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Abstract. We construct a generator system of the annihilator of the gener-
alized Verma module of gl(n, C) induced from any character of any parabolic
subalgebra as an analogue of minors and elementary divisors. The generator

system has a quantization parameter ϵ and it generates the defining ideal of
the conjugacy class of square matrices at the classical limit ϵ = 0.

1. Introduction

Let A be an element of the space M(n, C) of square matrices of size n with
components in C. Then the conjugacy class containing A is the algebraic variety
VA =

⋃
g∈G Ad(g)A by denoting G = GL(n, C) and Ad(g)A = gAg−1. Under the

G-action on M(n, C), we will study a quantization of VA interpreted as follows:
For the defining equations of VA or the G-invariant defining ideal IA of the closure

of VA in the ring of polynomial functions on M(n, C), we will associate left invariant
differential operators on G or an ideal JA of the ring of the left invariant differential
operators on G, which we call a quantization of IA. The Lie algebra g of GL(n, C)
is identified with M(n, C) and we identify the left invariant differential operators
on G with the universal enveloping algebra U(g) of g. Then our quantization of
VA is a U(g)-homomorphism of U(g)/JA to a suitable U(g)-module M . Note that
the quantization of VA becomes a representation space of a real form GR of G if
M is a function space on a homogeneous space of GR or a space of sections of a
GR-homogeneous vector bundle.

VA =
⋃

g∈G Ad(g)A −−−−→ G-invariant defining ideal of VA

...
yquantization

Representations of U(g) or GR ←−−−− Ideal of U(g)
The main purpose of this note is a unified explicit construction of the ideals IA

and JA together with a study of certain properties of the ideals. Applications of
the results in this paper to some representation spaces of the real form GR will be
studied in other papers since their arguments are valid for the general real reductive
Lie groups. But one of the applications will be briefly explained in Example 3.3.

In §2 we introduce a homogenized universal enveloping algebra U ϵ(g) to study
our quantization together with “the classical limit”(ϵ = 0). We construct gener-
ators of JA from the generalized Capelli operators introduced by [15] which can
be considered as quantizations of minors and we show in Theorem 2.9 that they
generate the annihilator of a generalized Verma module induced from a character
of a parabolic subalgebra of g. In fact, we give an explicit generator system of the
annihilator of every generalized Verma module of gl(n, C) of the scalar type. When
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ϵ = 0 and moreover A is a nilpotent matrix, the corresponding result is Tanisaki’s
conjecture in [17], which is solved by Weyman [18]. In particular, if ϵ = 0 and A is
a regular nilpotent matrix, the result is due to Kostant [Ko].

In §3 we examine how the annihilator determines the gap between the generalized
Verma module and the usual Verma module, which is important for applications.
For example, Theorem 3.1 assures that the theorem on boundary value problems
for symmetric spaces studied in [15, Theorem 5.1] is improved by the generator
system defined in this note (cf. Example 3.3 and [16, §5]).

A similar construction of the annihilator using quantized Pfaffian in the case
when g = o(n) is studied by [12].

On the other hand, we can also quantize the minimal polynomial of VA from
which we can construct another generator system of the annihilator. This is valid
for any reductive Lie algebra and is studied in [16] and [13].

There are other papers examining the generators of annihilator of a generalized
Verma module induced from a character of a parabolic subalgebra. In particular [6],
[7], [8] etc. study generators of the annihilator which span the adjoint representation
of g. But their generators are less explicit and there are some assumptions on the
character.

2. Elementary divisors

The Lie algebra g of G = GL(n, C) is identified with M(n, C) and also with the
space of left G-invariant holomorphic vector fields on G. Then g is spanned by Eij

for 1 ≤ i ≤ n and 1 ≤ j ≤ n where Eij is the fundamental matrix unit whose
(p, q)-component equals δi,pδj,q and

(2.1) Eij =
n∑

ν=1

xνi
∂

∂xνj

with the coordinate
(
xij

)
∈ G. Then g is naturally a (g, G)-module.

Using the non-degenerate symmetric bilinear form 〈X, Y 〉 = Trace(XY ) on
M(n, C) × M(n, C), we identify g with its dual g∗. The dual basis {E∗

ij} of {Eij}
is given by E∗

ij = Eji. For simplicity, we will denote Ei = Eii and ei = E∗
ii.

Definition 2.1. The homogenized universal enveloping algebra U ϵ(g) of a Lie al-
gebra g is defined by

(2.2) U ϵ(g) =

( ∞∑

k=0

k⊗
g

)
/〈

X ⊗ Y − Y ⊗ X − ϵ[X,Y ]; X, Y ∈ g
〉

and the subalgebra formed by the G-invariants in U ϵ(g) is denoted by U ϵ(g)G. Here
ϵ is a complex number (or an element commuting with g) and the denominator is
the span as a two-sided ideal of the tensor algebra of g which equals the numerator.

Note that U ϵ(g) is naturally a (g, G)-module whose structure is induced from
the map Ad(g) of g. U1(g) and U0(g) are the universal enveloping algebra U(g)
and the symmetric algebra S(g) of g, respectively. If ϵ ̸= 0, the map defined by
Eij 7→ ϵEij gives an algebra isomorphism of U ϵ(g) onto U(g).

The residue class of the element X1 ⊗ X2 ⊗ · · · ⊗ Xm (Xj ∈ g) in U ϵ(g) will
be denoted by X1X2 · · ·Xm and the image of

∑m
k=0 ⊗kg in U ϵ(g) is denoted by

U ϵ(g)(m).
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For an ordered partition {n′
1, . . . , n

′
L} of a positive integer n into L positive

integers put

(2.3)





nj = n′
1 + · · · + n′

j (1 ≤ j ≤ L), n0 = 0,

Θ = {n1, n2, . . . , nL},
ιΘ(ν) = j if nj−1 < ν ≤ nj (1 ≤ ν ≤ n).

The ordered partition of n is expressed by the set Θ of strictly increasing pos-
itive integers ending at n. Define Lie subalgebras nΘ, n̄Θ and mΘ by the span
of Eij with ιΘ(i) > ιΘ(j), ιΘ(i) < ιΘ(j) and ιΘ(i) = ιΘ(j), respectively, and
put pΘ = mΘ + nΘ. We denote mk

Θ =
∑

ιΘ(i)=ιΘ(j)=k CEij , n =
∑

1≤j<i≤n CEij ,
n̄ =

∑
1≤i<j≤n CEij , a =

∑n
j=1 CEi and p = a + n. Then mΘ = m1

Θ ⊕ · · · ⊕ mL
Θ

and pΘ is a parabolic subalgebra containing the Borel subalgebra p. We remark that
pΘ = {X ∈ g; 〈X, Y 〉 = 0 (∀Y ∈ nΘ)}.

Fix λ = (λ1, . . . , λL) ∈ C and define a closed affine subset of p:

(2.4)

AΘ,λ =
n∑

j=1

λιΘ(j)Ej + nΘ

=








λ1In′
1 0A21 λ2In′

2

A31 A32 λ3In′
3

...
...

...
. . .

AL1 AL2 AL3 · · · λLIn′
L




; Aij ∈ M(n′
i, n

′
j ; C)





.

Here Im denotes the identity matrix of size m and M(k, ℓ; C) denotes the space of
matrices of size k × ℓ with components in C.

