian equations and therefore in this paper we also consider regular singular
points in parallel. Moreover in [O5] we regard the singular points as new variables
and then the versal differential equation can be extended to a versal KZ equation
with several variables, which will be useful to study the confluence of singularities.

2. Definition of Riemann-Liouville transform

In this section we define Riemann-Liouville transform by a regularization of
Riemann-Liouville integral and show fundamental properties of the transform. We
will apply the transform to solutions to linear differential equations with irregular
singularities. Other regularizations are given in [O1, p.5] and [Ha, §2] mainly for
the purpose to study Fuchsian differential equations.

Definition 2.1. For µ ∈ C and a ∈ C the Riemann-Liouville transform (Euler
transformation) Iµa of a holomorphic function u(x) is defined by the complex integral

(2.1) (Iµ
a+eiθ00

u)(x) :=
1

Γ(µ)

∫ x

a

u(t)(x− t)µ−1dt =
1

Γ(µ)

∫ x

a+eiθ00

u(t)(x− t)µ−1dt

along a piecewise C1-path

L : [α, β] 3 t 7→ L(t) ∈ C, L(α) = a, L(β) = x, θ0 = ArgL′(α),

α = t0 < t1 < · · · < tm = β and L|[tj−1,tj ] ∈ C1[tj−1, tj ] (j = 1, . . . ,m),

L(s) 6= L(t) for α ≤ s < t ≤ β.

(2.2)

Sometimes the above Iµ
a+eiθ00

will be denoted by Iµa and the resulting function

Iµa u will be denoted by Iµa (u). We assume that u(x) is holomorphic along the path
L(t) for t ∈ (α, β] and may have a singularity at the starting point a = L(α) of the
path. When u(x) is bounded along L and Reµ > 0, (Iµa u)(x) is naturally defined
and holomorphic in a neighborhood of L(t) for t ∈ (α, β].

•
a

×
×
×

x

x t
Here (Iµa u)(L(t)) is defined by the path L|[α,t] and

the condition L(s) 6= L(t) for α ≤ s < t ≤ β is essen-
tial which assures that (Iµa u)(x) is holomorphic along
the path L.

We also assume that L can be replaced by a piecewise linear path, namely,

(2.3) L(t) =
tj−t

tj−tj−1
L(tj−1) +

t−tj−1

tj−tj−1
L(tj) for t ∈ [tj−1, tj ] and j = 1, . . . ,m.

We will study the case that u(x) is a solution to a differential equation Pu = 0
with P ∈ W [x] and a is a singular point of the equation. In this case (2.3) can be
always assumed.

When a, x ∈ R and x < a, we may consider

(Ǐµa u)(x) =
1

Γ(µ)

∫ a

x

u(t)(t− x)µ−1dt,

which has a clear meaning.
If we use the path L satisfying ImL(t) ≥ 0 in the case a, x ∈ R, we have

(2.4) Ǐµa u = e−µπiIµa u,
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which follows from∫ x

a

u(t)(x− t)µ−1dt =

∫ x

a

u(t)
(
eπi(t− x)

)µ−1
dt

= eµπi
∫ a

x

u(t)(t− x)µ−1dt.
•
a

×
x

×t

For K > 0 we have

(Iµ
a+eiθ00

u)(Kx) = KµIµa
K +eiθ00

(
u(Kx)

)
.(2.5)

Example 2.2. First we consider a typical example :

u(x) = xλ(c− x)λ
′
e

C′
c−x−C

x (c > 0, λ, λ′, C, C ′ ∈ C),(2.6)

v(x) := (Iµ0 u)(x) =
1

Γ(µ)

∫ x

0

tλ(c− t)λ
′
e

C′
1−t−

C
t (x− t)µ−1dt.(2.7)

If Reµ > 0 and one of the conditions

ReC > 0(2.8)

or

C = 0 and Reλ > −1(2.9)

is valid, then (Iµ0 u)(x) is naturally defined for x ∈ [0, c) and gives a holomorphic

function on C \
(
(−∞, 0) ∪ [c,∞)

)
. By the argument in this section we see that

the condition Reµ > 0 can be removed and the condition for λ in (2.9) is replaced
by λ /∈ Z<0. In fact u(x) holomorphically depends on (λ, µ) ∈ (C \ Z<0)× C.

If the path L satisfies Re C
L′(α) > 0, we can define v(x). In particular if ReC <

0, we may take −L′(α) > 0 and v(x) is naturally a holomorphic function on C \(
(−∞, 0] ∪ [c,∞)

)
.

Since u′(x)
u(x) = a0(x)

a1(x)
with a0(x), a1(x) ∈ C[x], u(x) satisfies Pu = 0 with P =

a1(x)∂ − a0(x). Here

(2.10)
u′(x)

u(x)
=
λ

x
+
C

x2
− λ′

c− x
− C ′

(c− x)2
.

Then v = Iµ0 u satisfies a differential equation Qv = 0 with Q = mcµ(P ), where
mcµ(P ) is given by (4.2) and (4.1). If C = C ′ = 0, the differential equation Qu = 0
is reduced to Gauss hypergeometric equation and

(2.11) u(x) =
Γ(λ+ 1)

Γ(λ+ µ+ 1)
xλ+µF (−λ′, λ+ 1;µ+ 1;x),

which is obtained by an easy calculation (cf. [O1, (1.47)] and (3.4)).
If λ′ = C ′ = 0, it is reduced to Kummer’s equation by a simple transformation.

If CC ′ 6= 0, it is a confluence of Jordan-Pochhammer’s equation of order 4.
We will examine the asymptotics of (Iµ0 u)(x) for x → +0 and x → c − 0 and

x→ ∞. In fact we show general theorems, which give these asymptotics.

Now we return to study Iµa u in the general case. First we assume that u(x) is
bounded on the path L and Reµ > 0 and Reµ′ > 0. We will show

(2.12) Iµ
′

a ◦ Iµa u = Iµ+µ′

a u.
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Since (Iµ
′

a ◦ Iµa u)(x) and (Iµ+µ′

a u)(x) holomorphically depend on the variable x in
the path L, it is sufficient to prove (2.12) for x = L(t) for t ∈ [t0, t1]. Hence we
may assume that L(t) = t1−t

t1−t0
L(t0) +

t−t0
t1−t0

L(t1). By a change of the variable we
may moreover assume that a = 0 and x ∈ R>0. Then

(Iµ
′

0 ◦ Iµ0 u)(x) =
1

Γ(µ′)

∫ x

0

(x− t)µ
′−1

( 1

Γ(µ)

∫ t

0

u(s)(t− s)µ−1ds
)
dt

=
1

Γ(µ)Γ(µ′)

∫ x

0

u(s)

∫ x

s

(x− t)µ
′−1(t− s)µ−1dt ds,∫ x

s

(x− t)µ−1(t− s)µ
′−1dt =

∫ x−s

0

(x− s− t)µ
′−1tµ−1dt

= (x− s)µ+µ′−1

∫ 1

0

(1− t1)
µ′−1tµ−1

1 dt1 (t = (x− s)t1)

= (x− s)µ+µ′−1Γ(µ)Γ(µ
′)

Γ(µ+ µ′)

and therefore we have (2.1).
By the same reason as above we may assume a = 0 and x ∈ (0, c) with c > 0

and L = [0, x] to prove several relations satisfied by Iµa u.
Put Cm

0 [0, c) := {u ∈ Cm[0, c) | (∂ju)(0) = 0 (0 ≤ j ≤ m)} for m ∈ Z≥0. If
u ∈ Cm

0 [0, c) and Reµ > 0,∫ x

a

u(t)(x− t)µ−1dt =

∫ x

a

u(x− t)tµ−1dt

and Iµ0 (u) ∈ Cm
0 [0, c). Here we note that (Iµ0 u)(x) holomorphically depends on µ.

Suppose u ∈ C1
0 [0, c). Since

d
dt (u(t)(x− t)µ) = u′(t)(x− t)µ − µu(t)(x− t)µ−1

= u′(t)(x− t)µ − d
dx (u(t)(x− t)µ)

= xu′(t)(x− t)µ−1 − tu′(t)(x− t)µ−1 − µu(t)(x− t)µ−1

we have

Iµ0 (u) = Iµ+1
0 (u′) = ∂Iµ+1

0 (u)

for Reµ > 0 and

Iµ0 (ϑu) = (ϑ− µ)Iµ0 (u)(2.13)

for Reµ > 1.
Hence for u ∈ Cm

0 [0, c) with m ∈ Z≥0 we have

Iµ0 (u) = ∂mIµ+m
0 (u) = Iµ+m

0 (∂mu)(2.14)

and define Iµ0 (u) for Reµ > −m by this equality. In particular

I00 (u) = I10 (∂u) = u

for u ∈ C1
0 [0, c). If 0 < Reµ < m and u ∈ Cm

0 [0, c),

I−µ
0 Iµ0 (u) = Im−µ

0 ∂mIµ0 (u) = ∂mIm−µ
0 Iµ0 (u) = ∂mIm0 (u) = u,

Iµ0 I−µ
0 (u) = Iµ0 ◦ Im−µ

0 (∂mu) = Im0 (∂mu) = u,



6 TOSHIO OSHIMA

namely, if |Reµ| < m and u ∈ Cm
0 [0, c), we have

(2.15) I−µ
0 ◦ Iµ0 (u) = I00 (u) = u.

Let k ∈ Z≥0. If Reλ > m and ϕ(x) ∈ C∞[0, c), then ϕ(x)xλ logk x ∈ Cm
0 [0, x)

and we may apply Iλ0 to u. In particular

(2.16) Iµ0 (x
λ) =

Γ(λ+ 1)

Γ(λ+ µ+ 1)
xλ+µ

if Reλ > −1 and Reµ > 0. Applying dk

dλk to the both side of the equation, we have

Iµ0 (x
λ logk x) =

k∑
j=0

(
k

j

)(
dk−j

dλk−j

Γ(λ+ 1)

Γ(λ+ µ+ 1)

)
xλ+µ logj x.(2.17)

For λ ∈ C \ Z<0 The right hand side of the above is holomorphic for (λ, µ) ∈
(C\Z<0)×C and we define Iµ0 (x

λ logk x) by this equality. Owing to this definition,

we have (2.13) and (2.14) for u(x) = xλ logk x if λ /∈ Z<0. Moreover we have (2.12)
and (2.15), namely,

(2.18) Iµ
′

0 ◦ Iµ0 (u) = Iµ+µ′

0 (u) and I00 (u) = u

for xλ logk x if λ /∈ Z<0 and λ+ µ /∈ Z<0.
We examine Iµ0 (u) for the solution u to a differential equation with a singularity

at the origin. If the origin is a regular singular point of the equation, the solutions

(2.19) u(x) =

k∑
j=0

ϕj(x)x
λ logj x

with λ ∈ C and suitable holomorphic functions ϕj(x) at the origin span a space of
the local solutions. We may assume that c is also a singular point and x ∈ (0, c)
are regular point. Then u(x) ∈ Cm

0 [0, c) if Reλ > m. For any given m ∈ Z>0,

u(x) in (2.19) is a finite sum of the functions Ci,jx
λ+i logj x with i ∈ Z≥0 and a

function in Cm
0 [0, c) and therefore if Re λ /∈ Z, Iµ0 (u) is naturally defined. As a

consequence, Iµ0 (x
τu(x)) is defined when Re τ and Reµ are sufficiently large and

Iµ0 (x
τu(x)) extends holomorphically for (τ, µ) ∈ {τ ∈ C | τ + λ /∈ Z<0} × C and

satisfies (2.13) and (2.14). Moreover if λ+ µ /∈ Z<0, we have (2.18). Thus we have
the following proposition.

Proposition 2.3. Suppose u(x) is of the form (2.19) with convergent series
ϕj(x) and λ ∈ C \ Z<0, Then Iµ0 (u) is naturally defined for any µ ∈ C and µ is a
holomorphic parameter of Iµ0 (u) and we have (2.13) and (2.14). Moreover we have
(2.18) if λ+ µ /∈ Z<0.