Remark 2.2. It is easy to see that the generic element of AΘ,λ has the Jordan
canonical form

(2.5)
⊕

µ∈C, 1≤k≤n

J(#{i; λi = µ and ni ≥ k}, µ)

with J(m,µ) =




µ 01 µ
. . . . . .

1 µ


 ∈ M(m, C)

and any Jordan canonical form is obtained in this way with a suitable choice of Θ
and λ.

If ϵ = 0, for f ∈ U0(g) = S(g) we have

f
( ⋃

g∈G

Ad(g)AΘ,λ

)
= 0 ⇐⇒

(
Ad(g)f

)
(AΘ,λ) = 0 (∀g ∈ G)

⇐⇒ Ad(g)f ∈ Jϵ
Θ(λ) (∀g ∈ G)

⇐⇒ f ∈ AnnG

(
M ϵ

Θ(λ)
)

with ϵ = 0, where

(2.6)

Jϵ
Θ(λ) =

∑

X∈pΘ

U ϵ(g)(X − λΘ(X)),

M ϵ
Θ(λ) = U ϵ(g)/Jϵ

Θ(λ),

Ann
(
M ϵ

Θ(λ)
)

=
{
D ∈ U ϵ(g); DM ϵ

Θ(λ) = 0},
AnnG

(
M ϵ

Θ(λ)
)

= {D ∈ U ϵ(g); Ad(g)D ∈ Ann
(
M ϵ

Θ(λ)
)

(∀g ∈ G
)
}
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and the character λΘ of pΘ is defined by

(2.7) λΘ(Y +
L∑

k=1

Xk) =
L∑

k=1

λk Trace(Xk) for Xk ∈ mk
Θ and Y ∈ nΘ.

When ϵ = 1, MΘ(λ) = M1
Θ(λ) is a generalized Verma module induced from the

character λΘ of mΘ, which is a quotient of the Verma module

(2.8) M(λΘ) = U(g)/J(λΘ)

with

(2.9) Jϵ(λΘ) =
∑

X∈p

U ϵ(g)
(
X − λΘ(X)

)
and J(λΘ) = J1(λΘ).

In general we will omit the superfix ϵ when ϵ = 1.

Proposition 2.3. Under the definition (2.6)

AnnG

(
M ϵ

Θ(λ)
)

= Ann
(
M ϵ

Θ(λ)
)

if ϵ ̸= 0,(2.10)

AnnG

(
M ϵ

Θ(λ)
)

=
⋂

g∈G

Ad(g)Jϵ
Θ(λ).(2.11)

Proof. We may assume ϵ ̸= 0 to prove the proposition.
Let D ∈ Ann

(
M ϵ

Θ(λ)
)
. Then for X ∈ g and v ∈ M ϵ

Θ(λ), (XD − DX)v =
X(Dv)−D(Xv) = 0 and therefore XD−DX ∈ Ann

(
M ϵ

Θ(λ)
)
. Since XD−DX =

ϵ ad(X)D in U ϵ(g), ad(X)D ∈ Ann
(
M ϵ

Θ(λ)
)

and therefore Ad(g)D ∈ Ann
(
M ϵ

Θ(λ)
)

for g ∈ G.
Put I =

⋂
g∈G Ad(g)Jϵ

Θ(λ). Since Ann(M ϵ
Θ(λ)) ⊂ Jϵ

Θ(λ), AnnG

(
M ϵ

Θ(λ)
)
⊂ I.

For P ∈ U ϵ(g), IP = PI ≡ 0 mod Jϵ
Θ(λ) because I is a two-sided ideal of U ϵ(g),

which means I ⊂ Ann
(
M ϵ

Θ(λ)
)

and therefore I ⊂ AnnG

(
M ϵ

Θ(λ)
)
. ¤

Definition 2.4. Define the polynomials and integers

(2.12)





dϵ
m(x) = dϵ

m(x; Θ, λ) =
L∏

j=1

(
x − λj − nj−1ϵ

)(n′
j+m−n)

,

dm = dm(Θ) = degx dϵ
m(x; Θ, λ) =

L∑
j=1

max{n′
j + m − n, 0},

eϵ
m(x) = eϵ

m(x; Θ, λ) = dϵ
m(x)/dϵ

m−1(x),

qϵ(x) = qϵ(x; Θ, λ) =
L∏

j=1

(
x − λj − nj−1ϵ

)

for m = 1, . . . , m by putting

(2.13) z(ℓ) =

{
z
(
z − ϵ

)
· · ·

(
z − (ℓ − 1)ϵ

)
if ℓ > 0,

1 if ℓ ≤ 0

and call dϵ
n(x), qϵ(x) and {eϵ

m(x); 1 ≤ m ≤ n} the characteristic polynomial, the
minimal polynomial and the elementary divisors of M ϵ

Θ(λ), respectively.

Remark 2.5. i) The set {eϵ
m(x); 1 ≤ m ≤ n} recovers {dϵ

m(x); 1 ≤ m ≤ n}. Note
that eϵ

m(x) ∈ C[x]eϵ
m−1(x) ∩ C[x]eϵ

m−1(x − ϵ).
ii) For the generic element A of J0

Θ(λ), the greatest common divisor of m-minors
of the matrix xIn −A equals d0

m(x) and therefore when ϵ = 0, the above definition
coincides with that in the linear algebra.

iii) The meaning of the minimal polynomial for ϵ ̸= 0 will be clear in [16].

Now we introduce quantized minors.
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Definition 2.6. For set of indices I = {i1, . . . , im} and J = {j1, . . . , jm} with iµ,
jν ∈ {1, . . . , n}, define a generalized Capelli operator (cf. [15])

(2.14) det ϵ(x;EIJ ) = det
((

x + (ν − m)ϵ
)
δiµjν − Eiµjν

)
1≤µ≤m
1≤ν≤m

in U ϵ(g)[x] by the column determinant:

(2.15) det
(
Aµν

)
1≤µ≤m
1≤ν≤m

=
∑

σ∈Sm

sgn(σ)Aσ(1)1Aσ(2)2 · · ·Aσ(m)m.

Proposition 2.7. The Capelli operators satisfy

det ϵ(x;Eσ(I)σ′(J)) = sgn(σ) sgn(σ′) det ϵ(x;EIJ ) for σ, σ′ ∈ Sm,(2.16)

ad(Eij) det ϵ(x;EIJ) = D1 − D2(2.17)

where

σ(I) = {iσ(1), . . . , iσ(m)}, σ′(J) = {jσ′(1), . . . , jσ′(m)},

D1 =

{
det ϵ(x;E{i1,...,iµ−1,j,iµ+1,...,im}J) if there exists only one iµ with iµ = j,
0 otherwise,

D2 =

{
det ϵ(x;EI{j1,...,jν−1,i,jν+1,...,jm}) if there exists only one jν with jν = i,
0 otherwise.

Proof. When ϵ = 1, (2.16) and (2.17) are proved by [15, Lemma 2.2 and Proposi-
tion 2.4]. Combining this with the definition of U ϵ(g), we have the proposition. ¤

Definition 2.8. Under Definition 2.4 and Definition 2.6, put

(2.18) det ϵ(x;EIJ) = hIJ(x)dϵ
m(x) + rdm−1

IJ xdm−1 + · · · + r1
IJx + r0

IJ

in U ϵ(g)[x] with hIJ [x] ∈ U ϵ(g)[x] and rj
IJ ∈ U ϵ(g)(m−j) for j = 0, . . . , dm − 1 and

define the two-sided ideal of U ϵ(g):

(2.19) Iϵ
Θ(λ) =

n∑

m=1

∑

#I=#J=m

dm−1∑

j=0

U ϵ(g)rj
IJ

Note that if m ≤ n − max{n′
1, . . . , n

′
L} the summand equals 0 because dm = 0.

Moreover note that rj
IJ with #I = #J = n and 0 ≤ j < n are in U ϵ(g)G by

Proposition 2.7. In particular, if Θ = {1, 2, . . . , n}, then pΘ = p and Iϵ
Θ(λ) is

generated by suitable n elements in U ϵ(g)G.
Now we can state the main result in this section and we call rj

IJ quantized
Tanisaki generators of AnnG

(
M ϵ

Θ(λ)
)
. In the case when ϵ = λ = 0, d0

m(x; Θ, 0) =
xdm and the generators rj

IJ are introduced by [17].

Theorem 2.9. Under the notation (2.6) and (2.19)

AnnG

(
M ϵ

Θ(λ)
)

= Iϵ
Θ(λ).

If all the roots of dϵ
n(x) = 0 are simple, which is equivalent to say that the infini-

tesimal character of M ϵ
Θ(λ) is regular (cf. Remark 2.15), then

(2.20) AnnG

(
M ϵ

Θ(λ)
)

=
L∑

k=1

∑

#I=#J=n+1−n′
k

U ϵ(g)Dϵ
IJ (λk + nk−1ϵ).

Here for I = {i1, . . . , im} and J = {j1, . . . , jm} we put

(2.21) Dϵ
IJ (x) = (−1)m det ϵ(x;EIJ) = det

(
Eiµjν

− (x + (ν − m)ϵ)δiµjν
)
)

1≤µ≤m
1≤ν≤m

.
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If all the roots of dϵ
n−1(x) = 0 are simple, (2.20) holds modulo the ideal generated

by AnnG

(
M ϵ

Θ(λ)
)
∩ U ϵ(g)G.

When ϵ = 0, (2.20) holds if λi ̸= λj for 1 ≤ i < j ≤ L and the last statement
above holds if λi ̸= λj for 1 ≤ i < j ≤ L satisfying n′

i > 1 and n′
j > 1.

Remark 2.10. Let {λ′
1, . . . , λ

′
k} be the set of the roots of dϵ

m(x) = 0 and let mk

be the multiplicity of the root λ′
k. Here dm = m1 + · · · + mk and λ′

µ ̸= λ′
ν if

1 ≤ µ < ν ≤ k. Then

(2.22)
dm−1∑

j=0

Crj
IJ =

k∑

i=1

mi∑

j=1

C
( dj−1

dxj−1
Dϵ

IJ(x)
)∣∣∣

x=λ′
i

for #I = #J = m.

The remaining part in this section will be devoted to the proof of this theorem
until Remark 2.17. First we will examine the image of our minors under the Harish-
Chandra homomorphism.

Define the map ω of U ϵ(g) to S(a) = U ϵ(a) by

(2.23) D − ω(D) ∈ U ϵ(g)n + n̄U ϵ(n̄ + a).

Fix I = {i1, . . . , im} and J = {j1, · · · , jm} with 1 ≤ i1 < i2 < · · · < im ≤ n and
1 ≤ j1 < j2 < · · · < jm ≤ n. Then [15, Corollary 2.11] in the case ϵ = 1 shows

(2.24) ω
(
Dϵ

IJ (x)
)

=





0 if I ̸= J ,
m∏

ν=1

(
Eiν − x + (ν − 1)ϵ

)
if I = J

under the notation in Theorem 2.9. Introducing the algebra isomorphism

(2.25)
¯: S(a) → S(a)

with Ēj = Ej −
(
−n−1

2 + (j − 1)
)
ϵ for j = 1, . . . , n

(cf. Remark 2.15), put

(2.26) ω̄(P ) = ω(P ).

Then ω̄ defines the Harish-Chandra isomorphism of U ϵ(g)G onto the algebra S(a)W

of Sn-invariants in S(a). Here we note that if I = {i1 < i2 < · · · < im},

(2.27) ω̄
(
Dϵ

II(x)
)

=
m∏

ν=1

(
Eiν − x + (n−1

2 + ν − iν)ϵ
)
.

Since Dϵ
{1,...,n}{1,...,n}(x) ∈ U ϵ(g)G[x] (cf. Proposition 2.7), it is clear that the coef-

ficients of Dϵ
{1,...,n}{1,...,n}(x) as a polynomial of x generate the algebra U ϵ(g)G.

Lemma 2.11. Let g = n̄ ⊕ a ⊕ n be a triangular decomposition of a reductive Lie
algebra g over C. Here n and n̄ are nilpotent subalgebras of g and a is a Cartan
subalgebra of g and p = a ⊕ n is a Borel subalgebra of g. For an element D of the
universal enveloping algebra U(g) of g, we define ω(D) ∈ S(a) so that

(2.28) D − ω(D) ∈ U(g)n + n̄U(n̄ + a).

For a subspace V of U(g) put

(2.29) 〈ω(V )〉S(a) =
∑

p∈ω(V )

S(a)p.

Then if ad(g)V ⊂ V , we have

(2.30) ω(PDQ) ∈ 〈ω(V )〉S(a) for any P, Q ∈ U(g) and any D ∈ V .
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Proof. Let {X1, . . . , XN}, {Y1, . . . , YN} and {H1, . . . ,HM} be the basis of n, n̄
and a, respectively. Then

{Y αHβXγ = Y α1
1 · · ·Y αN

N Hβ1
1 · · ·HβM

M Xγ1
1 · · ·XγN

N ; α ∈ NN , β ∈ NM , γ ∈ NN}

with N = {0, 1, 2, . . .} is a Poincare-Birkhoff-Witt basis of U(g).
Let D ∈ V . The assumption implies PDQ ∈ U(g)V and therefore we may

assume Q = 1 in (2.30). Since XD = ad(X)D + DX ∈ V + U(g)n for X ∈
n, we have XγD ∈ V + U(g)n. On the other hand, Y αHβD − Y αHβω(D) ∈
Y αHβ(n̄U(n̄+a)+U(g)n) ⊂ n̄U(n̄+a)+U(g)n and therefore ω(Y αHβD) = Hβω(D)
if α = 0 and ω(Y αHβD) = 0 otherwise. Hence ω(Y αHβXγD) ∈ 〈ω(V )〉S(a) and
ω(PD) ∈ 〈ω(V )〉S(a) for P ∈ U(g). ¤

Lemma 2.12. Under the notation in Lemma 2.11, fix HΘ ∈ a so that the condition
ad(HΘ)Y = cY Y with cY ∈ C and Y ∈ n \ {0} means cY ≥ 0. Suppose ad(HΘ)n ̸=
{0}. Let mΘ be the centralizer of HΘ in g and let nΘ and n̄Θ be subspaces spanned
by the elements Y in n and n̄, respectively, satisfying ad(HΘ)Y = cY Y with cY ̸= 0.
Then pΘ = mΘ⊕nΘ be a Levi decomposition of a parabolic subalgebra pΘ containing
p. Let aΘ denote the center of mΘ. For an element λ of the dual a∗Θ of aΘ we define
a character λΘ of pΘ so that λΘ(nΘ+[mΘ,mΘ]) = 0 and λΘ(H) = λ(H) for H ∈ aΘ.
Suppose there exist D1(λ), . . . , Dm(λ) in U(g)[λ] so that

ad(X)Dk(λ) ∈
m∑

j=1

U(g)[λ]Dj(λ) for X ∈ g and k = 1, . . . , m,(2.31)

Dk(λ) ∈
∑

X∈pΘ

U(g)[λ]
(
X − λΘ(X)

)
+ n̄U(g)[λ] for k = 1, . . . , m.(2.32)

Then Dk(λ) ∈
∑

X∈pΘ
U(g)[λ]

(
X − λΘ(X)

)
and therefore Dk(λ) ∈ Ann(MΘ(λ))

for k = 1, . . . , m under the same notation as in the case g = gl(n, C).