If the origin is an unramified irregular singular point of the equation, the local
solutions u(x) with the asymptotic expansion

u(x) ∼
k∑

j=0

ϕj(x)x
λ logj x · exp(− C1

xm1
− C2

xm2
− · · · − CK

xmK
) for x→ eiθ00,

ϕj ∈ C[[x]], Cj ∈ C and mj ∈ Z with m1 > m2 > · · · > mK > 0

(2.20)

span the space of the local solutions. Here the condition x→ eiθ00 means that

(2.21) Vθ0,ϵ,r := {seiθ ∈ C | 0 < s < r, |θ − θ0| ≤ ϵ} 3 x→ 0
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for suitable ϵ > 0 and r > 0. Namely if ϕj(x) = aj,0 + aj,1x+ aj,2 + · · · , then

lim
r→+0

sup
x∈Vθ0,ϵ,r

|EN (x)x−N | = 0 for N ∈ Z≥0, where

EN (x) = u(x)x−λ exp
(

C1

xm1
+ C2

xm2
+ · · ·+ CK

xmK

)
−

N∑
ν=0

k∑
j=0

aj,νx
ν logj x.

We define exp(− C1

xm1
− C2

xm2
− · · · − CK

xmK
) = 1 when K = 0. We note that ∂mu

satisfies a similar asymptotic which is obtained by applying ∂m to the right hand
side of (2.20).

Moreover we note that if the origin is a ramified singular point, it changes

into an unramified singular point under a new coordinate y = x
1
q with a suitable

q ∈ Z>0.

Theorem 2.4. Put θ0 = ArgL′(α) for the path (2.2) of the integration (2.1)
to define Iµ0 u. Suppose u(x) has the asymptotic (2.20) with the condition

K = 0 and λ ∈ C \ Z<0(2.22)

or

ReC1e
−im1θ0 > 0.(2.23)

Then Iµ0 (u) is defined for any µ ∈ C and µ is a holomorphic parameter of Iµ0 (u)
and we have (2.13) and (2.14).

If the condition (2.22) together with λ+µ /∈ Z<0 is valid or the condition (2.23)
is valid, (2.18) holds for any µ′ ∈ C.

Proof. We may assume that x = L(t) with t ∈ [t0, t1] and L(s) =
s−α
t1−αL(t1)

for s ∈ [α, t1]. Then under the new coordinate y = e−iθ0x we may assume L|[α,t0]
equals [0, c] with c > 0. Then the theorem is clear by the argument we have
done. □

Remark 2.5. i) Suppose K = 0 in Theorem 2.4. Put ũ = xλ̃−λu. It follows

from (2.17) that 1
Γ(λ̃+1)

Iµ0 ũ is well defined and holomorphic for (λ̃, µ) ∈ C2. In this

interpretation 1
Γ(λ+1)I

µ
0 u is well-defined even if λ ∈ Z<0.

ii) Since

I−n
a (u) = ∂nI00 (u) = ∂nu,

we sometimes denote Iµa by ∂−µ.

Definition 2.6. We define a Riemann-Liouville integral Ĩµ
eiθ0∞ of u(x) by the

complex integral

(Ĩµ
eiθ0∞u)(x) :=

1

Γ(µ)

∫ ∞

x

u(t)(t− x)µ−1dt =
1

Γ(µ)

∫ eiθ0∞

x

u(t)(t− x)µ−1dt

along a path

L : [α,∞) 3 t 7→ L(t) ∈ C, L(α) = x, lim
t→∞

|L(t)| = ∞, lim
t→∞

ArgL(t) = θ0,

α = t0 < t1 < t2 < · · · < tm, L|[tj−1,tj ] ∈ C1[tj−1, tj ] (j = 1, . . . ,m),

L|[tm,∞) ∈ C1[tm,∞), L(s) 6= L(t) (α ≤ s < t).

Here u(x) is holomorphic along L. For simplicity, we may denote Iµ
eiθ0∞ by I∞a .
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Suppose u(x) has an asymptotic

(2.24) u(x) ∼
k∑

j=0

ϕj(
1
x )x

−λ logj x · exp(−C1x
m1 − · · · − Ckx

mK ) for x→ eiθ0∞.

Here mj ∈ Z, ϕj ∈ C[[x]] and m1 > m2 > · · · > mK > 0 and the condition
x→ eiθ0∞ is defined by 1

x → e−iθ00. Since∫ ∞

x

u(t)(t− x)µ−1dt =

∫ 1
x

0

u( 1s )(
1
s − 1

1
x

)µ−1 ds
s2

= xµ−1

∫ 1
x

0

s−µ−1u( 1s )(
1
x − s)µ−1ds,

we have

(2.25) (Ĩµ
eiθ0∞u)(x) = xµ−1 ·

(
Iµ
e−iθ00

x−µ−1u( 1x )
)
( 1x ).

In particular

Ĩµ∞(x−λ) = xµ−1
(
(Iµ0 x

λ−µ−1)
∣∣
x 7→ 1

x

)
= xµ−1Γ(λ− µ)

Γ(λ)
x1−λ =

Γ(λ− µ)

Γ(λ)
x−λ+µ.

Hence if

K = 0 and λ− µ /∈ Z≤0(2.26)

or

ReC1e
imθ0 > 0(2.27)

is valid, Iµ
eiθ0∞u is defined and satisfies (2.13) and (2.14). Moreover we have (2.18)

if the condition λ + µ + µ′ /∈ Z≤0 and (2.26) are valid or the condition (2.27) is
valid. In the same way we have

(2.28) (Iµc u)(x) = xµ−1 ·
(
Ĩµ1

c

x−µ−1u( 1x )
)
( 1x )

for x > 1, which is useful to examine the asymptotic of (Iµc u)(x) for x→ ∞.

Remark 2.7. (Cf. [O1, p.5]) Let Pu = 0 be a differential equation with
P ∈ W [x] and u1, . . . , un be linearly independent solutions to the equation in a
neighborhood of a point x0 = ϵeiArg x. Here ϵ with 0 < ϵ� 1 and n is the order of
P and x 6= 0 and we suppose that tx is not the singular point of the equation for
t ∈ (0, 1). Then we define

(Îµ0 u)(x) =
1

Γ(µ)(1− e2πiµ)

∫ +x,+0,−x,−0

u(t)(t− x)µ−1dt

by the integration along the Pochhammer cycle L1+C1+L2+C2+L3+C3+L4+C4

•× × ×0 x0 x c
L1

L3

L2

L4

C1

C2 C3

C4

We can define for any µ ∈ C by the analytic continuation to µ ∈ Z<0.
The analytic continuation along the path [0, 2π] 3 t→ x0e

iθt induces transfor-
mations u(x) 7→ u1(x) := u(e2πix) and u 7→ uA. Here A ∈ GL(n,C) is called the
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local monodromy matrix. This integration is used by [DR] to define a transforma-
tion of solutions to Fuchsian systems.

If (Iµ0 u)(x) =
∫ x

0
u(t)(t− x)µ−1dt is naturally defined, then

Îµ0 u = Iµ0 u− Iµ0 u
1 and Îµ0 u = (Iµ0 u)(1−A).

For example,

Îµ0 x
λ =

(1− e2πiλ)Γ(λ+ 1)

Γ(λ+ µ+ 1)
xλ+µ.

Suppose u(x) is a solution to the equation Pu = 0 with P ∈ W [x]. We may
assume that the path has no intersection with the disc Dϵ := {x ∈ C | |x| < ϵ}.
Then the above integration is defined even if there are several singular points of the
equation in Dϵ, which will be useful to examine the confluence of singular points.
The monodromy around a circle enclosing several singular points is discussed in
[O4].

3. Asymtotic of Riemann-Liouville integral

In this section we examine the asymptotic of holomorphic functions at singular
points under the Riemann-Liouville transform so that the result can be applied to
solutions to linear differential equations.

Theorem 3.1. Assume a holomorphic function u(x) has an asymptotic

(3.1) u(x) ∼
k∑

j=0

ϕj(x)x
λ logj x · exp(− C1

xm1
− C2

xm2
− · · · − CK

xmK
) for x→ eiθ00

with ϕj ∈ C[[x]], θ0 ∈ R, k, K ∈ Z≥0, λ, Cj ∈ C, mj ∈ Z and m1 > m2 > · · · >
mK > 0. Here x→ eiθ00 means e−iθ0x→ +0.

To define v(x) = (Iµ0 u)(x) by (2.1) we moreover assume the condition (2.22)

K = 0 and λ /∈ Z<0

or the condition (2.23)

ReC1e
−m1θ0 > 0 (θ0 := ArgL′(α)).

i) Then v(x) has the asymptotic

(3.2) v(x) ∼
k∑

j=0

ψj(x)x
λ0 logj x · exp

(
− C1

xm1
− C2

xm2
− · · · − CK

xmK

)
for x→ eiθ00.

Here ψj ∈ C[[x]] and λ0 ∈ C. Fix k0 ∈ Z satisfying ϕj(0) = 0 for k0 < j ≤ k and
−1 ≤ k0 ≤ k. Then ψj(0) = 0 for k0 < j ≤ k.

(Case I) Assume (2.22). Then

λ0 = λ+ µ, ψk0
(0) =

Γ(λ+ 1)

Γ(λ+ µ+ 1)
ϕk0

(0).(3.3)

Moreover if k = 0 and ϕ0(x) = a0 + a1x+ a2x+ · · · , then

ψ0 =
Γ(λ+ 1)

Γ(λ+ µ+ 1)

(
a0 +

(λ+ 1)1a1
(λ+ µ+ 1)1

x+
(λ+ 1)2a2
(λ+ µ+ 1)2

x2 + · · ·
)
.(3.4)

If ϕj are convergent power series and u(x) equals the right hand side of (3.1), then
ψj are convergent power series and v(x) equals the right hand side of (3.2).
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(Case II). Assume (2.23). Then

λ0 = λ+ (m1 + 1)µ and ψk0
(0) = (m1C1)

−m1µϕk0
(0).(3.5)

ii) Let c ∈ C and L be a piecewise C1-path which satisfies

L : [α, β] 3 t→ C with L(α) = 0 and L(β) = c.

For x = L(t) with α ≤ t < β we define Iµ0 (u)(x) by the path L|[α,t]. We examine
u(x) and (Iµ0 u)(x) when x = L(t) is close to c, namely, t is close to β. We define
Arg

(
L(s2) − L(s1)

)
with α ≤ s1 < s2 ≤ β, θ0 = ArgL′(α), θ1 = ArgL′(β) and

(c− x)λ so that they are compatible.
We note that L(s1) 6= L(s2) but L(α) may equal L(β). Assume

u(x) =
(
a′ + o(1)

)
(c− x)λ

′
exp

(
C′

1

(c−x)m
′
1
+ · · ·+ CK′

(c−x)
m′

K′

)
for x→ c− eiθ10.

Here a′, C ′
j ∈ C, mj ∈ Z and m′

0 > m′
1 > · · · > m′

K′ > 0.
(Case III) Assume K ′ = 0 and Re (λ′ + µ) < 0. If L(α) = L(β) and K = 0,

we moreover assume Reλ > Reλ′. Then

v(x) =
Γ(−λ′ − µ)

Γ(−λ′)
(
a′ + o(1)

)
(c− x)λ

′+µ for x→ c− eiθ10.

(Case IV) Assume ReC ′
1e

−im′
1θ1 > 0. Then

v(x) = (m′
1C

′
1)

−m′
1µ
(
a′ + o(1)

)
(c− x)λ+(m′

0+1)µ exp
(

C′
1

(c−x)m
′
1
+ · · ·+ CK′

(c−x)
m′

K′

)
.

For s0 ∈ (α, β) we put x0 = L(s0) and define v0(x) = (Iµx0
u)(x) by the path

L|[x0,t] with x = L(t). Then the asymptotic of v0(x) is same as that of v(x) given
in (Case III) and (Case IV).

(Case V) Assume K ′ = 0 and Re (λ′ + µ) > 0 or ReC1e
−im′

1θ1 < 0. If
L(α) = L(β) and K = 0, we moreover assume Re (λ+ µ) > 0. Then

v(x) =
1

Γ(µ)

∫ c−eiθ10

eiθ00

u(t)(c− t)µ−1dt+ o(1) for x→ c− eiθ10.