Proof. Retain the notation in the proof of Lemma 2.11. We may assume
{Y1, . . . , YN ′} is a basis of n̄Θ for a suitable N ′. We note that for D ∈ U(g)[λ]

(2.33) D ≡
∑

α∈NN′

cα(D;λ)Y α mod
∑

X∈pΘ

U(g)[λ]
(
X − λΘ(X)

)
.

Here cα(D;λ) ∈ C[λ] are uniquely determined by D because of the decomposition
U(g) = U(n̄Θ) ⊕ U(g)pΘ.

Put I =
∑m

k=1 U(g)Dk(λ)U(g) and Iλ =
∑

H∈a S(a)[λ]
(
H − λ(H)

)
and sup-

pose D ∈ I. Then (2.32) implies ω
(
Dk(λ)

)
∈ Iλ for k = 1, . . . , m and therefore

ω(PDk(λ)Q) ∈ Iλ for P , Q ∈ U(g) by Lemma 2.11 which implies c0(D;λ) =
ω(D)(λ) = 0. Hence IMΘ(λ) is a proper g-submodule of MΘ(λ) for any fixed
λ ∈ a∗Θ.

Since MΘ(λ) is an irreducible g-module for a generic λ, IMΘ(λ) = 0 for a generic
λ. Hence cα(D;λ) = 0 for α ∈ NN ′

and D ∈ I and therefore IMΘ(λ) = 0 for any
λ. ¤

The following remark is clear from the argument in the proof of Lemma 2.12.

Remark 2.13. i) Let ℓ be a positive integer and let r(λ, ϵ) be a polynomial function
of (λ, ϵ) ∈ Cℓ+1 valued in U ϵ(g). If r(λ, ϵ) ∈ AnnG

(
M ϵ

Θ(λ)
)

for generic (λ, ϵ), then
r(λ, ϵ) ∈ AnnG

(
M ϵ

Θ(λ)
)

for any (λ, ϵ).
ii) Let p be a suitable polynomial map of Cℓ to a∗Θ. Replacing Dk(λ), U(g)[λ]

and λ by Dk(µ), U(g)[µ] and p(µ), respectively, in Lemma 2.12, we have the same
conclusion if MΘ(p(µ)) is irreducible for generic µ ∈ Cℓ.
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Remark 2.14. Use the notation in Lemma 2.11. Let λ ∈ a∗ and consider the Verma
module M(λ) = U(g)/

(
U(g)n +

∑
H∈a U(g)(H − λ(H))

)
. Then

(2.34) Pλ = {D ∈ U(g); ω(D)(λ) = ω
(
ad(X)D

)
(λ) = 0 (∀X ∈ g)}

is the annihilator Ann
(
L(λ)

)
of the unique irreducible quotient L(λ) of M(λ). Here

we identify S(a) with the space of polynomial functions of a∗. This may be also
considered to be a quantization of the conjugacy class of semisimple matrices.

Proof. Lemma 2.11 proves that Pλ is a two-sided ideal of U(g). Since the
assumption means that the projection of PλL(λ) into the highest weight space of
L(λ) vanishes, PλL(λ) = 0 because of the irreducibility of L(λ). On the other
hand, Dv = 0 for the highest weight vector v of L(λ) implies ω(D)(λ) = 0. Since
Ann

(
L(λ)

)
is a two-sided ideal of U(g), we have Ann

(
L(λ)

)
⊂ Pλ. ¤

Remark 2.15. Define ρ ∈ a∗ by ρ(X) = 1
2 Trace ad(H)|n and w.λ = w(λ + ρ) − ρ

for the element w of the Weyl group W of the pair (g, a). Then the infinitesimal
character of the highest weight module M(λ) is parametrized by W.λ. We say that
the infinitesimal character is regular if w.λ ̸= λ for any w ∈ W satisfying w ̸= e.

If g = gl(n, C), then

(2.35) ρ =
(
−n−1

2 + (1 − 1)
)
e1 + · · · +

(
−n−1

2 + (n − 1)
)
en,

W ≅ Sn and

w
( n∑

j=1

µjej

)
=

n∑

j=1

µjew(j) =
n∑

j=1

µw−1(j)ej for (µ1, . . . , µn) ∈ Cn and w ∈ W.

In U ϵ(g), ρ changes into ρϵ = ϵρ and the infinitesimal character of M ϵ
Θ(λ) equals

that of M ϵ(λΘ). Hence the infinitesimal character is regular if and only if all the
roots of dϵ

n(x) = 0 are simple because the set of roots is {λ̄ν + n−1
2 ϵ; ν = 1, . . . , n}

by putting

(2.36) λΘ + ρϵ = λ̄1e1 + · · · + λ̄nen.

Here we note that

(2.37) λ̄ν = λk +
(
− n − 1

2
+ (ν − 1)

)
ϵ if nk−1 < ν ≤ nk.

Lemma 2.16. Let I = {i1, . . . , im} and J = {j1, . . . , jm−1} be sets of positive
numbers with m > 0, i1 < i2 < · · · < im and j1 < j2 < · · · < jm−1. Then there
exists a positive integer µ ≤ m such that #{j ∈ J ; j < iµ} = µ − 1 and iµ /∈ J .

Proof. Suppose m > 1 since the lemma is clear when m = 1. If jm−1 < im, we
can put µ = m. If jm−1 ≥ im, we can reduce to the case when I = {i1, . . . , im−1}
and J = {j1, . . . , jm−2}. ¤

Retain the notation in Theorem 2.9. Fix k with 1 ≤ k ≤ L and put m = n+1−n′
k

and J = {1, 2, . . . , n} \ {nk−1 + 1, nk−1 + 2, . . . , nk}. Note that #J = m − 1.
For I = {i1, . . . , im} with 1 ≤ i1 < · · · < im ≤ n, choose an integer µ as in
Lemma 2.16. Then nk−1 < iµ ≤ nk and #{1, 2, . . . , nk−1} = µ − 1, from which we
have µ = nk−1 + 1 and λ(Eiµ) − (λk + nk−1ϵ) + (µ − 1)ϵ = 0 and therefore (2.24)
and (2.16) show

(2.38) ω
(
Dϵ

IJ(λk + nk−1ϵ)
)
∈

∑

H∈a

S(a)
(
H − λ(H)

)
if #I = #J = n + 1 − n′

k.

Denoting

(2.39) J(m,x) =
∑

#I=#J=m

CDϵ
IJ(x),
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the basis of J(n + 1 − n′
k, λk + nk−1ϵ) satisfies the assumption in Lemma 2.12 and

then

(2.40) J(n + 1 − n′
k, λk + nk−1ϵ) ⊂ AnnG

(
M ϵ

Θ(λ)
)

for k = 1, . . . , L

in the case when ϵ = 1. But this holds for any ϵ because of Remark 2.13 i) with
the isomorphism between U(g) and U ϵ(g).