Remark 3.2. Under the assumption in Theorem 3.1 (Case III) , we have

(Ǐcu)(x) =
Γ(λ′+1)

Γ(λ′+µ+1) (a
′ + o(c− x))(c− x)λ

′+µ and therefore

Iµ0 (u) =
sin(λ′ + µ)

sinλ′
Ǐµc (u) + o

(
(c− x)λ

′+µ
)

for x→ c− eiθ10.

Note that the connection coefficient between the Riemann-Liouville transforms of
a function is written by trigonometric functions. This is commonly true because
we can construct local solutions by successive applications of the transforms. See
the examples (6.9) and (6.18).

Proof of Theorem 3.1. Since Iµ0 (u) = Iµ+m
0 (∂mu) with m ∈ Z≥0, we may

assume Reµ > 0 to prove the theorem.
First suppose K = 0 and λ /∈ Z. Then the statement ii) follows from the value

Tµ
a,b(u)(1) in [O1, Lemma 12.2] and the statement i) follows from (2.16) and the

fact that Iµ0 (u) ∈ Cm
0 (0, 1) if u ∈ Cm

0 (0, 1).
The statement i) in the theorem follows from [O6, Lemma 5.1]. We will show

the statement (Case IV) in the theorem. The proof of other statements are easier.



RIEMANN-LIOUVILLE TRANSFORM AND LINEAR DIFFERENTIAL EQUATIONS 11

Put C ′
1 = C, m′

1 = m, mj = m′
j and K

′ = K for simplicity. Suppose ReC > 0.
Let ϕ ∈ C[0, 1]. Then

I(x) :=

∫ x

0

(1− t)λe
C

(1−t)m
+

C2
(1−t)m2 +···+ CK

(1−t)mK (x− t)µ−1ϕ(t)dt

= xµ
∫ 1

0

(1− xs)λe
C

(1−xs)m
+

C2
(1−xs)m2 +···

(1− s)µ−1ϕ(xs)ds (t = xs)

= xµ
∫ 1

0

(1− x+ xs1)
λe

C
(1−x+xs1)m

+
C2

(1−x+xs1)m2 +···
sµ−1
1 ϕ(x− xs1)ds1

(s1 = 1− s)

= xµ(1− x)λ
∫ 1

0

(1 +
xs1
1− x

)λe
C

(1−x)m(1+
xs1
1−x

)m
+

C2

(1−x)m2 (1+
xs1
1−x

)m2
+···

· sµ−1
1 ϕ(x− xs1)ds1

= xµ(1− x)λ+µ

∫ 1
1−x

0

(1 + xs2)
λe

C
(1−x)m(1+xs2)m

+
C2

(1−x)m2 (1+xs2)m2 +···

· sµ−1
2 ϕ

(
x− x(1− x)s2

)
ds2 (s1 = (1− x)s2)

= xµ(1− x)λ+µe
C

(1−x)m
+

C2
(1−x)m2 +···

∫ 1
1−x

0

(1 + xs2)
λsµ−1

2

· e
C

(1−x)m
( 1
(1+xs2)m

−1)+
C2

(1−x)m2 ( 1
(1+xs2)m2 −1)+···

ϕ
(
x− x(1− x)s2

)
ds2

(s2 = (1− x)ms3)

= xµ(1− x)λ+(m+1)µe
C

(1−x)m
+

C2
(1−x)m2 +···

·
∫ 1

(1−x)m+1

0

(
1 + x(1− x)ms3

)λ
sµ−1
3 e−f(x,(1−x)ms3)ϕ

(
x− x(1− x)m+1s3

)
ds3

with

f(x, t) :=
C

(1− x)m

(
1− 1

(1 + xt)m

)
+

C2

(1− x)m2

(
1− 1

(1 + xt)m2

)
+ · · · .

Suppose 1 ≤ s2 ≤ 1
1−x ,

1
2 < x < 1 and m > 0. Then xs2 >

1
2 and

1− ( 23 )
m < 1− 1

(1 + xs2)m
< 1.

Hence putting M = max0≤t≤1 |ϕ(t)| and A = 1
1−x , we have

lim
x→1−0

∣∣∣∫ 1
1−x

1

(1 + xs2)
λe

C
(1−x)m

( 1
(1+xs2)m

−1)+
C2

(1−x)m2 ( 1
(1+xs2)m2 −1)+···

·
(

s2
(1− x)m

)µ−1

v
(
x− x(1− x)s2

) ds2
(1− x)m

∣∣∣
≤ lim

A→+∞
(A− 1)(1 + A)|λ|A(m+1)|µ|+mMe−ReC(1− 2m

3m )Am+|C1|Am−1+··· = 0.
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Suppose 0 ≤ s2 = (1− x)ms3 ≤ 1, 1
2 < x < 1, 0 < m2 < m and t > 0. Then

(1 + xs2)
m − 1

(1− x)m(1 + xs2)m
≥ mxs2

2m+1(1− x)m
=
mxs3
2m+1

≥ ms3
2m+2

,

1
(1−x)m2

(
1− 1

(1+t)m2

)
1

(1−x)m

(
1− 1

(1+t)m

) = (1− x)m−m2
(1 + t)m − (1 + t)m−m2

(1 + t)m − 1

< (1− x)m−m2
x→1−0−−−−−→ 0.

Hence there exists δ > 0 such that

|e−f(x,(1−x)ms3)| ≤ e−ReC
ms3

2m+3 for 0 ≤ s3 ≤ 1
(1−x)m and 1− δ < x < 1.

Since

lim
x→1−0

( C

(1− x)m

(
1− 1

(1 + x(1− x)ms3)m

)
+

C2

(1− x)m2

(
1− 1

(1 + x(1− x)ms3)m2

)
+ · · ·

)
= mCs3,

Lebesgue’s dominated convergence theorem proves

lim
x→1−0

∫ 1

(1−x)m+1

0

(
1 + x(1− x)ms3

)λ
sµ−1
3 e−f(x,(1−x)ms3)ϕ

(
x− x(1− x)m+1s3

)
ds3

= lim
x→1−0

∫ 1
(1−x)m

0

(
1 + x(1− x)ms3

)λ
sµ−1
3 e−f(x,(1−x)ms3)ϕ

(
x− x(1− x)m+1s3

)
ds3

=

∫ ∞

0

sµ−1
3 e−mCs3ϕ(1)ds3 = (mC)−µ

∫ ∞

0

sµ−1e−sϕ(1)ds = (mC)−µΓ(µ)ϕ(1),

which implies

I(x)

Γ(µ)
= (mC)−µ

(
ϕ(1) + o(1)

)
(1− x)λ+(m+1)µe

C
(1−x)m

+
C2

(1−x)m2 +···
for x→ 1− 0.

In the general case, we may assume that the path L is of the form (2.2) and
(2.3). We may moreover assume that x = L(t) with t ∈ [tm−1, tm). Since we may
assume |(Iµa u)(x) − (IµL(tm−1u)

(x)| is bounded for x → c − eiθ10, we have only to

examine the asymptotic (IµL(tm−1)
u)(x) when x → c − eiθ10. Hence we have the

statement (Case IV) from the estimate we have just proved . □

Remark 3.3. i) The condition Re (λ′+µ) < 0 or ReC1e
−im′

0θ1 > 0 is essential
for the claim ii) in the theorem, which assures that limx→c−eiθ10 |u(x)| = ∞.

ii) If Re (λ′ + µ) > 0 and λ /∈ Z<0,(
Iµ0 x

λ(1− x)λ
′)
(1) =

1

Γ(µ)

∫ 1

0

xλ(1− x)λ
′+µ−1dx =

Γ(λ+ 1)Γ(λ′ + µ)

Γ(µ)Γ(λ+ λ′ + µ+ 1)
.

Example 3.4. Let u(x) and v(x) be the functions given in Example 2.2.
When C = 0 , the series expansion of the function (3.4) in the theorem is

obtained by that of the holomorphic function (1 − x)λ
′
exp(− C′

1−x ) at the origin.

Hence if C = C ′ = 0, the series expansion

(1− x)λ
′
=

∞∑
n=0

(−λ′)n
n!

xn
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shows

v(x) = Iµ0
(
xλ(1− x)λ

′)
=

Γ(λ+ 1)

Γ(λ+ µ+ 1)
xλ+µ

∞∑
n=0

(λ+ 1)n(−λ′)n
(λ+ µ+ 1)nn!

xn

=
Γ(λ+ 1)

Γ(λ+ µ+ 1)
xλ+µF (λ+ 1,−λ′;λ+ µ+ 1;x).

If ReC > 0,

lim
x→+0

v(x)x−λ−2µe
C
x = C−µ.

If C ′ = 0 and Re (λ′ + µ) < 0,

lim
x→1−0

v(x)(1− x)−λ′−µ =
Γ(−λ′ − µ)

Γ(−λ′)
.

If ReC ′ > 0,

lim
x→1−0

v(x)(1− x)−λ′−2µe−
C′
1−x = (C ′)

−µ
.

Example 3.5. Here we give another example of the claim i) in the theorem.
Assume ReC > 0 and λ′ = C ′ = 0 in Example 2.2. Then v(x) is

(Iµ0 x
λe−

C
x )(x) =

1

Γ(µ)

∫ x

0

tλ+1e−
C
t (x− t)µ−1 dt

t

=
1

Γ(µ)

∫ ∞

1

xλ+1s−λ−1
1 e−C

s1
x xµ−1( s1−1

s1
)µ−1 ds1

s1
(t = x

s1
)

=
1

Γ(µ)
xλ+µ

∫ ∞

1

s−λ−µ−1
1 (s1 − 1)µ−1e−

Cs1
x ds1

=
1

Γ(µ)
xλ+µe−

c
x

∫ ∞

0

sµ1 (s1 + 1)−λ−µ−1e−
c
x s1 ds1

s1

=
1

Γ(µ)
xλ+2µe−

C
x

∫ ∞

0

sµ2 (1 + xs2)
−λ−µ−1e−Cs2 ds2

s2
(s1 = xs2)

=
1

Γ(µ)
xλ+2µe−

C
x

∫ ∞

0

∞∑
n=0

(−x)nsµ+n
2

(λ+ µ+ 1)n
n!

e−Cs2 ds2
s2

=
C−µ

Γ(µ)
xλ+2µe−

c
x

∫ ∞

0

∞∑
n=0

(− x
C )n

(λ+ µ+ 1)n
n!

sµ+ne−s ds
s(

s = Cs2,

∫ ∞

0

sµ+ne−s ds
s = Γ(µ+ n)

)
∼ C−µxλ+2µe−

c
x

( ∞∑
n=0

(µ)n(λ+ µ+ 1)n
n!

(− x
C )n

)
(x→ +0)

= C−µxλ+2µe−
c
x 2F0(µ, λ+ µ+ 1;− x

C ).

Example 3.6. We give an example related the singular point ∞.

Ĩµ∞(xλ) = xµ−1
(
Iµ0 x

−µ−1−λ |x 7→ 1
x

)
= xµ−1(Γ(−λ−µ)

Γ(−λ) x−1−λ |x 7→ 1
x
)

=
Γ(−λ− µ)

Γ(−λ)
xλ+µ (x→ +∞, λ+ µ /∈ Z≥0).

(3.6)
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We give other examples on the asymptotic when x→ ∞. Owing to (2.25), we have

Ĩµ∞(xλe−x) =
1

Γ(µ)

∫ ∞

x

tλ+1e−t(t− x)µ−1 dt
t

=
1

Γ(µ)

∫ ∞

1

xλ+µtλe−xt(t− 1)µ−1dt

=
xλ+µe−x

Γ(µ)

∫ ∞

0

(t+ 1)λe−xttµ−1dt

=
xλe−x

Γ(µ)

∫ ∞

0

(1 + t
x )

λe−ttµ−1dt

=
xλe−x

Γ(µ)

∫ ∞

0

∞∑
n=0

(−λ)n
n!

(− t
x )

ne−ttµ−1dt,

Ĩµ∞(xλe−x) ∼ xλe−x
∞∑

n=0

(−λ)n(µ)n
n!

(−x)−n

= xλe−x
2F0(−λ, µ;− 1

x ) (x→ +∞).

(3.7)

This is also obtained from Example 3.5 and the relation (2.28).
If ReC1 > 0, then

Ĩµ+∞(xλ exp(−C1x
m1 − · · · )) = xµ−1

(
Iµ+0(x

−µ−1x−λ exp(− C1

xm1
− · · · ) |x→ 1

x

)
= xµ−1

(
(m1C1)

−µ
(
1 + o(1)

)
x−λ−µ−1+(m1+1)µ exp(− C1

xm1
− · · · ) (x→ +0) |x→ 1

x

)
=

(
1 + o(1)

)
(m1C1)

−µxλ−(m1−1)µ exp(−C1x
m1 − · · · ) (x→ +∞).

In general we have the following theorem by Theorem 3.1 and the equalities
(2.25) and (2.28).

Theorem 3.7. Assume u(x) has an asymptotic

u(x) ∼
k∑

j=0

ϕj(
1
x )x

−λ logj 1
x · exp(−C1x

m1 − C2x
m2 − · · · − CKx

mK )

for x→ eiθ0∞

(3.8)

with ϕj ∈ C[[x]], λ, Cj ∈ C, θ0 ∈ R, mj ∈ Z and m1 > m2 > · · · > mK > 0.

i) To define v(x) = (Ĩµ
eiθ0∞u)(x) we assume (2.26) or (2.27). Then v(x) has

the asymptotic

v(x) ∼
k∑

j=0

ψj(
1
x )x

−λ0 logj 1
x · exp

(
−C1x

m1 − C2x
m2 − · · · − CKx

mK

)
for x→ eiθ0∞.

(3.9)

Here ψj ∈ C[[x]] and λ0 ∈ C. Fix k0 ∈ Z satisfying ϕj(0) = 0 for k0 < j ≤ k and
−1 ≤ k0 ≤ k. Then ψj(0) = 0 for k0 < j ≤ k.

(Case I) Assume (2.22). Then

λ0 = λ− µ, ψk0
(0) =

Γ(λ− µ)

Γ(λ)
ϕk0

(0).(3.10)
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Moreover if k = 0 and ϕ0(x) = a0 + a1x+ a2x+ · · · , then

ψ0(
1
x ) =

Γ(λ− µ)

Γ(λ)

(
a0 +

(λ− µ)1a1
(λ)1

x−1 +
(λ− µ)2a2

(λ)2
x−2 + · · ·

)
.(3.11)

If ϕj are convergent power series and u(x) equals the right hand side of (3.8), then
ψj are convergent power series and v(x) equals the right hand side of (3.9).

(Case II). Assume (2.23). Then

λ0 = λ− (m1 − 1)µ, ψk0(0) = (m1C1)
−m1µϕk0(0).(3.12)

ii) Let c ∈ C and L be a piecewise C1-path which satisfies

L : [α,∞] 3 t→ C with L(α) = c and lim
t→∞

ArgL′(t) = θ0.

For x = L(t) with t ∈ (α,∞), we assume that w(x) = (Iµc u)(x) is defined by the
path L|[α,t].

(Case III) Assume K = 0 and Reλ < 1. Then

w(x) =
Γ(1− λ)

Γ(1− λ+ µ)

(
a+ o(1)

)
x−λ+µ for x→ eiθ0∞.

(Case IV) Assume ReC1e
−im1θ0 < 0. Then

w(x) = (−m1C1)
−m1µ

(
a+ o(1)

)
x−λ−(m1−1)µ exp

(
−C1x

m1 − · · · − CKx
mK

)
for x→ eiθ0∞.

Remark 3.8. Suppose k = 0 and m1 = K = 1 in Theorem 3.7. Owing to
Example 3.6, we have

ϕ0(x) = a0 + a1x+ · · · , ψ0(x) = b0 + b1x+ · · ·

bj =

j∑
ν=0

aj−ν
(µ)ν(λ+ µ+ 1 + j − ν)ν

(−C)νν!
=

j∑
ν=0

aj−ν
(µ)ν(−λ− µ− j − 1)ν

Cνν!
.

4. Middle convolution of a differential operator

In this section we study the differential equation satisfied by the Riemann-
Liouville transform of a solution to a linear differential equation on P 1

C. The result-
ing equation is the middle convolution of the original equation.

For P ∈W [x] we put

(4.1) ∂KP = ∂K
∑

ai,jx
i∂j =

∑
i,j

ci,j∂
iϑj

Here we choose K ∈ Z≥0 so that K ≥ i − j for any (i, j) with ai,j 6= 0. Then for
µ ∈ C we define the middle convolution mcµ(P ) by

(4.2) mcµ(P ) = ∂−N
∑
i,j

ci,j∂
i(ϑ− µ)j ∈W [x].

Here N ∈ Z≥0 is taken to be maximal so that
∑

i,j ci,j∂
i(ϑ − µ)j ∈ ∂NW [x] for

P 6= 0. It is clear that mcµ(P ) does not depend on the choice of K. Note that

(4.3) mcµ′ ◦mcµ(P ) = mcµ+µ′(P ) and mc−µ ◦mcµ(P ) = P

if P /∈ ∂W [x].
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Remark 4.1. For P ∈ W (x) we define mcµ(P ) = mcµ(ϕP ) with ϕ ∈ C(x) so
that ϕ 6= 0, ϕP ∈W [x] and degx ϕP is minimal. In [O1, 1.1] we define the map R
of W (x) to W [x] by RP = ϕP .

Theorem 4.2. Let P ∈ W [x] and u(x) be a solution to Pu = 0 with the
asymptotic expansion (2.20). If mj ∈ Z>0 and

λ /∈ Z and λ+ µ /∈ Z(4.4)

or

ReC1e
−im1θ0 > 0(4.5)

in (2.20), then

(4.6) mcµ(P )(I
µ
0 u) = 0.

Proof. Let Q ∈ W [x]. Then Qu has an asymptotic expansion of the form

(2.20) by changing λ and ϕ̂(x) by λ0 and ϕ̂0(x). Here λ0 = λ + µ /∈ Z if (4.4) is
not valid. Under the notation (4.1) and (4.2)

0 = Iµ0 (∂
KPu) = Iµ0 (

∑
ci,j∂

iϑju) =
∑

ci,j∂
i(ϑ− µ)Iµ0 (u) = ∂Nmcµ(P )I

µ
0 (u).

Put u0 = mcµ(P )I
µ
0 (u). The equation ∂Nu0 = 0 means u0 ∈ C[x]. On the other

hand, Theorem 3.1 implies

u0 ∼ e−
C1

xm1 −···− CK
xmK

∑
xλ0ϕj(x) log

j x (x→ eiθ00)

and therefore u0 = 0. □

Remark 4.3. i) In the above theorem the condition Pu = 0 implies that
mcµ(P )I

µ
0 (u) is a polynomial or 0 even without the condition λ + µ /∈ Z, which

follows from the above proof.
ii) Note that ∂(x2∂ + 1)u = 0 with u(x) = 1 + e

1
x . Then (x2∂ + 1)u 6= 0 and

u(x) ∼ e
1
x for x→ +0 and u(x) ∼ 1 for x→ −0.

We define

W0[x]∂
µ :=W [x]⊗ C[∂−1]⊗ ∂µ,

∂µ
′
∂µ

′
= ∂µ+µ′

and ∂µx = x∂µ + µ∂µ−1.

Then

W0[x]∂
µ′

×W0[x]∂
µ 3 (P ′, P ) 7→ P ′P ∈W [x]0∂

µ+µ′

and the map

Ad(∂µ) : W0[x] 3 P 7→ ∂µP∂−µ ∈W0[x]

defines an endomorphism of the ring W0[x]. Then mcµ(P ) = ∂N
′−µP∂µ. Here N ′

is a minimal integer so that ∂N
′−µP∂µ ∈W [x].

Remark 4.4. Replacing ∂−µ by Iµa , W0[x]∂
−µ acts on a local singular solution

u(x) of a differential equation. Then the following calculation is valid.

(4.7) Pu = 0 ⇒ P∂µ∂−µu = 0 ⇒ (∂N
′−µP∂µ)(∂−µu) = 0 ⇒ mcµ(P )I

µ
a u = 0.
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Example 4.5. We calculate the equation Pv = 0 satisfied by v(x) = (Iµ0 u)(x)

with u(x) = xλe−
C
x , ReC > 0 and x > 0, which is the function in Example 2.2

with λ′ = C ′ = 0. Namely, v(x) = 1
Γ(µ)

∫ x

0
tλe−

C
t (x − t)µ−1dt satisfies Pv = 0.

Since

u′(x)

u(x)
=
λ

x
+
C

x2
=
λx+ C

x2
,

we have

P = mcµ Ad
(
xλe−

C
x

)
∂

= mcµ
(
x2∂ − (λx+ C)

)
= mcµ

(
∂x2∂ − ∂(λx+ C)

)
= mcµ

(
∂x(x∂ − λ)− C∂

)
= mcµ

(
(ϑ+ 1)(ϑ− λ)− C∂

)
= (ϑ+ 1− µ)(ϑ− λ− µ)− C∂

= ϑ2 − (λ+ 2µ− 1)ϑ+ (µ+ λ)(µ− 1)− C∂

= x2∂2 + x∂ − (λ− 2µ− 1)x∂ + (µ+ λ)(µ− 1)− C∂

= x2∂2 −
(
C + (2µ− λ− 2)x

)
∂ + (µ+ λ)(µ− 1).

Remark 4.6. To calculate mcµ the following formula is useful

xn∂n = ϑ(ϑ− 1) · · · (ϑ− n+ 1),

∂nxn = (ϑ+ 1)(ϑ+ 2) · · · (ϑ+ n),

∂mϑn = (ϑ+m)n∂m,

ϑ2 = x2∂2 + x∂, ϑ3 = x3∂3 + 3x2∂2 + x∂,

ϑ4 = x4∂4 + 6x3∂3 + 7x2∂2 + x∂.

(4.8)

This is easily checked by the action to the function xλ which is an eigenvector to
the operator ϑ. Calculations of mcµ(P ), Ad(ϕ)(P ) and other related operations in
W (x) are realized by a computer program in [O7].

5. Differential equation on P 1
C

In this section we review the Riemann scheme and the spectral type and the
middle convolution mcµ of a linear differential equation

(5.1) Pu = 0

on P 1
C. See [O6] for the details.
Hereafter in this paper we assume that any singularity of the equation (5.1)

is a regular singularity or an unramified irregular singularity. We will define a
generalized Riemann scheme, which we denote by GRS in this paper, and a spectral
type as in the case of Fuchsian differential equations defined by [O1].

Put
λ(x) = λ0 + λ1x

r1 + · · ·+ λmx
rm (0 < r1 < · · · < rm).

Here λj ∈ C. We define the characteristic function eλ(x) with the exponent λ(x)
by

eλ(x) := x−λ0 exp
(
−λ1 xr1

r1
− · · · − λm

xrm

rm

)
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and put ěλ(x) := eλ(
1
x ) = xλ0 exp

(
− λ1

r1xr1
− · · · − λm

rmxrm

)
. Then(

ϑ+ λ(x)
)
eλ(x) = 0, Ad

(
eλ(x)

)
ϑ = ϑ+ λ(x), eλ(x)eλ(x) = eλ+λ(x),(

ϑ− λ( 1x )
)
ěλ(x) = 0, Ad

(
ěλ(x)

)
ϑ = ϑ− λ( 1x ).

Definition 5.1. Let x = c be a singularity of the equation (5.1). For a polyno-
mial λ ∈ C[x] and a positive integer m the equation has a generalized characteristic
exponent [λ](m) if the equation has formal solutions

uν(y) = ěλ+ν(y) + ψν(y)ěλ+m(y) (ν = 0, . . . ,m− 1)

with ψν ∈ C[[x]](∞) and

C[[x]](∞) =

∞⊕
j=0

C[[x]] logj x.

When m = 1, [λ](1) is called a characteristic exponent of the equation and may be
simply denoted by λ.