Now the Laplace expansions of Dϵ
IJ(x) with respect to the first and the last

columns show (cf. [15, Proposition 2.6 i)])

(2.41) J(m + 1, λ) + J(m + 1, λ + ϵ) ⊂ U ϵ(g)J(m,λ) if m < n

and therefore

(2.42) J(n+1−n′
k+j, λk+(nk−1+i)ϵ) ∈ AnnG

(
M ϵ

Θ(λ)
)

for 0 ≤ i ≤ j ≤ n′
k − 1.

Hence if c ∈ C satisfies dϵ
m(c;λ) = 0, then detϵ

m(c;EIJ ) ∈ Iϵ
Θ(λ)′ for #I = #J = m

under the notation

(2.43) Iϵ
Θ(λ)′ =

L∑

k=1

U ϵ(g)J(n + 1 − n′
k, λk + nk−1ϵ).

We have proved

(2.44) Iϵ
Θ(λ)′ ⊂ Iϵ

Θ(λ) and Iϵ
Θ(λ)′ ⊂ AnnG

(
M ϵ

Θ(λ)
)
.

Moreover we have Iϵ
Θ(λ)′ = Iϵ

Θ(λ) if all the roots of dϵ
m(x;λ) = 0 are simple for

m = 1, . . . , n (cf. Remark 2.10). Hence it follows from Remark 2.13 i) that

(2.45) Iϵ
Θ(λ) ⊂ AnnG

(
M ϵ

Θ(λ)
)
.

Note that the elements rj
IJ for #I = #J = n in (2.18) are contained in Jϵ(λΘ)

because they are in the center U ϵ(g)G of U ϵ(g) (cf. (2.11)).
Thus we have only to show Iϵ

Θ(λ) ⊃ AnnG

(
M ϵ

Θ(λ)
)

to complete the proof of
Theorem 2.9. We can prove this for generic λ with ϵ ̸= 0 using the result in the
next section (cf. [16]) or Theorem 2.22 but here we reduce it to the claim

(2.46) I0
Θ(0) = AnnG

(
M0

Θ(0)
)
.

For ϵ = λ = 0, this is conjectured by [17] and is proved by [18]. In this case
rj
IJ ∈ S(g) are of homogeneous polynomials of g∗ with degree #I − j. Here we

note that det ϵ(x;EIJ ) is homogeneous of degree #I with respect to (x, g, ϵ, λ),
which is well-defined under any choice of Poincare-Birkhoff-Witt basis because of
the definition of the homogenized universal enveloping algebra.

Let S(g)m be the space of homogeneous elements of S(g) with degree m. Then
U ϵ(g)(m)/U ϵ(g)(m−1) ≅ S(g)m and for D ∈ U ϵ(g)(m), we denote by σm(D) the
corresponding element in S(g)m. Note that σ#I−j(r

j
IJ) in (2.18) does not depend

on λ and ϵ. Hence

(2.47) I0
Θ(0) =

n∑

m=n+1−max{n′
1,...,n′

L}

∑

#I=#J=m

dm−1∑

j=0

S(g)σm−j(r
j
IJ ).

Put Rϵ(λ)(m) = AnnG

(
M ϵ

Θ(λ)
)
∩U ϵ(g)(m) and D ∈ Rϵ(λ)(m) \Rϵ(λ)(m−1). We

will prove D ∈ Iϵ
Θ(λ) by the induction on m. Since (2.11) implies Ad(g)D ≡ 0

mod U ϵ(g)(m−1)pΘ + U ϵ(g)(m−1), we have

(2.48) σm(D)
(
Ad(g)nΘ

)
= 0 (∀g ∈ G)

and σm(D) ∈ I0
Θ(0). Hence it follows from (2.46) and (2.47) that there exist

homogeneous elements pj
IJ ∈ S(g) satisfying σm(D) =

∑
pj

IJσ#I−j(r
j
IJ). Here rj

IJ

are generators of Iϵ
Θ(λ) appeared in (2.18) and deg(pj

IJ)+#I−j = m if pj
IJ ̸= 0. Let

P j
IJ ∈ U ϵ(g)(m−#I+j) with σm−#I+j(P

j
IJ) = pj

IJ and put D′ =
∑

P j
IJDj

IJ . Then
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D′ ∈ Iϵ
Θ(λ) and D−D′ ∈ Rϵ(λ)(m−1) and therefore we have D−D′ ∈ Iϵ

Θ(λ) by the
hypothesis of the induction. Thus we have completed the proof of Theorem 2.9. ¤

Remark 2.17. The procedure to deform λ to 0 under the classical limit ϵ = 0 is
studied by [3].

In the proof of Theorem 2.9 we have shown the following, which is proved by
[2] together with the fact that it is not valid for a generalized Verma module of a
general semisimple Lie algebra induced from a character of a parabolic subalgebra.

Corollary 2.18. The graded ring gr
(
AnnG

(
M ϵ

Θ(λ)
))

=
∞⊕

m=0

(
AnnG

(
M ϵ

Θ(λ)
)
∩

U ϵ(g)(m)
)
/
(
AnnG

(
M ϵ

Θ(λ)
)
∩ U ϵ(g)(m−1)

)
equals the defining ideal of the closure

of the nilpotent conjugacy class of the generic element AΘ,0 of the form (2.4). In
particular it is a prime ideal and does not depend on (λ, ϵ).

Corollary 2.19. The following two conditions are equivalent.

(2.49) AnnG

(
M ϵ

Θ(λ)
)
⊃ AnnG

(
M ϵ

Θ′(λ′)
)
.

(2.50) dϵ
m(x; Θ, λ) ∈ C[x]dϵ

m(x; Θ′, λ′) for m = 1, . . . , n.

Proof. It follows from Theorem 2.9 that the latter condition implies the former.
Hence suppose the first condition. Let fm(x) be the least common multiple of
dϵ

m(x; Θ, λ) and dϵ
m(x; Θ′, λ′). Then if #I = #J = m, detϵ(x;EIJ ) ∈ U ϵ(g)fm(x)

mod C[x] ⊗ AnnG

(
M ϵ

Θ(λ)
)
. Applying σm to this relation as in the proof of Theo-

rem 2.9, we have det0(x;EIJ) ∈ S(g)xdeg(fm) mod C[x] ⊗ AnnG

(
M0

Θ(0)
)

because
of the homogeneity with respect to (x, g, ϵ, λ). Let AΘ,0 be the generic element
of the form (2.4) and let JΘ be the maximal ideal of S(g) corresponding to AΘ,0.
Considering under modulo JΘ, we can conclude that all the m-minors of the matrix(
x−AΘ,0

)
are in C[x]xdeg(fm). On the other hand, xdm(Θ) is the greatest common di-

visors of m-minors of
(
x−AΘ,0

)
and therefore deg fm(x) ≤ dm(Θ) = deg dϵ

m(x; Θ, λ)
and we have the latter condition. ¤
Remark 2.20. If ϵ = 0, Corollary 2.19 gives the closure relation in the conjugacy
classes of the matrices.

Remark 2.21. i) The following theorem is a part of a conjecture proposed by [14]
for the general symmetric pair. The case in this note corresponds to the pair
(GL(n, C), U(n)).

ii) When AnnG(MΘ(λ)) is realized as a system of differential equations (cf. Ex-
ample 3.3) on a Riemannian symmetric space of the non-compact type, the following
theorem describes the characteristic exponents of the system along the boundary
and hence the boundary value of the solutions of the system vanishes with respect
to some exponents.

iii) In the case of the classical limit ϵ = λ = 0, the following theorem is obtained
by [4] and [17].

Theorem 2.22. Let WΘ be the Weyl group of mΘ and let W = W (Θ)WΘ be the
decomposition of W = Sn so that W (Θ) is the set of the representatives of W/WΘ

with the minimal length. Then the common zeros of ω
(
AnnG

(
M ϵ

Θ(λ)
))

coincides
with the set {w.λΘ; w ∈ W (Θ)} counting their multiplicities.

In particular, the space S(a)/ω
(
AnnG

(
M0

Θ(λ)
))

is naturally a representation
space of W which is isomorphic to IndW

WΘ
id.

Proof. Under the notation (2.36)

λ̄ν = λιΘ(ν) − n−1
2 + (ν − 1) for ν = 1, . . . , n
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and

ω̄(Dϵ
II)(λk + nk−1ϵ) =

m∏

µ=1

(
Eiµ − λk + (n−1

2 − nk−1 + µ − iµ)ϵ
)
.

Fix k with 1 ≤ k ≤ L and w ∈ W (Θ). Put m = n+1−n′
k, K = {nk−1 +1, . . . , nk},

Kc = {1, . . . , n} \ K and J = w(Kc). For I = {i1, . . . , im} with 1 ≤ i1 < · · · <
im ≤ n, choose µ as in Lemma 2.16 and put ℓ = w−1(iµ). Then ℓ ∈ K and
{ν ∈ Kc; w(ν) < iµ} = µ−1, which implies #{ν ∈ K; w(ν) < iµ} = iµ−µ. On the
other hand, since the condition nk−1 < ν < ν′ ≤ nk means w(ν) < w(ν′), we have
{ν ∈ K; w(ν) < iµ} = {nk−1 + 1, nk−1 + 2, . . . , ℓ− 1}. Hence ℓ−nk−1 − 1 = iµ −µ
and

λ̄ℓ − λk + (n−1
2 − nk−1 + µ − iµ)ϵ =

(
ℓ − 1 − nk−1 + µ − iµ

)
ϵ = 0.

Since λ̄ℓ is the iµ-th component of (λ̄w−1(1), . . . , λ̄w−1(n)), we can conclude that
ω̄(DII)(λk + nk−1ϵ) vanishes at w(λΘ + ρϵ), which is equivalent to the condition
that ω(DII)(λk +nk−1ϵ) vanishes at w.λΘ. Hence if λ is generic, ω

(
Iϵ
Θ(λ)

)
vanishes

at w.λΘ for w ∈ W (Θ) and therefore for any λ ∈ CL because of the continuity. In
particular, dimS(a)/ω

(
Iϵ
Θ(λ)

)
≥ #W (Θ) for generic λ and therefore for any λ by

the same reason.
Since ω

(
Iϵ
Θ(λ)

)
are generated by homogeneous polynomials of (a, λ, ϵ) and [17,

Theorem 1] shows dim S(a)/ω
(
I0
Θ(0)

)
= #W (Θ), we have dim S(a)/ω

(
Iϵ
Θ(λ)

)
≤

#W (Θ). Thus we can conclude dimS(a)/ω
(
Iϵ
Θ(λ)

)
= #W (Θ) and the theorem

follows from this. In fact, the last claim is clear because I0
Θ(λ) is W -invariant. ¤

3. Generalized Verma modules

In this section we examine the necessary and sufficient condition on λ ∈ CL so
that

(3.1) Jϵ
Θ(λ) = AnnG

(
M ϵ

Θ(λ)
)

+ Jϵ(λΘ)

under the notation (2.6) and (2.9). Note that it is clear by the definition that
Jϵ

Θ(λ) ⊃ AnnG

(
M ϵ

Θ(λ)
)

+ Jϵ(λΘ) and

(3.2) AnnG

(
M ϵ

Θ(λ)
)

= AnnG

(
U ϵ(g)/(AnnG

(
M ϵ

Θ(λ)
)

+ Jϵ(λΘ))
)
.

In general it is proved by [1] and [7] that for µ ∈ a∗ the map

(3.3) {I; I is the two sided ideal of U(g) with I ⊃ Ann
(
M(µ)

)
}

∋ I 7→ I + J(µ) ∈ {J ; J is the left ideal of U(g) with J ⊃ J(µ)}

is injective if µ is dominant:

(3.4) 2
〈µ + ρ, α〉
〈α, α〉

/∈ {−1,−2, . . .} for any positive root α for the pair (n, a).

Moreover the map is surjective if µ is regular, that is,

(3.5) 〈µ + ρ, α〉 ̸= 0 for any root α for the pair (n, a)

and dominant. Hence in our case when ϵ ̸= 0, (3.1) is valid if λΘ + ρϵ is regular
and dominant, which is equivalent to

(3.6) λ̄j − λ̄i /∈ {0,−ϵ,−2ϵ, . . .} for 1 ≤ i < j ≤ n.

For µ ∈ a∗ and D ∈ U ϵ(g) let γ(µ;D) denote the unique element in U ϵ(n̄) with
D ≡ γ(µ;D) mod Jϵ(µ). For a basis {Rj} of an ad(g)-invariant subspace V of
U ϵ(g) we note that

(3.7) γ(µ;
∑

PjRj) ∈
∑

U ϵ(n̄)γ(µ;Rj) for Pj ∈ U ϵ(g).
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Let R− denote the set of weights of U ϵ(n̄) with respect to a. Then

R− = {
n∑

i=1

miei; mi ∈ Z,
∑

mi = 0 and m1 ≥ m2 ≥ · · · ≥ mn} \ {0}.

Suppose Rj ∈ U ϵ(g) are weight vectors and U ϵ(g)V +Jϵ(µ) ̸= U ϵ(g). Since γ(µ;Rj)
has the weight which equals that of Rj , γ(µ;Rj) = 0 if the weight of Rj is not in
R−. Moreover since Eii+1 has a maximal weight ei − ei+1 in R− for any integer i
with 1 ≤ i < n,

(3.8) Eii+1 ∈ U ϵ(g)V + Jϵ(λ̄) ⇔ CEii+1 =
∑

the weight of Rj = ei − ei+1

Cγ(µ;Rj).

The key to studying the condition for (3.1) is the following argument used in
[15, proof of Theorem 5.1]:

Fix positive integers k, ī and j̄ satisfying 1 ≤ k ≤ L and nk−1 < ī < j̄ ≤ nk. Let
I = {im, . . . , i1} and J = {jm, . . . , j1} be a set of positive numbers such that

(3.9)

1 ≤ i1 < i2 < · · · < im ≤ n,

iν = jν if ν ̸= ℓ,

iℓ = ī < jℓ = j̄ < iℓ+1

with a suitable 1 ≤ ℓ ≤ m. Define non-negative integers

(3.10)





m′ = n − m,

a′
j = n′

j − #{ν; nj−1 < iν ≤ nj},
aj = nj − #{ν; iν ≤ nj} = a′

1 + · · · + a′
j , a0 = 0,

b = #{ν; nk−1 < iν < ī},
b′ = #{ν; j̄ < iν ≤ nk}.