Here y is given by

(5.2) y =

{
x− c (c 6= ∞),
1
x (c = ∞)

with c = cj .
A generalized Riemann scheme, GRS in short, is the table

(5.3)


x = c0 = ∞ · · · x = cp
[λ0,1](m0,1) · · · [λp,1](mp,1)

...
...

...
[λ0,n1

](m0,n1
) · · · [λp,np

](mp,np )

 .

Here

n = mj,1 + · · ·+mj,nj
(j = 0, . . . , p)

are (p + 1) tuples of partitions of n. The Riemann scheme corresponding to (5.3)
is given by putting

(5.4) [λ](m) :=


λ

λ+ 1
...

λ+m− 1

 and [λ]m :=


λ
λ
...
λ

 ∈ C[x]m.

Suppose

(5.5) λj,ν′ − λj,ν /∈
{
0, 1, . . . ,mj,ν − 1

}
(1 ≤ ν < ν′ ≤ nj , j = 0, . . . , p).

Then we define that P has GRS (5.3) if [λj,ν ](mj,ν) (ν = 1, . . . , nj) are generalized
characteristic exponents at x = cj for j = 0, . . . , p. (See the definition of GRS in
[O1] when (5.5) is not valid.)

Remark 5.2. Suppose

(5.6) deg(λj,ν − λj,ν′) > 0 or λj,ν − λj,ν′ /∈ Z (1 ≤ ν < ν′ ≤ nj , j = 0, . . . , p).

Then P has GRS (5.3) if and only if P has the Riemann scheme corresponding
to (5.3) and (5.1) has linearly independent solutions of the form ψ(y)ěλ(y) with
ψ(x) ∈ C[[x]], namely, they have not any log y term.
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Remark 5.3. In [O1] we use the notation{
x = c (r1) · · · (rm)
λ0 λ1 · · · λm

}
for

{
x = c

λ0 + λ1x
r1 + · · ·+ λmx

rm

}
,

which implies the existence of a solution u(x) ∼ x−λ0 exp(−λ1

r1
xr1 − · · · − λm

rm
xrm)

for x→ ∞ when c = ∞.

Let
{
[λj,1](mj,1), . . . , [λj,nj

](mj,nj
)

}
be the set of generalized exponents of P at

the singular point cj . Then n = mj,1 + · · ·+mj,nj be a partition of n = ordP . For
r ∈ Z≥0 we define equivalence relations ∼

j,r
between the elements of In := {1, . . . , n}

as follows. For i ∈ In, we put νj,i ∈ {1, . . . , nj} by

mj,1 + · · ·+mj,νj,i−1 < i ≤ mj,1 + · · ·+mj,νj,i

and define

(5.7) i ∼
j,r
i′ ⇐⇒

{
νj,i = νj,i′ (r = 0),

deg
(
λj,νj,i

(x)− λj,νj,i′ (x)
)
< r (r ≥ 1).

Let nj,r be the number of equivalence classes under ∼
j,r

and let Rj be the Poincaré

rank of P at the singular point cj . Then

nj,0 = nj ≥ nj,1 ≥ · · · ≥ nj,Rj
≥ nj,Rj+1 = 1.

By a suitable permutation of the indices ν ∈ {1, . . . , nj} of mj,ν we may assume

i ≤ i′′ ≤ i′, i ∼
j,r
i′ ⇒ i ∼

j,r
i′′.

Let

(5.8) n = m
(r)
j,1 + · · ·+m

(r)
j,nj,r

be the corresponding partition of n such that m
(0)
j,ν = mj,ν and for ν = 1, . . . , nj,r

(5.9) I
(r)
j,ν := {ν ∈ Z≥0 | m(r)

j,1 + · · ·+m
(r)
j,ν−1 < ν ≤ m

(r)
j,1 + · · ·+m

(r)
j,ν}

give the equivalence classes under ∼
j,r
. Note that {I(r)j,ν | ν = 1, . . . , nj,r} is a refine-

ment of {I(r+1)
j,ν | ν = 1, . . . , nj,r+1}. Then we define that the (R0+ · · ·+Rp+p+1)

tuples of partitions m =
(
m

(r)
j

)
r=0,...,Rj

j=0,...,p

=
(
m

(r)
j,ν

)
ν=1,...,nj,r

r=0,...,Rj

j=0,...,p

of n is the spectral type

of P and that of GRS (5.3). Then the number of full parameters of GRS (5.3) with

the spectral type
(
m

(r)
j,ν

)
ν=1,...,nj,r

r=0,...,Rj

j=0,...,p

equals R =

p∑
j=0

Rj∑
r=0

nj,r − 1. Here we note that

we always impose the Fuchs-Hukuhara relation on GRS.
As in the case of Fuchsian differential equation, this spectral type is expressed

by writing the numbersm
(r)
j,ν . The numbers are separated by “ , ” indicating different

singular points and by “ | ” indicating different levels of the equivalence relations:

m
(0)
0,1m

(0)
0,2 · · ·m

(0)
0,n0,0

| · · · |m(R1)
0,1 · · ·m(R1)

0,n0,R1
,m

(0)
1,1 · · · , · · ·m(Rp)

p,np,Rp
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The index of the rigidity of GRS (5.3) is defined by that of the tuples of the

partitions
(
m

(r)
j,ν

)
(cf. [O3, O1]):

idx{λm} := idxm = idx
(
m

(r)
j,ν

)
= 2n2 −

p∑
j=0

Rj∑
r=0

(
n2 −

nj,r∑
ν=1

(
m

(r)
j,ν

)2)

= 2n2 −
p∑

j=0

(
n2 −

nj∑
ν=1

m2
j,ν

)

−
p∑

j=0

nj∑
ν=1

nj∑
ν′=1

mj,νmj,ν′ deg
(
λj,ν(x)− λj,ν′(x)

)
.

(5.10)

Put ordm = mj,1 + · · · + mj,nj = n. As in the Fuchsian case (cf. [O1, Defini-
tion 4.17]), the Fuchs-Hukuhara relation is given by

(5.11)

p∑
j=0

nj∑
ν=1

mj,νλj,ν(0) = ordm− 1
2 idxm.

The generalized Riemann scheme of mcµ(P ) is given by the following theorem.

Theorem 5.4 ([O1, Theorem 5.2], [Hi, Theorem 3.2]). Suppose P ∈ W [x]
has the generalized Riemann scheme

{
[λj,ν ](mj,ν)

}
ν=1,...,nj

j=0,...,p
given in (5.3) and it is

irreducible in W (x). We may assume λj,1 = 0 for j = 1, . . . , p and µ = λ0,1 − 1.
Here some mj,1 are allowed to be zero. If {λj,ν} and µ are generic (cf. [O1, Hi])
under this assumption, mcµ(P ) has GRS

{
[λ′j,ν ](m′

j,ν)

}
ν=1,...,nj

j=0,...,p
given by

d(m) := 2n−
p∑

j=0

Rj∑
r=0

(
n−m

(r)
j,1

)
,

m′
j,ν = mj,ν − δν,1 · d(m) (1 ≤ ν ≤ nj , 0 ≤ j ≤ p),

λ′j,0 = δj,0 · (1− µ) (j = 0, . . . , p),

λ′j,ν = λj,ν +
(
(−1)δj,0 + deg λj,ν

)
· µ (1 ≤ ν ≤ nj , 0 ≤ j ≤ p)

and the index of rigidity and the irreducibility of P are kept under mcµ.

Remark 5.5. The above equality λ′j,ν = λj,ν +
(
(−1)δj,0 + deg λj,ν

)
· µ was

wrongly written as λ′j,ν = λj,ν + (−1)δj,0
(
1 + deg λj,ν

)
· µ in [O6, Theorem 5.3],

which should be corrected as above. Similarly the equalities in [O6, Remark 5.2]
should be

Iµx
λ =

Γ(λ+ 1)

Γ(λ+ µ+ 1)
xλ+µ (x > 0),

1

Γ(µ)

∫ ∞eiθ0

x

u(t)(t− x)µ−1dt =
( k∑
ν=0

c′νx
−ν + o(x−k)

)
x−λ−(m0−1)µ exp

(
−

K∑
j=1

Cjx
mj

)
(V ′

θ0,θ1,L ∋ x → ∞).

Remark 5.6. We can construct a differential equation with GRS (5.3) in the
following way.

We may assume mj,1 ≥ mj,ν for ν = 1, . . . , nj and j = 0, . . . , p. Suppose the
equation Pu = 0 has this GRS. We apply suitable additions to this equation so
that the resulting GRS satisfies λj,1 = 0 for j = 1, . . . , p and deg λ0,1 = 0. Then we
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apply mcλ1,0−1 to this resulting equation. If the GRS is rigid, namely, the index
of rigidity equals 2, then the order of the equation decreases by the application of
this middle convolution (cf. [O6, Remark 5.4 ii)]). Repeating this procedure, we
finally get the trivial equation u′ = 0. Inverting this procedure, we can construct
the differential equation Pu = 0 with a given rigid GRS together with an integral
representation of solutions to the equation.

There exist 345 Fuchsian spectral types with order up to 8, which are listed in
[O1, 13.2.3]. Hence the rigid spectral types allowing unramified singularities are
easily obtained up to order 8. For example, the spectral type 421, 43, 43, 52 in the
list corresponds to the following 5 spectral types with irregular singularities

421|43, 43, 52 421, 43|43, 52 412|52, 43, 43 412|52, 43|43 421|43|43, 52.

The following is an example of the reduction of spectral types.

412|52, 43, 43 −3−−→ 112|22, 13, 13⇝ 211|22, 31, 31 −2−−→ 11|2, 11, 11

⇝ 11, 11, 11 (Gauss)
−1−−→ 1, 1, 1 (trivial)

The arrow −→ represents a middle convolution and ⇝ represents an addition. This
reduction gives a representation of a solution by a triple integral by means of the
inverse of the above procedure. The number −3 above the first arrow indicates
−d(m) = 3 + 2 + 3 + 3− 2 · 7. In general there are several way of the reduction of
a given GRS. Then we have different integral representations of the local solution.
See the last example in this paper.

6. Examples

In this last section we give simple examples to explain our results. The argu-
ments in this section will work in the general case.

6.1. Gauss hypergeometric family. Gauss hypergeometric equation and
its confluence are most fundamental and instructive. We examine them according
to their spectral types.

Case 1: 11, 11, 11
We may assume that the singular points of the equation with the spectral

type 11, 11, 11 are 0, 1 and ∞ by a fractional linear transformation. Then the
corresponding GRS is

H2 :

x = 0 1 ∞
λ0,1 λ1,1 λ2,1
λ0,2 λ1,2 λ2,2

 (the Fuchs-Hukuhara relation:
∑

λi,j = 1)

and the equation with this GRS is uniquely determined since the spectral type
is rigid. Here λj,ν are complex parameters. Note that there are symmetries
given by λi,ν ↔ λi,3−ν for i ∈ {0, 1, 2} and ν ∈ {1, 2}. Another symmetry
(λ0,1, λ0,2) ↔ (λ1,1, λ1,2) is induced from a fractional linear transformation. There
are six symmetries of this type.

Let uj,λj,ν (x) be the local solution characterized by

uj,λj,ν (x) = fj(x)
λj,νϕj,ν(x), fj(x) =

{
x (j = 0)

1− x (j = 1)
,

ϕj,ν(x) are holomorphic at x = j and ϕj,ν(j) = 1 for j = 0, 1 and ν = 1, 2.
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Then we have

u0,λ0,2
(x) =

2∑
ν=1

c(0 : λ0,2 ⇝ 1 : λ1,ν)u1,λ1,ν
(x) (x ∈ (0, 1))

Here the connection coefficients c(0 : λ0,2 ⇝ 1 : λ1,ν) holomorphically depend on
λj,ν when λj,1 − λj,2 /∈ Z for j = 0, 1. They are determined by Theorem 3.1 as
follows.

A local solution corresponding to the exponent λ0,2 is given by

v(x) = xλ̃(1− x)λ̃
′
Iµ0

(
xλ(1− x)λ

′)
.

Corresponding transformation of the GRS{
x = 0 1 ∞
λ λ′ −λ− λ′

}
∂−µ

−−−→


x = 0 1 ∞
0 0 1− µ

λ+ µ λ′ + µ −λ− λ′ − µ

 ×xλ̃(1−x)λ̃
′

−−−−−−−−→


x = 0 1 ∞
λ̃ = λ0,1 λ̃′ = λ1,1 1− µ− λ̃− λ̃′ = λ2,1

λ+ µ+ λ̃ = λ0,2 λ′ + µ+ λ̃′ = λ1,2 −λ− λ′ − µ− λ̃− λ̃′ = λ2,2


(6.1)

follows from Theorem 5.4 (cf. [O1, (1.8)]).
Theorem 3.1 (Case I) and (Case III) imply

v(x) =
Γ(λ+ 1)

Γ(λ+ µ+ 1)
u0,λ0,2

(x) = Cu1,λ1,1
(x) +

Γ(−λ′ − µ)

Γ(−λ′)
u1,λ1,2

(x)(6.2)

with C ∈ C and therefore we have

c(0 : λ0,2 ⇝ 1 : λ1,2) =
Γ(λ+ µ+ 1) · Γ(−λ′ − µ)

Γ(λ+ 1) · Γ(−λ′)

=
Γ(λ0,2 − λ0,1 + 1) · Γ(λ1,1 − λ1,2)

Γ(λ0,2 + λ1,1 + λ2,1) · Γ(λ0,2 + λ1,1 + λ2,2)
.

By the symmetry λ1,1 ↔ λ1,2 we have

u0,λ0,2
=

2∑
ν=1

Γ(λ0,2 − λ0,1 + 1) · Γ(λ1,3−ν − λ1,ν)

Γ(λ0,2 + λ1,3−ν + λ2,1) · Γ(λ0,2 + λ1,3−ν + λ2,1)
u1,λ1,ν

.(6.3)

Here we note that C ∈ C is given by Remark 3.3 ii), which corresponds to Theo-
rem 3.1 (Case V). Applying symmetries given by fractional linear transformation,
we have other connection relations, which are given in [O2, §7 and (9.15)] in a
unified form.

Remark 6.1. i) Here the poles of Γ(λ0,2−λ0,1+1) correspond to the existence
of logarithmic term of the local solution u0,λ0,2

and the poles of Γ(λ1,1 − λ1,2)
correspond to the existence of logarithmic term of the local solution at x = 1
with the exponent λ1,2. The poles of the numerator correspond to the fact that
the local solution u0,λ0,2 satisfies a differential equation of the first order whose
characteristic exponent at x = 1 equals λ1,1. This fact holds in general for the
connection coefficients of rigid Fuchsian differential equations (cf. [O1, Chapter
12]).

ii) The symmetries induced by λj,1 ↔ λj,2 for j = 1, 2 and x 7→ x
x−1 give 8

different Riemann-Liouville integral expression of the solution corresponding to the
exponent λ0,2.
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iii) The condition for the irreducibility is give by

λ0,1 + λ1,i + λ2,j /∈ Z (i = 1, 2 and j = 1, 2).

Equation (3.4) in Theorem 3.1 gives the series expansion of Iµ0
(
xλ(1− x)λ

′)
in

Example 3.4, which shows

F (α, β, γ;x) =
Γ(β)

Γ(γ)
xγ−1Iγ−β

0

(
x1−β(1− x)−α

)
.

Then the GRS of F (α, β, γ;x) equalsx = 0 1 ∞
0 0 α ;x

1− γ γ − α− β β

 .

Owing to Theorem 4.2, we get Gauss hypergeometric equation. See [O1, Exam-
ple 1.8 i)] for the calculation and related results. Moreover [WW, Chapter XIV]
gives fundamental results related to Gauss hypergeometric function and [O2] gives
an elementary approach to Gauss hypergeometric function without an integration.

Case 2: 11|11, 11
We may assume that the singular points of the equation with the spectral type

11|11, 11 are ∞ and 0 and moreover ∞ is an irregular singular point. Then the
corresponding GRS equalsx = 0 ∞

λ0,1 λ1,1 + αx
λ0,2 λ1,2 + βx

 (α 6= β,
∑
j,ν

λj,ν = 1).

We may moreover assume GRS equals
x = 0 ∞
1
2 −m k − x

2
1
2 +m −k + x

2

(6.4)

by the transformations x 7→ cx and Ad(xλeλ
′x) with suitable c, λ, λ′, m, k ∈ C.

We can construct the equation with this GRS and its solution by the operations,
namely, additions and a middle convolution by the transformation of GRS

{
x = 0 ∞
0 0

}
xλe−x

−−−−→
{
x = 0 ∞
λ x− λ

}
∂−µ

−−−→

x = 0 ∞
0 1− µ

λ+ µ −λ+ x


×(x−λ+µ−1

2 e
x
2 )−−−−−−−−−−→


x = 0 ∞

1
2 − λ+µ

2
λ−µ+1

2 − x
2

1
2 + λ+µ

2 −λ−µ+1
2 + x

2

 ,

λ = m+ k − 1
2 , µ = m− k − 1

2 , m = λ+µ+1
2 , k = λ−µ

2 .

Then the local solution v(x) at ∞ corresponding to the exponent x
2 −k has the

asymptotic v(x) ∼ xke−
x
2 for x→ +∞ is the Whittaker function Wk,m(x). In fact
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(cf. [WW, CHAPTER XVI]),

Wk,m(x) :=
xke−

x
2

Γ(m+ 1
2 − k)

∫ ∞

0

tm−k− 1
2 e−t(1 + t

x )
m+k− 1

2 dt

=
x−m+

1
2 e−

x
2

Γ(m+ 1
2 − k)

∫ ∞

0

tm−k− 1
2 e−t(x+ t)m+k− 1

2 dt

=
x−m+

1
2 e

x
2

Γ(m+ 1
2 − k)

∫ ∞

x

(s− x)m−k− 1
2 e−ssm+k− 1

2 ds

= x−m+
1
2 e

x
2 Ĩ

m−k+
1
2

+∞ (xm+k− 1
2 e−x)

≈ xke−
x
2 (x→ +∞).

Here ≈ means the ratio of the both sides of the equation takes the value 1 at the
limit and this asymptotic follows from Theorem 3.7 (Case I). More precisely, (3.7)
shows

(6.5) Wk,m(x) ∼ xke−
x
2 2F0(

1
2 −m− k, 12 +m− k;− 1

x ) for x→ +∞.

It is clear that
∫∞
x

in the above last integration may be replaced by
∫ eiθ0∞
x

if

|θ0| < π
2 . Put θ0 = Arg x. Suppose |x| > 1 and π

2 < |θ0| < 3π
2 . Put L = L1+C+L2.

Here L1 is the linear path from eiθ0∞ to eiθ0 , C is the path [0, 1] 3 t 7→ ei(1−t)θ0

and L2 is the path from 1 to +∞. We define Ĩµ+∞ by a part of the path L.

× •x

eiθ0∞

×

•x L1

eiθ0∞

Then Theorem 3.7 (Case IV) implies the asymptotic Wk,m(x) ≈ xke−
x
2 for

x→ eiθ0∞. Thus we have

(6.6) Wk,m(x) ≈ xke−
x
2 for x→ eiθ0∞ with |θ0| < 3π

2 and |θ0| 6= π
2 .

Here it is known that the condition |θ0| 6= π
2 is not necessary (cf. [Hu2]).

Moreover Theorem 3.1 Case III implies

Wk,m(x) ≈ Γ(−λ− µ)

Γ(−λ)
x
1
2+m =

Γ(−2m)

Γ( 12 −m− k)
x
1
2+m (Re (λ+ µ) < 0, x→ +0).

Since

Ad(x
1
2−me

x
2 )mcm+k+ 1

2
Ad(xm+k− 1

2 e−x)∂

= Ad(x
1
2−me

x
2 )mcm+k+ 1

2

(
∂ − m+k− 1

2

x + 1
)

= Ad(x
1
2−me

x
2 )mcm−k+ 1

2

(
∂(x∂ − (m+ k − 1

2 ) + x)
)
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= Ad(x
1
2−me

x
2 )mcm−k+ 1

2

(
∂x(∂ + 1)− (m+ k − 1

2 )∂)
)

= Ad(x
1
2−me

x
2 )
(
(∂x− (m− k + 1

2 ))(∂ + 1)− (m+ k − 1
2 )∂

)
= Ad(x

1
2−me

x
2 )
(
x∂2 + (x− 2m+ 1)∂ + k −m+ 1

2

)
= x(∂ −

1
2−m

x − 1
2 )

2 + (x− 2m+ 1)(∂ −
1
2−m

x − 1
2 ) + k −m+ 1

2

= x∂2 − x
4 + k +

1
4−m2

x ,

Wk,m(x) is a solution to the Whittaker equation

(6.7) u′′ =
(1
4
− k

x
−

1
4 −m2

x2

)
u.

Another local solution Mk,m(x) given in [WW, CHAPTER XVI] corresponding to
the exponent m+ 1

2 at 0 is obtained by the integral∫ 1

0

tm−k+
1
2 (1− t)m+k− 1

2 extdt =

∫ 1

0

(1− s)m−k− 1
2 sm+k− 1

2 ex(1−s)ds

= ex
∫ 1

0

(1− s)m−k− 1
2 sm+k+

1
2 e−xs ds

s

= ex
∫ x

0

(1− s
x )

m−k− 1
2 ( sx )

m+k+
1
2 e−s ds

s

= x−2mex
∫ x

0

(x− s)m−k− 1
2 sm+k− 1

2 e−sds

= x−2mexΓ(m− k + 1
2 )I

m−k+
1
2

0 (xm+k− 1
2 e−x)

and then

Mk,m(x) :=
xm+

1
2 e−

x
2 Γ(2m+ 1)

Γ( 12 +m− k)Γ( 12 +m+ k)

∫ 1

0

tm−k+
1
2 (1− t)m+k− 1

2 extdt

=
x−m+

1
2 e

x
2 Γ(2m+ 1)

Γ(m+ k + 1
2 )

I
m−k+

1
2

0 (xm+k− 1
2 e−x)

=
x−m+

1
2 e

x
2 Γ(2m+ 1)

Γ(m+ k + 1
2 )

I
m−k+

1
2

0

∞∑
n=0

xm+k− 1
2+n (−1)nxn

n!

=
x−m+

1
2 e

x
2 Γ(2m+ 1)

Γ(m+ k + 1
2 )

∞∑
n=0

Γ(m+ k + 1
2 + n)(−1)n

Γ(2m+ n+ 1)n!
x2m+n

= xm+
1
2 e

x
2

∞∑
n=0

(m+ k + 1
2 )n

(2m+ 1)nn!
(−x)n

= xm+
1
2 e

x
2 1F1(m+ k + 1

2 ; 2m+ 1;−x).

By the symmetry m↔ −m of GRS (6.4), Mk,−m(x) is a solution to (6.7) and

(6.8) Wk,m(x) =Wk,−m(x) =
Γ(−2m)

Γ( 12 −m− k)
Mk,m(x) +

Γ(2m)

Γ( 12 +m− k)
Mk,−m(x).
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Hence we have

Ĩ
m−k+

1
2

+∞ (xm+k− 1
2 e−x) =

Γ(−2m)Γ(2m+ 1)

Γ( 12 −m− k)Γ( 12 +m+ k)
I
m−k+

1
2

0 (xm+k− 1
2 ex)

+
Γ(2m)Γ(−2m+ 1)

Γ( 12 +m− k)Γ( 12 −m+ k)
I
−m−k+

1
2

0 (x−m+k− 1
2 e−x)

=
sin(m+ k − 1

2 )π

sin 2mπ
I
m−k+

1
2

0 (xm+k− 1
2 e−x)

+
sin(m− k + 1

2 )π

sin 2mπ
I
−m−k+

1
2

0 (x−m+k− 1
2 e−x).