Then

(3.11)
1 ≤ aL = m′ ≤ n − 2, 1 ≤ a′

k = n′
k − b − b′ − 1,

0 ≤ a′
j ≤ n′

j − δkj , 0 ≤ b ≤ ī − nk−1 + 1, 0 ≤ b′ ≤ nk − j̄

and we have

(3.12)

det ϵ(x;EIJ) ≡
m∏

ν=ℓ+1

(x − Eiν − (ν − 1)ϵ) · Eīj̄

·
ℓ−1∏

ν=1

(x − Eiν − (ν − 1)ϵ) mod U ϵ(g)n

≡
∏L

j=1 pj
IJ(x)

sIJ(x)
Eīj̄ mod Jϵ(λΘ)

by putting

(3.13)

{
pj

IJ(x) =
(
x − λj − (nj−1 − aj−1)ϵ

)(n′
j−a′

j),

sIJ (x) = x − λk − (nk−1 − ak−1 + b)ϵ.

Hence it follows from from (2.18) that

(3.14)
dm−1∑

i=0

Cri
IJ ≡

{
CEīj̄ mod Jϵ(λΘ) if

∏L
j=1 pj

IJ(x) /∈ C[x]sIJ(x)dϵ
m(x),

0 mod Jϵ(λΘ) otherwise.

Since (n′
j−a′

j−aj−1)−(n′
j−m′) = m′−aj ≥ m′−aL ≥ 0, we can define polynomials

p̄j
IJ (x) =

pj
IJ (x)

(x − λj − nj−1ϵ)(n
′
j−m′)

.
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Then the condition
∏L

j=1 pj
IJ(x) ∈ C[x]sIJ(x)dϵ

m(x) is equivalent to the existence
of j with

(3.15) p̄j
IJ(x) ∈ C[x]sIJ(x).

If ϵ ̸= 0, the condition (3.15) is equivalent to the condition that ν is an integer
satisfying

(3.16) 0 ≤ ν ≤ n′
j − a′

j − 1 and
(
ν < aj−1 or ν ≥ aj−1 + n′

j − m′)

by denoting

(3.17) λk + (nk−1 − ak−1 + b)ϵ = λj + (nj−1 − aj−1 + ν)ϵ.

If ϵ = 0, it is equivalent to

(3.18) λj = λk and a′
j < m′.

Put I = {n, n−1, . . . , nk +1, ī, nk−1, nk−1−1, . . . , 1} and J = {n, n−1, . . . , nk +
1, j̄, nk−1, nk−1 − 1, . . . , 1}. Then

m′ = n′
k − 1, b = b′ = 0, a′

k = n′
k − 1, a′

j = 0 and n′
j − a′

j − 1 = n′
j − 1 if j ̸= k.

Suppose (3.15) holds. Then j ̸= k because p̄k
IJ(x) = 1. Since

{
aj−1 − 1 = −1 < 0 and aj−1 + n′

j − m′ = n′
j − n′

k + 1 if j < k,

aj−1 − 1 = n′
k − 2 and aj−1 + n′

j − m′ = n′
j > n′

j − a′
j − 1 if j > k,

the condition (3.16) is equivalent to
{

max{0, n′
j − n′

k + 1} ≤ ν′ ≤ n′
j − 1 if j < k,

1 − n′
k ≤ ν′ ≤ min{n′

j − n′
k,−1} if k < j

with

ν′ = (ν − aj−1) − (b − ak−1) =

{
ν if j < k,

ν − n′
k + 1 if k < j.

Hence (3.15) is equivalent to the condition (cf. Remark 2.15)
(3.19)

Λk ∩ Λj ̸= ∅, Λk ̸⊂ Λj and
(
µ ∈ Λj , µ′ ∈ Λk \ Λj ⇒ (µ′ − µ)(k − j) > 0

)

with Λi := {λ̄ν ; ni−1 < ν ≤ ni} = {λi +
(
(ν − 1) − n−1

2

)
ϵ; ni−1 < ν ≤ ni}

if ϵ ̸= 0,

λj = λk and n′
k > 1 if ϵ = 0.

Thus we have the following theorem.

Theorem 3.1. i) Fix k with 1 ≤ k ≤ L. Recall mk
Θ =

∑
nk−1<i≤nk

nk−1<j≤nk

CEij. Then

(3.20) AnnG

(
M ϵ

Θ(λ)
)

+ Jϵ(λΘ) ⊃ mk
Θ ∩ n̄

if and only if (3.19) does not hold for j = 1, . . . , L.
ii) The equality (3.1) is valid if and only if (3.19) does not hold for j = 1, . . . , L

and k = 1, . . . , L, which is equivalent to the condition
(3.21){

Λi ∩ Λj = ∅ or Λi = Λj or min Λ̄i > min Λ̄j or max Λ̄i > max Λ̄j if ϵ ̸= 0,

λi ̸= λj or n′
i = n′

j = 1 if ϵ = 0,

for 1 ≤ i < j ≤ L.

Here Λ̄i = {Reµ; µ ∈ Λi} etc. and Λi is given in (3.19). In particular (3.1) is valid
if the infinitesimal character of M ϵ

Θ(λ) is regular.
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Proof. We have only to prove that (3.20) is not valid if (3.19) holds for a suitable
j. Suppose there exists j = jo which satisfies (3.19). Fix such jo and continue the
argument just before the theorem. Put j̄ = ī + 1 and suppose (3.15) does not valid
for j = k. Then if ϵ ̸= 0, ν = b in (3.17) and since 0 ≤ b ≤ n′

k − a′
k − 1 and (3.16)

is not valid with j = k, we have

(3.22) ak−1 ≤ b < ak−1 + n′
k − m′ and m′ < n′

k if ϵ ̸= 0.

On the other hand, if ϵ = 0, we have a′
k = m′ because a′

k ≤ aL = m′.
First consider the case when jo < k. Put ℓ = λk + nk−1 − λjo − njo−1. If ϵ ̸= 0,

it follows from (3.19) that

0 ≤ ℓ < n′
jo

and ℓ + n′
k > n′

jo
.

Put ī = nk−1 + n′
jo

− ℓ and j = jo in (3.17). Note that nk−1 < ī < j̄ = ī + 1 ≤ nk

and ν = ℓ + b − ak−1 + ajo−1. Then we have ν = ℓ + (b − ak−1) + ajo−1 ≥ 0,
(n′

jo
− a′

jo
− 1)− ν = (̄i−nk−1 − b− 1) + (ak−1 − ajo−1) ≥ 0 and ν − (ajo−1 +n′

jo
−

m′) = ℓ + b − ak−1 − n′
jo

+ m′ = m′ − (̄i − nk−1 − b − 1) − ak−1 ≥ m′ − ak ≥ 0
in (3.16), which implies p̄j0

IJ(x) ∈ C[x]sIJ(x). We have this relation also in the
case when ϵ = 0 because deg p̄j0

IJ (x) = n′
jo

− a′
jo

− (n′
jo

− m′) = m′ − a′
jo

≥
m′− (m′ − a′

k) = a′
k > 0. Thus we can conclude rj

IJ ≡ 0 mod Jϵ(λΘ) if the weight
of rj

IJ is eī − eī+1. Note that the weight of rj
{i1,...,im}{j1,...,jm} is

∑m
ν=1 eiν − ejν .