(6.9)

Note that GRS (6.4) has the coordinate symmetry
x = 0 ∞
1
2 −m k − x

2 ;x
1
2 +m −k + x

2

 =


x = 0 ∞
1
2 −m k + x

2 ;−x
1
2 +m −k − x

2

(6.10)

corresponding to (x, k) 7→ (−x,−k). Hence

(6.11) M−k,m(e±πix) = e±(m+ 1
2 )πiMk,m(x)

and W−k,m(e±πix) are solutions to (6.7). Note that

W−k,m(x) ≈ x−ke−
x
2 for x→ eiθ0∞ with |θ0| < 3

2π.

Then we have

W−k,m(e±πix) =
Γ(−2m)

Γ( 12 −m+ k)
M−k,m(e±πix) +

Γ(2m)

Γ( 12 +m+ k)
M−k,−m(e±πix)

=
Γ(−2m)e±( 1

2+m)πi

Γ( 12 −m+ k)
Mk,m(x) +

Γ(2m)e±( 1
2−m)πi

Γ( 12 +m+ k)
Mk,−m(x),

≈ e∓kπix−ke
x
2 for x→ ei(θ0∓π)∞ with |θ0| < 3

2π.

(6.12)

Theorem 3.7 (Case IV) shows

Mk,m(x) =
x−m+

1
2 e

x
2 Γ(2m+ 1)

Γ(m+ k + 1
2 )

I
m−k+

1
2

0 (xm+k− 1
2 e−x)

≈ Γ(2m+ 1)

Γ(m+ k + 1
2 )
e∓(m−k+ 1

2 )πixke−
x
2 for x→ e∓πi∞

(6.13)

and

(6.14) Mk,m(x) =
Γ(2m+ 1)e∓(m−k+ 1

2 )πi

Γ(m+ k + 1
2 )

Wk,m(x) + C±W−k,m(e±πix)

with C± ∈ C and |Arg x ± π
2 | < π, which is determined by the asymptotic of

Mk,m(x) for x→ +∞. Namely, (6.11), (6.13) and (6.12) imply

Mk,m(x) = e∓(m+ 1
2 )πiM−k,m(e±πix) ≈ Γ(2m+ 1)

Γ(m− k + 1
2 )
x−ke

x
2 (x→ +∞),

C± =
Γ(2m+ 1)e±kπi

Γ(m− k + 1
2 )

.(6.15)
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On the other hand, we can also get (6.14) by (6.8) and (6.12).
Equation (6.7) is irreducible if and only if

(6.16) m± k + 1
2 /∈ Z.

This is proved as follows. First we note that the reducibility is a closed condi-
tion. If m±k+ 1

2 ∈ Z, the relations (6.8) and (6.12) imply the reducibility because
of the vanishing of one of the connection coefficients.

If the equation is reducible, there exists a solution u(x) satisfies an equation

of the first order. Then u(x) ∼ Cx
1
2−m or Cx

1
2+m with C 6= 0 for x → +0 and

u(x) ∼ C ′xke−
x
2 or C ′x−ke

x
2 with C ′ 6= 0 for x → +∞. For an example, suppose

u(x) ∼ Cx
1
2−m for x → +0 and u(x) ∼ C ′xke−

x
2 for x → +∞. Since u(x) has no

singularity in C \ {0}, the Fuchs-Hukuhara relation for the differential equation of
the first order implies d := m+ k− 1

2 ∈ Z≥0 and u(x) = C ′Wk,m(x). Note that the
equation satisfied by u(x) may have apparent singularities. Then d is a number of

zeros of u(x) on C \ {0} and xm− 1
2 e

x
2 u(x) corresponds a Laguerre polynomial of

degree d under a certain normalization.

Case 3: 11|11|11. There is only one singular point and we may assume that it
is ∞. {

x = ∞
ax2 + bx

}
mc−µ−−−→

 x = ∞
1 + µ

ax2 + bx− µ

 →


x = ∞

−x2

2 +m+ 1
2

x2

2 −m+ 1
2

 , µ = m− 1
2 .(6.17)

The above last transformation is obtained by a transformation x 7→ C1x+ C0 and

Ad(e
x2

4 ) with a = 1, b = 0 and µ = m− 1
2 . Note that the normalized solution u(x)

corresponding to the exponent x2

2 −m+ 1
2 has the asymptotic u(x) ∼ x−m− 1

2 e−
x2

2

for x→ +∞. Then

u(x) = e
x2

4 Ĩ−µ
+∞(e−

x2

2 ) =
e

x2

4

Γ(µ)

∫ ∞

x

e−
t2

2 (t− x)−µ−1dt

=
e

x2

4

Γ(µ)

∫ ∞

0

e−
(s+x)2

2 s−µ−1dt (s = t− x)

=
e−

x2

4

Γ(µ)

∫ ∞

0

e−
t2

2 −txt−µ−1dt (s 7→ t)

= Dµ(x),

Dµ(x) ≈ xµe−
x2

4 for x→ +∞ (cf. Theorem 3.7 (Case IV)).

Here the parabolic cylinder function Dµ(x) is a solution to the Weber equation
Pu = 0, where

P = Ad(x
x2

4 )mc−µ Ad(e−
x2

2 )∂

= Ad(x
x2

4 )mc−µ(∂ + x)

= Ad(x
x2

4 )mc−µ(∂
2 + x∂ + 1)

= Ad(x
x2

4 )(∂2 + x∂ + µ+ 1)
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= (∂ − x
2 )

2 + x(∂ − x
2 ) + µ+ 1

= ∂2 + 1
2 + µ− x2

4 .

Note that Dµ(x) = Dµ(−x) and D−µ−1(ix) is another solution to the equation.

It follows from GRS (6.17) that
√
xDµ(

√
2x) satisfies the Whittaker equation

and the asymptotic for x→ +∞ shows

Dµ(x) = 2
µ
2 + 1

4x−
1
2Wµ

2 ,− 1
4
(x

2

2 ).

The condition for the irreducibility is

µ = m− 1
2 /∈ Z.

Note that e−
x2

4 Dµ(x) is the Hermite polynomial of degree µ for µ ∈ Z≥0.

Versal unfolding (Gauss hypergeometric family)
The versal equation Pu = 0 of Gauss hypergeometric family is given in [O1,

Example 2.5], which is

P = mcµ ◦Ad
(
exp

(
−
∫

λ1dx

1− c1x
−

∫
λ2xdx

(1− c1x)(1− c2x)

))
∂

= mcµ
(
∂ +

λ1
1− c1x

+
λ2x

(1− c1x)(1− c2x)

)
= mcµ

(
∂(1− c1x)(1− c2x)∂ + ∂(λ1(1− c2x) + λ2x)

)
=

(
(1− c1x)∂ + c1(µ− 1)

)(
(1− c2x)∂ + c2µ

)
+ λ1∂ + (λ2 − λ1c2)(x∂ + 1− µ)

= (1− c1x)(1− c2x)∂
2

+
(
(c1 + c2)(µ− 1) + λ1 +

(
2c1c2(1− µ) + λ2 − λ1c2)x

)
∂

+ (µ− 1)(c1c2µ+ λ1c2 − λ2)

and a solution is given by

Iµc exp
(
−
∫

λ1dx

1− c1x
−

∫
λ2xdx

(1− c1x)(1− c2x)

)
= Iµc

(
(1− c1x)

λ1
c1

+
λ2

c1(c1−c2) (1− c2x)
λ2

c2(c2−c1)
)
.

Here c = 1
c1

or 1
c2

or ∞. If c1c2(c1 − c2) 6= 0, the corresponding GRS is
x = 1

c1
1
c2

∞
0 0 1− µ

λ1

c1
+ λ2

c1(c1−c2)
+ µ λ2

c2(c2−c1)
+ µ −λ1

c1
+ λ2

c1c2
− µ

 .

Since (
λ2

c2(c2−c1)
+ µ

)
+
(
−λ1

c1
+ λ2

c1c2
− µ

)
= −λ1

c1
+ λ2

c1(c2−c1)

and

lim
c2→0

c2
(

λ2

c2(c2−c1)
+ µ

)
= −λ2

c1
and lim

c2→0
(1− c2x)

− K
c2 = eKx,

we have 
x = 1

c1
∞

0 1− µ
λ1

c1
+ λ2

c21
+ µ −λ2

c1
x− λ1

c1
− λ2

c21

 (c1 6= c2 = 0),
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which is also obtained by

λ1

1−c1x
+ λ2x

1−c1x
= λ1

1−c1x
+ λ2

c1(1−c1x)
− λ2

c1
.

6.2. Hypergeometric family. The spectral type of the generalized hyperge-

ometric function nFn−1(α1, . . . , αn;β1, . . . , βn−1;x) is

n︷ ︸︸ ︷
1 · · · 1, (n − 1)1,

n︷ ︸︸ ︷
1 · · · 1 and

it is explained in [O1, 13.4].
We examine a confluence of the generalized hypergeometric function 3F2 with

the following spectral type:
111|21, 111
The corresponding GRS is realized by{
x = ∞ 0
x− λ λ

}
mcµ−−−→


x = ∞ 0
1− µ 0
x− λ λ+ µ

 Ad(xλ′
)−−−−−→


x = ∞ 0

1− µ− λ′ λ′

x− λ− λ′ λ+ µ+ λ′


mcµ′
−−−→


x = ∞ x = 0

1− µ′ = 1− λ1,1 + λ0,1 0
1− µ− λ′ − µ′ = 1− λ1,2 + λ0,1 λ′ + µ′ = λ0,2 − λ0,1

x− λ− λ′ = x− λ1,3 + λ0,1 λ+ µ+ λ′ + µ′ = λ0,3 − λ0,1


with µ = λ1,2 − λ0,2, µ′ = λ1,1 − λ0,1, λ = λ0,3 − λ1,2, λ′ = λ0,2 − λ1,1,

λ0,1 + λ0,2 + λ0,3 = λ1,1 + λ1,2 + λ1.3.

Solutions to the corresponding equation are given by

u∞(x) = Ĩµ
′

+∞x
λ′
Ĩµ+∞(xλe−x)

∼ Ĩµ
′

∞x
λ+λ′

∞∑
n=1

(−λ)n(µ)n(−1)n

n!
x−ne−x

∼
( ∞∑
m=0

∞∑
n=0

(−λ− λ′ + n)m(−λ)n(µ′)m(µ)n
m!n!

(−x)−m−n
)
xλ+λ′

e−x

=
( ∞∑
m=0

∞∑
n=0

(λ0,1 − λ1,3)m+n(λ1,2 − λ0,3)n(λ1,1 − λ0,1)m(λ1,2 − λ0,2)n
(λ0,1 − λ1,3)nm!n!

× (− 1
x )

m+n
)
xλ1,3−λ0,1e−x ≈ xλ1,3−λ0,1e−x (x→ +∞),

u∞(x) ≈ Γ(−λ− µ) · Γ(−λ− λ′ − µ− µ′)

Γ(−λ) · Γ(−λ− λ′ − µ)
xλ+λ′+µ+µ′

=
Γ(λ0,2 − λ0,3) · Γ(λ0,1 − λ0,3)

Γ(λ1,2 − λ0,3) · Γ(λ1,1 − λ0,3)
xλ0,3−λ0,1 (x→ +0

if Re (λ0,3 − λ0,2) < 0 and Re (λ0,3 − λ0,1) < 0),

u0(x) := Iµ
′

0 x
λ′
Iµ0 (x

λe−x) =
1

Γ(µ) · Γ(µ′)

∫ x

0

tλ
′
(x− t)µ

′
∫ t

0

sλe−s(t− s)µ ds
s

dt
t

= Iµ
′

0 x
λ′

∞∑
n=0

(−1)nΓ(λ+ 1 + n)

Γ(λ+ µ+ 1 + n)n!
xλ+µ+n

=

∞∑
n=0

(−1)nΓ(λ+ 1 + n) · Γ(λ+ λ′ + µ+ 1 + n)

Γ(λ+ µ+ 1 + n) · Γ(λ+ λ′ + µ+ µ′ + 1 + n)
xλ+λ′+µ+µ′+n
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=
Γ(λ0,3 − λ1,2 + 1) · Γ(λ0,3 − λ1,1 + 1)

Γ(λ0,3 − λ0,2 + 1) · Γ(λ0,3 − λ0,1 + 1)
xλ0,3−λ0,1

× 2F2(λ0,3 − λ1,2 + 1, λ0,3 − λ1,1 + 1;λ0,3 − λ0,2 + 1, λ0,3 − λ0,1 + 1;−x).