Hence Eīj̄ ̸∈ AnnG

(
M ϵ

Θ(λ)
)

+ Jϵ(λΘ) because of (3.8).
Lastly consider the case when k < jo. If ϵ = 0, the same argument as in the case

when jo < k works. Therefore we may assume ϵ ̸= 0. Put ℓ = λjo+njo−1−λk−nk−1.
It follows from (3.19) that

1 ≤ ℓ < n′
k and n′

k ≤ ℓ + n′
jo

.

Put ī = nk−1 + ℓ. Then similarly we have nk−1 < ī < j̄ = ī + 1 ≤ nk, ν = ajo−1 −
ak−1 +b−ℓ = ajo−1−ak−1 +(n′

k −a′
k −b′−1)−ℓ = (ajo−1−ak)+(nk − j̄−b′) ≥ 0,

(n′
jo
−a′

jo
−1)−ν = n′

jo
−a′

jo
−1−(ajo−1−ak−1+b−ℓ) = (ℓ+n′

jo
−n′

k)+(ak−1+n′
k−

m′−b−1)+(m′−ajo) ≥ 0 and ajo−1−ν = ak−1−b+ℓ = ak−1+(̄i−nk−1−b−1)+1 > 0
in (3.16). Hence p̄j0

IJ(x) ∈ C[x]sIJ(x) and thus Eīj̄ ̸∈ AnnG

(
M ϵ

Θ(λ)
)

+ Jϵ(λΘ) as
in the previous case. ¤

Example 3.2. Suppose n = 3, Θ = {2, 3} and λ = (λ1, λ2). Then

dϵ
1(x) = 1, dϵ

2(x) = x − λ1, dϵ
3(x) = (x − λ1)(x − λ1 − ϵ)(x − λ2 − 2ϵ),

Jϵ(λΘ) =
∑

3≥i>j≥1

U(g)Eij + U(g)(E1 − λ1) + U(g)(E2 − λ1) + U(g)(E3 − λ2),

Jϵ
Θ(λ) = Jϵ(λΘ) + U ϵ(g)E12.

Since

Dϵ
IJ (x) = (Ei1j1 − (x − ϵ)δi1j1) (Ei2j2 − xδi2j2)

− (Ei2j1 − (x − ϵ)δi2j1) (Ei1j2 − xδi1j2)
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for I = {i1 > i2} and J = {j1 > j2}, we have

(3.23)





Dϵ
{21}{21}(λ1) = (E2 − λ1 + ϵ)(E1 − λ1) − E12E21 ≡ 0,

Dϵ
{32}{32}(λ1) = (E3 − λ1 + ϵ)(E2 − λ1) − E23E32 ≡ 0,

Dϵ
{31}{31}(λ1) = (E3 − λ1 + ϵ)(E1 − λ1) − E13E31 ≡ 0,

Dϵ
{21}{32}(λ1) = E23E12 − E13(E2 − λ1) ≡ E23E12,

Dϵ
{21}{31}(λ1) = E23(E1 − λ1) − E13E21 ≡ 0,

Dϵ
{32}{21}(λ1) = E32E21 − (E2 − λ1 + ϵ)E31 ≡ 0,

Dϵ
{32}{31}(λ1) = (E3 − λ1 + ϵ)E21 − E23E31 ≡ 0,

Dϵ
{31}{21}(λ1) = E32(E1 − λ1) − E12E31 ≡ 0,

Dϵ
{31}{32}(λ1) = (E3 − λ1 + ϵ)E12 − E13E32 ≡ (λ2 − λ1 + ϵ)E12.

Here the above ≡ is considered under modulo Jϵ(λΘ). Note that

(3.24) AnnG

(
M(Θϵ(λ)

)
=

∑

3≥i1>i2≥1
3≥j1>j2≥1

U ϵ(g)Dϵ
{i1i2}{j1j2}(λ1)

+
∑

D∈Uϵ(g)G

U ϵ(g)
(
D − ω(D)(λΘ)

)
.

Hence if λ1 ̸= λ2 + ϵ which is equivalent to (3.21), we have (3.1).
Suppose λ1 = λ2 + ϵ. Then since ad(p)(E32E12) ⊂ Jϵ(λΘ), we have

(3.25)
Jϵ

Θ(λ) = U ϵ(n̄)E12 ⊕ Jϵ(λΘ)

% AnnG

(
MΘ(λ)

)
+ Jϵ(λΘ) = U ϵ(n̄)E23E12 ⊕ Jϵ(λΘ) % Jϵ(λΘ).

If ϵ ̸= 0, the above inclusion relation gives a Jordan-Hörder sequence of M ϵ(λΘ)
and

(3.26) Jϵ
Θ(λ)/

(
AnnG

(
M ϵ

Θ(λ)
)

+ Jϵ(λΘ)
)
≅ M ϵ

Θ′(λ′)

with Θ′ = {1, 3} and λ′ = (λ1 + ϵ, λ1 − ϵ). Note that ρϵ = (−ϵ, 0, ϵ), λΘ + ρϵ =
(λ1 − ϵ, λ1, λ1), λ′

Θ′ − λΘ = ϵ(e1 − e2), (1, 2).λΘ = λ′
Θ′ and AnnG

(
M ϵ

Θ(λ)
)

=
AnnG

(
M ϵ

Θ′(λ′)
)

under the notation in Remark 2.15. Here Ann
(
MΘ(λ)

)
is the

unique two-sided proper ideal of U(g) which is larger than U(g)
(
J(λΘ) ∩ U(g)G

)
.

Example 3.3. Let G be a real form of GL(n, C), let K be a maximal compact
subgroup of G and let P be a parabolic subgroup of G with the Langlands decom-
position P = MAN . Fix a minimal parabolic subgroup Po of G contained in P .
Let a∗ be the dual space of the Lie algebra a of A. Define

χλ : P ∋ man 7→ χλ(man) = aλ ∈ C (m ∈ M, a ∈ A, n ∈ N),

B(G/P ;Lλ) = {f ∈ B(G); f(xp) = χλ(p)f(x) (∀p ∈ P )},
B(G/Po;Lλ) = {f ∈ B(G); f(xp) = χλ(p)f(x) (∀p ∈ Po)}.

for λ ∈ a∗. Here B(G) is the space of hyperfunctions on G. Let pΘ be the complexi-
fication of the Lie algebra of P . Then the totality of the elements of U(g) which kill
all the elements of B(G/Po;Lλ) equals JΘ(λ). Here we note that U(g) is identified
with the ring of left invariant differential operators on G.

Note that (3.1) implies that f ∈ B(G/Po;Lλ) belongs to B(G/P ;Lλ) if and only
if f is killed by AnnG(MΘ(λ)).

The Poisson transformation Pλ of the space B(G/Po;Lλ) is defined by

Pλ : B(G/Po;Lλ) ∋ f 7→ (Pλ(f))(x) =
∫

K

f(xk)dk ∈ B(G/K).

Here dk is the normalized Haar measure on K.
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Suppose Pλ is injective. It is known by Helgason [5] that this is valid for generic
λ including λ = 0. Then [10] shows that the image is characterized by a simul-
taneous eigenspace of the ring of invariant differential operators on the symmetric
space G/K. In this case (3.1) assures that the image of the Poisson transform of
B(G/P ;Lλ) is {f ∈ B(G/K); Pf = 0

(
∀P ∈ AnnG(MΘ(λ))

)
}.

Johnson [6] studies this problem when λ = 0 and P ̸= P0. Here we have solved
this problem for generic λ including λ = 0. More precise argument and similar
applications are given in [16, §5].
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