Here we remark that the connection coefficient of the solution u∞(x) to the local
solution u0(x) at the origin equals

(6.18)
sin(λ0,2 − λ0,3)π · sin(λ0,1 − λ0,3)π

sin(λ1,2 − λ0,3)π · sin(λ1,1 − λ0,3)π
.

Applying Ad(xλ0,1) to our GRS, it changes into

(6.19)


x = ∞ x = 0
1− λ1,1 λ0,1
1− λ1,2 λ0,2
x− λ1,3 λ0,3

 with λ0,1 + λ0,2 + λ0,3 = λ1,1 + λ1,2 + λ1,3.

Then we have obtained the normalized connection coefficients

(6.20) c(∞ : x− λ1,3 ⇝ 0 : λ0,3) =
Γ(λ0,2 − λ0,3) · Γ(λ0,1 − λ0,3)

Γ(λ1,2 − λ0,3) · Γ(λ1,1 − λ0,3)
.

The poles of the denominator of the connection coefficient implies that u∞,x−λ1,3

satisfies a differential equation of the second order.
To get a solution corresponding to another exponent at ∞, we consider the

procedure{
x = ∞ 0
x− λ λ

}
mcµ−−−→


x = ∞ 0
1− µ 0
x− λ λ+ µ

 Ad(xλ′
ex)−−−−−−→


x = ∞ x = 0

−x+ 1− µ− λ′ λ′

−λ− λ′ λ+ µ+ λ′


mcµ′
−−−→


x = ∞ x = 0
1− µ′ 0

−x+ 1− µ− λ′ − µ′ λ′ + µ′

−λ− λ′ − µ′ λ+ µ+ λ′ + µ′


Ad(xλ0,1 )−−−−−−→

x 7→−x−−−−→


x = ∞ x = 0

1− µ′ − λ0,1 = 1− λ1,1 λ0,1
x+ 1− µ− λ′ − µ′ − λ0,1 = x− λ1,3 λ′ + µ′ + λ0,1 = λ0,2

−λ− λ′ − µ′ − λ0,1 = 1− λ1,2 λ+ µ+ λ′ + µ′ + λ0,1 = λ0,3


and put

ũ∞(x) := Ĩµ
′

+∞x
λ′
exĨµ+∞(xλe−x)

∼ Ĩµ
′

+∞
(
xλ+λ′

2F0(−λ, µ;− 1
x )
)

(x→ +∞)

∼ Γ(−λ− λ′ − µ′)

Γ(−λ− λ′)
xλ+λ′+µ′

3F1(−λ, µ,−λ− λ′ − µ′;−λ− λ′;− 1
x )

(x→ +∞),

ũ∞(x) ≈ Γ(−λ− µ) · Γ(−λ− λ′ − µ− µ′)

Γ(−λ) · Γ(−λ− λ′ − µ)
xλ+λ′+µ+µ′

(x→ +0, Re (λ+ µ) < 0,

Re (λ+ λ′ + µ+ µ′) < 0).
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Thus we have

c(−∞ : 1− λ1,2 ⇝ 0 : λ0,3)

= eλ0,3πi
Γ(λ1,1 − λ1,2 + 1) · Γ(λ0,2 − λ0,3) · Γ(λ0,1 − λ0,3)

Γ(λ0,1 − λ1,2 + 1) · Γ(λ0,2 − λ1,2 + 1) · Γ(λ1,1 − λ0,3)

(6.21)

and

3F1(−λ,−λ− λ′ − µ′, µ;−λ− λ′;− 1
x )

= 3F1(λ0,1 − λ1,2 + 1, λ0,2 − λ1,2 + 1, λ0,3 − λ1,2 + 1;λ1,2 − λ1,1 + 1;− 1
x ).

Here the local solution u−∞,1−λ1,2
at −∞ is given by

u−∞,1−λ1,2
(x) :=

Γ(−λ− λ′)

Γ(−λ− λ′ − µ)
(eπix)λ0,1 ũ∞(eπix)

≈ (eπix)λ1,2−1 for x→ e−πi∞
(6.22)

which is uniquely characterized by this asymptotic and then

u−∞,1−λ1,2
=

3∑
ν=1

c(−∞ : 1− λ1,2 ⇝ 0 : λ0,ν)u0,λ0,ν
.(6.23)

If λ0,ν − λ1,2 + 1 ∈ Z≤0, u−∞,1−λ1,2
satisfies a differential equation of the first

order for ν = 1, 2, 3. If λ1,1−λ0,ν ∈ Z≤0, u−∞,1−λ1,2
satisfies a differential equation

of the second order for ν = 1, 2, 3.
By the symmetry of GRS (6.19) with respect to the exponents λ0,ν for ν =

1, 2, 3 and the exponents 1 − λ1,ν for ν = 1, 2, we have normalized 3 solutions
corresponding to the 3 exponents at each singular point and the connection relation
between the singular points 0 and ∞.

The above procedure is valid for the spectral type
n︷ ︸︸ ︷

1 · · · 1 |(n− 1)1,

n︷ ︸︸ ︷
1 · · · 1.

Namely, applying Ad(xλ
′′
)mcµ′′ to (6.19) several times with various (λ′′, µ′′), we

get  x = ∞ x = 0
1− λ1,ν (1 ≤ ν < n) λ0,ν (1 ≤ ν ≤ n)

x− λ1,n

 ( n∑
ν=1

λ0,ν =

n∑
ν=1

λ1,ν

)
,

which is symmetric with respect to the parameters in {λ0,ν | 1 ≤ ν ≤ n} and the
parameters in {λ1,ν | 1 ≤ ν < n}. The local solutions are given by

u0,λ0,n
= xλ0,ν

n−1Fn−1(λ0,n − λ1,ν (1 ≤ ν < n) ; λ0,n − λ0,ν (1 ≤ ν < n) ; x),

u∞,1−λ1,1 = (eπix)λ1,1−1
nFn−2(λ0,ν − λ1,1 + 1 (1 ≤ ν ≤ n) ;

λ1,1 − λ1,ν (1 < ν < n) ; − 1
eπix ) (x→ e−πi∞),

u∞,x−λ1,n
= xλ0,1 Ĩλ1,1−λ0,1

∞ xλ0,2−λ1,1 Ĩλ1,2−λ0,2
∞ xλ0,3−λ1,2 · · ·

· · · Ĩλ1,n−1−λ0,n−1
∞ (xλ0,n−λ1,n−1e−x)

≈ xλ1,ne−x (x→ +∞)
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and the connection coefficients are

c(−∞ : 1− λ1,1 ⇝ 0 : λ0,n) = eλ0,nπi

×
∏

1<ν<n Γ(λ1,ν − λ1,1 + 1) ·
∏

1≤ν<n Γ(λ0,ν − λ0,n)∏
1<ν<n Γ(λ1,ν − λ0,n) ·

∏
1≤ν<n Γ(λ0,ν − λ1,1 + 1)

,

c(∞ : x− λ1,n ⇝ 0 : λ0,n) =

∏
1≤ν<n Γ(λ0,ν − λ0,n)∏
1≤ν<n Γ(λ1,ν − λ0,n)

.

6.3. Jordan Pochhammer family. The spectral type of Jordan-Pochhammer
equation is

(p− 1)1, (p− 1)1, · · · , (p− 1)1︸ ︷︷ ︸
p+1blocks

(p = 2 ⇒ Gauss)

Integral representation of the solution u(x) of the corresponding versal equation
is given by

u(x) = Iµc (ϕ),(6.24)

ϕ(x) = exp
(
−
∫ p∑

k=1

λkx
k−1

(1− c1x)(1− c2x) · · · (1− ckx)

)

=

p∏
j=1

(1− cjx)
∑p

k=j

λj
cj

∏
j≤ν≤k, ν ̸=j(cj−cν ) (ci 6= cj 6= 0 for i 6= j).

(6.25)

The GRS of the equation is
x = ∞ x = 1

cj
(j = 1, . . . , p)

[1− µ](p−1) [0](p−1)
p∑

k=1

(−1)kλk∏k
ν=1 cν

− µ

p∑
k=j

λk
cj

∏
1≤ν≤k,ν 6=j(cj − cν)

+ µ

 (ci 6= cj 6= 0 for i 6= j),


x = ∞

[1− µ](p−1)
p∑

k=1

λkx
k + (p− 1)µ

 (c1 = · · · = cp = 0).

Suppose λp = 1 and c1 = · · · = cp = 0. In view of Remark 4.6 the corresponding
equation Pu = 0 is given by

P = mcµ
(
∂ +

p∑
k=1

λkx
k−1

)
= mcµ

(
∂p +

p∑
k=1

∂p−1λkx
k−1

)
= mcµ

(
∂p +

p∑
k=1

λk(ϑ+ p− 1)(ϑ+ p− 2) · · · (ϑ+ p− k + 1)∂p−k
)

= ∂p +

p∑
k=1

λk(ϑ− µ+ p− 1)(ϑ− µ+ p− 2) · · · (ϑ− µ+ p− k + 1)∂p−k
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and we have its solutions

um(x) =
1

Γ(µ)

∫ e
2mπ

p
i∞

x

e−
∑p

k=1 λk
tk

k (t− x)µ−1dt

≈ x−(p−1)µe−
xp

p (x→ e
2mπ

p i∞)

for m = 0, . . . , p− 1.

We consider the spectral type 21|21, 21, 21.
21|21, 21, 21 −2−−→ 1|1, 1, 1 x = ∞ 0 y

[1− λ3](2) [0](2) [0](2)
αx+ λ2 λ0 λ1

 (α 6= 0, λ0 + λ1 + λ2 = 2λ3)

mc−λ3−−−−→
{
x = ∞ 0 1
αx+ λ2 λ0 − λ3 λ1 − λ3

}
.

We can consider another reduction.
21|21, 21, 21⇝ 21|21, 21, 12 −1−−→ 11|11, 11, 2⇝ 11|11, 11 −1−−→ 1, 1, 1 x = ∞ 0 y

[1− λ3](2) [0](2) [0](2)
αx+ λ2 λ0 λ1

 (λ0 + λ1 + λ2 = 2λ3)

Ad
(
(y−x)−λ1

)
−−−−−−−−−−→

 x = ∞ 0 y
[1 + λ1 − λ3](2) [0](2) [−λ1](2)
αx+ λ1 + λ2 λ0 0


mcλ1−λ3−−−−−−→

 x = ∞ 0 y
1− λ1 + λ3 0 [−λ3](2)
αx+ λ1 + λ2 λ0 + λ1 − λ3


Ad(y−x)λ3

−−−−−−−→

 x = ∞ 0
1− λ1 0

αx+ λ1 + λ2 − λ3 λ0 + λ1 − λ3


mc−λ1−−−−→

{
x = ∞ 0

αx+ λ1 + λ2 − λ3 λ0 − λ3

}
.

Then the normalized local solution u0,λ0
corresponding to the exponent λ0 is given

by

u0,λ0
=

Γ(λ0 + 1)

Γ(λ0 − λ3 + 1)
Iλ3
0

(
xλ0−λ3(1− x

y )
λ1−λ3e−αx

)
=

Γ(λ0 + 1)

Γ(λ0 − λ3 + 1)
Iλ3−λ1
0

(
(1− x

y )
−λ3Iλ1

0

(
xλ0−λ3e−αx

))
.

Here |y| > |x| > 0.

Remark 6.2. i) Iλ1
0

(
xλ0−λ3e−αx

)
is expressed by using the Whittaker function

Mk,m(x).
ii) If α = 0, the equation is reducible.
iii) We remark that the function u0,λ0(x, y) satisfies a confluent KZ equation

with the variables x and y which is given in [O5, Example 7.6] with (x0, x1, x2) =
(x, y, 0) and a = 0. We will discuss such equations in another paper. The equation is
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a confluence of Appell’s F1. Note that the coordinate transformation (x, y) 7→ (x, xy )

is an automorphism of confluent KZ equations of this type (cf. [O3, §6]).
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